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ABSTRACT

Many commercial systems in the embedded space have shown wea

ness against power analysis based side-channel attacksentr
years. Designing countermeasures to defend against sacksais
both labor intensive and error prone. Furthermore, theeelé&ck

of formal methods for quantifying the actual strength of arter-
measure implementation. Security design errors may therefo
undetected until the side-channel leakage is physicallgsmed
and evaluated. We show a better solution based on statig-anal
sis of C source code. We introduce the new notion of Quaivitat
Masking Strength (QMS) to estimate the amount of infornmatio
leakage from software through side channels. The QMS can be
automatically computed from the source code of a countesarea
implementation. Our experiments, based on side-channasune-
ment on real devices, show that the QMS accurately quantifees
side-channel resistance of the software implementation.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Physical security;
D.2.4 [Software/Program Verification]: Formal methods

General Terms: Security, verification

Keywords: Side channel attack, differential power analysis, coun-
termeasure, quantitative masking strength, SMT solver

1. INTRODUCTION

In recent years, many commercial systems in the embedded spa
have shown weaknesses against power analysis based sidgeth
attacks [18, 16, 1], where an adversary can utilize secgridéor-
mation such as heat and power dissipation and electrormegaet
diation resulting from the execution of sensitive algarigon these
devices. For example, the power consumption of an embedsled d
vice executing instructioa=t &k may depend on the value of the
secretk [14]. Masking, which is a randomization technique for re-
moving the statistical dependency between sensitive datate
side-channel information, is a commonly used mitigatioatsgy.
For example, Boolean masking uses an XOR operation of a nando
bit » with a variablea to obtain a masked variable;, = a @ r [1,

19]. Later, the original variable can be restored by a sectDR
operation:a., @ r = a. Other similar countermeasures have used
additive maskingd,, = a + r mod n), multiplicative masking

*

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

DAC’14,June 01 - 05, 2014, San Francisco, California, USA.
Copyright 2014 ACM 978-1-4503-2730-5/14/06515.00.

nel Resistance of Masked

*

Mostafa Taha, Patrick Schaumont
Department of ECE
Virginia Tech
Blacksburg, VA 24061, USA

{mtaha,schaum}@vt.edu

(am = a * 7 mod n), as well as application-specific masking such
as RSA blinding ¢.» = ar® mod N).

However, side-channel countermeasures are difficult tigdes
and implement because the process is labor intensive and err
prone. There is also a lack of formal analysis methods fontjua
fying how secure a countermeasure implementation reallyhiss
is a problem because the source of the information leakagetis
the cryptographic software but the hardware that execheesdft-
ware. For average software developers who do not know all the
architectural details of the device, it can be difficult talarstand
when side-channel information may be leaked.

In this paper, we introduce the notion gfiantitative masking
strength (QMSYo quantify the side-channel resistance of a soft-
ware implementation. To demonstrate the effectivenessMEQ
in quantifying the side-channel resistance, we conductiéx@nts
on a set of cryptographic software on real devices while daun
ing DPA attacks. For each implementation, we record the mumb
of traces required to successfully break the countermeasur
experimental results show that the number of measurenesgsy
which correlates to the difficulty in breaking the counteasigre,
matches the QMS. We also develop a design automation tool tha
leverages static code analysis to compute the QMS of a given C
program. The tool can also be used as a verification proceadure
decide whether a program satisfies a given QMS requirement.

Our code analysis tool builds on the LLVM compiler and the
Yices SMT solver [7]. We encode the problem into a series of
quantifier-free first-order logic formulas, whose satidfigbcan
be decided by the SMT solver. Although in the literature éhex-
ists some work on checking the security of mask software ,code
e.g. using type-based information flow analysis [20], theylass
accurate and may generate many false positives. Batrak [2]
have used SAT solvers to check if a softwarenasked but they
cannot quantify the masking strength. To the best of our know
edge, our method is the first automated static analysis dtro
checking the strength of masking quantitatively.

