IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

1611

An SMT Based Method for Optimizing Arithmetic
Computations in Embedded Software Code

Hassan Eldib, and Chao Wang, Member, IEEE

Abstract—We present a new method for optimizing the source
code of embedded control software with the objective of mini-
mizing implementation errors in the linear fixed-point arithmetic
computations caused by overflow, underflow, and truncation.
Our method relies on the use of the satisfiability modulo the-
ory (SMT) solver to search for alternative implementations that
are mathematically equivalent but require a smaller bit-width,
or implementations that use the same bit-width but have a larger
error-free dynamic range. Our systematic search of the bounded
implementation space is based on a new inductive synthesis pro-
cedure, which is guaranteed to find a valid solution as long as
such solution exists. Furthermore, we propose an incremental
optimization procedure, which applies the synthesis procedure
only to small code regions—one at a time—as opposed to the
entire program, which is crucial for scaling the method up to
programs of realistic size and complexity. We have implemented
our new method in a software tool based on the Clang/LLVM
compiler frontend and the Yices SMT solver. Our experiments,
conducted on a set of representative benchmarks from embedded
control and digital signal processing applications, show that the
method is both effective and efficient in optimizing arithmetic
computations in embedded software code.

Index Terms—TFixed point arithmetic, inductive program syn-
thesis, satisfiability modulo theory (SMT) solver, superoptimiza-
tion.

I. INTRODUCTION

NALYZING and optimizing the arithmetic computations

in embedded control software is crucial to avoid overflow
and underflow errors and minimize truncation errors within a
cyber physical system’s designated input range. Minimizing
implementation errors is important because errors due to
overflow, underflow, and truncation can lead to significant
degradation of the computation results, which in turn may
destabilize the entire system. The conventional solution to
this problem is to carefully estimate the minimum bit-width
required by all computations in the software code for them to
run in the error-free mode and then choose a microcontroller
that matches the minimum bit-width. However, this can be
expensive in many cases and even infeasible in some cases,
e.g., when the microcontroller at hand has 16 bits but the
software code requires a minimum of 17 bits.

Manuscript received March 24, 2014; revised May 28, 2014; accepted
July 15, 2014. Date of current version October 16, 2014. The work of
H. Eldib was supported by the NSF under Grant CNS-1128903. The work of
C. Wang was supported by the ONR under Grant N00014-13-1-0527. Some
of the preliminary results of this paper have appeared in [1]. This paper was
recommended by Associate Editor T. Mitra.

The authors are with the Bradley Department of Electrical and
Computer Engineering, Virginia Tech, Blacksburg, VA 24061 USA (e-mail:
heldib@vt.edu; chaowang @vt.edu).

Digital Object Identifier 10.1109/TCAD.2014.2341931

Our observation is that, in many applications, it is possible
for the developer to manually reorder the arithmetic operations
to avoid the overflow and underflow errors and to minimize
the truncation errors. In other words, one can often rewrite the
software code to reduce its implementation errors while keep-
ing the functionality of the code intact. However, the manual
rewriting based optimization process is labor intensive and
error prone. In this paper, we propose a new compiler assisted
code transformation method to automate this optimization pro-
cess. More specifically, we propose to apply a new inductive
synthesis procedure incrementally to optimize the linear fixed-
point arithmetic computations so that the resulting software
code may be safely executed on a microcontroller with a
smaller bit-width.

Consider the arithmetic computation code in Fig. 1, where
the values of all input parameters are assumed to be in the
range [0, 9000]. A static analysis of this program shows that,
to avoid overflow, the program must be executed on a micro-
controller with at least 32 bits. For example, if the code were
to run on a 16-bit microcontroller, some of the arithmetic
operations, such as the subtraction at Line 13, would over-
flow because the computation results cannot be represented
by 16 bits. In this case, a naive solution to the problem is to
scale down the bit-widths of the operations, often called binary
scaling and rescaling, by eliminating some of their least sig-
nificant bits (LSBs). However, this may not be an acceptable
solution because it can decrease the dynamic range, or lead to
a large accumulative error in the output.

Our new method, in contrast, can reduce the minimum bit-
width required to run this fixed-point arithmetic computation
code without any loss in accuracy. It can be viewed as a fully
automated code transformation process that takes the original
C code in Fig. 1 and user-specified ranges of the parameters as
input, and returns the optimized C code in Fig. 2 as output. Our
method guarantees that these two C programs are functionally
equivalent and, at the same time, the one in Fig. 2 may require
a smaller bit-width. In this particular example, the new code in
Fig. 2 can indeed run on a 16-bit microcontroller without lead-
ing to any overflow error. Furthermore, our method ensures
that the new code does not introduce additional truncation
errors.

The optimization in our method is carried out by an
satisfiability modulo theory (SMT) solver based inductive syn-
thesis procedure customized specifically for efficient handling
of the fixed-point arithmetic computations typically seen in
embedded control software. Although recent years have seen
a renewed interest in applying inductive synthesis to a wide

0278-0070 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1612
1: int comp(int A,int B, int H,int E, int D,int F,int K) {
2 int tO0,tl,t2,t3,t4,t5,t6,t7,t8,t9,t10,tll,tl2;
3 tl2 = 3 % A;
4: tl10 = tl2 + B;
5: tll = H << 2;
6: t9 = tl0 + tl1l;
7: t6 = t9 >> 3;
8 t8 =3 % E;
9 t7 = t8 + D;
10: t5 = t7 - 16469;
11: t3 = t5 + t6;
12: t4 = 12 * F;
13: t2 = t3 - t4;
14: t1 = t2 >> 2;
15: t0 = tl + K;

16: return tO;

Fig. 1. Original C program for implementing an embedded controller.

1: int comp (int A, int B, int H,int E,int D,int F,int K) {
2 int t0,tl1,t3,t4,t5,t6,t8,tl2;

3: int N1,N2,N3,N4,N5,N6,N7,N9,N10;

4: tl1l2 = 3 *x A;
5.
6
7
8

N6 = H;

N10 = tl1l2 - B;

N9 = N10 >> 1;

: N7 =B + N9;

9: N5 = N7 > 1;
10: N4 = N5 + No;
11: t6 = N4 >> 1;
12: £t8 = 3 % E;
13: N3 = t8 - 16469;
14: t5 = N3 + D;
15: t3 = t5 + t6;
16: t4 = 12 % F;
17: N2 = t4 >> 2;
18: N1 = t3 >> 2;
19: t1 = N1 - N2;
20: t0 = tl + K;
21: return tO;
22:}

Fig. 2. Optimized C code for implementing the same embedded controller.

variety of applications (see [2]-[11]), a naive application of
the existing techniques would not work well in our case,
due to the limited scalability and large computational over-
head of the synthesis procedures. For example, our experience
with Sketch [2], [12], a leading software tool in this domain,
shows that for synthesizing software code that involves many
fixed-point arithmetic computations, it does not scale beyond
programs with 3—4 lines.

Our main contribution in this paper is proposing a new
incremental inductive synthesis algorithm where the SMT
solver based synthesis procedure is applied only to code
regions of a bounded size, one at a time, as opposed to
the entire program. We shall demonstrate in the experiments
that this incremental approach is crucial for scaling up the
synthesis method, ultimately allowing us to handle fixed-
point arithmetic computation programs of practical size and
complexity.

Our new method differs from existing methods for optimiz-
ing arithmetic computations in embedded software. Existing
methods in this field, including [13] and [14], focus primarily
on computing the optimal (smallest) bit-widths for all arith-
metic operations and program variables in the software code.
In contrast, our new method focuses on reordering the arith-
metic operations and restructuring the code, which may lead to
a reduction in the minimum bit-width. In other words, we are

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

not merely computing the minimum bit-width, but also reduc-
ing it through proper code transformation. Due to the use of
an SMT solver based exhaustive search, our new method can
guarantee to find the best solution within the bounded design
space. A more detailed discussion of related work can be found
in Section IX.

