
QMS: Evaluating the Side-Channel Resistance of Masked
Software from Source Code ∗

Hassan Eldib, Chao Wang
Department of ECE

Virginia Tech
Blacksburg, VA 24061, USA

{heldib,chaowang}@vt.edu

Mostafa Taha, Patrick Schaumont
Department of ECE

Virginia Tech
Blacksburg, VA 24061, USA

{mtaha,schaum}@vt.edu

ABSTRACT
Many commercial systems in the embedded space have shown weak-
ness against power analysis based side-channel attacks in recent
years. Designing countermeasures to defend against such attacks is
both labor intensive and error prone. Furthermore, there isa lack
of formal methods for quantifying the actual strength of a counter-
measure implementation. Security design errors may therefore go
undetected until the side-channel leakage is physically measured
and evaluated. We show a better solution based on static analy-
sis of C source code. We introduce the new notion of Quantitative
Masking Strength (QMS) to estimate the amount of information
leakage from software through side channels. The QMS can be
automatically computed from the source code of a countermeasure
implementation. Our experiments, based on side-channel measure-
ment on real devices, show that the QMS accurately quantifiesthe
side-channel resistance of the software implementation.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Physical security;
D.2.4 [Software/Program Verification]: Formal methods

General Terms: Security, verification

Keywords: Side channel attack, differential power analysis, coun-
termeasure, quantitative masking strength, SMT solver

1. INTRODUCTION
In recent years, many commercial systems in the embedded space

have shown weaknesses against power analysis based side-channel
attacks [18, 16, 1], where an adversary can utilize secondary infor-
mation such as heat and power dissipation and electromagnetic ra-
diation resulting from the execution of sensitive algorithms on these
devices. For example, the power consumption of an embedded de-
vice executing instructiona=t⊕k may depend on the value of the
secretk [14]. Masking, which is a randomization technique for re-
moving the statistical dependency between sensitive data and the
side-channel information, is a commonly used mitigation strategy.
For example, Boolean masking uses an XOR operation of a random
bit r with a variablea to obtain a masked variable:am = a⊕ r [1,
19]. Later, the original variable can be restored by a secondXOR
operation:am ⊕ r = a. Other similar countermeasures have used
additive masking (am = a + r mod n), multiplicative masking

∗

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’14,June 01 - 05, 2014, San Francisco, California, USA.
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

(am = a ∗ r mod n), as well as application-specific masking such
as RSA blinding (am = are mod N).

However, side-channel countermeasures are difficult to design
and implement because the process is labor intensive and error
prone. There is also a lack of formal analysis methods for quanti-
fying how secure a countermeasure implementation really is. This
is a problem because the source of the information leakage isnot
the cryptographic software but the hardware that executes the soft-
ware. For average software developers who do not know all the
architectural details of the device, it can be difficult to understand
when side-channel information may be leaked.

In this paper, we introduce the notion ofquantitative masking
strength (QMS)to quantify the side-channel resistance of a soft-
ware implementation. To demonstrate the effectiveness of QMS
in quantifying the side-channel resistance, we conduct experiments
on a set of cryptographic software on real devices while launch-
ing DPA attacks. For each implementation, we record the number
of traces required to successfully break the countermeasure. Our
experimental results show that the number of measurement traces,
which correlates to the difficulty in breaking the countermeasure,
matches the QMS. We also develop a design automation tool that
leverages static code analysis to compute the QMS of a given C
program. The tool can also be used as a verification procedureto
decide whether a program satisfies a given QMS requirement.

Our code analysis tool builds on the LLVM compiler and the
Yices SMT solver [7]. We encode the problem into a series of
quantifier-free first-order logic formulas, whose satisfiability can
be decided by the SMT solver. Although in the literature there ex-
ists some work on checking the security of mask software code,
e.g. using type-based information flow analysis [20], they are less
accurate and may generate many false positives. Bayraket al. [2]
have used SAT solvers to check if a software ismasked, but they
cannot quantify the masking strength. To the best of our knowl-
edge, our method is the first automated static analysis method for
checking the strength of masking quantitatively.

We have conducted experiments on a set of cryptographic soft-
ware implementations to evaluate the performance of our tool. The
benchmarks include countermeasures proposed for AES as well as
MAC-Keccak, a MAC based on the new SHA-3 standard. Our
results show that the new method is effective in detecting side-
channel leaks in the software code and is scalable enough to handle
cryptographic software of practical size.

To sum up, this paper makes the following contributions:

• We propose the new notion ofquantitative masking strength
(QMS)as a way to quantify the side-channel resistance of a
masked software implementation.
• We conduct DPA attack experiments on real devices to con-

firm that the QMS is indeed a good indicator of the side-
channel resistance in practice.
• We propose a static code analysis method for computing the

QMS of a software program without measurement. The tool
can also be used to formally verify that a program satisfies a
given QMS requirement.

o1 = k∧(r1∧r2)

o2 = k∨(r1∧r2)

o3 = k⊕(r1∧r2)

o4 = k⊕(r1⊕r2)

k r1 r2 o1 o2 o3 o4
0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 0 1
0 1 1 0 1 1 0
1 0 0 0 1 1 1
1 0 1 0 1 1 0
1 1 0 0 1 1 0
1 1 1 1 1 0 1

Figure 1: Although o1,o2,o3 are masked by random bitsr1
and r2, they may still leak secret information aboutk.