We have conducted experiments on a set of cryptographie soft
ware implementations to evaluate the performance of our Td@
benchmarks include countermeasures proposed for AES aasvel
MAC-Keccak, a MAC based on the new SHA-3 standard. Our
results show that the new method is effective in detecting-si
channel leaks in the software code and is scalable enougintiiéh
cryptographic software of practical size.

To sum up, this paper makes the following contributions:

e \We propose the new notion gfiantitative masking strength
(QMS)as a way to quantify the side-channel resistance of a
masked software implementation.

e We conduct DPA attack experiments on real devices to con-
firm that the QMS is indeed a good indicator of the side-
channel resistance in practice.

e We propose a static code analysis method for computing the
QMS of a software program without measurement. The tool
can also be used to formally verify that a program satisfies a
given QMS requirement.
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Figure 1: Although 01, 02, 03 are masked by random bitsr 1
andr 2, they may still leak secret information aboutk.

2. PRELIMINARIES

In this section, we provide a brief introduction to side-thel
attacks and randomization based countermeasures. Fafjdve
notation used by Blomest al. [4], we assume that the program to
be analyzed implements a functionx— F'(z, k), wherez is the
plaintext,k is the secret key, andis the ciphertext. Lefy, I5, . . .,

I: be the sequence of intermediate computation results itki&e
function, and eacli; (z, k, r), wherel < i < ¢, be a function ofr,

k andr. Here,r is a random number used to makestatistically
independent of.

WhenF (z, k) is a linear function in the Boolean domain, mask-
ing and de-masking are trivial due to properties ofitheperations.
However, whenF'(z, k) is a non-linear function, masking and de-
masking often require a complete redesign of the softwatds T
process is both labor intensive and error prone, and clyrean-
not be automated. Indeed, designing a new masking schenae for
reputable cryptographic algorithm such as AES or MAC-K&dsa
considered publishable work in top cryptography venues.

In this paper, we assume that an adversary knows the patj
of plaintext and ciphertextin < F'(x, k). For each paifz, ¢), the
adversary may measure the side-channel leakage of athmst-
mediate computation resulfs, ..., I;. However, the adversary
does not have access tpwhich is assumed to be a true random
number. The goal of the adversary is to compute the secrdtdiey
Kocheret al.[12] demonstrated in their seminal work that it is pos-
sible to deducé: using a statistical method known as differential
power analysis (DPA).

A necessary condition for side-channel resistance is ftnain-
termediate computation results of a function tdrmensitiveas in
Bayraket al.[2]. An intermediate resulf; is sensitivef it depends
on the secret/plaintext and, at the same time, it does nendepn
any random variable. According to [2], this dependency ysisl
is equivalent to computindon’t cares (DCs)n logic synthesis: If
random bitr is adon’t careof I;, thenI; does not depend on
Recall thatr is adon't careif I, remains unchanged whetheis
set to logical 0 or 1. However, even arsensitivel; may still leak
secret information, becauskepending on a random boes not
mean thatl; is statistically independent from the secret.

Figure 1 shows an example, whekes the secretr 1 andr 2
are the random variables, and, 02, 03, ando4 are the re-
sults of four masking schemes. According to the truth tabl¢he
right-hand side, all four outputs depend oh, r 2 and therefore
areinsensitive[2], but three of them still leak secret information.
Whenol is logical 1, we know for sure that the seckeis also 1,
regardless of the values of the random variables. Simjlarhen
02 is logical 0, we know for sure th& is also 0. Whero3 is
logical 1 (or 0), there is a 75% chance thats logical 1 (or 0).

In contrast,04 is the only side-channel resistant output because it
statistically independent df. Whenk is logical 1 (or 0), there is
50% chance thai4 is logical 1 (or 0).

