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Abstract The recent years have seen increasingly wide-
spread use of highly concurrent data structures in both
multi-core and distributed computing environments, thereby
escalating the priority for verifying their correctness. Quasi
linearizability is a quantitative variation of the standard
linearizability correctness condition to allow more imple-
mentation freedom for performance optimization. However,
ensuring that the implementation satisfies the quantitative
aspect of this new correctness condition is often an arduous
task. In this paper, we propose the first automated method
for formally verifying quasi linearizability of the implemen-
tation model of a concurrent data structure with respect to its
sequential specification. The method is based on checking a
relaxed version of the refinement relation between the imple-
mentation model and the specification model through explicit
state model checking. Our method can directly handle con-
current systems where each thread or process makes infinitely
many method calls. Furthermore, unlike many existing ver-
ification methods, it does not require the user to supply
annotations of the linearization points. We have implemented
the new method in the PAT verification framework. Our
experimental evaluation shows that the method is effective
in verifying the new quasi linearizability requirement and
detecting violations.
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1 Introduction

Linearizability [11, 12] is a widely used correctness condition
for concurrent data structures. A concurrent data structure is
linearizable if each of its operations (method calls) appears to
take effect instantaneously at some point in time between its
invocation and response. Although being linearizable does
not necessarily ensure the full-fledged functional correct-
ness, linearizability violations are often clear indicators that
the implementation is buggy. In this sense, linearizability
serves as a useful correctness requirement for implementing
concurrent data structures. However, ensuring linearizabil-
ity of highly concurrent data structures is a difficult task
due to the subtle interactions of concurrent operations and
the often astronomically many interleavings. Furthermore, it
often makes the implementation less scalable when the num-
ber of concurrent threads or processes increases.

Quasi linearizability [1] is a quantitative variation of
linearizability [9,10,14,15,21] designed to allow for more
flexibility in implementing the concurrent data structures.
While preserving the basic intuition of linearizability, quasi
linearizability relaxes certain aspects of the semantics of the
data structures in order to achieve increased runtime perfor-
mance. This is motivated by the fact that, in many highly
concurrent applications, the underlying data structures do
not need to obey their classic semantics. For example, when
implementing a queue for the task scheduler in a thread pool,
we often do not need to obey the strict first-in-first-out (FIFO)
semantics; instead, we may allow the dequeue operation to
return any of the first k data items, if such relaxation can help
improve the performance of the queue significantly. Here, the
only requirement is that such out-of-order execution must be
bounded within a fixed number of steps. Similarly, when
implementing efficient data caching in web applications, we
may not need to obey the strict semantics of the underly-
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ing data structures since occasionally getting stale data is
often acceptable in such applications, as long as the delay of
refreshing is bounded. Finally, in distributed systems, the
global counter for generating unique identifiers, which is
often a performance bottleneck, may be allowed to return
out-of-order values occasionally if it helps improve perfor-
mance.

In this paper, we propose the first fully automated method
for verifying this type of relaxed linearizability requirement
in the implementation models of concurrent data struc-
tures. Practical concurrent data structures that leverage such
relaxed notion of linearizability are emerging in recent
years [1,9,14,15,21]. Although in the literature, there is a
large body of work on formally verifying the standard lin-
earizability, e.g. using techniques such as model checking
[5,17,18,31], runtime verification [4,39], and theorem prov-
ing [29], these methods cannot be used to directly verify
quasi linearizability. Compared to standard linearizability,
quasi linearizability is significantly more difficult to verify
because in addition to the requirement of effectively cover-
ing all possible interleavings of the concurrent events, the
verification algorithm also needs to analyze the quantitative
aspect of these interleavings.

There are several technical challenges. First, since the
number of concurrent operations in each thread or process
is allowed to be potentially unbounded, the execution trace
may be infinitely long. This precludes the use of existing
methods based on systematic testing, such as LineUp [4] and
RoundUp [39], because these methods rely on checking per-
mutations of finite-length histories, and they require the user
to supply a concrete test program with a fixed number of
operations. Second, since the method needs to be fully auto-
mated, we do not assume that the user will find and annotate
the linearization points of each method. This precludes the
use of existing methods that are based on either user guidance
(e.g., [29]) or annotated linearization points (e.g., [31]).

In contrast, our new method relies on model checking
based techniques to formally verify a relaxed version of the
refinement relation between the implementation model and
the specification model. Given an implementation model,
denoted M;y,p, and a specification model, denoted M.,
we check whether the set of execution traces of M;,; is a
subset of the execution traces of Mjp,.. Toward this end, we
will leverage a classic refinement checking algorithm [17,18]
while checking the new quantitative relaxation property.

Consider as an example the problem of verifying that a
relaxed queue implementation is quasi linearizable. Our new
method will start from the initial state pair (impl, spec),
where spec is the initial state of the FIFO queue specifica-
tion model M;., and impl is the initial state of the quasi
linearizable implementation model M;,,,;. Then, we check
whether all subsequent state transitions of the implementa-
tion model can match some subsequent state transitions of
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the specification model. Recall that program verification in
general is an undecidable problem. Therefore, to make sure
that our refinement checking problem remains decidable, we
assume that the capacity of the data structure in the mod-
els are bounded to ensure that the number of states remains
finite.

It is worth pointing out that quasi linearizability [1] is
a relatively new notion, for which highly concurrent data
structures are still being developed. There are methods for
making queues and priority queues quasi linearizable, but we
are not yet aware of any published method for implementing
other quasi linearizable data structures, and the jury is still
out on whether quasi-linearizability is applicable to stacks
[10].

We have implemented the new method in the PAT verifi-
cation framework [27]. PAT provides the infrastructure for
parsing and analyzing the specification and implementation
models written in a process algebra that resembles CSP [13].
It also provides a set of API functions to facilitate the con-
struction of explicit state model checking procedures. Our
new method is implemented as a new refinement checking
module in PAT and is experimentally compared against the
existing refinement checking module in PAT. Our exper-
imental results show that the new method is effective in
generating formal proofs when the implementation model is
indeed correct, and is effective in detecting violations when
the implementation model is buggy.

To sum up, this paper makes the following contributions:

— We formalize the problem of verifying quasi linearizabil-
ity of concurrent data structures and evaluate the use of
an existing refinement checking algorithm for verifica-
tion, which requires the user to manually construct the
relaxed specification model.

— We propose a new refinement checking algorithm to
directly verify the quasi linearizability requirement with-
outuser intervention, by checking a relaxed version of the
refinement relation between the data structure implemen-
tation model and the specification model.

— We implement the new method in a software tool based
on the PAT verification platform and compare it with
the standard refinement checking procedure in PAT. Our
experimental results demonstrate the effectiveness of our
method on a set of standard and quasi linearizable concur-
rent data structures including queues, stacks, and priority
queues.

The remainder of this paper is organized as follows: We
establish notations and review the existing refinement check-
ing algorithm in Sect. 2. We present the overall flow of our
method in Sect. 3. We present a manual relaxation approach
for verifying quasi linearizability in Sect. 4, which is based
on the standard refinement checking algorithm. We present
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our fully automated approach in Sect. 5, which is based on a
new refinement checking algorithm. We present our experi-
mental results in Sect. 6, review related work in Sect. 7, and
finally conclude in Sect. 8.