2. PRELIMINARIES
In this section, we provide a brief introduction to side-channel

attacks and randomization based countermeasures. Following the
notation used by Blömeret al. [4], we assume that the program to
be analyzed implements a functionc ← F (x, k), wherex is the
plaintext,k is the secret key, andc is the ciphertext. LetI1, I2, . . .,
It be the sequence of intermediate computation results insidethe
function, and eachIi(x, k, r), where1 ≤ i ≤ t, be a function ofx,
k andr. Here,r is a random number used to makeIi statistically
independent ofk.

WhenF (x, k) is a linear function in the Boolean domain, mask-
ing and de-masking are trivial due to properties of the⊕ operations.
However, whenF (x, k) is a non-linear function, masking and de-
masking often require a complete redesign of the software. This
process is both labor intensive and error prone, and currently can-
not be automated. Indeed, designing a new masking scheme fora
reputable cryptographic algorithm such as AES or MAC-Keccak is
considered publishable work in top cryptography venues.

In this paper, we assume that an adversary knows the pair(x, c)
of plaintext and ciphertext inc← F (x, k). For each pair(x, c), the
adversary may measure the side-channel leakage of at mostd inter-
mediate computation resultsI1, . . . , Id. However, the adversary
does not have access tor, which is assumed to be a true random
number. The goal of the adversary is to compute the secret key(k).
Kocheret al. [12] demonstrated in their seminal work that it is pos-
sible to deducek using a statistical method known as differential
power analysis (DPA).

A necessary condition for side-channel resistance is for all the in-
termediate computation results of a function to beinsensitive, as in
Bayraket al. [2]. An intermediate resultIi is sensitiveif it depends
on the secret/plaintext and, at the same time, it does not depend on
any random variable. According to [2], this dependency analysis
is equivalent to computingdon’t cares (DCs)in logic synthesis: If
random bitr is a don’t careof Ii, thenIi does not depend onr.
Recall thatr is adon’t care if Ii remains unchanged whetherr is
set to logical 0 or 1. However, even aninsensitiveIi may still leak
secret information, becausedepending on a random bitdoes not
mean thatIi is statistically independent from the secret.

Figure 1 shows an example, wherek is the secret,r1 andr2
are the random variables, ando1, o2, o3, ando4 are the re-
sults of four masking schemes. According to the truth table on the
right-hand side, all four outputs depend onr1,r2 and therefore
are insensitive[2], but three of them still leak secret information.
Wheno1 is logical 1, we know for sure that the secretk is also 1,
regardless of the values of the random variables. Similarly, when
o2 is logical 0, we know for sure thatk is also 0. Wheno3 is
logical 1 (or 0), there is a 75% chance thatk is logical 1 (or 0).
In contrast,o4 is the only side-channel resistant output because it
statistically independent ofk. Whenk is logical 1 (or 0), there is
50% chance thato4 is logical 1 (or 0).

In the context of side-channel analysis, a leakage model specifies
the amount of side-channel information observable during program
execution. In simple and differential power analysis basedattacks,
an effective and widely used leakage model, for a single instruc-
tion, is theHamming Weight (HW)of the operand, and for two
consecutive instructions, is theHamming Distance (HD)of the two
operands. It is also the model used in this paper.

3. QUANTITATIVE MASKING STRENGTH
Given a pair(x, k) of plaintext and secret key for the function

F (x, k), ans-bit random numberr uniformly distributed in the do-
mainR = {0, 1}s, andd intermediate resultsI1, . . . , Id, we use
Dx,k(R) to denote the joint distribution ofI1, . . . , Id. Here,d rep-
resents the maximum number of intermediate computation results
whose power side-channel information can be observed by an ad-
versary. IfDx,k(R) is statistically independent of the secretk, we
say that the function isorder-d perfectly masked [4]. Otherwise,
the function is vulnerable to side-channel attacks, and we would
like to quantify the bias ofDx,k(R), denoted∆qms, with respect
to x andk.

Definition 1 Given an implementation of functionF (x, k) and a
set of intermediate computation results{Ii(x, k, r)}, we define the
quantitative masking strength (QMS) as the minimal value of(1−
∆qms) such that, for alld-tuple〈I1, . . . , Id〉,

|Dx,k(R)−Dx′,k′(R)| ≤ ∆qms for any(x, k) and(x′
, k

′) .

