
Systematic Reduction of GUI Test Sequences
Lin Cheng, Zijiang Yang
Western Michigan University

Kalamazoo, MI, USA

Chao Wang
University of Southern California

Los Angeles, CA, USA

Abstract—Graphic user interface (GUI) is an integral part
of many software applications. However, GUI testing remains
a challenging task. The main problem is to generate a set of
high-quality test cases, i.e., sequences of user events to cover the
often large input space. Since manually crafting event sequences
is labor-intensive and automated testing tools often have poor
performance, we propose a new GUI testing framework to
efficiently generate progressively longer event sequences while
avoiding redundant sequences. Our technique for identifying the
redundancy among these sequences relies on statically checking
a set of simple and syntactic-level conditions, whose reduction
power matches and sometimes exceeds that of classic techniques
based on partial order reduction. We have evaluated our method
on 17 Java Swing applications. Our experimental results show
the new technique, while being sound and systematic, can achieve
more than 10X reduction in the number of test sequences
compared to the state-of-the-art GUI testing tools.

I. INTRODUCTION

Graphic user interface (GUI) is an integral part of many soft-
ware applications that monitor user actions such as keyboard
and mouse events and respond by invoking listener functions.
To test a GUI application, one must create tests to cover its
input space, where each test is a finite sequence of events.
Due to combinatorial blowup, the number of sequences can
be astronomically large, e.g., up to 1010 for all length-10
sequences of 10 events, if these events are enabled all the time.
Thus, the main problem is to generate a small subset of these
event sequences while achieving the same testing effect as the
complete set. Since manually crafting these sequences is labor-
intensive, techniques have been developed to generate them
automatically [57], [56], [40], [2], [3], [54]. Unfortunately,
these existing techniques are neither systematic nor efficient,
i.e., they often miss important event sequences and produce
many redundant sequences.

To avoid these problems, we propose a new test generation
tool to construct progressively longer event sequences. Our
tool has the advantage that, during the sequence generation
process, it eliminates an event sequence only if the sequence
is guaranteed to be redundant, i.e., subsumed by some other
sequences. This is accomplished by a new type of reduction
technique that differs from classic partial order reduction
(POR) methods [49], [41], [19], [18], [15]. Our tool is also
efficient in that it relies on a set of easily-checkable condi-
tions to identify redundant sequences. These conditions are
expressed in terms of the sequence of events as opposed to
the concrete program states. Thus, they can be checked by a
purely static analysis of the event flow of the GUI application,
without executing the actual application.

Fig. 1 shows the overall flow of our method. The input
consists of Java byte-code of the GUI application and a

GUITAR

GUI Application

Soot

Event Flow Graph (EFG) Static Analysis Result Max. Length

Cobertura Coverage ReportTest Cases

Redundant State Reduction Redundant Sequence Elimination

Event Sequence Generation

Fig. 1. Systematic generation and reduction of GUI tests.

bound on the sequence length. The output is a set of event
sequences. Internally, our method goes through several steps.
First, it leverages GUITAR [21] to reverse-engineer an event
flow graph (EFG) of the application. The EFG shows the
set of events enabled at any step of the execution, as well
as the enabled events afterward. Then, our method leverages
Soot [48] to perform static analysis of the Java byte-code to
compute dependencies over the events. Next, it invokes our
core algorithm, which takes the EFG, the dependencies and a
bound as input and constructs the test sequences. Finally, the
sequences are executed on the actual GUI application using
Cobertura [12], which measures the coverage.

Compared to state-of-the-art GUI testing tools [3], [2],
[40], our method has two advantages. First, it is systematic,
meaning that useful test sequences are not excluded in any
ad hoc fashion: within the maximum sequence length, our
method eliminates a sequence only if it is provably redundant;
when in doubt, it retains the sequence. Second, our method is
efficient in that it generates significantly fewer test sequences
than prior techniques. For instance, when applied to the
example in Fig. 2, prior techniques based on partial order
reduction can only remove 11 redundant sequences, whereas
our method removes 34 redundant sequences. Although Arlt et
al. [3] proposed a reduction technique that goes beyond POR,
their tool still generates significantly more sequences for the
example in Fig. 2: when the maximum length is set to 5, 7
and 9, it generates 33, 129 and 513 sequences, respectively,
whereas our method generates only 6 sequences.

We have evaluated our method on 17 Java Swing appli-
cations consisting of 105,937 lines of code in total. The
experimental results show our new reduction technique is more
effective: it outperforms partial order reduction consistently

1 class ModifyImageWindow extends JFrame {
2 boolean convert = false;
3 int angle = 0;
4 void onCheckBox() {
5 int cbValue = checkBox.getValue();
6 convert = (1 == cbValue) ? true : false;
7 }
8 void onSlider() {
9 int sliderValue = slider.getValue();

10 angle = sliderValue;
11 print(convert, angle);
12 }
13 void onSave() {
14 int anValue = angle;
15 if (anValue > 0)
16 UserSettings.RotationAngle = anValue;
17 else
18 assert(0); //BUG#1: Crash if reached
19 }
20 void onOK() {
21 if (convert) {
22 image.convertToGrayscale();
23 image = null;
24 }
25 if (angle > 0)
26 image.rotate(angle); //BUG#2: if image==null
27 else
28 image.draw(); //BUG#3: if image==null
29 }
30 }

Fig. 2. The class ModifyImageWindow defines event handlers onCheckBox,
onSlider, onSave, and onOK.

and significantly. We also experimentally compared with state-
of-the-art GUI testing tools including Gazoo [3], [2] and
GUITAR [40]. Overall, our tool achieves more than 10X
reduction in the number of test sequences and significantly
reduces the corresponding test execution time.

To summarize, this paper makes the following contributions:

• We propose an automated GUI testing framework for
generating event sequences efficiently.

• We develop a reduction technique to more effectively
eliminate redundant sequences than prior techniques.

• We use realistic applications to demonstrate the advan-
tages of our method over state-of-the-art testing tools.

In the remaining sections, we use motivating examples to
illustrate the main ideas behind our method before formally
presenting the algorithm and our experimental results.

II. MOTIVATION

Consider the Java code in Fig. 2, which controls a window
that allows the user to modify an image by clicking the check
box, choosing an angle from the slider control, and clicking
the OK button. Clicking the OK button closes the window and
thus disables all event handlers. Optionally, the user may click
the Save button to store the angle. Fig. 3 shows the event flow
graph (EFG), where nodes are events and edges indicate the
set of events enabled in each step. All four events are enabled
initially. However, since clicking OK closes the window, the
node labeled OK has no outgoing edges.

To test all possible behaviors, we must visit all reachable
states and, from each state, invoke all enabled events at least
once. Naively, this can be accomplished by enumerating all
event sequences in the EFG up to a predefined length.

CBstart

SLstart OK

start

SAstart

Fig. 3. Event flow graph, where CB , SL , SA , and OK denote onCheckBox,
onSlider, onSave, and onOk, respectively.

A. Naive Solution

For the example in Fig. 2, all possible states will be reached
after invoking at most two events and then from each state,
invoking all enabled events will cover the (state × event)
combinations. When the maximum sequence length is set to 3,
the number of event sequences will be (3×3×4+3+1 = 40)
as shown in Fig. 4. The number is less than (4× 4× 4 = 64)
because clicking the OK button ends the execution.

However, some of these sequences are redundant. For ex-
ample, {SA,SA,OK} covers the same behavior as {SA,OK}:
they visit the same states and, from these states, they execute
the same events. This is because executing SA does not change
the program state. Here, states are value combinations of the
variable convert and the predicate (angle>0). Although
angle is an integer variable, the only thing matters in this
application is whether (angle>0). Thus, there are four
distinct states: 00, 01, 10, and 11, where 00 is the initial state.

Fig. 5 shows the state transition graph (STG) where nodes
are states and edges are events executed at the source states.
Specifically, from the state 00, if we execute SL, the program
goes to the state 01. From the state 01, if we execute CB, the
program goes to the state 11. From the state 11, if we execute
CB again, the program goes back to the state 01, because
clicking CB twice, or any even number of times, reset the
status of the check box. Finally, at any of these four states, if
we click OK, the execution ends – in this sense, OK can only
appear at the end of an event sequence.