We have implemented our new method in a software
tool based on the Clang/LLVM compiler frontend [15]
and the Yices SMT solver [16]. We evaluated the per-
formance of this tool on a representative set of public
domain software benchmarks collected from the embedded
control and digital signal processing (DSP) applications.
Our results show that the new method can significantly
reduce the minimum bit-width required by the software
code and, alternatively, can increase the error-free dynamic
range.

To sum up, this paper makes the following contributions.

1) We propose the first SMT solver based synthesis method
for incrementally optimizing fixed-point arithmetic com-
putations in embedded C/C++ code to reduce the
minimum bit-width and increase the dynamic range.

2) We implement the new method in a software tool
based on Clang/LLVM and the Yices SMT solver, and
demonstrate its effectiveness and scalability on a set of
representative embedded control and DSP applications.

The remainder of this paper is organized as follows.
In Section II, we illustrate the overall flow of our new
method by using a motivating example. Then, we formally
define the optimization problem and establish the notation in
Section III, and present our top-level algorithm in Section V.
We present our inductive synthesis procedure in Section VI.
The implementation details and experimental results are given
in Sections VII and VIII, respectively. We review related
work in Section IX, and finally give our conclusions in
Section X.

II. MOTIVATING EXAMPLE

We illustrate the overall flow of our new method using
the example in Fig. 1. The program is intended to be sim-
ple for ease of presentation. In the experimental evaluation,
our benchmark programs have loops and variables that are
assigned more than once. Since we are mainly concerned with
embedded control software, we can assume that loops are
bounded and conditions are not input dependent. Therefore,
loops can be handled by finite unrolling. Furthermore, in this
application domain, pointers, recursive function calls, and heap
allocated data structures are rarely used due to their less pre-
dictable runtime behaviors. Therefore, in the remainder of this
paper, we shall focus our discussion on loop free programs
with scalar variables.

Our method takes the program comp in Fig. 1 and a con-
figuration file that defines the value ranges of all parameters
of comp as input, and returns the new program in Fig. 2 as
output. It starts by parsing the original C program and then
constructing an abstract syntax tree (AST) for the program.
Each program variable in Fig. 1 corresponds to a node in the
AST. The root node is the computation result. The leaf nodes
are the input parameters.

ELDIB AND WANG: SMT BASED METHOD FOR OPTIMIZING ARITHMETIC COMPUTATIONS IN EMBEDDED SOFTWARE CODE

The AST is first traversed forwardly, from the parameters
to the return value, to compute the value ranges of all AST
nodes. Each value range is a (min, max) pair for representing
the minimum and maximum values of the node, computed
using a symbolic range analysis [17].

Then, the AST is traversed backwardly, from the return
value to the parameters, to identify the list of AST nodes that
may overflow or underflow when using a reduced bit-width.
For example, the first overflowing node detected in Fig. 1 is
the subtraction at Line 13: although t3 and t2 can be repre-
sented in 16 bits, the subtraction may produce a value that
requires more than 16 bits.

For each AST node that may overflow or underflow, we
carve out some neighboring nodes in the AST to form a region
for optimization. The region includes the node, its parent node,
its child nodes, and optionally, their transitive fan-in and fan-
out nodes up to a bounded depth. The region size is limited
only by the capacity of the elementary inductive synthesis pro-
cedure. For the subtraction at Line 13, for example, if we
bound the region size to 2 AST levels, the extracted region
would include the right-shift at Line 14, which is the parent
node.

The region is then subjected to an inductive synthesis pro-
cedure, which will generate a functionally equivalent region
that does not overflow. For Line 13 in Fig. 1, the extracted
region and the new region are shown side by side as follows:

t2 = t3 - t4; N2 = t4 >> 2;
tl = t2 >> 2; -——> N1l = t3 >> 2;
tl = N1 - N2;

That is, instead of applying right-shift to the operands after
subtraction, it applies right-shift before subtraction. Because
of this, the new region needs a smaller bit-width to avoid
overflow.

However, the above new region is not always better because
it may introduce additional truncation errors. Consider t3 = 2,
ta = -2 asatestcase. We have (3 - t4) » 2 = 1and (£3 » 2 -
tsa » 2) = o, meaning that the new region may lose precision
if the two least significant bits (LSBs) of t3,t4 are not zero.
An integral part of our new synthesis method is to make sure
that the new region does not introduce additional truncation
errors. More specifically, we perform a truncation error margin
analysis to identify, for each AST node, the number of LSBs
that are immaterial in deciding the final computation result.
For Line 13, this analysis would reveal that the LSB of t3 and
the LSB of t4 do not affect the value of the final computation
output to.

Since the new region is strictly better, the original AST is
updated by replacing the extracted region with the new region.
After that, our method continues to identify the next node that
may overflow or underflow. The entire procedure terminates
when it is no longer possible to optimize any further.

In the remainder of this section, we provide a more detailed
description of the subsequent optimization steps.

After optimizing the subtraction at Line 13, the next AST
node that may overflow is at Line 10. The extracted region
and the new region are shown side by side as follows:

t7
t5

t8 + D; N3
t7 - 16469; --> t5

t8 - 16469;
N3 + D;

1613

Our analysis shows that variables ts, p and constant 16469
all have zero truncation error margins. In other words, the
new region does not introduce any additional truncation error.
Therefore, the original AST is updated with the new region.
The next AST node that may overflow is at Line 6. The
extracted region and the new region are shown as follows:

t9 = tl10 + t11; Ne = tll >> 2;
t6 = t9 >> 3; N5 = t10 >> 2;
N N4 = N5 + N6;

te = N4 >> 1;

The truncation error margins are 2 for tio and 2 for tii.
Therefore, the truncation error margin for to is 2, meaning
that the two LSBs may be ignored. Since the new region is
strictly more accurate, the original AST is again updated with
the new region.

The next AST node that may overflow is at Line 4. The
extracted region and the new region are shown as follows:

£l0 = tl2 + B; N10 = tl2 - B;

N5 = tl1l0 >> 2; N9 = N10 >> 1
--> N7 = B + N9

N5 = N7 >> 1

Notice that this extracted region consists of a node that is the
result of a previous optimization step. The truncation error
margins are O for t12 and O for 8. The new code region does not
suffer from the same truncation error that would be introduced
by ns = (8»2 + t12 » 2), because the truncation error is not
amplified while being propagated to the final result. Instead,
it is compensated by the addition of =.

The last node that may overflow is at Line 5 of Fig. 1. The
extracted region and the new region are shown as follows:

tll H << 2;

Ne = tll >> 2; --> N6 = H;

By now, all arithmetic operations that may overflow are opti-
mized. The new program in Fig. 2 can run on a 16-bit
microcontroller while still maintaining the same accuracy as
the original program running on a 32-bit microcontroller for
the given input range [0, 9000]. Another way to look at it is
that if the optimized code were to be executed on the origi-
nal 32-bit microcontroller, it would have a significantly larger
error free dynamic range than [0, 9000].

III. PRELIMINARIES
A. Fixed-Point Notations

We follow standard practice [18] to represent the fixed-point
type by a tuple (s, N, m), where s indicates whether it is signed
or unsigned (1 for signed and O for unsigned), N is the total
number of bits or the bit-width, and m is the number of bits
representing the fractional part. The number of bits represent-
ing the integer part is n = (N —m — 1). Different variables and
constants in the original program are allowed to have differ-
ent bit representations (different values for m), but all of them
should have the same bit-width N.