In this sense, theperfect maskingcriterion introduced by Blömer
et al. [4] is an extreme where∆qms = 0. The sensitivitycri-
terion introduced by Bayraket al. [2] is another extreme where
∆qms = 1. They represent two extreme cases of the spectrum,
whereas QMS allows us to quantify the side-channel resistance of
the vast number of design choices in between. As an example,
consider the four masking schemes in Figure 1. In the contextof
order-1side-channel attacks, we have

∆qms(o1) = 1/4− 0/4 = 0.25 ∆qms(o1) = 4/4− 3/4 = 0.25
∆qms(o2) = 4/4− 1/4 = 0.75 ∆qms(o2) = 3/4− 0/4 = 0.75
∆qms(o3) = 3/4− 1/4 = 0.50 ∆qms(o3) = 3/4− 1/4 = 0.50
∆qms(o4) = 2/4− 2/4 = 0.00 ∆qms(o4) = 2/4− 2/4 = 0.00

All four outputs areinsensitiveaccording to [2] because of their
logical dependence on the random bits, but onlyo4 is statistically
independent of the secretk.

To check if a function satisfies the given QMS requirement, we
need to decide whether there exists ad-tuple〈I1, . . . , Id〉 such that
|Dx,k(R)−Dx′,k′(R)| > ∆qms for some(x, k) and(x′, k′). The
functionF (x, k) satisfies the QMS requirement if and only if no
suchd-tuple exists for the given∆qms and the givend. Note that
d = 1, 2, . . . , t specifies the order of the side-channel attack. In
an order-d attack, we assume that an adversary can measure the
leakage ofd intermediate computation results simultaneously.

The main challenge for static code analysis – whether to com-
pute the QMS of a given program or to verify that the program
satisfies the given QMS requirement – is to computeDx,k(R). As
the starting point, we mark all the plaintext bits inx as public, the
key bits ink as secret, and the mask bits inr as random. Then,
for eachI(x, k, r), we check whether it satisfies the QMS require-
ment. Following Definition 1, we can formulate theorder-1QMS
check as a satisfiability problem as follows:

∃x, k, k′
.
(

Σr∈RI(x,k, r)− Σr∈RI(x, k
′
, r)
)

> ∆qms

Here,x is the plaintext,k andk′ are two different values of the se-
cret key, andr is thes-bit random number in domainR = {0, 1}s.
For any fixed (x, k, k′), the summationΣr∈RI(x, k, r) represents
the number of satisfying assignments ofI(x, k, r), and the sum-
mationΣr∈RI(x, k

′, r) represents the number of satisfying assign-
ment ofI(x,k′, r). Assume thatr is uniformly distributed in do-
mainR = {0, 1}s, the summations represent the probabilities ofI
being logical 1 under key valuesk andk′, respectively.

If the above formula is satisfiable, there existx and two keys
(k, k′) such that the distribution ofI(x, k, r) differs from the dis-
tribution of I(x, k′, r) by more than∆qms. In other words, the
secret values ofk andk′ are leaked, and the amount of information
leakage is more than expected. On the other hand, if the abovefor-
mula is unsatisfiable, thenI satisfies the given QMS requirement.

1 : compute(bool k1, bool k2, bool r1, bool r2){
2 : bool n1, n2, n3, n4, n5, n6, n7, n8, c;
3 : n1 = k1⊕ r1;
4 : n2 = k2⊕ r2;
5 : n3 = n1& n2;
6 : n4 = k2⊕ r2;
7 : n5 = r1& n4;
8 : n6 = k1⊕ r1;
9 : n7 = r2& n6;
10 : n8 = n5⊕ n7;
11 : c = n3⊕ n8;
12 : return c;
13 : }

c

⊕

⊕

& &

⊕⊕

⊕

&

n7

n6

r1r2k2
r1k1

n4

n5
n2

n3

n1

n8

r2

k2 r2 k1 r1

⊕

Figure 2: A program and the abstract syntax tree (AST) nodes.

4. STATIC CODE ANALYSIS
In this section, we first present our verification procedure,which

takes a program and a QMS as input and checks whether the pro-
gram satisfies the QMS requirement. Then, we present our algo-
rithm for estimating the QMS of a given program, which uses the
aforementioned verification procedure as a subroutine.

4.1 Checking a Program against a QMS Requirement
Our method is based on translating the problem into a set of

quantifier-free first-order logic (FOL) formulas and then deciding
the formulas using an SMT solver. This is an extension of our pre-
vious work [9] on checking whether a cryptographic softwarepro-
gram isperfectly masked[4]. For each intermediate computation
resultI(x, k, r), we construct the formulaΦ that is satisfiable if and
only if there exist a plaintextx and two key valuesk andk′ such
that the probability forI(x, k, r) to be logical 1 differs from the
probability forI(x, k′, r) to be logical 1 by more than∆qms. Al-
though satisfiability (SAT) based verification techniques have been
widely used in EDA for checking functional correctness properties,
our method is significantly different from them because QMS is a
quantitative property and is statistical in nature. Since the property
is statistical, it cannot be directly checked by functionalverification
techniques such as model checking [6, 22, 13, 25, 23].