B. Our New Method

As we have mentioned, ideally, we would like to execute
each enabled event (CB, SL, SA, or OK) at every reachable
state (00, 01, 10, and 11). Surprisingly, to achieve this goal,
only a small subset of event sequences in the search tree of
Fig. 4 need to be explored, as shown by the reduced tree
in Fig. 6. The yellow states are irredundant states, solid blue
lines are the irredundant sequences, while blue states represent
the backtracking points because they match some previously
explored states and thus do not need to be explored again.

Initially, the program is at state 00. State 01 can be reached
via the sequence {SL}, 10 via {CB}, and 11 via {CB,SL}.
Thus, we have brought the application to all four states. Next,
we execute each enabled event at every reachable state. The
number of sequences is not 16, but 13, because some of the
shorter sequences are subsumed by longer ones. Specifically,
there is no need to execute {CB}, {SL}, or {CB,SL} from

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 d26 d27 d28 d29 d30 d31 d32 d33 d34 d35 d36

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

b1 b2 b3 b4

a1

start

CB

S
L SA OK

CB

S
L

SA OK CB

S
L

SA OK CB

S
L

SA OK

C
B

S
L

S
A
OK

C
B

S
L

S
A
OK

C
B

S
L

S
A
OK

C
B

S
L

S
A
OK

C
B

S
L

S
A
OK

C
B

S
L

S
A
OK

C
B

S
L

S
A
OK

C
B

S
L

S
A
OK

C
B

S
L

S
A
OK

Fig. 4. The complete tree of 40 event sequences of length ≤ 3 for the GUI application in Fig. 2 and Fig. 3.

00start

end10 01

11

SA

SLCB

O
K

SA or SL

CB

OK
SA

SL

CB

OK

SA or SL

CB

O
K

Fig. 5. State transition graph, where each state is a valuation of variable
convert and predicate (angle>0).

the initial state 00, because they are already part of the longer
sequences {CB,SL,OK} and {SL,OK}.

However, there are redundancies even among these 13 event
sequences. For example, since CB does not read from any of
the two variables (convert and angle), executing CB from
any of the four states would result in the same code coverage
for the listener function of CB. Since CB is enabled at state
00, there is no need to test CB at another state.

Similarly, since SA reads only from angle, executing SA
from 00 and 10 (or 01 and 11) would result in the same
coverage for the listener function of SA . Although SL reads
from both variables, it overwrites angle before reading it,
and thus depends only on the value of convert. Due to this
reason, executing SL from 00 and 01 (or 10 and 11) would
result in the same coverage for the listener function of SL
. Finally, since CB depends on both variables, it has to be
executed from all four reachable states.

Using this new notion of reduction, we can generate the
following 6 event sequences while maintaining the same test
coverage as the complete set of 40 sequences.
• t1 = {CB,SL,OK}
• t2 = {CB,OK}
• t3 = {SL,SA}
• t4 = {SL,OK}
• t5 = {SA}
• t6 = {OK}

C. Comparison to Existing Techniques
Our reduction differs from techniques based on partial order

reduction (POR), which is a widely used idea for state-space
reduction, e.g., in model checking [49], [41], [19], [51], [30]

and concurrency testing [15], [50], [31], [16], [32], [59]. The
idea of POR has also been used to reduce the cost of testing
event-driven programs [33], [46], [34]. That is, when two
sequences of events are equivalent permutations of each other,
only one of them will be tested. However, since POR relies
solely on the theory of equivalent traces [18], it can only
identify redundancy in event sequences of the same length.

In contrast, our reduction goes beyond equivalent permuta-
tions; it also can identify redundancy in sequences of different
lengths, e.g., as shown by {SA,SA,OK} and {SA,OK}, which
are not permutations of each other. Indeed, applying POR to
the example in Fig. 2 would produce 29 sequences, signifi-
cantly more than the 6 sequences produced by our method.

Compared to state-of-the-art GUI testing tools such as GUI-
TAR [40] and Gazoo [3], our method also has two advantages:
it does not skip useful test sequences and it often leads to fewer
test sequences. Both GUITAR and Gazoo skip test sequences
in an ad hoc manner to reduce their computational overhead,
which means they often miss important corner cases. For
instance, below are the seven sequences (t′1 to t′7) generated
by Gazoo for our running example:
• t′1 = {CB,SL,OK} – same as our t1
• t′2 = {CB,CB,OK} – equivalent to prefix t1 : {CB, . . .} and t6: {OK}
• t′3 = {SL,SL,OK} – equivalent to our t4: {SL,OK}
• t′4 = {CB,CB,SL} – equivalent to t3: {SL, . . .}
• t′5 = {CB,SL,SL} – equivalent to t1: {CB,SL, . . .}
• t′6 = {SL,SL,SL} – equivalent to t3: {SL, . . .}
• t′7 = {SL,SL,SA} – equivalent to our t3: {SL,SA}

All sequences generated by Gazoo are subsumed by our
sequences. Some are clearly redundant: both t′6 and t′7 are
subsumed by our t3, and both t′1 and t′5 are subsumed by our
t1. In addition, our sequences are not only fewer (6 versus 7)
but also shorter, which may translate to faster test execution.

Second, the sequences generated by Gazoo does not cover
all behaviors. In particular, they missed t2 = {CB,OK} and
t5 = {SA}, both of which are useful test cases. For example,
Bug#1 in Fig. 2 (Line 18) can be reached by {SA} and Bug#3
(Line 28) can be reached by {CB,OK}. Since Gazoo failed to
generate these two sequences, it missed these bugs.

A more severe problem of Gazoo and other existing tech-
niques is that as the length increases, the number of sequences
grows exponentially. For our running example, when the
maximum sequence length is set to 5, 7, 9, . . ., the number
of sequences generated by Gazoo would be 33, 129, 513,
. . ., respectively, as shown in Fig. 7, whereas the number of
sequences generated by our new method would remain 6. The

d1 d2 d3 d4 d5:00 d6:11 d7:11 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 d26 d27 d28 d29 d30 d31 d32 d33 d34 d35 d36

c1:00 c2:11 c3:10 c4 c5:11 c6:01 c7:01 c8 c9 c10 c11 c12

b1:10 b2:01
b3:00 b4

a1:00

start

CB

S
L

SA
OK

CB S
L

SA
OK CB

S
L SA

OK
CB

S
L SA

OK

C
B

S
L SA

OK C
B

S
L SA

OK

C
B

S
L SA

OK

C
B

S
L SA

OK

C
B

S
L SA

OK

C
B

S
L SA

OK

C
B

S
L SA

OK

C
B

S
L SA

OK

C
B

S
L SA

OK

Fig. 6. The reduced tree of event sequences of length ≤ 3: From 40 sequences to 13 sequences and then to 6 sequences.

3 4 5 6 7 8 9 10
22

24

26

28

210

Maximum Sequence Length

N
um

be
r

of
Te

st
Se

qu
en

ce
s

Our Tool
Gazoo

Fig. 7. The number of sequences generated by Gazoo and our tool as the
maximum sequence length increases.

reason is because our six sequences already cover all possible
behaviors of this GUI application as shown in Fig. 6.

D. Stateless Implementation

At this moment, one may have the impression that our new
method relies on recording the states of the GUI application
at run time, which is often how classic POR techniques are
implemented in model checkers. However, this is not the
case. Our main contribution is using stateless techniques to
identify the provably redundant sequences without executing
the GUI application. This is important because recording
concrete states may be prohibitively expensive in practice.

Thus, we assume the state transition graph (STG) shown in
Fig. 5 is not available. Instead, we rely on checking a set of
sufficient conditions under which two sequences are guaran-
teed to result in the same state. Furthermore, we make sure
that these conditions can be checked statically by inspecting
only the event sequences and event listener functions.