2 Preliminaries

We define standard and quasi linearizability in this section,
and review an existing algorithm for checking the standard
refinement relation between two labeled transition systems.

2.1 Linearizability

Linearizability [12] is a safety property of concurrent sys-
tems, designed over sequences of actions corresponding to
the invocations and responses of the operations on shared
objects. We begin by formally defining the underlying
sequentially consistent shared memory model of a concur-
rent system.

Definition 1 (System models) A shared memory model M
is a 3-tuple structure (O, initg, P), where O is a finite set
of shared objects, inito is the initial state of O, and P is a
finite set of threads or processes accessing the objects. O

Every shared object has a set of states. Each object sup-
ports a set of operations, or method calls, which are pairs
of invocations and matching responses. These operations
are the only means of accessing the state of the object. A
shared object is deterministic if, given the current state and
an invocation of an operation, the next state of the object and
the return value of the operation are unique. Otherwise, the
shared object is non-deterministic.

A sequential specification (spec) of a deterministic shared
object is a function that maps every pair of invocation and
object state to a pair of response and new object state. In con-
trast, a sequential specification of a non-deterministic shared
object is a function that maps every pair of invocation and
object state to a set of pairs of response and new object state.
More rigorously, the sequential specification is defined for
a type of shared objects rather than an individual instance.
For simplicity, however, we shall refer to both actual shared
objects and their types interchangeably in this paper.

An execution of the sequentially consistent shared mem-
ory model M = (O, initp, P) is modeled by a history,
which is a sequence of operation invocation and response
actions that can be performed on O by threads or processes
in P. The behavior of M is defined as the set, H, of all possi-
ble histories together with the initial valuation of the objects.
A history 0 € H induces a partial order <, on operations
such that op; <, op» if the response of operation op; occurs
in o before the invocation of operation op;. Operations in o
that are not related by <, are concurrent—they represent,

for example, method calls that overlap with each other in
time. A history o is called a sequential history if and only if
< 18 a strict total order. Otherwise, it is called a concurrent
history.

Let o|; be the projection of the history o on process
pi € P, which is the subsequence of o consisting of all
invocations and responses that are performed by p;. Let o],
be the projection of the history o on object 0o; € O, which
is the subsequence of ¢ consisting of all invocations and
responses of operations that are performed on the object o;.

Every history o of a sequentially consistent shared mem-
ory model M = (O, initp, P) must satisfy the following
basic properties:

— Correct interaction For each process p; € P, the sub-
sequence o|; consists of alternating invocations and
matching responses, starting with an invocation. This
property is used to prevent pipelining operations, which
means that after invoking an operation, the same process
invokes another operation before it sees the response of
the first operation.

— Closedness Every invocation has a matching response.
This property is used to prevent pending operations,
which are invocations without matching responses.
Although this property is not required in the original def-
inition of linearizability [12], adding it will not affect
the correctness of our verification result. This is because,
by Theorem 2 in [12], for a pending invocation in a lin-
earizable history, we can always extend the history to a
complete one and preserve linearizability. We choose to
include this property to obviate the discussion for pend-
ing invocations.

A sequential history o is legal if it respects the sequen-
tial specifications of the objects. More specifically, for each
object o;, there exists a sequence of states sg, s, 52, ... of
object o; such that sq is the initial valuation of 0;, and accord-
ing to the sequential specification of the object, the j-th
invocation in o, together with state s; 1, where j =1, ..,
will generate the j-th response in o|,; and state s ;. For exam-
ple, a sequence of read and write operations of an object is
legal if each read returns the value of the preceding write
when such value exists, and otherwise it returns the initial
value.

Given a history o, a sequential permutation 7w of o is a
sequential history in which the set of operations as well as
the initial states of the objects are the same as in o.

Definition 2 (Linearizability) Given a model M = (O =
{o1, ..., 0k}, inito, P = {p1, ..., pn}). Let H be the set of
possible histories of M. We say that M is linearizable if
and only if for any history o in H, there exists a sequential
permutation 7 of o such that
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1. for every pair of operations op; and op» in o, if op; <4
opa, then op; <5 opy; that is, m respects the run-time
ordering of operations, and

2. for each object 0; € O (1 < i < k), the subsequence
7|y; 18 a legal sequential history; that is, 7 respects the
sequential specification (spec) of every object. O

For ease of comprehension, linearizability can be equiva-
lently defined as follows. In every history o, if we assign
increasing time values to all operation invocations and
responses, then every operation can be shrunk to a single
time point between its invocation time and response time
such that the operation appears to be completed instanta-
neously at this time point. In the literature, this time point is
called the linearization point [3,19].

2.2 Quasi linearizability

Following the notation introduced by Afek et al. [1], we
consider quasi linearizability as a quantitative variation of
linearizability [11,12], where a history o is allowed to be
non-linearizable but at the same time, stay within a bounded
distance from a linearizable history o”.

For two histories o and o’ such that one is the permutation
of the other, we define their distance as follows. Let o0 =
er,ex,e3,...,epand o’ = ¢), €}, ¢, ... e, Let o[e] and
o'[e] be the indices of the event e in o and o”, respectively.

> %n
The distance between A(o, ¢’) is defined as follows:
A(o,0") = max {|o’[e] — ole]l} .
eeo

In other words, the distance between o and ¢’ is the maxi-
mum distance that an event in o has to move to arrive at its
new position in o”.

While measuring the distance between two histories, we
often care about only a subset of the operations. For exam-
ple, in a concurrent queue, we may care about the ordering of
enqueue and dequeue operations while ignoring the size
operation. Furthermore, we may choose to allow dequeue
operations to be executed out of order but keep enqueue
operations in order. In such case, we need a way to spec-
ify ordering constraints on a subset of the operations of the
shared object.

Let Domain(o) be the set of all operations of a shared
object 0 € O. Let d C Domain(o) be a subset of
operations of object 0. Let Powerset(Domain(o)) be the
powerset, consisting of all the subsets of Domain(o). Let
D C Powerset(Domain(o)) be a subset of the powerset. In
this paper, we may use enqg and deq instead of enqueue and
dequeue 10 save space.

Definition 3 (Quasi-Linearization Factor) We define the
quasi-linearization factor as afunction Qo : D — N, where
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D is a subset of the powerset of operations and N is the set
of natural numbers.

Example 1 For an implementation of a bounded queue that
stores a set X of non-zero data items, we define the domain as
Domain(queue)= {enqg.x,deq.x,deq.0 | x € X}, where
enq.x denotes the enqgueue operation for data item x, deq.x
denotes the dequeue operation for data item x, and deq.0
indicates that the queue is empty. Now, we may define two
subsets of Domain(queue) as follows:

dy = {eng.x | x € X},
dr ={deq.x | x € X}.

Let D = {d,, d»}, where d| is the subset of eng events and d»
is the subset of deqgevents. The distance between the two his-
tories o and o, after they are projected to the subset d; (or the
subset db), is defined as A(olg,, 0”l4,) (or A0 gy, 0'1ay))-
If we require that the enqg calls follow the FIFO order and
that the deq calls may be out-of-order by at most K steps,
the quasi-linearization factor, denoted Q{queue} : D — N,
must be defined as follows:

Q{queue}(dl) =0,
Q{queue}(dZ) =K.