Given a Boolean program as input, we first construct a data-flow
graph, where the root represents the return value and the leaf nodes
represent the inputs. Each internal node represents the result of
a Boolean operation of one of the following types: AND, OR,
NOT, and XOR. For the example in Figure 2, our method starts
by parsing the program and creating a graph representation.This
is followed by traversing the graph in a topological order, from
the program inputs (leaf nodes) to the return value (root node).
For each internal node, which represents an intermediate compu-
tation result, we check whether it satisfies the given QMS require-
ment. The order in which we check the internal nodes is as follows:
n1, n2, n3, n4, n5, n6, n7, n8, and finally,c.

Notice that the program in Figure 2 is a masked version ofc ←
(k1&k2), wherek1 and k2 are secret keys,r1 and r2 are ran-
dom variables, andc is the computation result. The return value
c is logically equivalent to(k1&k2) ⊕ (r1&r2). This masking
scheme [4] is used to make the power consumption independent
from the values ofk1 andk2. The corresponding demasking func-
tion (not shown in the figure) isc⊕(r1&r2). Therefore, demasking
would produce the desired value(k1&k2).

Our method will determine if all intermediate variables of the
program have a masking strengthen higher than∆qms. Let Φ de-
note the SMT formula to be created for checking the intermediate
resultI(x, k, r). Let s be the number of random bits inr. Our en-
coding method ensures thatΦ is satisfiable if and only ifI violates
the QMS requirement. Therefore, we defineΦ as follows:

Φ :=

(

2s−1
∧

r=0

Ψr
k

)

∧

(

2s−1
∧

r=0

Ψr
k′

)

∧Ψb2i ∧Ψsum ∧Ψdiff ,

SAT?

code checked code checked code checked code checked

code checked code checked code checked code checked

qms
k1 k2 r1 r2 k1 k2 r1 r2 k1 k2 r1 r2 k1 k2 r1 r2

0 0 0 1 1 0 1 1

k1’ k2’ r1 r2 k1’ k2’ r1 r2 k1’ k2’ r1 r2 k1’ k2’ r1 r2

0 0 0 1 1 0 1 1

Figure 3: SMT encoding to verify the QMS w.r.t. (k1, k2).

where the subformulas are defined as follows:

• Program logic (Ψr
k): Each subformulaΨr

k encodes a copy
of the functionality ofI(x, k, r), with the random variabler
set to a concrete value in{0, . . . , 2s − 1} and the key set to
valuek or k′. All copies share the same plaintext valuex.
• Boolean-to-int (Ψb2i): It encodes the conversion of the out-

put ofI(x, k, r) from Boolean to integer (true becomes 1 and
false becomes 0), so that the integer values can be summed
up later to computeΣr∈RI(x, k, r).
• Sum-up-the-1s (Ψsum): It encodes the two summations of

the logical 1s in the outputs of the2s copies of program logic,
one forI(x, k, r) and the other forI(x, k′, r).
• Different sums (Ψdiff): It asserts that the difference be-

tween the two summations is bigger than the required∆qms.

Figure 3 is a pictorial illustration of the SMT encoding for output
I(k1, k2, r1, r2), wherek1, k2 are the secret bits andr1, r2 are
two random bits. The first four boxes, encodingΨ0

k, . . . ,Ψ
3
k, are

copies of the program logic for key bits (k1k2) with random bits
set to 00, 01, 10, and 11, respectively. The other four boxes,en-
codingΨ0

k′ , . . . ,Ψ3
k′ , are copies of the program logic for key bits

(k1′k2′) with random bits set to 00, 01, 10, and 11, respectively.
The formula checks for security against first-order DPA attacks –
whether there exist two sets of keys (k1 k2andk1’ k2’) under which
the distributions ofI differs from each other by more than∆qms.

4.2 Checking the Fan-in AST Nodes Incrementally
Since the SMT formula size is linear in the size of the program

but exponential in the number of random variables, it may become
a bottleneck if the program uses a large numbers of random bits.
To avoid the potential performance problem, we propose an incre-
mental algorithm, which applies the SMT based analysis onlyto
small code regions of the program as opposed to the entire fan-in
cone of each intermediate computation result. This is crucial for
scaling our method to code of practical complexity.

Our incremental algorithm can be illustrated by Figure 4, where
the output ofmask(x,k,r)is masked again with the new random
variable rnew before it is demasked from the old random vari-
able r. Before verifyingmask2, if we have already proved that
I2 is perfectly masked, andrnew is a new random variable not used
elsewhere (not in computingI3), then for the purpose of checking
mask2, we can substituteI2 with a new random variablerdummy

while verifyingmask2.
Due toassociativityof the⊕ operator, reordering the masking

and demasking operations would not change the logical result. For
example, in Figure 4, the instruction being analyzed is inmask2().
Since random variablernew is not used insidemask()or de-mask(),
or in the support ofI3, we can replace the entire fan-in cone ofI2
by a new random variablerdummy while verifyingmask2().