For example, since SA does not write to any variable,
executing it does not change the state. Therefore, if an event
leading to the state s is SA (or any other event that does not
modify state variables) we know s is an already-explored state.
Consequently, we can skip all event sequences starting from
s. Similarly, executing {SL,SL} would lead to the same state
as executing {SL}, assuming that executing SL always returns
the same set of non-0 values for angle.

In both cases, we need not access the values of program
variables. Instead, we check, for each event, what are the
variables it reads from or writes to, and for any two events, if
they are causally dependent (details in Section V).

These statically-checkable conditions are sufficient in that,
if they hold, the corresponding sequences are guaranteed to be
redundant. In this sense, our reduction never removes useful
sequences. However, these conditions are not necessary: we
do not attempt to capture all redundant sequences because
the overhead would be prohibitively high. Inherently, this is a
trade-off between the pruning capability and the computational
overhead. Thus, it is important to assess how well our method
perform in practice, e.g., does it reach or come close to the
ideal reduction? In our experimental evaluation (Section VI),
we will demonstrate that our carefully designed sufficient
conditions work well in practice.

III. PRELIMINARIES

A. GUI Application
A GUI application consists of (1) a set C of containers,

such as windows, panels and tabs, (2) a set W of widgets,
such as labels, buttons, and check boxes, and (3) a set L
of listener functions associated with the widgets. Widgets are
grouped by containers that host them, and are elements of
interaction allowing the user to interact with functional parts
of the software code. GUI libraries such as Java AWT/Swing
contain a large collection of widgets and the default program
logic for manipulating them.

A listener l ∈ L is a function that may be invoked to respond
to a user event. Some listeners are built-in listeners provided by
GUI libraries while others are custom-made: they are written
by the application developers. For ease of presentation, we
consider one listener per widget in the remainder of this
paper. Thus, triggering an event means executing the listener
associated with the widget.

B. Event Flow Graph
The mapping between widgets and listeners of a given

application may be reverse engineered using tools such as
GUITAR [21], which leverages dynamic execution and the
Java accessibility feature to traverse an object and its children
and execute their listeners. The widget-to-listener mapping
obtained in this way is represented by an event flow graph

(EFG), which shows the set of events enabled at every step of
the execution. The EFG is one of the inputs to test sequence
generation tools including ours.

Formally, an event flow graph is a directed graph GEFG =
(E, T), where E is a set of events and T is a set of transitions
between these events. Let E0 ⊆ E be the set of events
enabled at the beginning of the GUI execution. From these
initial events, each subsequent transition (evi, evj) ∈ T , where
evi, evj ∈ E, represents the fact that executing evi allows evj
to be executed in the next step.

Fig. 3 shows an example EFG consisting of four events,
which corresponds to the listener functions in Fig. 2. All four
events are enabled initially, and after executing any of the first
three events, all four events remain enabled. However, OK is
different in that executing this event would end the execution:
in the EFG, OK does not have outgoing edges.

C. Dependency Relation

Since event listener functions may read from or write to
shared variables, they may impose dependency over events.
In partial order reduction [18], two events are considered
conflict-dependent (or simply dependent) if they access the
same variable and at least one of the accesses is a write. In
Fig. 2, for example, OK depends on CB and SL because it reads
from convert and angle written by the other two events.
Based on this notion of dependency, two event sequences
are equivalent if they can be transformed to each other by
repeatedly swapping the adjacent and independent events.

Although this dependency relation has been widely used
in model checking and concurrency testing, it is often not
accurate enough for dealing with events in GUI applications.
For example, in Fig. 2, one SL event and another SL event
have overlapping read-write and write-write sets – since they
both read from and write to angle. However, the listener
function of SL always overwrites the value of angle before
reading from it, which means the behavior of the second SL
event’s listener function does not depend on the value of
angle written by the first SL event. In this sense, we say
these two events are not causally dependent.

Causal Dependency. We rely on the refined notion of depen-
dency, namely causal dependency. Here, two events ev1, ev2 ∈
E are causally dependent, denoted (ev1, ev2) ∈ RCD, where
RCD is the dependency relation, if the execution of any one
of them may affect the subsequent execution of the other.
When two events are not causally dependent, we say they
are causally independent. Causal-dependency is more accurate
than conflict-dependency in that it reflects the actual impact of
one event over another. In Section V, we shall explain how a
simple static analysis of the event listener functions can help
determine whether two events are causally dependent.

IV. SYSTEMATIC TEST GENERATION

We first present the baseline algorithm for generating test
sequences (with no reduction) and then discuss how to inte-
grate POR-based reduction into the algorithm.

A. The Baseline Algorithm

Given the EFG G = (E, T) and the causal dependency
relation RCD, Algorithm 1 (excluding Lines 9 and 12) gen-
erates all possible event sequences up to a predetermined
length. Following the notation established in stateless model
checking [18], we use a stack named S to store the sequence of
(abstract) states. S contains the initial state s0 at the beginning.
For each state s ∈ S, we use s.enabled to denote the set of
events enabled at s, use s.selEV to denote the event chosen to
execute at s, and use s.done to denote the set of all previously
chosen events at s.

The procedure EXPLORE first checks if the execution has
ended, i.e., if S.size > MAXLENGTH or s.enabled = ∅. If
either condition is met, the while-loop would be skipped. Then,
OUTPUTSEQUENCE(S) is invoked to print the event sequence
stored in S, provided that S holds a complete execution
(indicated by s.selEV = NULL) as opposed to the prefix of a
longer execution. Otherwise, it enters the while-loop to execute
a previously unexplored event, set s.selEV = event, and
invoke EXPLORE recursively. After all events in s.enabled are
explored, it exits the while-loop. At this moment, s.selEV
will not be NULL, meaning S holds the prefix of a longer
sequence (that has been printed).

Consider the running example in Fig. 2. Applying Algo-
rithm 1 with MAXLENGTH=3 would explore the complete
tree of 40 sequences as shown in Fig. 4. Clearly, some of
these sequences are redundant and thus should be removed.
Toward this end, we will present partial order reduction in
the remainder of this section, as well as our new redundancy
removal technique in Section V.

For now, we note that, compared to existing test generation
tools such as GUITAR [40] and Gazoo [3], the main advan-
tage of Algorithm 1 (baseline) is that it captures all possible
event sequences the EFG can produce up to the predefined
length. As such, it does not miss useful test sequences.

B. Partial Order Reduction

The idea of partial order reduction originated from explicit-
state model checking [49], [41], [19], where the model checker
needed to reduce the size of the state space to be searched.
In this context, a large number of algorithms were developed,
including stubborn set methods, ample set methods, and persis-
tent set methods. For a comprehensive review of these classic
methods, refer to Godefroid’s book [18]. All these classic
methods rely on the same principle, which is first classifying
the execution traces into equivalence classes of permutations,
and then exploring one representative from each equivalence
class. Since all traces from the same equivalence class lead to
the same system behavior, covering all equivalence classes is
the same as covering all execution traces.

In Fig. 4, for example, the following sequences are consid-
ered equivalent: {. . . ,CB,SA, . . .} and {. . . ,SA,CB, . . .}. The
reason is that CB only writes to convert and SA only reads
from angle; thus, the execution order of these two events
is immaterial. If {. . . ,CB,SA, . . .} has been explored, then
{. . . ,SA,CB, . . .} can be skipped.

In Algorithm 1, we add Lines 9 and 12 to show a particular
implementation of POR based on the sleep-set [18]. Specifi-

Algorithm 1 Baseline test generation procedure with POR.
1: Let StateStack S = {s0}, s0.enabled = initially-enabled events, and invoke

EXPLORE(S)
2: procedure EXPLORE(S)
3: let s = S.top()
4: if (S.size() ≤ MAXLENGTH) then
5: let s.done = ∅
6: while ∃event ∈ (s.enabled \ s.done \s.sleep) do
7: add event to s.done
8: let s′ = NEXTSTATE(s, event) // Set s.selEV = event
9: let s′.sleep = {e ∈ s.sleep | e and event are independent }

10: S.push(s′)
11: EXPLORE(S)
12: add event to s.sleep
13: end while
14: end if
15: if (s.selEV = NULL) then
16: OUTPUTSEQUENCE (S) // End trace: ∀s ∈ S, print s.selEV
17: end if
18: S.pop()
19: end procedure

cally, after an event (e.g., CB in Fig. 4) is explored from a state
s (Line 11), it is put into the set s.sleep (Line 12). When we
explore another event (e.g., SA) from s, we check if the new
event is independent of events in s.sleep. If that is the case,
we carry the sleep set over to the next state s′. Otherwise,
we drop it from s′.sleep. At any time in the future, if the
procedure EXPLORE attempts to execute a new event (e.g., CB)
that already exists in the sleep set (e.g., as in {. . . ,SA,CB}),
we skip the event, because executing the event is guaranteed
to reach a previously explored state.