Signed numbers are represented in the standard two’s com-
plement form. For an N-bit number «, which is represented
by bit-vector xy_ ... xp, its value is defined as follows:

N-2
X —2N_1XN_1 + Z 2'x;
i=0

1
o= —

2m

1614

where x; is the value of the ith bit. The value of « lies in the
range [—2", 2" — 27",

The result of fixed-point arithmetic, in general, may produce
a result with as many bits as the sum of the number of bits
in the two operands. Therefore, if the computation result must
be fit into the same number of bits as the operands, there may
be information loss. If a number to be represented exceeds
the maximum value, there will be an overflow. If a number to
be represented is less than the minimum value, there will be
an underflow. If the number to be represented requires more
designated fractional bits than m, there will be a truncation
error — assuming that truncation is used instead of rounding.
More specifically, in the event of truncation, the maximum
error caused by truncation is 27".

We define the step of a variable or a constant as the number
of consecutive least significant bits (LSBs) that always have
the value zero. For example, the number 1024 has a step 9,
meaning that nine of the LSBs are zero. On the other hand,
the number 3 has a step 0. During the optimization process,
the step of a variable will be used to compute the truncation
error margin—the LSBs whose values can be ignored. Our new
method will leverage the truncation error margins to obtain the
best possible optimization results.

B. Intermediate Representation

We use Clang/LLVM to construct an intermediate rep-
resentation (IR) for the input program. Since the standard
C language cannot explicitly represent fixed-point arithmetic
operations, we use a combination of the integer C program
representation and a separate configuration file, which defines
the fixed-point types of all program variables and constants.
More specifically, we scale each fixed-point constant (other
than the ones used in shift operations) to an integer by using
the scaling factor 2. For example, a constant with the value
of 2.5 may be represented as 10 together with the scaling
factor m = 2, since 2.5 % 22 = 10.

After each multiplication, a shift-right is added to normalize
the result so as to match the fixed-point type for the result.
For example, x = ¢ x z, where variables x and z and constant
¢ all have the fixed-point type (1, 8, 3), would be represented
as x = (¢ x z) >> 3. That is

c Z

(c x 2)/23
BIBET T B

Our implementation currently supports linear fixed-point
arithmetic only; therefore, we do not consider the multipli-
cation of two variables.

It is important to note that there is no inherent difficulty
in our method for handling nonlinear fixed-point arithmetic,
since we encode the fixed-point computations using fixed-
length bit-vector arithmetic operations in the input format of
SMT solvers. Nevertheless, in the experimental evaluation, we
focus on linear fixed-point arithmetic for two reasons. First,
the benchmarks used in our experiments are all linear. Second,
we have not evaluated the efficiency issues of modern SMT
solvers related to handling nonlinear fixed-point arithmetic
operations. Therefore, we leave the investigation of handling
nonlinear fixed-point arithmetic for future work.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

— Find a candidate Verify found Passed J—
_ == program = program —
Program ﬁ @ Failed Synthesized
+ program
Spec Block the
program
Fig. 3. Overall flow of iterative inductive synthesis procedure.

For each multiplication, i.e., ¢ x z, we also assign an
accumulate flag, which can be set by the user to indicate
whether the microcontroller has the capability of temporar-
ily storing the multiplication result into two registers. Many
real-world microcontrollers have been designed in this way,
which effectively doubles the bit-width of the registers dur-
ing multiplication. Continuing with the same example x =
(c x z) >> 3. If the accumulate flag is set to 1 by the user,
the multiplication operation will not be checked for overflow
and underflow; only after the right-shift will the final result be
checked for overflow and underflow.

For all the other operations (+, -, », «), we do not rewrite
their expression in the default IR representation and do not
allow the user to set the accumulate flag because, to the best
of our knowledge, most of the real-world microcontrollers do
not have double sized registers to temporarily store the results
of these operations.

C. Iterative Inductive Synthesis

We follow the iterative synthesis procedure shown in Fig. 3
while generating the optimized code region. It consists of three
basic steps.

1) Given an original program or code region as input, we
first compute a candidate new program that is func-
tionally equivalent to the original program and, at the
same time, is free of overflow, underflow, and truncation
errors, at least for a selected set of test inputs.

2) If such candidate program exists, we try to prove that the
candidate program is indeed functionally equivalent and
free of implementation errors under all possible program
inputs.

3) If the verification step succeeds, we are done. Otherwise,
the candidate program is invalid, in which case we need
to block this solution so that it will never be chosen in
subsequent iterations, go back to Step 1, and try again.

In this particular application, the input program is rep-
resented by an abstract syntax tree (AST) and the set of
candidate programs—or the search space—is captured by
a parameterized AST. The specification is a set of con-
straints imposed on the two ASTs, ensuring that the candidate
(parameterized) AST is functionally equivalent to the original
program AST and is free of implementation errors.

The reason why we choose not to generate, in one step, a
candidate program that is valid for all possible test inputs is
because of performance concerns. Ultimately, the scalability
of the inductive synthesis procedure is limited by the capacity
of the SMT solver. A candidate program valid for all possible
test inputs would be prohibitively more expensive for an SMT
solver to compute than a candidate program valid for some

ELDIB AND WANG: SMT BASED METHOD FOR OPTIMIZING ARITHMETIC COMPUTATIONS IN EMBEDDED SOFTWARE CODE

test inputs. By separating the synthesis task into three sub-
tasks, namely the inductive synthesis of candidate programs,
the verification of candidate programs, and the iterative refine-
ment based on the verification results, we can make all three
substeps practically feasible to complete.

IV. PROBLEM STATEMENT

In this section, we formally define the code optimization
problem.

There are two inputs to our synthesis procedure. The first
input to our synthesis procedure is the source code of a C pro-
gram P that takes a set of parameters and returns the result
of a series of linear fixed-point arithmetic computations over
these parameters. The second input to our synthesis procedure
is the value ranges of all the parameters—they are called the
input ranges.

Our synthesis procedure takes the aforementioned inputs
and returns the C code of a new program P’ such that: 1) the
new program P’ is functionally equivalent to the original pro-
gram P—they have the same input-output relation and 2) the
new program P’ has potentially larger input ranges than P,
or equivalently, requires a microcontroller with a smaller bit-
width to execute. We do not impose constraints on the output
range during the optimization process since the output of the
program is completely determined by the input ranges and the
C code of the program.

We focus on C programs that implement linear fixed-
point arithmetic computation based control algorithms as
opposed to general purpose applications. In this domain, the C
programs typically do not have recursive function call or input-
dependent control flow, which means that loops and function
calls, if any, can be removed from the code through stan-
dard code transformation techniques such as loop unrolling
and function inlining. Furthermore, since all program variables
are bounded integers, the input-output relation of the program
can be captured precisely by a quantifier-free first-order logic
formula using bounded bit-vectors.

The grammar for the underlying arithmetic computation is
defined as follows:

(Variable) |
(Expression) + (Expression) |
(Expression) — (Expression) |
(Expression) x (Constant) |
()
()

Expression := (Constant) |

Expression) < (Constant) |
Expression) > (Constant)

Variable := {input variables of the extracted region}.

Although this paper targets linear fixed-point arithmetic
computation only, our SMT solver based synthesis method
does not have inherent limitation in handling nonlinear opera-
tions. The reason is that, since we use bit-vector arithmetic to
encode the fixed-point computations, we would have no prob-
lem encoding nonlinear arithmetic operations precisely and the
resulting formulas would remain decidable.

We have decided to focus on linear fixed-point arithmetic
for the following two reasons. First, our benchmark programs
used in the experiments are all linear. Second, we have not

1615

Algorithm 1 Optimizing the Program Within its Input Range

1: OPTIMIZEPROGRAM (prog, p_ranges) {

2: ranges <— COMPUTERANGES(prog, p_ranges);

3: ig_bits < COMPUTEIGNOREBITS(prog);

4. bwl < COMPUTEMINBITWIDTH(prog, ranges);

5. while (true) {

6: bw2 <« bwl — 1;

7: for each (Node n € prog that may overflow or
underflow) {

8: reg <— EXTRACTREGION(prog, n);

9: new_reg <— SYNTHESIZE(reg, bwl, bw2, ranges,

ig_bits);
10: if (new_reg does not exist) break;

11: REPLACEREGION(prog, reg, new_reg);
12: }

13: bwl < bw2;

14: '}

15: return prog;

16: }

evaluated whether modern SMT solvers are efficient enough
to handle nonlinear arithmetic operations in practical settings.
Therefore, we leave the optimization of nonlinear fixed-point
arithmetic computations for future work.