The effectiveness of our incremental algorithm relies on the fol-
lowing observation. In practice, a common used strategy forimple-
menting randomization based countermeasures is to have a chain of

rnew

rkx

rkx

I 1

I 2

I 3I 3
rdummy+

+ de−mask

mask

mask2 mask2

I2 := I1 ⊕ de-M (x , k , r)
:= rnew ⊕ (x , k , r) ⊕ de-M (x , k , r)
:= rnew ⊕ (. . .)
:= rdummy

Figure 4: Incremental applying the SMT based analysis only to
small fan-in region (assumernew is not in the support of I3).

modules, where the inputs of each module are masked before ex-
ecuting its logic, and are demasked afterward. To avoid having an
unmasked intermediate value, the inputs to the successor module
are masked with fresh random variables, before they are demasked
from the random variables of the previous module. We shall see in
the experimental results section that such optimization opportuni-
ties are abundant in real applications.

4.3 Estimating the QMS of a Given Program
Given a program, we can estimate the QMS of all the interme-

diate computation results by iteratively invoking our SMT based
verification procedure as a subroutine. We start with∆qms = 1.0,
and check whether the program satisfies this QMS requirement. If
the answer is no, then we decrease∆qms and check again. We
stop as soon as the program satisfies the QMS requirement. At that
moment, the value for∆qms is the estimated QMS of the given
program. Algorithm 1 shows the overall flow of our iterative pro-
cedure. To make it efficient, we have used the binary search.

Algorithm 1 Iteratively computing the QMS of a given program.
1: COMPUTEQMS (Prog){
2: ∆low ← 0.00
3: ∆high ← 1.00

4: while (∆low ≤ ∆high) {
5: ∆mid ← (∆low + ∆high)/2.0

6: if (CHECKQMS(Prog,∆mid) = SAT)
7: ∆low ← ∆mid + 0.01;
8: else
9: ∆high ← ∆high − 0.01;
10: }

11: return ∆low

12: }

It is worth pointing out that in this work, we focus on verifying
implementations of cryptographic algorithms, as opposed to arbi-
trary software applications. The program under verification typi-
cally does not have input-dependent control flow, meaning that we
can easily remove all the loops and function calls from the code us-
ing standard loop unrolling and function inlining techniques. Fur-
thermore, the program can be transformed into a branch-freerep-
resentation, where the if-else branches are merged. Finally, since
all program variables are bounded integers, we can convert the pro-
gram to a purely Boolean program through bit-blasting. Therefore,
in this paper, our static code analysis method is concerned with
only the bit-level representation of a branch-free program.

5. MEASUREMENT ON REAL DEVICES
To check if QMS reflects the masking strength of a software,

we conducted a set of side-channel attacks on implementations of
countermeasures for MAC-Keccak, AES, and a few other crypto-
graphic algorithms. We ran all software code on a 32-bit Microb-
laze processor [24] built on a Xilinx Spartan-3e FPGA (Figure 5).
To measure the power consumption of the processor core, we used

enc(x,k)

Power

Time

RS−232

USB

Embedded Computing HW

PC

Key
(k)

Cryptographic SW

Current
sensor

Plaintext
(x)

(c)
Ciphertext Oscilloscope

Figure 5: The side-channel attack measurement system setup.

a Tektronix DPO 3034 oscilloscope and a CT-2 current probe to
sample the power consumption of the FPGA. The side-channel at-
tack was conducted using differential power analysis (difference of
means [12]). To limit the effect of measurement noise, we collected
eachtraceafter running the same software code 128 times and us-
ing the oscilloscope to calculate the average. Here, a tracerefers to
a set of samples taken during the execution of the software.

We used DPA to determine whether a key guess was correct.
Recall that DPA relies on the observation that power consumption
variations correlate to the values of the sensitive bits being manip-
ulated. Using the same input vector stream of plaintext as inthe
measured traces, we compute the value of the sensitive variable as-
suming that the secret key was one of the key guesses. For ann-bit
key, there would be2n key guesses. For each key guess, we divide
the set of measurement traces into two bins, one for all the sensi-
tive values of logic 0, and one for all the sensitive values oflogic
1. Then we compute the difference of means between those two
bins, for each key guess. We select the key guess that result in the
maximum difference.

We have conducted three sets of experiments. Table 1 shows the
statistics of the benchmarks, including the name of the program,
a short description, the lines of code, the number of computation
nodes, as well as the numbers of key bits, plaintext bits, andran-
dom bits. The first two sets consist of various versions of theMAC-
Keccak and ASE implementations [3, 17, 21, 5] with graduallyde-
grading QMS values. We measured the average number of traces
needed to determine the secret key. In the third set of experiments,
we used a set of recently published software countermeasures [2,
11, 15, 10, 4], with fixed QMS values, and measured the average
number of traces needed to determine the secret key.