Although POR is widely used [3], [33], [34]), it has a
limitation. That is, POR can only identify redundant sequences
that are permutations of each other, which implies these
sequences have the same set of events; it can never identify
redundancy in sequences such as {SA,SA,OK} and {SA,OK}
in Fig. 6 because they have different lengths. Therefore, we
need to develop a more powerful reduction technique.

V. THE NEW REDUCTION TECHNIQUE

We first explain the rationale behind our new reduction
technique and then present our stateless implementation.

A. The New Algorithm
Algorithm 2 shows our method, which is Algorithm 1

augmented with two modifications at Lines 8 and 17. That
is, prior to executing an event (Line 8), we check if the new
state s′ is a previously explored state by analyzing the events
stored in S (s.selEV ∈ S). Similarly, prior to printing an
event sequence (Line 17), we check if it can be subsumed
by other sequences. Both of these checks are designed to be
conservative in nature, meaning if they return true, we can
safely skip the corresponding states and sequences.

The subroutine REDUNDANTSTATE takes the current state
stack S and the next event ev as an input. Recall that states
in S are abstract states that do not have concrete values of the
variables. Instead, we rely on the event sequence stored in the
selEV field of each s ∈ S to check if the next state has been
explored. Thus, our implementation is stateless. Similarly,
REDUNDANTSEQUENCE checks if the event sequence stored
in S can be subsumed by other sequences.

Consider our running example in Fig. 6. The subroutine
REDUNDANTSTATE returns true when the current sequence in

Algorithm 2 New test generation procedure with reduction.
1: Let StateStack S = {s0}, s0.enabled = initially-enabled events, and invoke

EXPLORE(S)
2: procedure EXPLORE(S)
3: let s = S.top()
4: if (S.size() ≤ MAXLENGTH) then
5: let s.done = ∅ and s.printed = ∅
6: while ∃event ∈ (s.enabled \ s.done \s.sleep) do
7: add event to s.done
8: if ¬ REDUNDANTSTATE(S, event) then
9: let s′ = NEXTSTATE(s, event) // Set s.selEV = event

10: let s′.sleep = {e ∈ s.sleep | e and event are independent }
11: S.push(s′)
12: EXPLORE(S)
13: end if
14: add event to s.sleep
15: end while
16: end if
17: if ¬ REDUNDANTSEQUENCE(S, s) then
18: OUTPUTSEQUENCE (S) // End trace: ∀s ∈ S, print s.selEV
19: end if
20: S.pop()
21: end procedure
22: procedure REDUNDANTSTATE(S, ev)
23: if NoWrite () ∨ SameWrite () ∨ CovWrite () ∨GenCovWrite ()

then
24: return true
25: else
26: return false
27: end if
28: end procedure
29: procedure REDUNDANTSEQUENCE(S, s)
30: if (s.selEV 6∈ s.printed) ∧ (IrrelevantTail () ∨ extraSink () ∨

CausalIndep ()) then
31: return true
32: else
33: ∀s ∈ S, add s.selEV to s.printed
34: return false
35: end if
36: end procedure

S plus the next event, denoted [S] :: {event}, contains the
following sequences:
• [CB] :: {CB} → state c1;
• [CB,SL] :: {CB} → state d5;
• [CB,SL] :: {SL} → state d6;
• [CB,SL] :: {SA} → state d7;
• [CB,SL] :: {OK} → state d8 (not redundant sequence);
• [CB] :: {SA} → state c3;
• [CB] :: {OK} → state c4 (not redundant sequence);
• [SL] :: {CB} → state c5;
• [SL] :: {SL} → state c6;
• [SL] :: {SA} → state c7 (not redundant sequence);
• [SL] :: {OK} → state c8 (not redundant sequence);
• [SA] :: {CB} → state c9.
• [SA] :: {SL} → state c10.
• [SA] :: {SA} → state c11.
• [SA] :: {OK} → state c12.
• [SA] ::→ state b3 (not redundant sequence);
• {OK} → state b4 (not redundant sequence);

That is, we backtrack as soon as reaching any of the states
c1, d5−8, c3−12, and b3−4, because REDUNDANTSTATE shows
they are already explored. In addition, except for six of these
sequences, REDUNDANTSEQUENCE proves they are subsumed
by some shorter sequences.

Among the six event sequences that are not redundant,
{SA} ::→ b3 deserves further explanation since it is the only
one that is the prefix of some longer sequences. Furthermore,
none of these long sequences (extensions of {SA}) was
printed (because they are redundant sequences themselves).
Thus, upon reaching Line 17 of Algorithm 2, we invoke
OUTPUTSEQUENCE to print it out.

To enable the printing of partial sequences such as
{SA} ::→ b3, we add s.printed to record the set of events

printed at s. Initially, s.printed is empty (Line 5). Every
time REDUNDANTSEQUENCE returns false (which forces the
current sequence to be printed), we add s.selEV to s.printed
(Line 33). Thus, only if (s.selEV 6∈ s.printed) (Line 30), we
allow REDUNDANTSEQUENCE to return true. Otherwise, the
current sequence would have already been printed as part of
a longer sequence.

B. Detecting Redundant States
Now, we present the sufficient conditions for detecting

already explored states (Line 8 of Algorithm 2). Let
• sn−1 and sn be the last two states in the state stack S,
• evn−1 be the event chosen (and executed) at sn−1, and
• ev be the event considered (but not yet executed) at sn.

We start with special cases NoWrite and SameWrite, which
are easier to understand, before presenting the general cases.

NoWrite(). The first sufficient condition for [S] :: {ev} to
result in a redundant state is as follows:

(evn−1.write = ∅) ∧ (ev ∈ sn−1.enabled)

Proof sketch: As shown in Fig. 8 (a), since evn−1.write = ∅,
we know executing evn−1 does not change the state. Thus,
sn = sn−1. Furthermore, since ev ∈ sn−1.enabled, the
sequence {ev1, . . . , evn−2, ev} always exists, and is shorter
than [S] :: {ev} = {ev1, . . . , evn−1, ev}. Thus, executing ev
from S would not lead to any new program behavior.

SameWrite(). The second sufficient condition for [S] :: {ev}
to result in a redundant state is as follows:

(evn−1.write ∩ evn−1.read = ∅) ∧ (ev = evn−1)

Proof sketch: First, since ev = evn−1, we know the condi-
tion (ev ∈ sn−1.enabled) holds as well. Furthermore, since
evn−1.read ∩ evn−1.write = ∅, the values read by ev (and
hence the values written by ev) do not depend on the values
written by evn−1. In other words, executing ev more than once
results in the same state. Thus, executing ev from S would
not lead to any new program behavior.

For example, in Fig. 2, {. . . ,SL,SL} satisfies this condi-
tion. Although SL reads from both convert and angle, the
read of angle is dominated by its own write to angle. Thus,
we do not consider angle as part of SL’s read-variable set.
Consequently, SL does not causally depend on values written
by the previous SL .