Definition 4 (Quasi Linearizability) Given a model M =
(O = {o1,...,0},initg, P = {p1,..., pn}). Let H be
the set of possible histories of M. We say that M is quasi-
linearizable under the quasi factor Qo : D — N if and only
if for any history o in H, there exists a sequential permutation
7 of o such that

— for every pair of operations op and op; in o, if op; <4
opa, then op; <, opy; that is, m respects the run-time
ordering of operations, and

— for each object o; € O (1 <i < k), there exists another
sequential permutation 77’ of 7 such that

1. 7', is a legal sequential history; that is, 7’ respects
the sequential specification (spec) of every object,
and

2. Allo)las (T'lo)la) < Qo(d) foralld € D.

Notice that this definition subsumes the definition of standard
linearizability because if the quasi factor is Qo (d) = 0O for
all d € D, then the objects behave as standard linearizable
data structures.

Example 2 Consider the three concurrent histories (execu-
tion traces) of a relaxed queue as shown in Fig. 1. The first
trace is linearizable, because it is a valid permutation of the
sequential history where Enq (v) takes effect before Deq ().
The second trace is not linearizable because the first dequeue
operationis Deq (v) but the firstenqueue operation is Eng (X) .
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& Enq(X) = & Deq(X)=>» €—Deq(Y)—>
€—Enq(Y) =—>
& Enq(X) = €—Deq(Y)=> & Deq(X)=>»
€—Enq(Y) =—>
€—Enq(X) =—> & Deq(Z) >
V) => < _Engz)—>

Fig. 1 Three concurrent histories (execution traces) of a relaxed queue:
Only the first trace (at the fop) is linearizable. The second trace is not lin-
earizable, but is 1-quasi linearizable, meaning that the dequeued value
may be out of order by at most 1 step. The third trace is neither lineariz-
able nor 1-quasi linearizable

However, note that the second history is not too far away from
a linearizable history, since swapping the order of the two
dequeue events would make it linearizable again. Therefore,
it is considered to be quasi-linearizable with respect to the
quasi factor 1. The third trace, in contrast, is neither lineariz-
able nor 1-quasi linearizable, because the dequeue operations
are out of order by two steps.

2.3 Linearizability as refinement

Linearizability is defined in terms of the invocations and
responses of high-level operations of the shared objects. In a
real concurrent program, the high-level operations are imple-
mented by algorithms on concrete shared data structures,
e.g., a linked list that implements a shared stack object [28].
Therefore, the execution of high-level operations may have
complicated interleaving of low-level actions. Linearizabil-
ity of a concrete concurrent algorithm requires that, despite
low-level interleaving, the history of high-level invocation
and response actions still has a sequential permutation that
respects both the run-time ordering among operations and
the sequential specification of the objects.

For verifying the standard linearizability requirement, an
existing method [17, 18] can be used to check whether a con-
current algorithm (we refer as implementation in this work)
refines the high-level linearizable requirement (we refer as
specification in this work). In this case, the behaviors of the
implementation and the specification are modeled as labeled
transition systems (LTSs), and the refinement checking is
accomplished by using explicit state model checking.

Definition 5 (Labeled transition system) A Labeled Transi-
tion System (LTS) is a tuple L = (S, init, Act, —) where
S is a finite set of states; init € S is an initial state; Act is
a finite set of actions; and — C § x Act x S is a labeled
transition relation.

We write s — s’ to denote the state transition (s, «, s) €
—. The set of enabled actions at s is enabled(s) = {a €
Act | 3s' € S. s 5 s’}. A path 7 of L is a sequence of

alternating states and actions 7 = (s, o1, 51, &2, .. .) such

that so = init and s; S si41 for all i. If 7 is finite, then
|7r| denotes the number of transitions in 7. In this work,
we assume that a path can be infinite, i.e., containing an
infinite number of actions. Since the number of states are
finite, these infinite paths are paths containing loops. The set
of all possible paths for L is written as paths(L).

A transition label can be either a visible action (method
invocation or response) or an invisible one (local statement
inside a method body). Given an LTS L, the set of visible
actions in L is denoted by visy, and the set of invisible actions
is denoted by invisy. A state s’ is reachable from state s
if there exists a path that starts from s and ends with s’,
denoted by s = s. A T-transition is a transition labeled with
an invisible action. The set of T-successors is T(s) = {s’ €
S|s N A= invisy }. The set of states reachable from s
by performing zero or more 7 transitions, denoted as 7*(s),
can be obtained by repeatedly computing the 7-successors
starting from s until a fixed point is reached. We write s 2
iff 5" is reachable from s via only 7-transitions, i.e., there
exists a path (sg, @1, 51, @2, ..., s;) such thatsg = s,s, = 5’
and s; g Sit1 ANoip1 € invisy foralli =1,...,n— 1.

Given a path 7w, we can obtain a sequence of visible actions
by omitting states and invisible actions. The sequence,
denoted as trace(m), is a trace of L. The set of all traces
of L is written as traces(L) = {trace(w) |w € paths(L)}.

Definition 6 (Refinement) Let L1 and L, be two LTSs. We
say that L refines L, written as L; J7 Lo if and only if
traces(L1) C traces(L»). O

In an existing work [18], we have shown that if L;,,; is
an implementation LTS and L. is the LTS of the sequen-
tial specification, then L;,,;; is linearizable if and only if
Limpl ar Lspec-

Algorithm 1 shows the pseudocode of the standard refine-
ment checking procedure in [17,18]. Assume that L;;p
refines Mjp.., then for each reachable transition in M,
denoted as impl 5 impl’, there must exist a reachable
transition in Ly, denoted spec 5 spec’. Therefore, the
procedure starts with the pair of initial states of the two
models, and repeatedly checks whether they have matching
successor states. If the answer is no, the check at Lines 68
would fail, meaning that L;,,;; is not linearizable. Other-
wise, for each pair of immediate successor states, denoted
(impl’, spec’), we add the pair to the pending list. The entire
procedure continues until either (1) a non-matching transi-
tionin L, is found at Lines 68, or (2) all pairs of reachable
states are checked, in which case L is proved to be lin-
earizable.

In Algorithm 1, the subroutine next(impl, spec) is cru-
cial. It takes the current states of L;;,p; and Lip,. as input, and
returns a set of state pairs of the form (impl’, spec’). Here,
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Algorithm 1 The standard refinement checking algorithm

1: Procedure Check-Refinement(impl, spec)

2: checked := ¢

3: pending.push((initimpi, initspec))

4: while pending # ¢ do

(impl, spec) := pending.pop()

if enabled(impl) & enabled(spec) then
return false

end if

9:  checked := checked U{(impl, spec)}

10:  for all (impl', spec’) € next(impl, spec) do

11: if (impl’, spec’) ¢ checked then

12: pending.push((impl’, spec’))
13: end if
14:  end for

15: end while
16: return true

each pair (impl’, spec’) is one of the immediate successor
state pairs of (impl, spec). They are defined as follows:

1. ifimpl 5 mpl’, where 7 is an invisible event, then let
spec’ = spec;

2. ifimpl 5 impl’, where e is a visible event, then follow
the transition spec — spec’;

In the above presentation, we have assumed without loss of
generality that the specification model Ljp,. is determinis-
tic. If the original specification model is non-deterministic,
we can always apply standard subset construction for finite
automaton to make it deterministic.