In the context of side-channel analysis, a leakage modelfsse
the amount of side-channel information observable durimogmam
execution. In simple and differential power analysis beesttaicks,
an effective and widely used leakage model, for a singleunst
tion, is theHamming Weight (HW)f the operand, and for two
consecutive instructions, is tifamming Distance (HDyf the two
operands. Itis also the model used in this paper.

3. QUANTITATIVE MASKING STRENGTH

Given a pair(z, k) of plaintext and secret key for the function
F(z, k), ans-bit random number uniformly distributed in the do-
main R = {0, 1}°, andd intermediate result$,, . .., I4, we use
D, 1 (R) to denote the joint distribution df;, . . ., I4. Here,d rep-
resents the maximum number of intermediate computatiantses
whose power side-channel information can be observed bylan a
versary. IfD, . (R) is statistically independent of the seckgtwe
say that the function isrder-d perfectly masked [4]. Otherwise,
the function is vulnerable to side-channel attacks, and weldv
like to quantify the bias oD, (1), denotedA ., with respect
to z andk.

Definition 1 Given an implementation of functidfi(z, k) and a
set of intermediate computation resufts (z, k, r) }, we define the
quantitative masking strength (QMS) as the minimal valu@ of
Agms) such that, for alld-tuple (I, . .., 1),
|Dy ik (R) — Dy 1o (R)| < Agms  forany (z, k) and (2, k') .

In this sense, thperfect maskingriterion introduced by Blomer
et al. [4] is an extreme wheré\,,,s = 0. The sensitivitycri-
terion introduced by Bayrakt al. [2] is another extreme where
Agsms = 1. They represent two extreme cases of the spectrum,
whereas QMS allows us to quantify the side-channel resistah
the vast number of design choices in between. As an example,
consider the four masking schemes in Figure 1. In the comtext
order-1side-channel attacks, we have

Agms(ol) =1/4—0/4=0.25 Agms(0l) =4/4 —3/4 =0.25
Agms(02) =4/4—1/4 =0.75 Agms(02) =3/4—0/4=0.75
Agms(03) =3/4—1/4 =0.50 Agms(03) =3/4—1/4 =0.50
Agms(0d) =2/4 —2/4 = 0.00 Agms(0d) =2/4 —2/4 = 0.00

All four outputs areinsensitiveaccording to [2] because of their
logical dependence on the random bits, but amyis statistically
independent of the secrkt

To check if a function satisfies the given QMS requirement, we
need to decide whether there exist&tple (11, ..., I;) such that
| Dy i (R) — Dy g/ (R)| > Agms for some(z, k) and(z’, k'). The
function F'(x, k) satisfies the QMS requirement if and only if no
suchd-tuple exists for the giver\,,,s and the giveni. Note that
d = 1,2,...,t specifies the order of the side-channel attack. In
an orderd attack, we assume that an adversary can measure the
leakage ofl intermediate computation results simultaneously.

The main challenge for static code analysis — whether to com-
pute the QMS of a given program or to verify that the program
satisfies the given QMS requirement — is to complitey, (R). As
the starting point, we mark all the plaintext bitsaras public, the
key bits ink as secret, and the mask bitssiras random. Then,
for eachI(z, k, r), we check whether it satisfies the QMS require-
ment. Following Definition 1, we can formulate tbeder-1 QMS
check as a satisfiability problem as follows:

Iz, k, k. (E,-eRI(m, k,r) — Xrerl(x, K, r)) > Agms

Here,z is the plaintextk andk’ are two different values of the se-
cret key, and- is thes-bit random number in domaiR = {0,1}°.
For any fixed ¢, k, k'), the summatior,.c g I (z, k, r) represents
the number of satisfying assignments idfc, k, ), and the sum-
mationX,crI (z, k', r) represents the number of satisfying assign-
ment of I(z, k', ). Assume that is uniformly distributed in do-
main R = {0, 1}°, the summations represent the probabilitieg of
being logical 1 under key valudsand’, respectively.