Figure 6 shows our results on the SHA3 benchmark. Thex-axis
is the QMS value, while they-axis is the measured average num-
ber of traces needed to determine the secret key. Notice thatthe
y-axis is in logarithmic scale. In addition to the measured data,
we have plotted an empirical approximation rule (dotted curve)
to estimate the measured data. We can see that when the QMS
value approaches 1.0, the number of traces needed to determine
the secret key will approach infinity. This is as expected because
QMS=1.0 means that the code is perfectly masked – since there
is no information leakage, the implementation is provably secure.
However, when the QMS value deviates from 1.0 slightly, the num-
ber of traces needed to determine the secret key drops drastically
– QMS=0.90 corresponds to around 100 DPA traces. Overall, the
side-channel resistance, as measured by the number of traces needed
to determine the secret key, is exponentially dependent on QMS.

Figure 7 shows our results on the AES benchmark. Here, the
measured data are similar to those in Figure 6. Furthermore,we
note that the approximate empirical formula computed to estimate
the number of required DPA traces has the following relationwith
the QMS value:Ntrace = 1

(1−QMS)c , wherec ≈ 2.2 for these
two sets of experiments. In general,c is an empirical constant that
ultimately will be decided by the actual hardware and measurement
set-up. We shall leave the investigation of the theoreticalnature of
this constant to future work. What is important is that, overall, the

Table 1: The statistics of masked software benchmarks used in our measurement based DPA attack experiments on real devices.
Here, Key, Plain, and Rand represent the number of bits in the secrete key, plaintext, and random variable, respectively.

Name Description Lines of Code Intermediate Nodes Key Plain Rand
SHA3 A series of masked MAC-Keccak with varying levels of masking(biased random 61 31 3 3 3

number generators from 0.01 to 0.5 to vary QMS from 0.0 to 1.0)
AES A series of masked AES with varying levels of masking (biasedrandom number 52 37 8 8 8

generators from 0.01 to 0.5 to vary QMS from 0.5 to 1.0)
P1 CHES13 Masked Key Whitening 79 47 16 16 16
P2 CHES13 De-mask and then Mask 67 31 8 8 16
P3 CHES13 AES Shift Rows 21 21 2 2 2
P4 CHES13 Messerges Boolean to Arithmetic (bit0) 23 24 1 1 2
P5 CHES13 Goubin Boolean to Arithmetic (bit0) 27 60 1 1 2
P6 Logic Design for AES S-Box (1st implementation) 32 9 2 2 2
P7 Masked Chi function MAC-Keccak (1st implementation) 59 19 3 3 4
P8 Masked Chi function MAC-Keccak (2nd implementation) 60 19 3 3 4
P9 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 22 3 3 4
P10 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 22 3 3 4

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

10
4

10
5

QMS

T
ra

ce
s

ne
ed

ed
 to

 g
et

 k
ey

SHA3 Measured
Empirical (c = 2.2)

Figure 6: DPA attacks on SHA3: plotting the number of traces
needed to determine the key with respect to the QMS value.

Table 2: DPA attacks on P1-P10: showing the relation between
QMS and the number of traces needed to determine the key.

Name Node QMS Trace Name Node QMS Trace
P1 n011 0.00 2 P1 n012 1.00 T.O.
P2 n21 0.00 3 P2 n 11 1.00 T.O.
P3 st10⊕ st2 0.00 2 P3 rx2⊕ st2 1.00 T.O.
P4 X ⊕ A3 0.00 2 P4 A1 ⊕ A3 1.00 T.O.
P5 X ⊕ R2 0.00 3 P5 T1⊕ R2 1.00 T.O.
P6 n09 0.50 936 P6 n07 1.00 T.O.
P7 n32 0.50 992 P7 n35 1.00 T.O.
P8 n02 0.50 587 P8 n23 1.00 T.O.
P9 n47 0.50 255 P9 n39 1.00 T.O.
P10 n47 0.50 426 P10 n48 1.00 T.O.

side-channel resistance is exponentially dependent on QMS.
Table 2 shows our results on the third set of benchmarks. Here,

Columns 1 and 2 show the program name and the node to which we
have applied the DPA attack. Column 3 shows the QMS value com-
puted statically for the software code. Column 4 shows the number
of traces needed to determine the secret key. T.O. meanstimed out
after 100,000 traces are measured. It is worth pointing thatwe per-
formed second order analysis on P3-P5. Overall, we have observed
a similar exponential dependence between the number of measured
traces and the QMS value. For example, when the QMS is 0.00 –
meaning that the node is not masked at all – we have found that
the secret key can be determined with merely a handful of DPA
traces. When the QMS is 1.00 – meaning it is perfectly masked
– the key cannot be determined within our time limit of 100,000
traces. When the QMS is between 0.00 and 1.00, the number of
DPA traces closely follows the same empirical formula (exponen-
tial dependence on the QMS) that we have discovered earlier,but
with a slightly different value for constantc.