3 Verifying quasi-linearizability: the overview

Our verification problem is defined as follows: Given an
implementation model M;,;, a specification model M;p,

Concurrent
Implementation

Sequential
Specification

Create Manually

Quasi—Lin Spec
Model

Standard Refinement Checking
(Impl vs. Q—Lin Spec)

Yes/No

Fig. 2 Two approaches for verifying quasi-linearizability of a con-
current implementation with respect to a sequential specification: in
the manual relaxation approach (left), the user needs to provide a
quasi-linearizable sequential specification; whereas in the automated
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and a quasi factor Qp, decide whether M;,;; is quasi-
linearizable with respect to M, under the quasi factor Q¢.
Recall that Q, : D — N is a function that maps a sub-
set D of the powerset of operations to a natural number N.
Whenever the context is clear regarding what D is, we shall
use the natural number QF = Q,(D) to denote the quasi
factor.

The straightforward approach for solving the problem is
to leverage the standard refinement checking procedure in
Algorithm 1. However, since the procedure checks for refine-
ment relation, not quasi refinement relation, the user has to
manually construct a relaxed specification model, denoted
M;pec, based on the given M. and quasi factor Q¢. This
so-called manual relaxation approach is illustrated on the
left of Fig. 2. The relaxed specification model Mg, must be
able to produce all legal sequential histories that can be pro-
duced by Mjp.., as well as the new sequential histories that
are allowed under the relaxed consistency condition given in
Definition 4.

This manual relaxation approach, unfortunately, is often
difficult to carry out because there is no systematic method or
even guideline on how to construct the relaxed specification
models. In practice, each My, is different, depending on
the type of the data structure to be checked. There is often a
significant amount of creativity required during the modeling
process, e.g., to ensure that the relaxed specification model
is both simple and permissive enough.

For example, to verify that a K-segmented queue [1] is
quasi-linearizable, we may choose to create a relaxed specifi-
cation model where the dequeue method randomly removes
one of the first K data items from the otherwise standard
FIFO queue. This new relaxed model M;,,. will be more
complex than the original specification model M., but still
simpler than the full fledged implementation model M;,p;,

which requires the use of a segmented linked list.

Concurrent
Implementation

Sequential
Specification

0

Relaxing the
Transitions
On Demand

!

| New Checking Algorithm

Quasi Refinement Checking
(Impl vs. Spec)

Yes/No

relaxation approach (right), the quasi-linearizable sequential specifica-
tion is constructed automatically. Here, QF stands for the user given
quasi-linearization factor
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In contrast, our automated relaxation approach, shown
on the right of Fig. 2, relies on a new refinement checking
algorithm that can directly check a relaxed refinement rela-
tion between M;,p; and Mjp... Therefore, the user does not
need to manually construct the relaxed specification model
M S’/pec. Instead, we rely on the algorithm to systematically
extend states and transitions of the specification model M.
so that the new states and transitions as required by My,
are added on the fly. This would lead to the inclusion of
a bounded degree of out-of-order execution on the relevant
subset of operations as defined by the quasi factor Qp. A
main advantage of our new method is that the procedure is
fully automated, thereby avoiding the user intervention, as
well as the potential errors that may be introduced during the
user’s manual relaxation process. Furthermore, by exploring
the relaxed transitions on demand, rather than a priori as in
the manual relaxation approach, we can significantly reduce
the number of states that need to be checked.

Since the focus of this paper is on designing a fully auto-
mated verification method, we shall briefly illustrate the
manual relaxation approach in Sect. 4, and then focus on
developing the fully automated approach in subsequent sec-
tions.

4 Verifying quasi-linearizability via standard
refinement checking

In this section, we will use the standard FIFO queue and k-
segmented queue implementations as examples to illustrate
the manual relaxation approach. Although we do not intend
to promote the manual approach—since it is often labor-
intensive and error prone—this section will provide the back-
ground information so that we can better illustrate the intu-
itions behind our fully automated verification method later.

Given the specification model M. and the quasi factor
0 0, we show how to manually construct the relaxed specifi-
cation model M ,,.. Here, we use the standard FIFO queue
and two versions of quasi-linearizable queues as examples.
Note that, in general, the construction of the relaxed specifi-
cation model needs to be tailored case by case for the different
types of data structures.

Specification Model Mp.. The standard FIFO queue with a
bounded capacity can be implemented by using a linked list,
where the dequeue operation removes a data item at one end
of the list called the head node, and the enqueue operation
inserts a data item at the other end of the list called the rail
node. When the queue is full, the enqueue operation does
not have any impact. When the queue is empty, the dequeue
returns NULL.

As an example, consider a sequence of four enqueue
events eng (1), eng(2), eng(3), eng(4). The subsequent

<+Quasi Factor—> H*A

1(2|3|4|5|6 7|89 |10]|11 |12

Quasi-Abstract Specification

SEGO SEG1 SEG2
T 1 5 9
<}

g B 6 10
L

& 3 7 11
&

l 4 8 12

<+—————SEG_NUMBER——m ——p>
Quasi-Implementation

Fig. 3 Two different ways of implementing a 4-quasi queue, where the
return value of deqg () may be out of order by at most 4 data items

Hl-a H1-b Hl-a H1-b
eng(1l) eng (1) eng(1l) eng (1)
eng(2) eng(2) eng(2) eng(2)
eng(3) enqg(3) eng(3) enqg(3)
eng(4) enqg(4) eng(4) eng(4)
deg()=1 deg()=1 deqg()=2 deqg () =2
deq()=2  deq()=2 deq()=1 deq()=1
deg()=3 deqg()=4 deg()=3 deqg()=4
deg()=4 deg()=3 deg()=4  deq()=3

Fig. 4 The set of valid histories of a /-quasi linearizable queue, where
the Quasi Factor is set to 1, meaning that the return value of deq () is
allowed to be out-of-order by at most 1. Specifically, the first deq ()
may return any value from the set {1, 2} and the second deq () may
return the remaining value. Then, the third deq () may return any value
from the set {3, 4} and the forth deq () may return the remaining value

dequeue events would be deqg()=1, deq()=2, deq()=3,
deq () =4, which obey the first-in-first-out semantics. This
is illustrated by the first history named #1-a in Fig. 4.