If the above formula is satisfiable, there exisand two keys
(k, k") such that the distribution of(z, k, r) differs from the dis-
tribution of I(z,k’,r) by more thanA,,.s. In other words, the
secret values of andk’ are leaked, and the amount of information
leakage is more than expected. On the other hand, if the dbove
mula is unsatisfiable, thehsatisfies the given QMS requirement.



1 : compute(bool k1, bool k2, bool r1, bool r2){
2: Dboolnl,n2,n3,n4,n5 n6,n7,n8,c;
3 nl =kl G ri;

4: n2=%k2@r2;

5: n3 =nl&n2;

6: nd=k2@Hr2;

7: nb5=r1&n4;

8: n6=kl1@pri;

9: n7 =r2& n6;

10 : n8 = nb G nT7;

11: ¢ =n3®@n8s;

12 : return c;

13:

Figure 2: A program and the abstract syntax tree (AST) nodes.

4. STATIC CODE ANALYSIS

In this section, we first present our verification procedurgich

takes a program and a QMS as input and checks whether the pro-

gram satisfies the QMS requirement. Then, we present our algo
rithm for estimating the QMS of a given program, which uses th
aforementioned verification procedure as a subroutine.

4.1 Checking a Program against a QMS Requirement

Our method is based on translating the problem into a set of

quantifier-free first-order logic (FOL) formulas and thercideang
the formulas using an SMT solver. This is an extension of oer p
vious work [9] on checking whether a cryptographic softwaire-
gram isperfectly maske@4]. For each intermediate computation
result! (z, k, r), we construct the formui that is satisfiable if and
only if there exist a plaintext and two key valueg andk’ such
that the probability forl(z, k, r) to be logical 1 differs from the
probability for I'(x, k', r) to be logical 1 by more than\ ;... Al-
though satisfiability (SAT) based verification techniqueséibeen
widely used in EDA for checking functional correctness pndies,
our method is significantly different from them because Q& i
quantitative property and is statistical in nature. Sifegroperty
is statistical, it cannot be directly checked by functiovification
techniques such as model checking [6, 22, 13, 25, 23].

Given a Boolean program as input, we first construct a data-flo
graph, where the root represents the return value and theddas
represent the inputs. Each internal node represents to#é ofs
a Boolean operation of one of the following types: AND, OR,
NOT, and XOR. For the example in Figure 2, our method starts
by parsing the program and creating a graph representafibis.
is followed by traversing the graph in a topological ordegni
the program inputs (leaf nodes) to the return value (rootehod
For each internal node, which represents an intermediatggo
tation result, we check whether it satisfies the given QMS$iireg
ment. The order in which we check the internal nodes is asvisli
nl,n2,n3,n4,n5 n6,n7,ns, and finally,c.

Notice that the program in Figure 2 is a masked version of
(k1&k2), wherekl and k2 are secret keys;1 andr2 are ran-
dom variables, and is the computation result. The return value
c is logically equivalent ta(k1&k2) & (r1&r2). This masking
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Figure 3: SMT encoding to verify the QMS w.r.t. (k1, k2).
where the subformulas are defined as follows:

e Program logic (¥},): Each subformulal;, encodes a copy
of the functionality ofI (x, k, ), with the random variable
set to a concrete value i, ...,2° — 1} and the key set to
valuek or k’. All copies share the same plaintext valtie

e Boolean-to-int (Wy2;): It encodes the conversion of the out-
put of I (x, k, ) from Boolean to integer (true becomes 1 and
false becomes 0), so that the integer values can be summed
up later to comput&,.c gl (z, k, ).

e Sum-up-the-1s (V.. ): It encodes the two summations of
the logical 1s in the outputs of ti2é copies of program logic,
one forI(z, k,r) and the other fof (z, k', r).

e Different sums (W4;y5): It asserts that the difference be-
tween the two summations is bigger than the requikeg,s.