CovWrite(). This is a generalization of the two previous cases.
In this case, the sufficient condition for S :: {ev} to result in
a redundant state is as follows:

(evn−1.write ⊆ ev.write)∧
(evn−1.write ∩ ev.read = ∅)∧
(ev ∈ sn−1.enabled)

Proof sketch: The first condition means ev overwrites all
values written by evn−1, the second condition means evn−1
does not affect ev via shared variables, and the third condition
means ev is enabled at sn−1 as well. Therefore, the shorter se-
quence {ev1, . . . , evn−2} :: {ev} would lead to the same state
as the longer sequence [S] :: {ev} = {ev1, . . . , evn−1, ev}.
Thus, we can safely skip the execution of ev from S.

s0

start

sn−1

sn

evn−1

ev

ev

(a) NoWrite()

s0

start

sk si

sn
ev

(b) GeneralizedCovWrite()

Fig. 8. Conditions for sn to be a redundant state.

GeneralizedCovWrite(). This is a further generalization of
the previous case. Let s1, . . . , si, . . . , sk, . . . , sn be the entire
sequence of states currently in S, where evi and evk are
events selected at si and sk, respectively, and ev is the event
selected (but not yet executed) at sn. The sufficient condition
for [S] :: {ev} to result in a redundant state is as follows:

∃1 ≤ i < n . (evi.write ⊆ ev.write)∧
(evi.write ∩

⋃
i<k<n evk.read = ∅)∧

(evi.write ∩ ev.read = ∅)∧
(evi+1 ∈ si.enabled)

Proof sketch: As shown in Fig. 8 (b), the current event
ev overwrites all values written by evi. Furthermore, evi
does not affect any of the subsequent events including ev.
Furthermore, since evi+1 ∈ si.enabled, there is a sequence
{ev1, . . . , evi−1, evi+1, . . . , evn, ev} that is shorter and results
in the same state as [S] :: ev. In this case, executing ev from
S will not lead to any new program behavior, because the next
state can be reached by some shorter sequence.

C. Eliminating Redundant Sequences

Now, we present our sufficient conditions for detecting re-
dundant sequences (Line 17 of Algorithm 2). These reductions
are complementary to POR because they consider a sequence
as redundant if it is subsumed by some other sequences of
shorter length.

Specifically, in Algorithm 2, prior to generating the event se-
quence (Line 17), we check if any of the following conditions
is satisfied. If the answer is yes, we skip the sequence because
the equivalent but shorter sequence would be generated.

IrrelevantTail(). The first sufficient condition for [S] to be a
redundant sequence is as follows. Let s1, . . . , si, . . . , sn be
the state sequence currently in S, evi be the event selected at
si, and evn be the event selected (and executed) at sn. The
sequence [S] is redundant if ∃1 ≤ i < n such that(

evn.read ∩
⋃

i≤k<n evk.write
)
= ∅ ∧ (evn ∈ si.enabled)

Proof sketch: When the above condition is satisfied, the last
event evn (selected and executed at sn) is guaranteed not
to depend on any value written by the preceding events
evi, . . . , evn−1. In such case, [S] = {ev1, . . . , evn} can be
replaced by the two shorter sequences {ev1, . . . , evn−1} and
{ev1, . . . , evi−1, evn}, and thus can be skipped.

In our example, {CB,SA} has an irrelevant tail and thus can
be replaced by the two shorter sequences {CB} and {SA}.
ExtraSink(). Let s1, . . . , si, . . . , sj , . . . , sn be the state se-
quence in S, evi and evj be the events selected at si and
sj , respectively, and evn be the event selected (and executed)
at sn. The sequence [S] is redundant if ∃1 ≤ i < j ≤ n such
that (1) ei and ej do not enable or disable any event executed
after them, and (2) the following condition is met:(

ei.write ∩
⋃

i<k≤n ek.read
)
= ∅∧(

ej .write ∩
⋃

j<k≤n ek.read
)
= ∅

Proof sketch: The condition means neither ei nor ej can affect
any event executed after them in S. Furthermore, skipping ei
or ej does not enable/disable other events. Thus, [S] can be
replaced by the shorter sequences [S] \ {ei} and [S] \ {ej}.

For example, in Fig. 6, {CB, . . . ,SA,OK} has two extra
sinks SA and OK. Therefore, it can be replaced by the two
shorter sequences {CB, . . . ,SA} and {CB, . . . ,OK}.
CausalIndependentWrite(). The third sufficient condition is
related to causally-independent writes. Let s1, . . . , si, . . . , sn
be the state sequence in S, evi be the event selected at si and
evn be the event selected (and executed) at sn. The sequence
[S] is redundant if ∃1 ≤ i < n such that (1) evi does not
enable/disable any event executed after it in S and (2) the
following condition is met:

(evn, evi) 6∈ RCD

Proof sketch: First, the above condition means evn is not
causally dependent on evi. In other words, whether evi is
executed at si does not affect the behavior of evn. Further-
more, since evi does not enable or disable any event executed
after it, there exist two shorter sequences {ev1, . . . , evn−1}
and {ev1, . . . , evi−1, evi+1, . . . , evn} that subsume [S]. Thus,
the event sequence [S] can be skipped.

D. Computing Causal Dependencies

Whether two events evi and evj are causally dependent,
i.e., (evi, evj) ∈ RCD, can be decided using a conservative
static analysis of their listener functions. The analysis is
conservative in that, if it says evi is not causally dependent
on evj , the behavior of evi is guaranteed not to be affected
by ej . However, the analysis may not identify all causally
independent event pairs due to limitations of static analysis.

We use Soot [48] to implement the static analysis. We
mark each Java class member as className.memberName
and consider all program variables. First, we compute, for
each event listener function, the set of read variables and
the set of write variables. The difference between our read
and write variable sets and those computed by conventional
techniques is that we exclude, from the read set, variables that
are overwritten before they are read.

Specifically, for each event listener function, we parse the
Java byte-code and initialize an empty write variable set.
For each basic block through which the data flows, we take
the union of the in-flow and out-flow. For each basic block
where two data flows merge, we take the intersection. When

we compute the read variable set, if the variables read by a
basic block is included in the previously-computed flow set,
we ignore them, because they have been overwritten by the
method itself. Otherwise we add them to the read variable set.

After the aforementioned intra-procedural analysis is com-
pleted, we use an inter-procedural program slicer [25] similar
to the one used by Gazoo [17] to compute the causal-
dependency relation RCD. Essentially, the program slicer
recursively adds variables read or written by the listener
function as well as functions invoked by the listener function.

As an example, consider the SL event in Fig. 2. Al-
though both angle and convert are read by the listener
function, since angle is overwritten before it is read, it is
excluded from the read set. Thus, SL.read = {convert} and
SL.write = {angle}, and therefore (SL,SL) 6∈ RCD.

VI. EXPERIMENTS

We have implemented our method in a tool named GUICat
in which the following components are used: GUITAR [21]
for reverse engineering the event flow graph, Soot [44] for
conducting static program analysis, and Cobertura [12] for
executing test sequences on the GUI application to obtain
the coverage report. Our core algorithm for generating test
sequences was implemented in 4,000 lines of Java code.
For experimental comparison, we implemented the algorithm
in such a way that individual reduction techniques can be
enabled and disabled. Thus, we were able to compare the
performance of the following configurations: (1) our baseline
procedure as shown in Algorithm 1, (2) baseline with POR,
(3) baseline with POR plus the individual reductions presented
in Section V, and (4) all reductions in Algorithm 2 combined.
We also downloaded GUITAR [40], [21] and Gazoo [3], [17]
and experimentally compared them with our tool on the same
benchmark applications.

In both GUITAR and Gazoo, the test sequence generation
is model-based. That is, they leverage the same EFG as in our
method, but differ in how event sequences are constructed.
In our method, the construction starts from the initial states
and proceeds systematically, but in GUITAR and Gazoo,
the construction may start from any node in the EFG. As
such, their initial set of event sequences may not be feasible.
To make them feasible—meaning they can be executed by
the GUI application—GUITAR and Gazoo have to insert
connecting events to these sequences. In contrast, our method
can directly generate feasible event sequences.

Our experiments were designed to answer two questions:
• Can our new method, which soundly generates test se-

quences, outperform state-of-the-art GUI testing tools
such as GUITAR and Gazoo?

• How effective is our semantic reduction technique and its
stateless implementation in identifying and eliminating
redundant sequences?