Implementation Model M, ;) The bounded quasi-linearizable
queue can be implemented using a segmented linked list. This
is one of the original algorithms proposed by Afek et al. [1].
A segmented linked list is a linked list where each list node
can hold K data items, as opposed to a single data item in
the standard linked list. As shown in the lower half of Fig. 3,
these K data items form a segment, in which the data slots are
numbered as 1, 2, .. ., K. In general, the segment size needs
to be set to (QF + 1), where QF is the maximum number
of out-of-order execution steps.
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The example in Fig. 3 has the quasi factor set to 3, meaning
that a dequeue operation can be executed out of order by at
most 3 steps. Consequently, the size of each segment is set to
(3 + 1) = 4. Since Qtgueue}(Deng) = 0, meaning that the
enqueue operations should not be reordered, the data items
are enqueued regularly in the empty slots of one segment,
before the head moves to the next segment. But a dequeue
operation may randomly remove any one of the existing data
items from the first segment.

Relaxed specification model My,,. Not all execution traces
(histories) of M, are traces of M. InFig. 4, forinstance,
histories other than H1-a are not linearizable. However, they
are all quasi-linearizable under the quasi factor 1. For exam-
ple, they may be produced by a segmented queue where the
segment size is (1+1) = 2. To verify that M;y,; is indeed
quasi-linearizable, we may construct a new specification
model Mg, ., which includes not only all histories of Mpe.,
but also the histories that are allowed to appear only under
the new relaxed consistency condition.

In this example, we choose to construct the new model
by slightly modifying the standard FIFO queue. This is illus-
trated in the upper half of Fig. 3, where the first K data
items are grouped into a cluster. Within the same cluster, the
dequeue operation may remove any of the first k£ data items
based on randomization. Only after the first k£ data items in
the cluster are retrieved, will the dequeue operation move to
retrieve the next k data items (a new cluster). The external
behavior of this model is expected to match that of the seg-
mented queue in M;y,;; thatis, both are I-quasi-linearizable.

Checking the refinement relation Once the relaxed specifi-
cation model Mg, is available, checking whether M;
refines Mépec is straightforward by using Algorithm 1. For
the segmented queue implementation [1], for instance, we
have manually constructed M, and checked the refine-
ment relation in the PAT verification framework. In PAT, both
models are written in a process algebra language similar to
CSP, called the CSP# [26].

Our experimental results are summarized in Table 1. Col-
umn 1 shows the quasi factor of each segmented queue
implementation model. Column 2 shows the number of seg-
ments in the queue—note that the capacity of the queue is
(QF 4+ 1) x Seg. Column 3 shows the refinement check-
ing time in seconds. Column 4 shows the total number of
visited states during the refinement checking process. Col-
umn 5 shows the total number of state transitions activated
during refinement checking. In this section as well as Sect.
6, the allowed data values stored in the data structures are
all of int type. The experiments are conducted on a com-
puter with an Intel Core-i7, 2.5 GHz processor and 8GB
RAM.

The experimental results in Table 1 show an exponential
increase in the verification time when we increase the seg-
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Table 1 Experimental results for standard refinement checking. Here,
MOut means the verification procedure has run out of the 4 GB memory

QF Seg

Run time (s) Visited states Visited transitions

1 1 0.1 423 778

1 2 0.1 2310 4458

1 3 0.1 8002 15,213

1 4 0.4 22,327 41,660

1 5 0.9 55,173 1,01,443
1 6 2.0 126,547 230,259

1 10 55.9 2,488,052 4,421,583
1 15 MOut - -

2 1 0.6 26,605 58,281

2 2 12.6 456,397 970,960
2 3 130.7 4,484,213 8,742,485
2 4 MOut - -

3 1 8.8 284,484 638,684

3 2 MOut - -

4 1 124.4 3,432,702 7,906,856
4 2 MOut - -

ment size of the queue or the quasi factor. This is due to the
fact that the size of the state space grows exponentially. Nev-
ertheless, when the size of the queue is small, we are able to
successfully verify quasi-linearizability of the implementa-
tion models against the corresponding abstract specifications.
However, this method requires the user to manually construct
the relaxed specification model My, which is a severe lim-
itation in practice.

Manual relaxation is not only labor intensive but also error
prone. For example, consider the seemingly simple random
dequeued model in the upper half of Fig. 3. A subtle error
would be introduced if we do not use the cluster to restrict
the set of data items that can be removed by the dequeue
operation. Specifically, assume that the dequeue operation
always returns one of the first k data items in the current
queue. Although it may appear to be correct, such implemen-
tation would not have been k-quasi-linearizable, because it
is possible for some data item to be over-taken indefinitely.
For example, if every time the dequeue operation chooses
to retrieve the second data item in the list, we will have the
following dequeue sequence:

deq()=2,deq()=3,deq()=4,...,deq()=1,

where the retrieval of value 1 is delayed by an arbitrarily
long time. This is no longer a I-quasi-linearizable queue
according to Definition 4.

This example shows that if the user constructs the relaxed
specification model My, incorrectly, the verification result
will be invalid. It motivates us to design a fully automated
approach, which can directly check quasi-linearizability of
My pr against My under the given quasi factor.
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5 Verifying quasi-linearizability via a new relaxed
refinement checking

In this section, we shall extend the refinement checking pro-
cedure in Algorithm 1 to directly check a relaxed refinement
relation between M;,p; and M;p... The idea is to establish a
new simulation relation from specification to implementation
while allowing relaxation of the specification.

5.1 Linearizability checking via quasi refinement

The new procedure, shown in Algorithm 2, differs from the
procedure in Algorithm 1 in the following aspects:

1. We customize the work-list, named pending, to make the
state exploration follow the breadth-first search (BFS)
order. Recall that in Algorithm 1, the exploration may
follow either the BFS order or the DFS order, depending
on whether pending is implemented as a queue or a stack.
Here, we insist that it follows the BFS order for ease of
implementing the automated relaxation algorithm.

2. We replace the subroutine enabled(spec) with a new
subroutine named enabled_relaxed(spec,QF). The new
subroutine returns not only the events enabled at current
spec state in Mjp,., but also the additional events that
are allowed under the relaxed consistency condition.

3. We replace the subroutine next(impl,spec) with a new
subroutine named next_relaxed(impl,spec, OF). The new
subroutine will return not only the successor state pairs
in the original models, but also the additional successor
state pairs that are allowed under the relaxed consistency
condition.

Conceptually, the procedure in Algorithm 2 is equivalent to
first constructing a relaxed specification model Mg, from
(Mgpee, QF) and then invoking the two newly added subrou-
tines, enabled(spec) and next(impl,spec), on this new model.
The main difference from the manual approach is that we are
constructing Mg, automatically without the user’s interven-
tion. Furthermore, the additional states and edges are added
to Mg, during the relaxation process incrementally, on a
need-to basis.

At the high level, the new procedure performs a BFS
exploration starting from the state pair (impl, spec), where
impl is a state of the implementation model M;;,;,; and spec
is a state of the specification specification model M;,.. The
initial implementation and specification events are enqueued
into pending. Each time we go through the while-loop, we
first dequeue from pending to obtain a state pair, and then
check if all events enabled at state impl match with some
events enabled at state spec under the relaxed consistency

condition (Line 6). If there is any mismatch, the check fails

Algorithm 2 The new quasi refinement checking algorithm
1: Procedure Check-Quasi-Refinement(impl, spec, QF)

2: checked := ¢

3: pending.enqueue((initimpi, initspec))

4: while pending # ¢ do

5:  (impl, spec) := pending.dequeue()

6: if enabled(impl) & enabled_relaxed(spec, QF) then

7: return false

8: endif

9:  checked := checked U{(impl, spec)}

10:  for all (impl', spec’) € next_relaxed(impl, spec, QF)
do

11: if (impl’, spec’) ¢ checked then

12: pending.enqueue((impl’, spec’))

13: end if

14:  end for

15: end while
16: return true

€4
€2
——O

Fig. 5 Specification model before adding the relaxed transitions
from s

and we can return a counterexample showing how the vio-
lation happens. Otherwise, we continue until the work-list
pending becomes empty. At Lines 10-14, we compute the
new successor state pairs by invoking next_relaxed, and add
these successor state pairs to pending if they have not been
checked before.