Figure 3 is a pictorial illustration of the SMT encoding fartput
I(k1,k2,71,r2), wherekl, k2 are the secret bits anel, 2 are
two random bits. The first four boxes, encodifg, ..., U3, are
copies of the program logic for key bit&{k2) with random bits
set to 00, 01, 10, and 11, respectively. The other four boxes,
coding¥?,, ..., U3, are copies of the program logic for key bits
(k1'k2") with random bits set to 00, 01, 10, and 11, respectively.
The formula checks for security against first-order DPAGkisa—
whether there exist two sets of keyd (k2andk1’ k2') under which
the distributions of differs from each other by more thaxy, .

4.2 Checking the Fan-in AST Nodes Incrementally

Since the SMT formula size is linear in the size of the program
but exponential in the number of random variables, it maybec
a bottleneck if the program uses a large numbef random bits.
To avoid the potential performance problem, we propose a®@in
mental algorithm, which applies the SMT based analysis tmly
small code regions of the program as opposed to the entirsfan
cone of each intermediate computation result. This is afudor
scaling our method to code of practical complexity.

Our incremental algorithm can be illustrated by Figure 4exeh
the output ofmask(x,k,r)is masked again with the new random
variable r,.,, before it is demasked from the old random vari-

scheme [4] is used to make the power consumption independentypie . Before verifyingmask2 if we have already proved that

from the values ok1 andk2. The corresponding demasking func-
tion (not shown in the figure) isb (r1&r2). Therefore, demasking
would produce the desired val@e1&k2).

Our method will determine if all intermediate variables bét
program have a masking strengthen higher thgp,,. Let ® de-
note the SMT formula to be created for checking the interatedi
result!(z, k,r). Let s be the number of random bits in Our en-
coding method ensures thatis satisfiable if and only if violates
the QMS requirement. Therefore, we defibas follows:

25 -1 2%—-1
P = (/\ w;) A < A\ x%) A Whoi AV gum AV g
=0

=0

I is perfectly maskedandr ..., is @ new random variable not used
elsewhere (not in computing;), then for the purpose of checking
mask2 we can substituté, with a new random variableg.mmy
while verifying mask2

Due toassociativityof the & operator, reordering the masking
and demasking operations would not change the logicaltreé=oi
example, in Figure 4, the instruction being analyzed isask2()
Since random variable,.., is not used insidenask()or de-mask()
or in the support of’3, we can replace the entire fan-in conelef
by a new random variable;,mm, While verifying mask2()

The effectiveness of our incremental algorithm relies anfti-
lowing observation. In practice, a common used strateginipte-
menting randomization based countermeasures is to haaraat
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Figure 4: Incremental applying the SMT based analysis onlyd
small fan-in region (assumer,.., is not in the support of I3).

modules, where the inputs of each module are masked befere ex
ecuting its logic, and are demasked afterward. To avoidriggain
unmasked intermediate value, the inputs to the successduleo
are masked with fresh random variables, before they are sieda
from the random variables of the previous module. We shalise
the experimental results section that such optimizatigeodpni-

ties are abundant in real applications.

4.3 Estimating the QMS of a Given Program

Given a program, we can estimate the QMS of all the interme-
diate computation results by iteratively invoking our SMaskd
verification procedure as a subroutine. We start wth,s = 1.0,
and check whether the program satisfies this QMS requirentfent
the answer is no, then we decreasg,,s and check again. We
stop as soon as the program satisfies the QMS requiremeritaiAt t
moment, the value fo\,,,, is the estimated QMS of the given
program. Algorithm 1 shows the overall flow of our iterativep
cedure. To make it efficient, we have used the binary search.