V. OVERALL ALGORITHM

The elementary inductive synthesis procedure takes the
existing code region as input and returns the optimized new
region as output. The overall flow of our method in shown
in Algorithm 1. The input to our procedure OPTIMIZEPRO-
GRAM includes the original program and the value ranges
of all the parameters. First, we invoke COMPUTERANGES to
compute the value ranges of all nonleaf AST nodes. Then,
we invoke COMPUTEIGNOREBITS to compute the truncation
error margins for all AST nodes. The truncation error margin
of an AST node is the LSBs whose values can be ignored.
We also compute the bit-width (bwl) required by the original
program to run within the given input range.

After the bit-width of the original program (bwl) is deter-
mined, we enter the while-loop (Lines 5-14) to iteratively
optimize the program. In each iteration, we try to reduce the
minimum bit-width from bwl to bw2. The while-loop termi-
nates as soon as a call to the inductive synthesis procedure
fails to return the new region.

Within each while-loop iteration, we first search for nodes
that may overflow or underflow when the new bit-width (bw2)
is used instead of the old bit-width (bwl). We traverse these
nodes in a breadth-first search (BFS) order, i.e., from the return
value of the program to the input variables. For each AST
node, we invoke EXTRACTREGION to extract a neighboring
region for optimization and then invoke the elementary induc-
tive synthesis procedure (Line 9). If successful, the inductive
synthesis procedure would return a new code region, which is
functionally equivalent to the extracted region but free of over-
flow and underflow errors. It also ensures that the new region
does not introduce additional truncation error. After the new

1616

region is found, we use it to replace the extracted region in
the program.

A. Region for Optimization

The size of the extracted region for optimization affects
both the effectiveness and the computational overhead of the
inductive synthesis procedure. The minimum extracted region
should include the erroneous node and its parent node. Since
we follow the BFS order, the parent node must have no
overflow or underflow since it is already tested negative or
optimized during previous iterations. Since in the original
program, the parent operation restores the overflowed value
created in the overflowing node back to the normal operation
range, when the parent node is included in the region, it is
more likely to find an alternative implementation that is better
than the extracted region.

In general, a larger extracted region allows for more oppor-
tunity to find a suitable new region. The maximum extracted
region—if it were not for the limited capability of the SMT
solver—would be the entire input program. This is equiva-
lent to applying existing inductive synthesis tools, such as
the reference implementations of the syntax guided synthesis
(SyGuS [10]) procedure, to the entire program, provided that
the fixed-point arithmetic optimization problem is modeled in
their input language. In practice, however, such a monolithic
optimization approach does not work. Indeed, our experience
with the Sketch tool [2], [12] shows that it cannot scale beyond
parameterized fixed-point arithmetic computation code of 2-3
lines. Although we expect SMT solvers and heuristic search
techniques to continue improving in the coming years, it is
unlikely that a monolithic inductive synthesis procedure will
scale up to large programs—this is consistent with what other
researchers in the field have observed [10], [19].

Therefore, we have implemented our customized inductive
synthesis procedure, which is optimized to handle fixed-point
arithmetic computations efficiently. In addition, we bound the
size of the extracted region so that the elementary induc-
tive synthesis procedure is applied only to these small code
regions individually in the context of incremental optimiza-
tion. In practice, we have found that the extracted code region
needs to be bounded to an AST with at most five node levels
to allow the SMT solver to complete in a reasonable amount
of time — it means that the code region can represent up to
63 AST nodes. Furthermore, we have found that bounding the
search to AST regions with 3 or 4 levels often can produce as
decent results.

B. Truncation Error Margin

We compute the step and the ignore bits for all AST nodes
recursively. First, we determine the step of each leaf node
based on the definition in Section III. Then, we compute the
step for all other AST nodes in a bottom-up topological order.
In general, the step may originate from a shift-left operation,
a step in a parameter variable, or a step in a constant. We
compute the step of each internal AST node as follows.

1) step(x*xy) = step(x) + step(y);

2) step(x + y) = min(step(x), step(y));

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

Fig. 4. Extracted region.

Fig. 5. Synthesized region.

3) step(x — y) = min(step(x), step(y));

4) step(x << ¢) = step(x) + ¢;

5) step(x >> ¢) = max(step(x) — ¢, 0).

The ignore bits are the consecutive LSBs that can be ignored
during the optimization process. If these bits are truncated in
the new region, for example, no error will occur in its output.
By taking into account these bits in the optimization process,
we are able to synthesize more compact new regions.

To further clarify this, consider the example in Fig. 4, where
the extracted region for optimization is shown inside the dotted
box. We start by analyzing the AST to determine the step of
each node. For the purpose of optimizing the extracted region,
we need to know the step of the region’s inputs, which are the
nodes labeled as a and b. Due to the shift-left operations, the
step of a is 4, while the step of b is 3. Considering these
step values, we determine that, when optimizing the extracted
region, we have a “credit” of three lowest significant bits to
ignore. In other words, we have the freedom to truncate up to
three consecutive LSBs of the two inputs (a and b) without
decreasing the accuracy of the result. Because of this, we are
able to synthesize the new code region as shown in Fig. 5.

Notice that, even if we do not consider the ignore bits of
a and b, our method can still synthesize a new region same as
the one in Fig. 5 to remove the overflowing node in the above
example. However, in such case, the extracted region would
have to be larger. At the very least, the extracted region would
need to include all the AST nodes in Fig. 4. The synthesized
new region would include all the nine AST nodes in Fig. 5.
However, this would also be more expensive computationally,
leading to significantly longer execution time for the synthesis
procedure.

VI. INDUCTIVE SYNTHESIS PROCEDURE

At the high level, our inductive synthesis procedure con-
sists of two steps: 1) run a set of test cases on the extracted
region, and based on the results, generate a new region that is
functionally equivalent to the extracted region, and at the same
time, free of implementation errors, at least for the selected
set of test cases and 2) check if the new code region is a valid
solution in the full input range. If the new code region is not

ELDIB AND WANG: SMT BASED METHOD FOR OPTIMIZING ARITHMETIC COMPUTATIONS IN EMBEDDED SOFTWARE CODE

Algorithm 2 Inductively Synthesizing the New Code Region
1: SYNTHESIZE (reg, bwl, bw2, ranges, ig_bits) {
2: blockedRegs <« { };

3: testSet < { };

4 size < 1;

5

6

while (size < MAX_REGION_SIZE) {
new_r <— GENREGION(reg, bwl, bw2, size,
blockedRegs, testSet);

7: if (new_r exists) {

8 test < COMPDIFF(reg, new_r, bwl, bw2, ranges,
ig_bits);

9: if (test exists) {

10: blockedRegs <— blockedRegs U{new_r};

11: testSet < testSet U{zest};

12: }

13: else

14: return new_r;

15: }

16: else

17: size < size + 1;

18: }

19: return no_solution;

20: }

valid under a certain input condition, then block this candidate
region (bad solution) and try again.

Algorithm 2 shows the pseudocode of our synthesis sub-
procedure, which computes a new region (new_r) of bit-width
bw2 such that it is equivalent to the original region (reg) of bit-
width bwl, under the value ranges specified in ranges while
considering the truncation error margins specified in ig_bits.

The procedure starts by initializing blockedRegs and testSet
to empty sets, where testSet consists of the test cases used for
inductively generating (guessing) a new region, and blocke-
dRegs consists of the previously explored regions that fail the
equivalence check (bad solutions).