Subroutine enabled_relaxed(spec,QF) This subroutine takes
the current state spec of model M. and the quasi factor
QF as input, and generates all events that can be enabled at
state spec in the relaxed model My, defined in Sect. 5.2.
Consider the graphin Fig. 5 as an example for M. Without
relaxation, we have enabled(s1)={e1}. This is equivalent to
the result of calling enabled_relaxed(sy, 0) when QF = 0.
However, when the quasi factor Q F = 1, according to the
dotted edges in Fig. 6, enabled_relaxed(sy, 1) should return
the set {ey, e2, e3}.

The reason why e; and e3 become enabled is as fol-
lows: before relaxation, starting at state s, there are two
length-3 (2QF + 1) event sequences o1 = ej, 2, es and
0y = e, e3,e4. When QF = 1, it means that an event is
allowed to be out-of-order by at most 1 step. Therefore, the
possible valid permutations of o] are 71 = ez, €1, es5 and
Ty = ey, es, ez, and the possible valid permutations of o
are 13 = e3, e1, e4 and w4 = ey, e4, e3. Therefore, at state
$1, events e;, e3 can also be executed in the relaxed model. We
will discuss the detailed algorithm for generating the valid
permutations in Sect. 5.2.
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Fig. 6 Specification model after adding the relaxed transitions from
s1. Since the quasi-linearizability factor is set to 1, during relaxation,

. . .. el e3 €4 . .
the original transition sequence s; — s — s4 — s, for instance, will

. . .. e3 el ey
give rise to the relaxed transition sequence s; — 59 — 510 —> 52

Subroutine next_relaxed(impl, spec, Q F) This subroutine
takes the current state impl of M, and the current state
spec of Mgy, as input, and returns a set of state pairs of the
form (impl’, spec’). The set of state pairs, in general, will
be a super set of the set computed by next(impl, spec) in
Sect. 2. We define each state pair (impl’, spec’) as follows:

1. ifimpl S mpl’, where T is an invisible event, then let
spec’ = spec;

2. ifimpl 5 impl’, where e is a visible event, then follow
spec 5 pec’ where the visible event e is computed by
the subroutine enabled_relaxed(spec, QF); that is, e
is an enabled event at state spec in the relaxed model
Ms/pec'

For example, when spec = s in Fig. 5 and the quasi
factor is set to 1, it means that the event at state s; can be
out of order by at most one step. In this case, the procedure
next_relaxed(impl,sy, 1) would return not only (impl’, s»),
butalso (impl’, s¢) and (impl’, s9), as indicated by the dotted
edges in Fig. 6. The detailed algorithm for generating these

relaxed next states in Mg, will be presented in Sect. 5.2.

5.2 Generation of the relaxed specification M;,,
In this subsection, we show how to relax the specification
M;pec by adding states and transitions that are not allowed
by the original specification model but are allowed under
the condition of quasi-linearizability, to form the new spec-
ification model Mg, .. Notice that the relaxation process is
carried out incrementally, on a need-to basis.
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Table 2 Generating the relaxed transition sequences starting from
state s

BFS (Frontier)

Event sequences

step 0 {s1}
}

(
step 1 {s2 (s1 = $2)
e e e e
step 2 {s3, 54} (s1 4 52 il $3) (81 4 52 Rl s4)
el e es el e3 eq
step 3 {55, 52} (51 = 8§20 = 53 = $5)(5] = $2 = §4 —> $2)

First, for each state spec in M., we compute all the
event sequences starting at spec with the length QQ F + 1).
These event sequences can be computed using a standard
BFS based graph traversal algorithm. Figure 5 shows an
example for the computation of these event sequences. The
specification model My, has the following set of states
{s1, 52, 83, sS4, §5}. Suppose that the current state is s; (in
step 0), then the current frontier state set as a result of the
BES traversal is {s1}, and the current event sequence is (s1).
The result of each subsequent BFS step is shown in Table 2,
also explained as follows:

— In step 1, the frontier state set is {sp} and the event
sequence becomes (s 4 52).

— In step 2, the frontier state set is {s3, s4} and the event
sequence is split into two new sequences. One new
sequence is (s] a §2 2 s3) and the other is (s a
52 3 S4).

— The traversal continues until the BFS computation depth
finally reaches 2QF + 1).

After completing the (2Q F + 1) steps of the BFS traver-
sal starting from the state spec, or state s1 as in the example
above, we have to generate all valid permutations of the
bounded transition sequences with respect to the quasi factor.
This, for example, will transform the original specification
model in Fig. 5 into the relaxed specification model in Fig.
6. The dotted states and edges are newly added to reflect
the quasi-linearizability relaxation. More specifically, for
QF = 1, we willreach state s, and state s5in 2QF+1) = 3
steps during the BFS traversal. At step 3, there are two
existing sequences {ej, ez, es} and {ej, e3, e4}. For each
existing sequence, we compute all possible valid permuta-
tion sequences. In this case, the valid permutation sequences
are {ej, e, es},{e1, es, ex} and {e3, €1, eg}, {e1, €3, eg}. For
each newly generated permutation sequence, we have added
new edges and states to the specification model.

Specifically, from an initial state s, if we follow the new
permutation {e;, e, e5} as shown in Fig. 6, the transition
ey will lead to the newly formed pseudo state s¢, and the
transition e; will lead to s7 from state sg. From this state, it
is then reconnected back to the original state s5 via transition
es. Similarly, if we follow the new permutation {es, e1, es},
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the transition e3 will lead to the newly formed pseudo state
s9, and the transition e; will lead to s1¢ from state s9. From
this state, it is then reconnected back to state s, via transition
e4. We continue this process of state expansion for all the
valid permutation sequences.

Note that this relaxation process needs to be conducted
using every state of My, as the starting point (and for BFS
traversal up to 2Q F + 1 steps). This process is also carried
out on the fly, each time for a specific starting state, only
when it is needed during refinement checking. In particular,
the relaxation process shown in Fig. 6 is for the starting state
s1. In general, we need to conduct the same relaxation for all
other states in M., including s2, 53, 54, and s5.