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

10
4

10
5

QMS

T
ra

ce
s

ne
ed

ed
 to

 g
et

 k
ey

AES Measured
Empirical (c = 2.2)

Figure 7: DPA attacks on AES: plotting the number of traces
needed to determine the key with respect to the QMS value.

6. EXPERIMENTAL RESULTS
We have evaluated the efficiency of our new static code analysis

method for QMS estimation and checking in the context of related
work. Our experimental evaluation was designed to answer the
following questions:

• Is it practical to compute the QMS of a C program through
purely static code analysis?
• Does the new method offer significant advantages over exist-

ing methods such asSlueth[2]?

Our benchmarks included a set of recently published maskingcoun-
termeasures [2, 5, 11, 15, 10, 4, 3, 17] whose statistics havebeen
shown in Table 1. All our experiments were obtained on a desktop
computer with a 3.4 GHz Intel i7-2600 CPU, 3.3 GB RAM, and a
32-bit Linux operating system.

Table 3 shows the results of applying our new method to com-
pute the QMS of a given software. Column 1 shows the name
of the software. Column 2 shows the number of internal nodes
checked. Columns 3-6 show the QMS computed, including the
minimal, maximal, local average, and global average. Columns 7
and 8 show the number of iterations and the total execution time.
The number of iterations is for the combination of checks on all in-
ternal nodes. Also, for P3-P5, we have applied second-orderDPA
following [2] as opposed to first-order DPA, so each node has been
checked against every other node of the program. The resultsshow
that our iterative method converged quickly in all cases. Due to
page limit, we omit the description of several pieces of useful in-
formation reported by our new method, e.g. which node in the pro-
gram has the lowest QMS and therefore is the most vulnerable to
side-channel attacks.

Table 4 shows the results of applying our new method to check
whether a program satisfies a given QMS requirement. For compar-

Table 3: Statically computing the QMS of the C programs.
Program QMS Performance

Name nodes Min. Max. Local Avg. Global Avg. Iters Time
P1 47 0.00 1.00 0.00 0.66 31 0.13s
P2 31 0.00 1.00 0.00 0.74 23 0.41s
P3 21 0.00 1.00 0.33 0.71 108 1.6s
P4 24 0.00 1.00 0.17 0.93 151 1.7s
P5 60 0.00 1.00 0.17 0.97 367 3.1s
P6 9 0.50 1.00 0.50 0.83 11 0.15s
P7 19 0.00 1.00 0.17 0.86 19 0.17s
P8 19 0.50 1.00 0.50 0.92 20 0.16s
P9 22 0.50 1.00 0.50 0.97 23 0.18s
P10 22 0.50 1.00 0.50 0.97 23 0.24s

ison, we have re-implemented and evaluated theSleuthalgorithm
of Bayraket al. [2] in our framework. Here, Columns 1 and 2 show
the program name and the number of nodes checked. Columns 3-
5 show the statistics ofSleuth, including whether it finds any un-
masked node, the number of unmasked nodes, and the total execu-
tion time. Columns 6-8 show the statistics of our new method,in-
cluding whether it finds any node that leaks side-channel informa-
tion, the number of vulnerable nodes found, and the total execution
time. In addition to the P1-P10 examples, we have experimented
on a set of full-sized MAC-Keccak implementations [3] (P11-P16)
in order to compare the scalability of the two methods.

Table 4: Verifying a C program against the QMS requirement.
Program Sleuth [2] New

name nodes masked nodes time masked nodes time
failed qms=1.0 failed

P1 47 No 16 0.16s No 16 0.09s
P2 31 No 8 0.21s No 8 0.14s
P3 21 No 9 1.17s No 9 1.14s
P4 24 No 2 0.58s No 2 1.25s
P5 60 No 2 1.19s No 2 2.53s
P6 9 Yes 0 0.06s No 2 0.08s
P7 19 No 1 0.15s No 3 0.12s
P8 19 Yes 0 0.13s No 2 0.10s
P9 22 Yes 0 0.18s No 1 0.16s
P10 22 Yes 0 0.20s No 1 0.18s
P11 128k Yes 0 91m53s Yes 0 11m20s
P12 128k No 2560 92m59s No 2560 14m45s
P13 128k Yes 0 97m38s No 1024 19m26s
P14 152k Yes 0 132m10s No 512 37m17s
P15 128k No 512 113m12s No 1536 17m44s
P16 131k No 4096 103m56s No 4096 18m29s

From the results, we have observed several advantages of our
new method overSleuth. First, our new method can check for the
quantitative masking strength – for any QMS value ranging from
0.00 to 1.00 – whereasSleuthcan only check whether a node is
masked (whether the QMS is zero or non-zero). The results in Ta-
ble 4 clearly show that there are many cases (e.g. in P6 and P8)
where the nodes are masked by some random bits, but the mask-
ing is not perfect, and therefore the nodes can still leak sensitive
information. Second, our new method is more scalable thanSleuth.
Although the two methods have comparable run time on small pro-
grams, our new method is significantly faster thanSleuthon large
programs, despite the fact that it is checking a more sophisticated
quantitative property. This is due to the fact that we are using in-
cremental SMT analysis as described in Section 4.2.