Algorithm 1 Iteratively computing the QMS of a given program.
1. comPUTEQMS (Prog){

20 Ajpyw + 0.00

3! Apign « 1.00

4: while ( Alow S Ahigh ) {

5: An‘uﬂd <~ (Alow + Ahﬂigh)/Q'O

6: if (CHECKQMS( Prog,A,,,;4) = SAT)
7 Alow  Apmia +0.01;

8: else

9: Apigh + Apign — 0.01;

10: 3

11:  return Ajpw
12}

It is worth pointing out that in this work, we focus on verifig
implementations of cryptographic algorithms, as opposealrbi-
trary software applications. The program under verificatigpi-
cally does not have input-dependent control flow, meaniag e
can easily remove all the loops and function calls from thaeags-
ing standard loop unrolling and function inlining techrégu Fur-
thermore, the program can be transformed into a branchréee
resentation, where the if-else branches are merged. ¥isalce
all program variables are bounded integers, we can coreprb-
gram to a purely Boolean program through bit-blasting. €fae,
in this paper, our static code analysis method is concerrigd w
only the bit-level representation of a branch-free program

5. MEASUREMENT ON REAL DEVICES

To check if QMS reflects the masking strength of a software,
we conducted a set of side-channel attacks on implemensatib
countermeasures for MAC-Keccak, AES, and a few other crypto
graphic algorithms. We ran all software code on a 32-bit bher
laze processor [24] built on a Xilinx Spartan-3e FPGA (FéeghyJ.

To measure the power consumption of the processor core, &gk us

PC

T

Embedded Computing HW

usB

 Cryptographic SW_ | E:i)phertext
] ()

Key |
= enc(x,k)

Oscilloscope

Plaintext
)

QO

Power

—

Time

Current
sensor

Figure 5: The side-channel attack measurement system setup

a Tektronix DPO 3034 oscilloscope and a CT-2 current probe to
sample the power consumption of the FPGA. The side-chartnel a
tack was conducted using differential power analysis ¢déffice of
means [12]). To limit the effect of measurement noise, wiectéd
eachtrace after running the same software code 128 times and us-
ing the oscilloscope to calculate the average. Here, a tedees to

a set of samples taken during the execution of the software.

We used DPA to determine whether a key guess was correct.
Recall that DPA relies on the observation that power consiamp
variations correlate to the values of the sensitive bitadpenanip-
ulated. Using the same input vector stream of plaintext aken
measured traces, we compute the value of the sensitivebie@ea-
suming that the secret key was one of the key guesses. Fobdn
key, there would b@" key guesses. For each key guess, we divide
the set of measurement traces into two bins, one for all theise
tive values of logic 0, and one for all the sensitive value$ogfc
1. Then we compute the difference of means between those two
bins, for each key guess. We select the key guess that raghk i
maximum difference.

We have conducted three sets of experiments. Table 1 shews th
statistics of the benchmarks, including the name of the narng
a short description, the lines of code, the number of contioumta
nodes, as well as the numbers of key bits, plaintext bits,rand
dom bits. The first two sets consist of various versions oM’¢-
Keccak and ASE implementations [3, 17, 21, 5] with gradudéy
grading QMS values. We measured the average number of traces
needed to determine the secret key. In the third set of exgeis,
we used a set of recently published software countermeagyre
11, 15, 10, 4], with fixed QMS values, and measured the average
number of traces needed to determine the secret key.

Figure 6 shows our results on the SHA3 benchmark. iHagis
is the QMS value, while thg-axis is the measured average num-
ber of traces needed to determine the secret key. Noticehbat
y-axis is in logarithmic scale. In addition to the measurethda
we have plotted an empirical approximation rule (dottedveur
to estimate the measured data. We can see that when the QMS
value approaches 1.0, the number of traces needed to deéermi
the secret key will approach infinity. This is as expectedabse
QMS=1.0 means that the code is perfectly masked — since there
is no information leakage, the implementation is provalgguse.
However, when the QMS value deviates from 1.0 slightly, then
ber of traces needed to determine the secret key dropsadlhsti
— QMS=0.90 corresponds to around 100 DPA traces. Overall, th
side-channel resistance, as measured by the number of raeded
to determine the secret key, is exponentially dependentM8.Q