We used 17 benchmark applications written using Java
Swing. Their statistics are shown in Table I. Specifically,
Columns 1 and 2 show the name of each application and
the number of lines of code (LoC), respectively. Note that
the LoCs of regextester and hashvcalc (marked with asterisks)
are estimated by decompiling the Java byte-code due to lack

TABLE I
STATISTICS OF THE GUI BENCHMARK APPLICATIONS.

Name LoC #Node #Edge Description
GazooV0.1 80 5 12 Example application taken from [2].
guess 126 4 16 Example crafted to illustrate scenarios similar to

GazooV0.1
GazooV0.2 165 4 16 Example application taken from [3].
ticketseller 367 11 121 GUI application taken from [6]
hashvcalc *376 17 162 Hash value calculator from sourceforge [24]
workout 526 9 81 Workout generator taken from [6]
payment 665 19 127 Payment form application from the example of squish [45]
regextester *756 14 144 Java regular expression tester from sourceforge [42]
addressbook 1,267 17 71 Address book application from the example of squish [45]
jnotepad 1,378 45 649 Notepad application from [28]
crosswords 3,594 29 106 Dictionary application [13]
jgp 7,739 71 2,191 GNU plot front-end application from sourceforge [29]
calc 11,940 83 1,634 Student math calculator from sourceforge [9]
ce 14,027 98 1,361 Java class file editor from sourceforge [10]
terpspread 15,231 306 3,079 Java spreadsheet application [47]
rachota 18,852 148 1,347 Time management application from sourceforge and [3]
buddi 28,848 103 927 Financial management application [8]

TABLE II
COMPARISON OF EVENT SEQUENCE REDUCTION.

Name GUICat (our tool) GUITAR [21] Gazoo [3]
Baseline +POR +AllNew
tests time (s) tests time (s) tests time (s) tests time (s) tests time (s)

GazooV0.1 31 2 19 2 3 2 33 1 6 6
guess 64 3 40 3 13 2 64 2 8 5
GazooV0.2 40 2 29 3 6 2 36 1 7 6
ticketseller 1,331 17 418 8 23 3 1,331 16 2 5
hashvcalc 326 6 198 5 20 3 1,657 20 - 6
workout 729 12 246 6 16 2 729 9 - 7
payment 1,009 14 214 5 19 2 1,009 13 - 8
regextester 1,470 24 334 12 25 9 1,470 18 - 33
addressbook 125 4 63 4 20 2 341 6 340 11
jnotepad 8,243 87 1,019 15 158 6 9,916 108 333 13
crosswords 417 9 140 6 30 4 473 7 195 13
jgp 70,335 728 38,189 599 10,613 394 72,675 734 22,610 307
calc 4,179 54 1,183 74 68 28 30,889 327 82 30
ce 21,484 233 5,191 232 755 219 21,538 222 28,172 260
terpspread 15,303 165 4,840 111 3,045 107 40,299* 300* 63,184 1,080
rachota 5,036 67 1,646 39 135 18 22,588* 180* 34,981 1,080
buddi 1,666 32 318 20 60 16 9,021 52 28,008 50
Total 131,788 1,459 54,087 1,144 15,009 819 214,069 2,016 177,928 2,920

of source code. Columns 3 and 4 show the size of the input
EFGs including the number of nodes and the number of edges.
Finally, Column 5 provides a brief description of the nature
of each application. Together, the benchmark applications have
105,937 lines of Java code. We performed all experiments on
a computer with a 3.3 GHz CPU and 8 GB RAM.

A. Comparison of Different Methods

In this experiment, we compared the performance of our
tool against GUITAR and Gazoo. Within our own tool, we
also compared three configurations: Baseline, with POR, and
with the full-blown reduction.

Table II shows the results. Specifically, Column 1 shows
the name of each benchmark while the remaining columns
are divided into the following groups: the baseline algorithm
(denoted Baseline), baseline with POR (denoted +POR), base-
line with POR plus our new reduction (denoted +AllNew), and
the two existing tools. For each method, we show the number
of test sequences generated and the test generation time in
seconds. The last row sums up the numbers in each column.

Following Arlt et al. [3] we set the maximum sequence
length to 3 for all methods. Note that Gazoo was not able
to generate any test sequences for four applications because
the tool was hard-wired to produce sequences of dependent
events with length 2 or longer, but these four applications do
not have sequences that meet the criterion.

TABLE III
EFFECTIVENESS OF DIFFERENT REDUCTION TECHNIQUES.

Name +POR Individual Reduction in Our Tool AllNew
+NoW +SameW +CovW +GCovW +IrrTail +ExtraS +CauInd

GazooV0.1 19 19 19 3 10 4 4 8 3
guess 40 40 34 30 38 20 19 22 13
GazooV0.2 29 29 29 14 24 17 12 13 6
ticketseller 418 418 311 281 399 61 47 74 23
hashvcalc 198 145 161 170 194 39 133 47 20
workout 246 140 186 186 240 35 127 51 16
payment 214 116 153 191 211 22 88 52 19
regextester 334 153 235 267 328 44 184 67 25
addressbook 63 40 53 55 63 23 28 28 20
jnotepad 1,019 524 981 972 1,016 181 814 281 158
crosswords 140 69 101 122 138 35 100 59 30
jgp 38,189 31,296 36,868 37,053 38,173 18,318 16,639 15,678 10,613
calc 1,183 928 1,145 968 1,172 498 725 195 68
ce 5,191 3,664 4,902 5,116 5,184 1,801 2,728 1,123 755
terpspreads 4,840 4,498 4,744 4,788 4,837 4,000 3,617 3,204 3,045
rachota 1,646 897 1,417 1,618 1,646 358 997 299 135
buddi 318 109 266 318 318 73 228 110 60
Total 54,087 43,085 51,605 52,152 53,991 25,529 26,490 21,311 15,009

Overall, there is a significant reduction (59%) in the number
of test sequences from Baseline to +POR, and another signif-
icant reduction (72%) to +AllNew. This means our method
is different from and complementary to POR. Furthermore,
there are fewer sequences generated by our method (+AllNew)
than GUITAR and Gazoo, and the reduction is significant
(14.3X over GUITAR and 11.9X over Gazoo). The reduction
is obtained despite that our method is sound whereas GUITAR
and Gazoo may miss important corner cases, as illustrated by
our running example in Section II.

The reason why Baseline had fewer test sequences than
GUITAR and Gazoo was because, as we have mentioned,
neither GUITAR nor Gazoo could guarantee their initial set
of event sequences were feasible. Thus, they had to insert
connecting events afterward, which means the final sequences
might not be strictly bounded by the MAXLENGTH. There
were also no easy fixes that could force them to strictly
adhere to the bound. In contrast, the sequences generated by
our method were guaranteed to be feasible and within the
MAXLENGTH.

The time taken by all test generation methods are more or
less the same. Since they all work on the EFG as opposed
to executing the actual GUI application, the time is negligible
compared to the time taken to execute the test sequence.

B. Comparison of Individual Reduction Techniques

In this experiment, we evaluated the effectiveness of the
individual reduction techniques in our method. Table III shows
our results, where Column 1 shows the name of each ap-
plication, Columns 2-10 show the number of test sequences
generated by each reduction technique, and the last column
shows the number of test sequences generated by all reductions
techniques combined. POR was used in conjunction of all the
individual reduction techniques.

The results show that each technique is effective compared
to the baseline with POR (denoted +POR) with improvement
ranging from 0.2% to 60% (e.g., computed by CauInd =
1 − 21311/54087 = 60.60%). Furthermore, when combined,
they can achieve the largest reduction (72%). This not only
means each reduction technique makes its own contribution,
but also means they are complementary to each other. For

TABLE IV
COMPARISON OF THE TEST EXECUTION RESULTS.

Name our tool (new) GUITAR [40] Gazoo [3]
coverage tests coverage tests coverage tests

ce 33% 755 33% 21,538 33% 28,172
terpspreads 56% 3,045 45% 40,299 48% 63,184
rachota 64% 135 62% 22,588 64% 34,981
buddi 36% 60 36% 9,021 36% 28,008

brevity, we do not show the time taken by these individual
methods but they are almost the same.