The procedure initializes the size of the new region to 1, and
then enters the while-loop to iteratively search for a new region
of increasingly larger size. If size exceeds a predetermined
bound, it means that we have proved that no solution exists
in this bounded search space.

Subroutine GENREGION uses an SMT solver to inductively
generate a new region based on the test examples in testSer and
the already explored regions (bad solutions) in blockedRegs.
Subroutine COMPDIFF formally verifies the equivalence of the
extracted region (reg) and the new region (new_r), and returns
a concrete test case if they are not equivalent. The concrete
test case would be one that can force the two regions to behave
differently.

A. Constructing the New Region Skeleton

First, we generate a skeleton of the new region, which is a
parameterized AST capable of representing any linear fixed-
point arithmetic equation up to a bounded size. In this AST,
each leaf node is either a constant or any of the set of input
variables of the extracted region. Each internal node is any

1617

Fig. 6. Skeleton of seven AST nodes.

of the linear arithmetic operations («, +, -, », «). The root
node is the result of the arithmetic computation and should
compute the same result as the output node in the extracted
region. Fig. 6 shows an example skeleton of seven AST
nodes. Here, Op represents any binary arithmetic operator and
V|C represents a leaf node, which is either a variable or a
constant.

For each AST node in the skeleton, we assign an auxiliary
variable called the selector, whose value determines the node
type. For example, a parameterized leaf node (tnode1), which
may be variable vi, variable vz, or constant ci, is represented
as follows:

((LNodel == V1) && (sell == 0) ||
(LNodel == V2) && (sell == 1) ||
(LNodel == C1) && (sell == 2))

where the integer value of selector variable se11 ranges from 0
to 2. Similarly, a parameterized internal node (1node3), which
may be an addition or a subtraction of 1node1 and iNode2, iS
represented as follows:

((INode3 == LNodel+LNode2) &&
(INode3 == LNodel-LNode2) &&

(sel2 == 0) ||
(sel2 == 1))

where the integer value of selector variable se12 ranges from
0 to 1. The actual node types in the skeleton are determined
later when we encode the skeleton into an SMT formula and
then call the SMT solver to compute a set of suitable values
for all these selector variables.

B. Inductively Generating the New Region

To generate the new region inductively, we need a repre-
sentative set of test cases for the extracted region. These are
test values for the input variables of the region, and ideally,
should include both the corner cases and the intermediate val-
ues. Since the arithmetic computations that we are concerned
with are linear, we construct the corner cases by including
the minimum and maximum values of all input variables as
defined in ranges. Additional test values are generated by tak-
ing semi-equidistant intermediate values between values in
the corner cases based on both the original region and the
parameterized AST.

We create an SMT formula @ such that @ is satisfiable if
and only if the resulting new region — induced by a satisfying
assignment to all selector variables — is functionally equivalent
to the extracted region, but does not overflow or underflow.
That is

o = (Dreg A Dgkel A Psamel A Psame0 A Prests A Phlocked

1618

Fig. 7. Synthesized new region.

where the subformulas are defined as follows.

1) Extracted Region (®reg): It encodes the input-output
relation of the extracted region by using bit-vector
arithmetic, where the bit-width of the AST is bw].

2) New Region Skeleton (Dge1): It encodes the input-output
relation of the skeleton by using bit-vector arithmetic,
where the bit-width is bw?2.

3) Same Input Values (Pgamer): It asserts that the input
variables of the two regions must have the same values.

4) Same Output Value (Pgameo): It asserts that the output
variables of the two regions must have the same value,
and there is no overflow or underflow.

5) Test Cases (Desis): It asserts that the input variables
must adopt concrete values from the given test cases.

6) Blocked Solutions (®pocked): It asserts that the selec-
tor variables should not take values that represent any
previously explored (bad) solution.

If the formula @ is proved by the SMT solver to be unsat-
isfiable, it means that no solution exists in the bounded search
space. In this case, we need to increase the size of the skeleton
and try again. If & is satisfiable, we have computed a candi-
date new region. As an example, consider the first extracted
region for optimization in Section II, whose skeleton is shown
in Fig. 6. The new region generated from the skeleton in Fig. 6
is shown in Fig. 7. The new region is constructed by setting the
selector variables of all AST nodes the values in a satisfying
assignment returned by the SMT solver.

C. Checking the Validity of the New Region

The candidate new region is guaranteed to be equivalent
to the extracted region over the selected set of test cases.
However, they may not be equivalent over the full input range.
Therefore, the next step is to formally verify their equivalence
over the full input range. Toward this end, we create another
SMT formula W, which is satisfiable if and only if the two
regions are not equivalent; that is, W is satisfiable if and only
if there exists a test case that can differentiate them. Formula
W is defined as follows:

v = (Dreg A cI)new_reg A @gamer A Pyiffo A q)ranges A q)ig_bits

where the subformulas are defined as follows.

1) Extracted Region (®reg): It encodes the input-output
relation of the extracted region by using bit-vector
arithmetic, where the bit-width of the AST is bwl.

2) New Region (®rew_reg): It encodes the input-output rela-
tion of the candidate new region in bit-vector arithmetic,
where the bit-width of the AST is bw2.

3) Different Output Values (®girfo): It asserts that the
output variables of the two regions have different values.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

4) Value Ranges (Pranges): It asserts that all input variables
should stay within their precomputed value ranges, since
we are not interested in checking the equivalence of the
two regions outside these designated value ranges.

5) Ignore Bits (®ig pits): It asserts that the LSBs as spec-
ified in the ignore bits should all be set to zero. This
allows us to ignore the differences between the two
regions for LSBs within the truncation error margins.

If the formula W is unsatisfiable, it means that the two

regions are mathematically equivalent within the given input
range and under the consideration of the ignore bits. If W is
satisfiable, the candidate new region is not valid. In this case,
we add this bad solution to blockedRegs and try again. The
blocking of an invalid solution follows the counter-example
guided inductive synthesis algorithm [12], [20], where the
blocked solutions are encoded as additional constraints in the
SMT formula, by adding an extra pair of extracted region and
new region skeleton with the blocked assignment to selector
variables. It ensures that, when the SMT solver is invoked
again to find a candidate new region, the bad solution will not
be returned.

VII. IMPLEMENTATION

We have implemented our new method in a software tool
for optimizing the C/C++ code of embedded control and
DSP applications based on the Clang/LLVM compiler frame-
work [15] and the Yices SMT solver [16]. Our tool has two
modes: the whole-program optimization mode and the incre-
mental optimization mode. The two modes differ only in the
size bound imposed on the extracted region for optimization.

When the bound is set to an arbitrarily large number, our
tool runs in the whole-program optimization mode. This makes
it somewhat comparable to the existing inductive synthesis
tools such as Sketch [12], [20], provided that our new region
skeleton is modeled in the Sketch input language, with the
selector variables defining the “integer holes” for Sketch to
fill. Before implementing our own inductive synthesis proce-
dure, we have explored this approach. However, it turns out to
be not scalable enough: synthesizing a new region with a size
bound of more than 2 would cause Sketch to run out of the
4 GB memory. We believe that there are two reasons for this.
First, the performance of Sketch is not optimized for handling
arbitrary combinations of linear fixed-point arithmetic com-
putations with a large bit-width. Second, inductive synthesis,
in general, may not be suitable for handling arbitrarily large
programs of fixed-point arithmetic computations.

Due to the aforementioned scalability problem encountered
by using Sketch, we have implemented our own inductive syn-
thesis procedure using the Yices SMT solver and optimize it
for efficient handling of fixed-point arithmetic operations, e.g.,
by designing SMT encoding schemes for exploiting the AST
structures encountered in this application. Our experimental
evaluation shows that the new procedure is significantly more
efficient: instead of running out of memory for a parametrized
AST with a size bound of 2 or 3, it now can handle the skele-
ton with a size bound of up to 5 (representing up to 63 AST
nodes). Nevertheless, this improvement alone is not sufficient
for supporting the whole-program optimization.