7. CONCLUSIONS
We have proposed the notion of quantitative masking strength

(QMS), which can, for the first time, represent the side-channel re-
sistance of a masking countermeasure numerically. We have con-
firmed through experiments that the QMS is a good indicator of
the actual masking strength of the software. We have developed a
new static analysis tool to compute the QMS of a C program. The
method can also be used as a procedure to formally verify a pro-
gram against a QMS requirement. Our experimental results show

that the new static analysis method is effective in detecting masking
flaws and is scalable to handle cryptographic software code of prac-
tical size. For future work, we plan to extend this method to handle
countermeasures that use other masking schemes such as additive
masking, multiplicative masking, and RSA blinding. We alsoplan
to leverage it in our incremental inductive synthesis framework [8]
to generate countermeasures automatically.

REFERENCES
[1] J. Balasch, B. Gierlichs, R. Verdult, L. Batina, and I. Ver-

bauwhede. Power analysis of Atmel CryptoMemory - recov-
ering keys from secure EEPROMs. InCT-RSA, 2012.

[2] A. Bayrak, F. Regazzoni, D. Novo, and P. Ienne. Sleuth: Au-
tomated verification of software power analysis countermea-
sures. InCHES, 2013.

[3] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche,
and R. V. Keer. Keccak implementation overview. URL:
http://keccak.neokeon.org/Keccak-implementation-3.2.pdf.

[4] J. Blömer, J. Guajardo, and V. Krummel. Provably secure
masking of AES. InSelected Areas in Cryptography, 2004.

[5] J. Boyar and R. Peralta. A small depth-16 circuit for the AES
S-Box. InSEC, pages 287–298, 2012.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Check-
ing. MIT Press, Cambridge, MA, 1999.

[7] B. Dutertre and L. de Moura. A fast linear-arithmetic solver
for DPLL(T). In CAV, pages 81–94, 2006.

[8] H. Eldib and C. Wang. An SMT based method for optimiz-
ing arithmetic computations in embedded software code. In
FMCAD, 2013.

[9] H. Eldib, C. Wang, and P. Schaumont. SMT based verification
of software countermeasures against side-channel attacks. In
TACAS, 2014.

[10] L. Goubin. A sound method for switching between boolean
and arithmetic masking. InCHES, pages 3–15, 2001.

[11] C. Herbst, E. Oswald, and S. Mangard. An AES smart card
implementation resistant to power analysis attacks. InACNS,
pages 239–252, 2006.

[12] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis.
In CRYPTO, pages 388–397, 1999.

[13] B. Li, C. Wang, and F. Somenzi. A satisfiability-based ap-
proach to abstraction refinement in model checking.ENTCS,
89(4), 2003.

[14] S. Mangard, E. Oswald, and T. Popp.Power Analysis Attacks
– Revealing the Secrets of Smart Sards. Springer, 2007.

[15] T. S. Messerges. Securing the AES finalists against power
analysis attacks. InFast Software Encryption, 2000.

[16] A. Moradi, A. Barenghi, T. Kasper, and C. Paar. On the vul-
nerability of FPGA bitstream encryption against power anal-
ysis attacks - extracting keys from Xilinx Virtex-II FPGAs.
IACR Cryptology, 2011.

[17] NIST. Keccak reference code submission to the SHA-3
competition. URL: http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/documents/KeccakFinalRnd.zip.

[18] C. Paar, T. Eisenbarth, M. Kasper, T. Kasper, and A. Moradi.
Keeloq and side-channel analysis-evolution of an attack. In
FDTC, pages 65–69, 2009.

[19] E. Prouff and M. Rivain. Masking against side-channel at-
tacks: A formal security proof. InEUROCRYPT. 2013.

[20] A. Sabelfeld and A. C. Myers. Language-based information-
flow security.IEEE Journal on Selected Areas in Communi-
cations, 21(1):5–19, 2003.

[21] M. Taha and P. Schaumont. Differential power analysis of
MAC-Keccak at any key-length. InIWSEC, 2013.

[22] C. Wang, G. D. Hachhtel, and F. Somenzi.Abstraction Re-
finement for Large Scale Model Checking. Springer, 2006.

[23] C. Wang, H. Jin, G. Hachtel, and F. Somenzi. Refining the
SAT decision ordering for bounded model checking. InDAC,
San Diego, CA, 2004.

[24] Xilinx. Microblaze soft processor core. URL:
http://www.xilinx.com/tools/microblaze.htm.

[25] Z. Yang, C. Wang, F. Ivančić, and A. Gupta. Mixed sym-
bolic representations for model checking software programs.
In MEMOCODE, pages 17–24, July 2006.