Algorithm 3 Expanding the specification model by adding

relaxed transition sequences starting from state sq

1: Let s be a specification state and QF be the quasi factor

2: Let SEQ = {seq1, seqa, seqs, - - - , seqx} be the set of all possible
event sequences reachable from sy in Mj.. such thatfor 1 <i <k,
each seg; has less than or equal to 2QF + 1 events

3: for all seq in SEQ do

4:  PERMUT _VALID = genValid Permut (seq, QF)

5. for all perm in PERMUT_VALID do

6: Letperm = (e1,e2, -, ey)

7 Let s, be the specification state reached from s via seq

8: if perm is not equal to seq then

9: for all ¢; where 1 <i < n do

10: Create a new state s; and a new transition from s;_1 to s;
via event e;

11: end for

12: Create a new transition from s,_ to s,, via e,

13: end if

14:  end for

15: end for

Algorithm 3 shows the pseudocode for expanding the state
space of the specification model by starting from state sg. Let
SEQ = {seq1, seq, seqs, ..., seqy} be the set of sequences
that are reachable from the state so in M. such that each
sequence has less than or equal to (2Q F + 1) events. For each
sequence seq € SEQ, we invoke subroutine genValidPer-
mut(seq,QF) to compute the set of possible valid permutation
paths for that trace (Line 4). Then, a new state is added to the
model with a new transition for each event in the permuted
sequences, hence allowing the relaxed sequential histories to
be admitted to M.

The valid permutations for a given sequence is gener-
ated using Algorithm 4, which relies on maintaining a cost
attribute for each event. It generates all permutations of seq
while keeping track of the cost of each event, based on which
it can avoid generating the invalid permutations, where the
cost of any event is outside the trange [0, 2Q F'].

Initially, for each event e; in seq, where 1 < i < n, the
cost is initialized to QF. Then, we compute all possible per-
mutations of the given trace and update the cost of each event

Algorithm 4 genValid Permut (seq, QF)

1: PERMUT_VALID =)

2: Initialize cost associated with each event in seq to QF

3: Generate possible permutations PERMUT_SEQ and update cost
4: for all p in PERMUT_SEQ do

5. isValid = true

6: Letp={(e,ez, - ,en)

7. forall ¢; where 1 <i < ndo

8: if ¢;.cost > 2QF V e;.cost <0 then
9: isValid = false

10: break

11: end if

12:  end for

13: if isValid then

14: PERMUT_VALID = PERMUT_VALID |J p
15:  endif

16: end for

17: return PERMUT_VALID

carliest original latest
position position position

N Iml N

] | ] -

T T T time
cost=2QF cost=QF cost=0

Fig. 7 The positions that an event is allowed to move during relaxation

with respect to its relative position in the new trace. This cost
attribute of an event indicates how many more steps an event
is allowed to be postponed (Fig. 7). Each time an event is
postponed, the cost associated with this event is decreased
by 1. An event can also be chosen up to Q F steps ahead and
for each step, the cost is increased by 1. The allowed range
for the cost during relaxation is defined as 2Q F' < cost < 0.

We check the validity of each of these permuted sequences
using this cost attribute at Line 8. Only the permutations that
pass this check are appended in PERMUT_VALID. After the
check is completed for all permuted sequences, the subrou-
tine returns. Consider the original event sequence starting
at state s1, seq = {ey, e2, es}, as shown in Fig. 5. When
QF = 1, the cost for each of these events is initialized to
1. Then, we compute all possible permutations by reshuf-
fling the events of the original traces and updating the cost
accordingly. In this particular example, there are as 6 possible
permutations, which include the two original sequences.

If we consider reordering the sequence {es, e, e5}, for
instance, the cost associated with event eo would become 2
since e, is chosen one step earlier than its original position.
For the event e, which is postponed for one step, its cost
is decreased by 1, which makes the cost associated with eq
become 0. Event e3 is not reordered and hence its cost remains
unchanged. This sequence is considered to be valid in the
relaxed model, because the cost associated with each of the
events in this sequence lies within the allowable range.
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Table 3 The statistics of the benchmark examples used in our experimental evaluation

Class Description Linearizable Quasi Lin.

Quasi queue (3) Segmented linked list implementation with quasi factor 2 No Yes
(seg. size = 3)

Quasi queue (6) Segmented linked list implementation with quasi factor 2 No Yes
(seg. size = 6)

Quasi queue (9) Segmented linked list implementation with quasi factor 2 No Yes
(seg. size =9)

Quasi queue (4) Segmented linked list implementation with quasi factor 3 No Yes
(seg. size =4)

Quasi queue (8) Segmented linked list implementation with quasi factor 3 No Yes
(seg. size = 8)

Queue buggyl Segmented queue with a bug (Deq on empty queue may No No
erroneously change current segment)

Queue buggy?2 Segmented queue with a bug (Deq may get value from a No No
wrong segment)

Lin. queue A linearizable (hence quasi-linearizable) queue Yes Yes
implementation

Q. priority Q (3) Segmented linked list implementation with quasi factor 2 No Yes
(seg. size = 3)

Q. priority Q (6) Segmented linked list implementation with quasi factor 2 No Yes
(seg. size = 6)

Q. priority Q (9) Segmented linked list implementation with quasi factor 2 No Yes
(seg. size =9)

Q. priority Q (4) Segmented linked list implementation with quasi factor 3 No Yes
(seg. size = 4)

Priority Q buggy Segmented priority queue (Deq on empty priority queue No No
may change current segment)

Lin. stack A linearizable (hence quasi-linearizable) implementation Yes Yes

In contrast, if we consider another permuted sequence
{es, e1, ez}, where the costs associated with events e3, e, e
are {3, 0, 0}, we know that the sequence is not valid in the
relaxed model because the cost of event e3, which is 3,
exceeds the allowable range [2,0].

The complexity of standard refinement checking method
as described in Algorithm 1is O (Nypec X Nimpi), where Nypee
is the number of states of the specification model and Njy;
is the number of states of the implementation model. The
complexity of the relaxed refinement checking method as
described in Algorithm 2 also depends on the quasi factor &,
because the specification model may have new states due to
the (k-+1) permutations of operations starting from each orig-
inal state. As aresult, the number of states in the relaxed spec-
ification model increases from Ngpee t0 P(Ngpec, k + 1) =
Ngpee X (Ngpee — 1) X -+ X (Ngpec — k). Overall, the com-
plexity is O (P(Ngpec, k + 1) X Njypr). When the quasi factor
k is significantly smaller than Njp,., which s the typical case,
the complexity of Algorithm 2 is O(Ns(]’fet]) X Nimpi)-

6 Experiments
We have implemented our new quasi-linearizability check-

ing method in the PAT verification framework [27]. This
new refinement checking algorithm, presented in Sect. 5,

@ Springer

can directly check a relaxed version of the refinement
relation between the implementation model and the spec-
ification model. Since the relaxed refinement relation is a
generalization of the standard refinement relation, our new
algorithm subsumes the standard refinement checking pro-
cedure [17,18] implemented in PAT. In particular, when
QF = 0, our new procedure degenerates to the standard
refinement checking procedure. When QF > 0, however,
our new procedure has the added capability of checking for
the quantitatively relaxed linearizability.

We have evaluated our new algorithm on a set of models
of standard and quasi-linearizable concurrent data struc-
tures, including linearizable queues, linearizable stacks,
quasi queues, and quasi priority queues. For each data struc-
ture, we have several variants of the implementation. In
addition to the implementations that are known to be lin-
earizable and quasi-linearizable, we also constructed various
versions that were thought to be correct initially, but were
proved to be buggy subsequently.