C. Comparison of Test Execution Results
Finally, we compare the test execution. Since running test

sequences generated by all methods on all applications takes a
long time, we only obtained results on four larger applications.
Table IV shows the results, including the name, the percentage
of statements covered, and the number of test sequences. The
results show all methods achieved a similar coverage. The
main difference is in the number of test sequences: it is 3,995
for our method, 93,446 for GUITAR, and 154,345 for Gazoo.
For buddi, the reduction is 430X: it is 60 sequences for our
tool compared to 28K sequences for Gazoo.

D. Threats to Validity
We did not consider external dependencies imposed by

remote network communication, database access, or the file
IO. Therefore, our method may miss useful event sequences
in the presence of these external dependencies. This limitation
is shared by the other GUI testing tools as well. We did
not consider the diversity of data input either. During our
experiments, the data input was generated by GUITAR’s
replayer using its default setting, to allow a fair comparison
of all tools. However, it was also the reason why the testing
coverage did not come close to 100%. Same as GUITAR and
Gazoo, we focused on only one aspect of GUI testing, which
is the diversity of event sequences. To improve further, fuzzing
or symbolic execution techniques [23], [31], [22], [22], [11]
may be needed to diversify input data; we leave this for future
work.

VII. RELATED WORK

GUI is an indispensable component of many software appli-
cations. Thus, there has been abundant research on improving
the efficiency of GUI testing in various domains, including
desktop [60], [57], [11], [56], mobile [27], [38], [1], [26], and
web applications [53], [46], [4]. Although techniques proposed
in this work were implemented in GUICat [11], which
is designed for testing desktop applications, the underlying
principle may be applied to other types of GUI applications
and event-driven programs in general.

GUI testing is a complex process that requires efficient
algorithms and implementation techniques in many different
aspects such as static program analysis, dynamic model extrac-
tion [37], [54], deterministic replay [20], [58], and test case
maintenance [53]. In this work, we focus on event sequence
generation only while relying on a number of existing tools
such as GUITAR [40], Soot [48], and Cobertura [12] to
offer an end-to-end solution. However, there is still room for
improvement in these other aspects.

Beside the work mentioned so far, there are other GUI
testing techniques [43], [36], [2], [3], [6], [52], [14]. For
example, earlier works [43], [52] create models of the software
code based on finite state machines, but as pointed out in [5],
some of these techniques would not work well when the
model does not accurately reflect the actual code. To avoid this
problem, Yuan and Memon [57] propose to leverage feedback
from the execution of a seed test suite to generate new test
cases. Such approach depends on the quality of the seed as
well as randomness during test execution.

Our method is related to state-space reduction techniques
in explicit-state and symbolic model checking, but with some
important differences. In model checking, existing methods
are either model-based [49], [41], [19], [18], e.g., relying on
a state-transition system where values of state variables are
available, or stateless [15], [55], [50], [32] where the model
checker does not maintain states but instead dynamically
executes the software. In contrast, our method is a hybrid
approach that augments an abstract model (the EFG) with
dependencies derived from the software statically. The EFG
is more abstract than the state-transition system because it does
not contain values of the program variables.

Test sequence reduction has been studied in event-driven
programs [3], [2], [7], [36] to reduce the test execution cost. In
this context, partial order reduction (POR) [18], [15], [33], [34]
serves as a foundational technique for removing redundancy.
However, as shown in Section II as well as the experiments,
although POR is effective in identifying redundancy among
sequences of the same length, it misses other redundant se-
quences. In comparison, our method is more effective since it
also exploits redundancy among sequences of different lengths.

Beyond test sequence generation, an important problem is
diversifying the input data. Several recent works have focused
on this problem, e.g., by using model checking [35], [39],
[46] and symbolic execution [11], [1], [27], [38]. However,
scalability remains a problem and thus there is still room for
improvement. We will consider it for future work.

VIII. CONCLUSIONS

We have presented a GUI testing framework for efficiently
generating event sequences while avoiding the redundant
sequences. Our technique leverages both model-driven test
generation (e.g., the EFG) and static analysis of the actual
software (e.g., the Java bytecode). It goes beyond partial order
reduction by identifying redundancy not only among event
sequences of the same length but also among sequences of
different lengths. Our experiments on Java Swing applications
show the new method significantly outperforms state-of-the-art
GUI testing tools and the average reduction in the number of
test sequences is more than 10X. For future work, we plan to
develop methods for diversifying input data to further improve
the testing coverage.

IX. ACKNOWLEDGMENTS

This material is based upon research supported in part by the
U.S. National Science Foundation under grants DGE-1522883,
CCF-1500365, and CCF-1149454, as well as the U.S. Office
of Naval Research under award number N00014-17-1-2896.

REFERENCES

[1] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang.
Automated concolic testing of Smartphone apps. In ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 59:1–12,
2012.

[2] Stephan Arlt, Andreas Podelski, Cristiano Bertolini, Martin Schäf, Ishan
Banerjee, and Atif M. Memon. Lightweight static analysis for GUI
testing. In International Symposium on Software Reliability Engineering,
2012.

[3] Stephan Arlt, Andreas Podelski, and Martin Wehrle. Reducing GUI
test suites via program slicing. In International Symposium on Software
Testing and Analysis, 2014.

[4] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Moller, and Frank
Tip. A framework for automated testing of JavaScript web applications.
In International Conference on Software Engineering, pages 571–580,
2011.

[5] Gigon Bae, Gregg Rothermel, and Doo-Hwan Bae. On the relative
strengths of model-based and dynamic event extraction-based GUI
testing techniques: An empirical study. In International Symposium on
Software Reliability Engineering, pages 181–190, 2012.

[6] Barad. A GUI testing framework based on symbolic execution. http:
//users.ece.utexas.edu/∼perry/work/papers/080521-SG-barad.pdf.

[7] Fevzi Belli. Finite state testing and analysis of graphical user interfaces.
In International Symposium on Software Reliability Engineering, pages
34–43, 2001.

[8] Buddi. http://buddi.digitalcave.ca/.
[9] Calc. https://sourceforge.net/projects/formcalc/.

[10] Ce. http://classeditor.sourceforge.net/.
[11] Lin Cheng, Jialiang Chang, Zijiang Yang, and Chao Wang. GUICat:

GUI testing as a service. In IEEE/ACM International Conference On
Automated Software Engineering, pages 858–863, 2016.

[12] Cobertura. http://cobertura.github.io/cobertura/.
[13] Crosswords. http://www.cs.umd.edu/∼atif/Benchmarks/UMD2008a.

html.
[14] Pranavadatta Devaki, Suresh Thummalapenta, Nimit Singhania, and

Saurabh Sinha. Efficient and flexible GUI test execution via test merging.
In International Symposium on Software Testing and Analysis, pages 34–
44, 2013.

[15] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order re-
duction for model checking software. In ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 110–121,
2005.

[16] Malay K. Ganai, Nipun Arora, Chao Wang, Aarti Gupta, and Gogul
Balakrishnan. BEST: A symbolic testing tool for predicting multi-
threaded program failures. In IEEE/ACM International Conference On
Automated Software Engineering, 2011.

[17] Gazoo. https://swt.informatik.uni-freiburg.de/tool/gazoo.
[18] Patrice Godefroid. Partial-Order Methods for the Verification of Concur-

rent Systems - An Approach to the State-Explosion Problem. Springer,
1996.

[19] Patrice Godefroid and Pierre Wolper. A partial approach to model
checking. Inf. Comput., 110(2):305–326, 1994.

[20] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein.
Reran: Timing-and touch-sensitive record and replay for Android. In
International Conference on Software Engineering, pages 72–81, 2013.

[21] GUITAR. https://sourceforge.net/projects/guitar/.
[22] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti

Gupta. Assertion guided symbolic execution of multithreaded programs.
In ACM SIGSOFT Symposium on Foundations of Software Engineering,
pages 854–865, 2015.