ELDIB AND WANG: SMT BASED METHOD FOR OPTIMIZING ARITHMETIC COMPUTATIONS IN EMBEDDED SOFTWARE CODE 1619
TABLE 1 TABLE II
STATISTICS OF THE BENCHMARK C PROGRAMS INCREASE IN THE OVERFLOW/UNDERFLOW FREE INPUT RANGE
Name of the Benchmark Line of Code | Arithmetic Operations benchmark bit original optimized %
Sobel Image filter (3x3) 12 28 Sobel Tmage | 32 [0, 16320] [-65536, 49152] 602
Bicycle controller 37 27 Bicycle 32 [-3.4*108, 3.4*108] [-1.0%¥10°, 1.0*109] 194
Locomotive controller 42 38 Locomotive 64 | [-8.7*1018, 8.7¥1018] | [-9.2*1018, 9.2*1018] 5
IDCT (N=8) 131 114 IDCT 32 [0, 1.5%108] [0, 2.1%105] 40
Control. Impl. 21 8 Controller 32 Inl [0, 5.0%108] Inl [-0, 6.6%108] 32
Diff. image filter (5x5) 131 77 In2 [-5.0%108, 0] In2 [-6.6%108, 0] 32
FFT (N=8) (no DC component) 112 82 In3 [-5.0%108, 0] In3 [-6.6*108, 0] 32
IFFT (N=8) 112 90 Diff. Image | 32 [0, 1.3%108] [0, 2.1¥10°] | 1515
FFT (N=8) 32 [0, 32736] [0, 32736] 0
IFFT (N=8) | 32 [0, 2.6*108] [0, 5.3*108] 103
Therefore, we have implemented the new incremental opti- TABLE III

mization method, which applies the SMT solver based induc-
tive synthesis only to individual regions of a bounded size.
More specifically, we have set the maximum bound for shift-
right and shift-left operations to 4, and the maximum level of
AST nodes in the new region skeleton to 5. By incrementally
optimizing one extracted region at a time, our method is able
to avoid the scalability bottleneck imposed by the SMT solver,
and therefore can now routinely handle programs of practical
size and complexity.

VIII. EVALUATION

We have evaluated our tool experimentally on a set of public
domain benchmark examples. The experiments are designed
to answer the following three research questions.

1) How much can our method reduce the minimum bit-
width required for the program to run in the given input
range without additional implementation errors?

2) How much can our method increase the dynamic range
of the program for the given bit-width?

3) If both the original program and the optimized pro-
gram are forced to run with a certain reduced bit-width,
what is the difference between their fixed-point specific
implementation errors?

A. Benchmarks

Our benchmark includes a set of public domain C pro-
grams for embedded control and digital signal processing
(DSP) applications. They come from various sources including
papers, textbooks, and the output of automated code genera-
tion tools such as the Real Time Workshop of the MATLAB
toolkit. The sizes of the programs range from 21 lines of code
(LoC) to 131 lines, with an average LoC of 79. The number
of fixed-point arithmetic operations on average is 58. For the
type of cyber-physical system (CPS) software targeted by our
new method, these are representative programs with realistic
size and complexity.

Table I shows the statistics of the benchmarks. The first
example, taken from [21], is a 3 x3 Sobel digital filter
that is widely used in image processing applications. The
second example, taken from [14], is a bicycle controller opti-
mally synthesized for a custom-designed microprocessor with
double-sized internal registers during multiplication. The third
example is a locomotive controller generated by using Fixed
Point Advisor and Real Time Workshop of the MATLAB
toolkit [22]. The fourth example, taken from [23], is an inverse

INCREASE IN THE OVERFLOW/UNDERFLOW FREE OUTPUT RANGE

benchmark bit original optimized %
Sobel Tmage | 32 [0, 16320] [-49184, 65504] 602
Bicycle 32 [-5.3%108, 5.3*18] [-1.5%109, 1.5%¥10°] 194
Locomotive 64 | [-3.6%10'8, 5.010'8] | [-3.9%10'8, 5.2*10'8] 5
IDCT 32 [-1.4%10%, 2.9%10%] [-1.9%107, 3.9%10%] 40
Controller 32 Outl [0, 1.0%109] Outl [0, 1.4%10°] 32

Out2 [0, 1.0%10°] Out2 [0, 1.4*109] 31

Out3 [0, 1.0%10°] Out3 [0, 1.4*109] 31
Diff. Image 32 [0, 1.3*108] [-1.0¥10%, 1.1*10°] | 1515
FFT (N=8) 32 [25600, 25600] [25600, 25600] 0
IFFT (N=8) 32 [-1.3*108, 2.6%108] [-2.6%108, 5.3*108] 103

discrete cosine transform (IDCT), which is widely used in
mobile communication and image compression applications.
The fifth example is the fixed-point version of a control rule
implementation from [22]. The sixth example is a 5 x 5 kernel
sized difference image filter [24]. The seventh example is a fast
Fourier transform (FFT) implementation, where the floating-
point version was taken from [25] and then converted to a
fixed-point program by changing all double variables into int
variables without modifying or reordering any of its instruc-
tions. The eighth example is the inverse fast Fourier transform
(IFFT) for the FFT implemented in the seventh example. None
of the benchmarks was modified from their original forms in
any way to give performance advantage to our method.

All experiments were conducted on a machine with a
3.4 GHz Intel i7-2600 CPU, 3.3 GB of RAM, and 32-bit
Linux.

B. Results

First, we show that there is a significant increase in the
input/output range from the original program to the optimized
program, when they both use the original bit-width. Tables II
and IIT show the experimental results. In both tables, Column 1
shows the name of the benchmark. Columns 2 and 3 show the
input (output) ranges of the original program and the optimized
program, respectively. Column 4 shows the percentage of the
range increase. The increase in input (output) range spans from
0% to 1515%, with an average of 307% or a median of 72%.
The increase is due to the removal of the overflowing and
underflowing nodes in the original program by code transfor-
mation. Together, they represent a significant increase in the
dynamic range of the entire application.

Second, we show that there is a significant decrease in the
minimum bit-width required for the program to run without
overflow/underflow errors and additional truncation errors for

1620 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014
TABLE IV TABLE VI
INCREASE IN THE MINIMUM AND AVERAGE BIT-WIDTHS STATISTICS OF THE INCREMENTAL OPTIMIZATION PROCESS
Name of Original (bit-width) Optimized (bit-width) Name of the Benchmark Num. Optimized Lines | Total Time
Benchmark Minimum | Average | Minimum | Average Sobel Image filter (3x3) 22 2s
Sobel image filter (3x3) 17 10.26 15 6.67 Bicycle controller 2 3s
Bicycle controller 18 14.47 16 14.16 Locomotive controller 1 5m 41s
Locomotive controller 33 29.41 32 29.32 IDCT (N=8) 3 2.Ts
IDCT (N=8) 20 16.29 19 16.38 Control. Impl. 1 46s
Control. Impl. 17 15 16 14.67 Diff. image filter (5x5) 23 10s
Diff. image filter (5x5) 17 11.11 13 8.09 FFT (N=8) 14 1m9s
FFT (N=8) 18 7.32 16 6.95 IFFT (N=8) 1 4s
IFFT (N=8) 17 7.11 16 7.26
TABLE V TABLE VII
DECREASE IN THE MAXIMUM RELATIVE ERROR SYSTEMATIC BREAKDOWN OF THE OPTIMIZATION PROCESS
Benchmark Scaling Error original | Error optimized Name of the Benchmark | Synth. Time | Verif. Time | Tests | Iterations
o Sobel Image filter (3x3) 69% 31% 6.1 1.7
Sobel Image filter (3x3) | 32-b — 16-b 3.1x10 0.0 X N o
. 4 4 Bicycle controller 64% 36% 8.5 1.0
Bicycle controller 32-b — 16-b 3.5 % 10 2.0 % 10 L . pd o
. _8 9 ocomotive controller 2% 28% 9.0 2.0
Locomotive controller 64-b — 32-b 2.9% 10 1.5%10 IDCT (N=8) 71% 28% 5.0 20
IDCT (N=8) 32-b — 16-b | 9.2%1073 1.8 %1075 Control. Imol 58% 42% 6.3 6.0
Impl 32-b — 16-b | 5.2%10~% 2.9%10~4 oo P . . : :
Control. Impl. : s : 3 Diff. image filter (5x5) 72% 28% 6.4 1.8
Diff. image filter (5x5) 32-b — 16-b 1.2 %10 2.5 % 10 FFT (N=8) 73% 27% 17.0 2.0
FFT (N=8) 32-b — 16-b 8.1%1072 4.4%1073 IFFT (N=8) 75% 25% 5.0 3.0
IFFT (N=8) 32-b — 16-b | 8.4% 102 3.2%1072
TABLE VIII