The characteristics of all benchmark examples are shown
in Table 3. The first two columns list the name of each
concurrent data structure and a short description of the
implementation. The next two columns show whether the
implementation is linearizable and quasi-linearizable.

Table 4 shows the results of our experiments, conducted
on a computer with an Intel Core-i7, 2.5 GHz processor and
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Table 4 Experimental results for verifying quasi-linearizability (2
threads)

Class QF Time (s) Visited states Transitions
Quasi queue (3) 2 7.2 126,810 248,122
Quasi queue (6) 2 21.2 237,760 468,461
Quasi queue (9) 2 114.5 1,741,921 3,424,280
Quasi queue (4) 3 131.6 442,558 869,129
Quasi queue (8) 3 1517.1 1,986,924 3,754,489
Queue buggyl 2 0.4 1204 809
Queue buggy?2 2 0.1 345 345

Lin. queue 2 5.5 240,583 121,548
Q. priority Q (3) 2 12.2 106,385 195,235
Q. priority Q (6) 2 343 472,981 918,530
Q. priority Q (9) 2 198.4 1,478,045 2,905,016
Q. priority Q (4) 3 343.1 1,408,763 2,566,427
Q. priority Q (8) 3 MOut - -

Priority Q buggy 2 54 894 894

Lin. stack 2 0.2 2690 6896

8 GB RAM running Windows 7. The first column shows
the name of each test program. The second column shows
the quasi factor. The next three columns show the runtime
performance, consisting of the verification time in seconds,
the total number of visited states, and the total number of
visited transitions.

Our results show that, in general, the number of visited
states and the running time increase as the data size increases.
For the 3 segmented quasi queue with quasi factor 2, the ver-
ification completes in 7.2s. As the size increases, the time to
verify the quasi queue increases. For queue with size 6 and 9,
verification is completed in 21.2s and 114.5s, respectively.
As the quasi factor is increased to 3, the verification time
for quasi queue with size 4 and 8 is increased to 131.6s and
1517.1 s, respectively. This is due to the increase in the size of
the state space for the higher quasi factor and segment size.
For the priority queues where enqueue and dequeue oper-
ations are performed based on the priority, the verification
time is higher than the regular quasi queue.

In general, our new method for incremental relaxation of
the specification model is significantly more efficient than the
manual relaxation approach, because it adds relaxed states
and edges to My, on aneed-to basis, whereas in the manual
relaxation approach, the entire relaxed specification model is
constructed a priori. Specifically, for the 3 segmented quasi
queue with quasi factor 2, the verification completesin 7.2 s in
the automated approach, in contrast to the 130.7 s used by the
manual approach. Figure 8 shows a more detailed comparison
of the two approaches on the quasi queues, where the quasi
factor is set to 2. The x-axis shows the number of segments of
each quasi queue. The y-axis shows the verification time in
seconds. When the number of segments of the queue is small,

== Manual /
—fi—Automated /
300

1 2 3 6 9

Fig. 8 Comparing the runtime performance of the manual relaxation
approach and the automated relaxation approach on the quasi queues

the two approaches have similar runtime performance. When
the number of segments becomes larger, however, the auto-
mated approach becomes significantly faster than the manual
approach, due to its use of on-the-fly relaxation.

It is important to note that since our method relies on
constructing the relaxed specification on-the-fly, it often ter-
minates early when the implementation is buggy, thereby
generating a counterexample after exploring only part of the
state space. This is the reason why in Table 4, the verification
time for the buggy queue is shorter than for the correct imple-
mentations. It demonstrates one of the strengths our new
method in detecting quasi-linearizability violations. Finally,
for all test cases shown in Table 4, our method was able to cor-
rectly verify the quasi-linearizability requirement or detect
the violations.

7 Related work

There is a large body of work in the literature on for-
mally verifying linearizability of concurrent data structures.
For example, Liu et al. [18] verify standard linearizability
by proving that an implementation model refines a spec-
ification model. Vechev et al. [31] use the SPIN model
checker to formally verify linearizability in a Promela model
with user provided linearization points. Cerny et al. [5] use
automated abstractions together with explicit state model
checking to verify linearizability in Java programs. There
are also works on verifying linearizability by constructing
mechanical proofs, which often requires significant man-
ual intervention [29,30]. However, none of these existing
methods can directly verify quantitative relaxations of lin-
earizability. Furthermore, it is not immediately clear whether
these methods can be extended to achieve this goal.

There are also runtime linearizability checking methods
such as LineUp [4], which can directly check the source code
implementation of concurrent data structures for violations
that can be manifested on finite-length executions. Recently,
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we have extended this runtime verification method in a new
tool, called RoundUp [39], for checking quasi-linearizability
violations in C/C++ implementations of concurrent data
structures. While both LineUp and RoundUp are effective
in detecting implementation bugs in the source/byte code,
they require the user to supply concrete test cases. In this
sense, they are geared toward runtime bug detection, not sta-
tic verification of standard/quasi-linearizability.

There are also runtime checking methods for violations
of other types of consistency conditions, such as sequen-
tial consistency [16], quiescent consistency [2], and eventual
consistency [32]. Some of these consistency conditions, in
principle, may be used to ensure the correctness of data struc-
tures. However, none of these correctness conditions have
been as widely used as linearizability for concurrent data
structures. Furthermore, unlike quasi-linearizability, these
correctness conditions do not have quantitative properties.

Our method is geared toward verifying standard lineariz-
ability [11,12] and quasi-linearizability [1] properties of
concurrent data structures. In the literature, there are also
other types of relaxed concurrent data structures, such as the
idempotent work stealing algorithm [20]. Since these algo-
rithms do not have a clear notion of quasi factor, it is not
immediately clear how our method can be applied to verify
them. However, this is an interesting direction to pursue, and
we consider it as an item for future work.

Outside the domain of verifying the correctness of concur-
rent data structures, serializability and atomicity have been
widely used as correctness properties for concurrent pro-
grams, especially at the application level. There is a large
body of work on both static and dynamic analysis techniques
for detecting violations of such properties [6-8,22-25,33—
38,40]. These methods differ from ours in that they are
checking different type of properties. Although atomicity
and serializability are fairly general correctness conditions,
they have been applied mostly to shared memory accesses at
the load/store instruction level. Linearizability, in contrast,
defines the correctness condition for shared objects at the
method call level. Furthermore, existing methods for check-
ing atomicity and serializability do not deal with quantitative
properties.

8 Conclusions

We have presented a new method for formally verifying
quasi-linearizability of the implementation models of con-
current data structures. We have explored two approaches,
one of which is based on manually constructing a relaxed
specification model, and the other is based on a new algo-
rithm for checking a relaxed refinement relation between the
implementation model and the specification model. We have
implemented our new method and evaluated it on a set of

@ Springer

standard and quasi-linearizable concurrent data structures.
Our experiments show that the new method is effective in
proving quasi-linearizability and detecting violations. For
future work, we plan to incorporate advanced state space
reduction techniques such as symmetry reduction and partial
order reduction to further improve the performance of our
methods.
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