[23] William G.J. Halfond and Alessandro Orso. Improving test case
generation for Web applications using automated interface discovery.
In ACM SIGSOFT Symposium on Foundations of Software Engineering,
September 2007.

[24] Hashvcalc. https://sourceforge.net/projects/hash-value-tester-gui/.
[25] Susan Horwitz, Thomas W. Reps, and David Binkley. Interprocedural

slicing using dependence graphs. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 35–46,
1988.

[26] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cris-
tiano L Pereira, Gilles A Pokam, Peter M Chen, and Jason Flinn.
Race detection for event-driven mobile applications. ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 326–336, 2014.

[27] Casper S Jensen, Mukul R Prasad, and Anders Møller. Automated testing
with targeted event sequence generation. In International Symposium on
Software Testing and Analysis, pages 67–77, 2013.

[28] jNotepad. http://www.planet-source-code.com/vb/scripts/ShowCode.
asp?txtCodeId=3363&lngWId=2.

[29] JPG. http://jgp.sourceforge.net/.
[30] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order

reduction: An optimal symbolic partial order reduction technique. In
International Conference on Computer Aided Verification, pages 398–
413, 2009.

[31] Sudipta Kundu, Malay K. Ganai, and Chao Wang. CONTESSA:
Concurrency testing augmented with symbolic analysis. In International
Conference on Computer Aided Verification, pages 127–131, 2010.

[32] Markus Kusano and Chao Wang. Assertion guided abstraction: a coop-
erative optimization for dynamic partial order reduction. In IEEE/ACM
International Conference On Automated Software Engineering, pages
175–186, 2014.

[33] Pallavi Maiya, Rahul Gupta, Aditya Kanade, and Rupak Majumdar.
Partial order reduction for event-driven multi-threaded programs. In
International Conference on Tools and Algorithms for Construction and
Analysis of Systems, pages 680–697, 2016.

[34] Pallavi Maiya and Aditya Kanade. Efficient computation of happens-
before relation for event-driven programs. In International Symposium
on Software Testing and Analysis, pages 102–112, 2017.

[35] Peter Mehlitz, Oksana Tkachuk, and Mateusz Ujma. JPF-AWT: Model
checking GUI applications. In IEEE/ACM International Conference On
Automated Software Engineering, pages 584–587, 2011.

[36] Atif M Memon. An event-flow model of GUI-based applications for
testing. Software Testing Verification and Reliability, 17(3):137–158,
2007.

[37] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. GUI Ripping:
Reverse engineering of Graphical User Interfaces for testing. In
Proceedings of The 10th Working Conference on Reverse Engineering,
November 2003.

[38] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi,
and Sam Malek. Reducing combinatorics in GUI testing of Android
applications. In International Conference on Software Engineering,
pages 559–570, 2016.

[39] Nariman Mirzaei, Sam Malek, Corina S Păsăreanu, Naeem Esfahani, and
Riyadh Mahmood. Testing Android apps through symbolic execution.
ACM SIGSOFT Software Engineering Notes, 37(6):1–5, 2012.

[40] Bao N Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. GUI-
TAR: an innovative tool for automated testing of GUI-driven software.
Automated Software Engineering, 21(1):65–105, 2014.

[41] Doron A. Peled. All from one, one for all: on model checking
using representatives. In International Conference on Computer Aided
Verification, pages 409–423, 1993.

[42] Regextester. https://sourceforge.net/projects/javaregextestgui/.
[43] Richard K Shehady and Daniel P Siewiorek. A method to automate user

interface testing using variable finite state machines. In International
Symposium on Fault-Tolerant Computing, pages 80–88, 1997.

[44] Soot. https://github.com/Sable/soot.
[45] Squish. https://www.froglogic.com/squish/.
[46] Chungha Sung, Markus Kusano, Nishant Sinha, and Chao Wang. Static

DOM event dependency analysis for testing web applications. In ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages
447–459, 2016.

[47] Terpspreadsheet. http://www.cs.umd.edu/∼atif/Benchmarks/
UMD2007a.html.

[48] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. Soot-a Java bytecode optimization frame-
work. In Conference of the Centre for Advanced Studies on Collabora-
tive research, 1999.

[49] Antti Valmari. A stubborn attack on state explosion. In International
Workshop on Computer Aided Verification, pages 156–165, 1990.

[50] Chao Wang, Mahmoud Said, and Aarti Gupta. Coverage guided
systematic concurrency testing. In International Conference on Software
Engineering, pages 221–230, 2011.

[51] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole
partial order reduction. In International Conference on Tools and
Algorithms for Construction and Analysis of Systems, pages 382–396,
2008.

[52] Lee White and Husain Almezen. Generating test cases for GUI
responsibilities using complete interaction sequences. In International
Symposium on Software Reliability Engineering, pages 110–121, 2000.

[53] Rahulkrishna Yandrapally, Giriprasad Sridhara, and Saurabh Sinha. Au-
tomated modularization of GUI test cases. In International Conference
on Software Engineering, pages 44–54, 2015.

[54] Wei Yang, Mukul R Prasad, and Tao Xie. A grey-box approach for
automated gui-model generation of mobile applications. In International

http://users.ece.utexas.edu/~perry/work/papers/080521-SG-barad.pdf
http://users.ece.utexas.edu/~perry/work/papers/080521-SG-barad.pdf
http://buddi.digitalcave.ca/
https://sourceforge.net/projects/formcalc/
http://classeditor.sourceforge.net/
http://cobertura.github.io/cobertura/
http://www.cs.umd.edu/~atif/Benchmarks/UMD2008a.html
http://www.cs.umd.edu/~atif/Benchmarks/UMD2008a.html
https://swt.informatik.uni-freiburg.de/tool/gazoo
https://sourceforge.net/projects/guitar/
https://sourceforge.net/projects/hash-value-tester-gui/
http://www.planet-source-code.com/vb/scripts/ShowCode.asp? txtCodeId=3363&lngWId=2
http://www.planet-source-code.com/vb/scripts/ShowCode.asp? txtCodeId=3363&lngWId=2
http://jgp.sourceforge.net/
https://sourceforge.net/projects/javaregextestgui/
https://github.com/Sable/soot
https://www.froglogic.com/squish/
http://www.cs.umd.edu/~atif/Benchmarks/UMD2007a.html
http://www.cs.umd.edu/~atif/Benchmarks/UMD2007a.html

Conference on Fundamental Approaches to Software Engineering, pages
250–265, 2013.

[55] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Chao Wang.
Automatic discovery of transition symmetry in multithreaded programs
using dynamic analysis. In International SPIN workshop on Model
Checking Software, pages 279–295, 2009.

[56] Xun Yuan and Atif Memon. Iterative execution-feedback model-directed
GUI testing. Information and Software Technology, 52(5):559–575,
2010.

[57] Xun Yuan and Atif M Memon. Generating event sequence-based test
cases using GUI runtime state feedback. IEEE Transactions on Software

Engineering, 36(1):81–95, 2010.
[58] Lu Zhang and Chao Wang. RClassify: classifying race conditions in

web applications via deterministic replay. In International Conference
on Software Engineering, pages 278–288, 2017.

[59] Naling Zhang, Markus Kusano, and Chao Wang. Dynamic partial order
reduction for relaxed memory models. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 250–259,
2015.

[60] Sai Zhang, Hao Lü, and Michael D Ernst. Finding errors in multi-
threaded GUI applications. In International Symposium on Software
Testing and Analysis, pages 243–253, 2012.

	Introduction
	Motivation
	Naive Solution
	Our New Method
	Comparison to Existing Techniques
	Stateless Implementation

	Preliminaries
	GUI Application
	Event Flow Graph
	Dependency Relation

	Systematic Test Generation
	The Baseline Algorithm
	Partial Order Reduction

	The New Reduction Technique
	The New Algorithm
	Detecting Redundant States
	Eliminating Redundant Sequences
	Computing Causal Dependencies

	Experiments
	Comparison of Different Methods
	Comparison of Individual Reduction Techniques
	Comparison of Test Execution Results
	Threats to Validity

	Related Work
	Conclusions
	Acknowledgments
	References