Figure 7 shows our results on the AES benchmark. Here, the
measured data are similar to those in Figure 6. Furthernvege,
note that the approximate empirical formula computed torege
the number of required DPA traces has the following relatidth
the QMS value:]\.ftmce = “TQEMS)T wherec. : 2.2 for these
two sets of experiments. In generals an empirical constant that
ultimately will be decided by the actual hardware and mezment
set-up. We shall leave the investigation of the theoretiaalire of
this constant to future work. What is important is that, allethe

~
~



Table 1: The statistics of masked software benchmarks used iour measurement based DPA attack experiments on real dewes.
Here, Key, Plain, and Rand represent the number of bits in the secrete key, plaintext, ad random variable, respectively.

Name Description Lines of Code | Intermediate Nodes | Key | Plain | Rand
SHA3 A series of masked MAC-Keccak with varying levels of mask{b@msed random 61 31 3 3 3
number generators from 0.01 to 0.5 to vary QMS from 0.0 to 1.0)
AES A series of masked AES with varying Tevels of masking (biasediom number 52 37 8 8 8
generators from 0.01 to 0.5 to vary QMS from 0.5 to 1.0)
P1 CHES13 Masked Key Whitening 79 a7 16 16 16
P2 CHES13 De-mask and then Mask 67 31 8 8 16
P3 CHES13 AES Shift Rows 21 21 2 2 2
P4 CHES13 Messerges Boolean to Arithmetic (bit0) 23 24 1 1 2
P5 CHES13 Goubin Boolean to Arithmetic (bitO) 27 60 1 1 2
P6 Logic Design for AES S-Box (1st implementation) 32 9 2 2 2
P7 Masked Chi function MAC-Keccak (1st implementation) 59 19 3 3 4
P8 Masked Chi function MAC-Keccak (2nd implementation) 60 19 3 3 4
P9 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 22 3 3 4
P10 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 22 3 3 4

T T T T
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Figure 6: DPA attacks on SHA3: plotting the number of traces Figure 7: DPA attacks on AES: plotting the number of traces
needed to determine the key with respect to the QMS value. needed to determine the key with respect to the QMS value.

6. EXPERIMENTAL RESULTS

) ) We have evaluated the efficiency of our new static code aisalys
Table 2: DPA attacks on P1-P10: showing the relation between  method for QMS estimation and checking in the context ofteela

QMS and the number of traces needed to determine the key. work. Our experimental evaluation was designed to answer th
[[Name] Node [ QMS [ Trace | Name| Node [ QMS [ Trace | following questions:
P1 n0ll | 0.00 | 2 P1 n012 [ 1.00 | T.0.
gg stlgélstz 8-88 g Eg rxznélstz 1'88 1-8- e Is it practical to compute the QMS of a C program through
P4 X®A3 | 000 | 2 P4 | AL®A3 | 1.00 | T.O. purely static code analysis? .
P5 X®R2 | 000 3 Ps | TIwR2 | 1.00 | TO. e Does the new method offer significant advantages over exist-
P6 no9 0.50 | 936 | P6 no7 1.00 | T.O. ing methods such &lueth[2]?
P7 n32 050 | 992 | P7 n35 1.00 | T.O.
P8 n02 0.50 | 587 || P8 n23 1.00 | T.O. Our benchmarks included a set of recently published masking-
P9 na7 050 | 255 | P9 n39 100 | T.O. termeasures [2, 5, 11, 15, 10, 4, 3, 17] whose statistics bega
P10 n47 | 050 | 426 || P10 n4g | 100 TO. shown in Table 1. All our experiments were obtained on a dgskt

computer with a 3.4 GHz Intel i7-2600 CPU, 3.3 GB RAM, and a
side-channel resistance is exponentially dependent on.QMS 32-bit Linux operating system.