the given input range. The experimental results are shown in
Table IV. Column 1 is the name of the benchmark. Column 2
is the minimum bit-width of the original program to avoid
overflow, underflow, and truncation errors and Column 3 is
the average bit-width for all program variables. Column 4 is
the minimum bit-width of the new program to avoid overflow,
underflow, and truncation errors and Column 5 is the average
bit-width for all program variables.

Our results show that overall the bit-width reduction spans
from 1 bit to 4 bits. Consider the Sobel Image filter as an
example. The minimum bit-width required to run the original
program is 17 bits. In other words, with 17 bits, the program
would have the same precision and error-free dynamic range
as with 32 bits. After our SMT solver based optimization, the
minimum bit-width is reduced to 15 bits. This is practically
significant because now the code can be executed on a 16-bit
microcontroller instead of a 32-bit microcontroller, which is
often significantly cheaper.

To further illustrate the benefit of our new method, con-
sider the maximum error bound in a scaled-down version of
the original program in order to downgrade the hardware from
32-bit to 16-bit, or from 64-bit to 32-bit. Table V shows the
comparison between the optimized program and a scaled-down
version of the original program. Column 1 is the name of
the benchmark. Column 2 is the scaling level. Columns 3
and 4 are the maximum relative errors of the original program
and the optimized program, respectively. Our results show
that the optimized programs have smaller errors in all test
cases.

C. Statistics

We also show, in Table VI, the statistics of running our
optimization method. Column 1 is the name of the bench-
mark. Column 2 is the number of lines optimized by the
incremental inductive synthesis procedure in the original pro-
gram. Column 3 is the total execution time by our method.

QUANTIFYING THE IMPACT OF THE INITIAL SET OF TEST CASES

Name of the Benchmark Speedup (using the initial set versus empty set)
Sobel Image filter (3x3) 0.9
Bicycle controller 1.7
Locomotive controller 7.8
IDCT (N=8) 2.0
Control. Impl. 1.1
Diff. image filter (5x5) 0.9
FFT (N=8) 1.0
IFFT (N=8) 2.1

The data show that, by using incremental synthesis, we have
kept the overall runtime down. In fact, the execution time is no
longer exponentially dependent of the whole-program size, but
more on the number of extracted regions and the time spent
on optimizing each region. For Locomotive, the SMT solver
took a longer time than for the other examples because it has
a larger original bit-width (64-bit) — the other examples are
all 32-bit.

To understanding the computational cost of our optimization
process as shown in Table VI, we provide a systematic break-
down of the total time into time required to perform different
steps of the algorithm, the average number of test cases used
to generate a new region, and the average number of inductive
iterations required. The results are shown in Table VIIL.

To evaluate the impact of the heuristically selected initial
set of test cases, we compared the runtime performance of our
synthesis procedure with and without the initial set. Recall that
in Section VI-B, we have described how to choose the initial
set of test cases for generating the new code region inductively.
The main idea is to choose both representative and corner
values so that the synthesis procedure can start with a good
set of examples. Table VIII shows the speedup of the synthesis
procedure using the initial set versus using an empty set. The
results show that using the heuristically selected test cases
to start the synthesis procedure is advantageous in general,
although for two examples, there is a slight slowdown.

ELDIB AND WANG: SMT BASED METHOD FOR OPTIMIZING ARITHMETIC COMPUTATIONS IN EMBEDDED SOFTWARE CODE

IX. RELATED WORK

This paper is an extended version of our recent work [1]
that proposed the incremental SMT solver based inductive
synthesis method for optimizing embedded software code for
the first time. In this extended version, we have provided a
more detailed description of the method and algorithms and
presented more experimental results.

Our new method incrementally transforms the fixed-point
arithmetic computations in an embedded software program
with the objective of reducing the minimum bit-width through
code transformation, without changing the computational
accuracy. The core synthesis routine in our method follows
the same counter-example guided inductive program synthe-
sis paradigm pioneered by Sketch [2], [12]. However, our
method is significantly different in that it has an imple-
mentation designed for handling linear fixed-point arithmetic
computations more efficiently. Furthermore, we apply induc-
tive synthesis incrementally to code regions of a bounded size,
one at a time, as opposed to the entire program.

Gulwani et al. [6] propose a method for synthesizing bit-
vector programs from a linear reference code by leveraging a
set of user defined library functions. Their method does not use
incremental inductive synthesis, and the largest synthesized
code reported in their paper has 16 lines of code, for which
their tool takes over 45 min. Jha er al. [4] use the same sym-
bolic encoding as in [6] but replace the logical specification
of the desired program by an input-output oracle.

The SCIDUCTION tool implemented by Jha [13] can auto-
matically synthesize a fixed-point arithmetic program from
the floating-point arithmetic code. However, the focus of this
tool is solely on finding the smallest possible bit-width and
choosing the best fixed-point representation for each program
variable. They have not attempted to change the code structure
or synthesize completely new code for the purpose of reducing
the minimum bit-width.

Another closely related work is the linear fixed-point opti-
mization method proposed in [14], which relies on using a
mixed integer linear programming (MILP) solver to minimize
the error bound by changing the fixed-point representation
of the program. Again, their method can only optimize the
bit-vector representations of the program variables, but does
not attempt to change the structure of the original code
or synthesize completely new code in order to reduce the
bit-width.

Darulova et al. [26] proposed a method for compiling
real-valued arithmetic expressions to fixed-point arithmetic
programs to minimize the discrepancy between the fixed-
point values and the real values. Their method uses genetic
programming, which mutates the order of the original arith-
metic expressions to find better fixed-point representations.
The method differs from ours in three aspects. First, their
method takes a real-valued expression in MATLAB format
as input and returns a fixed-point arithmetic program as out-
put whereas our method transforms an existing fixed-point C
program into another fixed-point C program—this also makes
experimental comparison of the two approaches difficult to
conduct. Second, their method relies on genetic program-
ming, which consists of random mutation and filtering of the

1621

mutants, whereas our methods relies on exhaustive search via
an SMT solver. Third, their method does not employ incremen-
tal inductive analysis, which is one of the main contributions
of our work.

Our new method is also related to the various superopti-
mization techniques that are becoming popular in compilers
in recent years [27]-[29]. Superoptimizers are more power-
ful than conventional compiler based optimizations that rely
on matching known code patterns and then applying predeter-
mined transformation rules. In contrast, superoptimizers often
perform a more involved search in the implementation space
of a set of valid instruction sequences, for example, to opti-
mize performance-critical inner loops. However, to the best of
our knowledge, there has not been any existing superoptimizer
that can be used to increase the error free dynamic range, or
to minimize the minimum bit-width, of fixed-point arithmetic
computations in embedded C programs.