Table 2 shows our results on the third set of benchmarks.,Here  Table 3 shows the results of applying our new method to com-
Columns 1 and 2 show the program name and the node to which wepute the QMS of a given software. Column 1 shows the name
have applied the DPA attack. Column 3 shows the QMS value com- of the software. Column 2 shows the number of internal nodes
puted statically for the software code. Column 4 shows thebar checked. Columns 3-6 show the QMS computed, including the
of traces needed to determine the secret key. T.O. nteéaad out minimal, maximal, local average, and global average. Cakimh
after 100,000 traces are measured. It is worth pointingvilegber- and 8 show the number of iterations and the total executioe.ti
formed second order analysis on P3-P5. Overall, we have@ise The number of iterations is for the combination of checkslbima
a similar exponential dependence between the number ofureghs  ternal nodes. Also, for P3-P5, we have applied second-@é&ér
traces and the QMS value. For example, when the QMS is 0.00 —following [2] as opposed to first-order DPA, so each node teenb
meaning that the node is not masked at all — we have found thatchecked against every other node of the program. The reshdtg
the secret key can be determined with merely a handful of DPA that our iterative method converged quickly in all cases.e bu
traces. When the QMS is 1.00 — meaning it is perfectly masked page limit, we omit the description of several pieces of ulsigl-

— the key cannot be determined within our time limit of 10@00 formation reported by our new method, e.g. which node in the p
traces. When the QMS is between 0.00 and 1.00, the number ofgram has the lowest QMS and therefore is the most vulnerable t
DPA traces closely follows the same empirical formula (evo side-channel attacks.

tial dependence on the QMS) that we have discovered edilier, Table 4 shows the results of applying our new method to check
with a slightly different value for constant whether a program satisfies a given QMS requirement. Foraomp



that the new static analysis method is effective in detgatiasking

Table 3: Statically computing the QMS of the C programs. flaws and is scalable to handle cryptographic software cbdeao-

[ Program ] QMS [ Performance | ; ; ;

[Name| nodes| Min | Max. [ Tocal Avg. | Global Avg.| Trers | Time | tical size. For future work, we plan to e>_<tend this methodan_die _
= T T 000 100 500 066 I 013 countermeasures that use other masking schemes such tgeaddi
p2 31 | 0.00 | 100 0.00 0.74 23| 041s masking, multiplicative masking, and RSA blinding. We atéan
P3 21 | 0.00 | 1.00 0.33 0.71 108 | 1.6s to leverage it in our incremental inductive synthesis frenord [8]

P4 24 | 0.00 | 1.00 0.17 0.93 151 | 1.7s to generate countermeasures automatically.

P5 60 | 0.00 | 1.00 0.17 0.97 367 | 3.1s

P6 9 0.50 | 1.00 0.50 0.83 11| 0.15s

P7 19 | 0.00 | 1.00 0.17 0.86 19| 0.17s REFERENCES

P8 19 | 0.50 | 1.00 0.50 0.92 20| 0.16s L )

P9 22 0.50 1.00 0.50 0.97 23| 0.18s [1] J. Balasch, B. GIer“ChS, _R. Verdult, L. Batina, and l.rVe
P10 22 | 050 | 1.00 0.50 097 23| 0.24s bauwhede. Power analysis of Atmel CryptoMemory - recov-

ison, we have re-implemented and evaluatedSteithalgorithm

of Bayraket al.[2] in our framework. Here, Columns 1 and 2 show
the program name and the number of nodes checked. Columns 3-
5 show the statistics dBleuth including whether it finds any un-
masked node, the number of unmasked nodes, and the totalexec
tion time. Columns 6-8 show the statistics of our new metiod,
cluding whether it finds any node that leaks side-channekima-
tion, the number of vulnerable nodes found, and the totadieien
time. In addition to the P1-P10 examples, we have experiadent
on a set of full-sized MAC-Keccak implementations [3] (PR16)

in order to compare the scalability of the two methods.

Table 4: Verifying a C program against the QMS requirement.
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