X. CONCLUSION

We have presented a new method for incrementally opti-
mizing the linear fixed-point arithmetic computations of an
embedded software program via code transformation to reduce
the required bit-width and to increase the error-free dynamic
range. Our method is based on judicious application of an
SMT solver based inductive synthesis procedure to code
regions of bounded size. We have implemented our method
in a software tool and evaluated it on a set of representative
embedded programs. Our results show that the new method
can significantly reduce the bit-width and handle programs of
realistic size and complexity.

REFERENCES

[1] H. Eldib and C. Wang, “An SMT based method for optimizing arith-
metic computations in embedded software code,” in Proc. Int. Conf.
Formal Methods Comput.-Aided Design, Portland, OR, USA, Oct. 2013,
pp. 129-136.

[2] A. Solar-Lezama, C. G. Jones, and R. Bodik, “Sketching concurrent
data structures,” in Proc. ACM SIGPLAN Conf. Program. Lang. Design
Implementation, 2008, pp. 136-148.

[3] S. Gulwani, S. Srivastava, and R. Venkatesan, “Program analysis as con-
straint solving,” in Proc. ACM SIGPLAN Conf. Program. Lang. Design
Implementation, 2008, pp. 281-292.

[4] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in Proc. 32nd ACM/IEEE Int.
Conf. Software Eng. (ICSE), May 2010, pp. 215-224.

[5] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proc. ACM SIGACT-SIGPLAN Symp. Princ.
Program. Lang., Austin, TX, USA, 2011, pp. 317-330.

[6] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-
free programs,” in Proc. ACM SIGPLAN Conf. Program. Lang. Design
Implementation, 2011, pp. 62-73.

[71 W. R. Harris and S. Gulwani, “Spreadsheet table transformations from
examples,” in Proc. ACM SIGPLAN Conf. Program. Lang. Design
Implementation, 2011, pp. 317-328.

[8] D. Perelman, S. Gulwani, T. Ball, and D. Grossman, “Type-
directed completion of partial expressions,” in Proc. ACM SIGPLAN
Conf. Program. Lang. Design Implementation, Beijing, China, 2012,
pp. 275-286.

[9] R. Singh and S. Gulwani, “Synthesizing number transformations from

input-output examples,” in Proc. Int. Conf. Comput. Aided Verification,

Berkeley, CA, USA, Jul. 2012, pp. 634-651.

R. Alur et al., “Syntax-guided synthesis,” in Proc. Int. Conf. Formal

Methods Comput.-Aided Design, 2013, pp. 1-17.

H. Eldib and C. Wang, “Synthesis of masking countermeasures against

side channel attacks,” in Proc. Int. Conf. Comput. Aided Verification,

Vienna, Austria, Jul. 2014, pp. 114-130.

[10]

(11]

1622

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

A. Solar-Lezama, R. M. Rabbah, R. Bodik, and K. Ebcioglu,
“Programming by sketching for bit-streaming programs,” in Proc.
ACM SIGPLAN Conf. Program. Lang. Design Implementation, 2005,
pp. 281-294.

S. K. Jha, “Towards automated system synthesis using sciduction,”
Ph.D. dissertation, EECS Dept., Univ. California, Berkeley, CA, USA,
Nov. 2011.

R. Majumdar, I. Saha, and M. Zamani, “Synthesis of minimal-error
control software,” in Proc. ACM Int. Conf. Embedded Softw., 2012,
pp. 123-132. P R
C. Lattner and V. Adve, “The LLVM instruction set and compilation

Hassan Eldib received the B.S. and M.S. degrees
from the Arab Academy for Science and Technology
and Maritime Transport, Alexandria, Egypt, in 2006
and 2009, respectively. He is currently pursuing
the Ph.D. degree from the Bradley Department of
Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA, USA.

His current research interests include developing
automated synthesis and verification methods for
embedded control software and cryptographic soft-
ware.

strategy,” CS Dept., Univ. Illinois, Urbana-Champaign, IL, USA, Tech. Mr. Eldib was a recipient of the 2013 FMCAD Best Paper Award.

Rep. UIUCDCS-R-2002-2292, Aug. 2002.

B. Dutertre and L. de Moura, “A fast linear-arithmetic solver for
DPLL(T),” in Proc. Int. Conf. Comput. Aided Verification, Seattle, WA,
USA, Aug. 2006, pp. 81-94.

R. Rugina and M. C. Rinard, “Symbolic bounds analysis of pointers,
array indices, and accessed memory regions,” in Proc. ACM SIGPLAN
Conf. Program. Lang. Design Implementation, 2000, pp. 182-195.

R. Yates. (2013, Jan. 2). Fixed-point arithmetic: An introduc-
tion. Digital Signal Labs, Technical Reference [Online]. Available:
http://www.digitalsignallabs.com/fp.pdf

T. Akiba et al, “Calibrating research in program syn-
thesis using 72,000 hours of programmer time,” MSR,
Redmond, WA, USA, Tech. Rep., 2013 [Online]. Available:
http://research.microsoft.com/enus/um/people/nswamy/papers/calibrating-
program-synthesis.pdf

A. Solar-Lezama, L. Tancau, R. Bodik, S. A. Seshia, and V. A. Saraswat,
“Combinatorial sketching for finite programs,” in Proc. Archit. Support
Program. Lang. Operat. Syst.,, San Jose, CA, USA, Dec. 2006,
pp. 404-415.

S. Qureshi, Embedded Image Processing on the TMS320C6000 DSP.
New York, NY, USA: Springer, 2005.

A. Martinez, R. Majumdar, I. Saha, and P. Tabuada, “Automatic veri-
fication of control system implementations,” in Proc. ACM Int. Conf.
Embedded Softw., Scottsdale, AZ, USA, 2010, pp. 9-18.

S. Kim, K.-I. Kum, and W. Sung, “Fixed-point optimization utility for C
and C++ based digital signal processing programs,” IEEE Trans. Circuits
Syst. 1I, Exp. Briefs, vol. 45, no. 11, pp. 1455-1464, Nov. 1998.

W. Burger and M. Burge, Digital Image Processing. New York, NY,
USA: Springer, 2008.

J. Xiong, J. R. Johnson, R. W. Johnson, and D. A. Padua, “SPL: A
language and compiler for DSP algorithms,” in Proc. ACM SIGPLAN
Conf. Program. Lang. Design Implementation, 2001, pp. 298-308.

E. Darulova, V. Kuncak, R. Majumdar, and I. Saha, “Synthesis of fixed-
point programs,” in Proc. ACM Int. Conf. Embedded Softw., Montreal,
QC, Canada, 2013, pp. 1-10.

R. Joshi, G. Nelson, and K. H. Randall, “Denali: A goal-directed
superoptimizer,” in Proc. ACM SIGPLAN Conf. Program. Lang. Design
Implementation, 2002, pp. 304-314.

S. Bansal and A. Aiken, “Automatic generation of peephole superopti-

Chao Wang (M’02) received the Ph.D. degree from
the University of Colorado, Boulder, CO, USA, in
2004.

He is currently an Assistant Professor with the
Bradley Department of Electrical and Computer
Engineering, Virginia Tech, Blacksburg, VA, USA.
He has published a book and over 50 papers in
top venues in the areas of formal verification, soft-
ware verification, program analysis, and program
synthesis.

Dr. Wang received the FMCAD Best Paper Award

mizers,” in Proc. Archit. Support Program. Lang. Operat. Syst., 2006, in 2013, the ACM SIGSOFT Distinguished Paper Award in 2010, the ACM
pp. 394-403. TODAES Best Journal Paper of the Year Award in 2008, and the ACM SIGDA
E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,” Outstanding Ph.D. Dissertation Award in 2004. He was a recipient of the NSF
in Proc. Archit. Support Program. Lang. Operat. Syst., Houston, TX, Faculty CAREER Award in 2012 and the ONR Young Investigator Award in

USA, 2013, pp. 305-316. 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

