SMT-Based Verification of Software Countermeasures
against Side-Channel Attacks

Hassan Eldib, Chao Wang, and Patrick Schaumont

Department of ECE, Virginia Tech, Blacksburg, VA 24061, USA
Email: {hel di b, chaowang, schaum} @t . edu

Abstract. A common strategy for designing countermeasures agaifesichian-
nel attacks is using randomization techniques to removestistical depen-
dency between sensitive data and side-channel emissiomg\dr, this process
is both labor intensive and error prone, and currently glieea lack of automated
tools to formally access how secure a countermeasure tisalye propose the
first SMT solver based method for formally verifying the sétyuof a counter-
measures against such attacks. In addition to checkinghehtte sensitive data
aremaskedwe also check whether they aperfectly masked.e., whether the
joint distribution of anyd intermediate computation results is independent of the
secret key. We encode this verification problem into a sexfeguantifier-free
first-order logic formulas, whose satisfiability can be dedi by an off-the-shelf
SMT solver. We have implemented the new method in a tool basebe LLVM
compiler and the Yices SMT solver. Our experiments on rég@nbposed coun-
termeasures show that the method is both effective andesffifir practical use.

1 Introduction

Security analysis of the hardware and software systemsimgihted in embedded de-
vices is becoming increasingly important, since an adversay have physical access
to such devices and therefore can launch a whole new clasdestkannel attacks,
which utilize secondary information resulting from the extion of sensitive algo-
rithms on these devices. For example, the power consumpfiartypical embedded
device executing the instructiamp=t ext ¢key depends on the value of the secret
key [12]. This value can be reliably deduced using a statisticathod known aslif-
ferential power analysi$DPA [10, 19]). In recent years, many commercial systems in
the embedded space have shown weaknesses against sukh [dsat4, 1].

A common mitigation strategy against such attacks is usamglomization tech-
niques to remove the statistical dependency between ttstigerdata and the side-
channel information. This can be done in multiple ways. Baolmasking, for exam-
ple, uses an XOR operation of a random numbeith a sensitive variable to obtain
a masked (randomized) variabte, = a®r [1, 17]. Later, the sensitive variable can be
restored by a second XOR operation with the same random numpe> r = a. Other
randomization based countermeasures have used addikémo &, = a+r mod n),
multiplicative maskingd.,, = a * r mod n), and application-specific code transforma-
tions such as RSA blindingu(, = ar¢ mod N).

However, designing and implementing such side-channeatteomeasures are la-
bor intensive and error prone, and currently, there is a tddkrmal verification tools
to evaluate how secure a countermeasure really is. Softveanetermeasures are par-
ticularly challenging to design, since the source of theiimfation leakage is not the



cryptographic software but the microprocessor hardwaaé ¢ixecutes the software.
From the perspective of average software developers — wiyonmiaknow all the ar-
chitectural details of the device — it is difficult to predibe myriad possible ways in
which side-channel information may be leaked. Furthermiougs in implementation
can also break an otherwise secure countermeasure.

In this paper, we propose a new method for formally verifytimg security of mask-
ing countermeasures. Our method uses an SMT solver to chealy iintermediate
computation result of a software statistically dependshersensitive data. Since this is
a statistical property, it cannot be directly checked byvemtional formal verification
methods [5, 20, 21, 11]. Although in the literature, theresexsome work on tackling
the problem using type-based information flow analysistaphes [18], these methods
are often overly conservative, leading to the classificatibcountermeasures as secure
when they are not. In contrast, our method always returngitbeise result. Although
Bayraket al. [2] also used a constraint solver in their method, the amlgssignifi-
cantly less precise than ours. They check whether a vaiigtiaskedy some random
variable, but not whether it igerfectly masked.e., whether the probability distribution
is dependent on the sensitive data. To the best of our kngw|exdir method is the first
automated verification method that checks fierfect maskingThis is important be-
cause withorder-d perfect masking, an implementation is provably securersgainy
type oforder-d (and lower-order) power analysis attack [9].

Fig. 1 (left) illustrates the difference between naive aadgct masking. Hered is
the sensitive data,1 andr 2 are the random variables, aotl, 02, 03, ando4 are the
results of four different masking schemes. Assume thatalbbles are Boolean, we
can construct the truth table in Fig. 1 (right). Although, 02, 03 all seem to depend
on the values of the random variables andr 2, they are vulnerable to side-channel
attacks. To see why, consider the case wieis logical 1. In this case, we know for
sure thak is 1, regardless of the values of the random variables. &itpilwheno2 is
logical 0, we know for sure thatis 0. Althougho3 does notirectly leak the sensitive
information abouk as ino1 ando2, the masking is still not perfect. Whes is logical
1 (or 0), there is a 75% chance thais logical 1 (or 0). Therefore, an adversary may
launch a power analysis attack to deduce the value of

=

PR OQRRFEOOO.
(o]

POOQOOOOQ

ol
02
03
o4

k A (rl A r2)
k v (rl Ar2)
k @ (rl A r2)
k @ (rl & r2)

oo
R RO OO QX
RPOROQOFORF QN
il Lk =X=F= I
or KRRk oo
roorokrrof

Fig. 1. Masking exampleso1, 02, 03 are not perfectly masked, bo# is perfectly masked.

In contrastp4 is perfectly masketh that the output is statistically independent of
the sensitive data. Wheis logical 1 (or 0), there is 50% chance tlt is logical
1 (or 0). Therefore, it is provably secure against any firsteo power analysis attack,
where the adversary can observe one intermediate conguutasult. The example in
Fig. 1 also demonstrates a weakness of the method in [2]eSioaly checks whether
a variable is masked, but not whether its probability disttion depends on the key, it



would (falsely) classify all 061, 02, 03, 04 as secure. In contrast, our new method can
differentiateo4 from the other three, since onby is perfectly masked.

We have implemented our new method in a verification tool thasethe LLVM
compiler and the Yices SMT solver [6]. We encode the verificaproblem into a se-
ries of quantifier-free first-order logic formulas, whosésfability can be decided by
Yices. Our SMT encoding scheme is significantly differenbfirthe ones used by stan-
dard verification methods, because feefect maskingroperty checked by our tool is
statistical in nature. For comparison, we also implemetitednethod in [2] in our tool.
We have conducted experiments on a large set of recentiyopeaicountermeasures,
including the ones applied to AES and the MAC-Keccak refeeerode submitted to
Round 3 of NIST’'s SHA-3 competition. Our results show that ttew method is ef-
fective in detecting flaws in the masking implementatiornrtfrermore, the method is
scalable enough to handle programs of practical size angleoity.

The remainder of this paper is organized as follows. We éshahotation in Sec-
tion 2, before presenting our SMT based verification alpanitn Section 3. Then, we
illustrate the entire verification process using an exaripigection 4. We present our
incremental verification method in Section 5, which furtmproves the scalability of
our SMT-based method. We present our experimental resuection 6, and finally
give our conclusions in Section 7.

2 Preliminaries

In this section, we define the type of side-channel attacksidered in this paper and
review the notion operfect masking

Side-Channel Attacks Following the notation used by Blomet al. [4], we assume
that the program to be verified implements a function- enc(x, k), wherez is the
plaintext, & is the secret key, andis the ciphertext. Lef; (x, k,r), Is(z, k,r), ...,
I;(z,k,r) be the sequence of intermediate computation results irtkieléunction,
wherer is an s-bit random number in the domaif®, 1}¢. The purpose of using is
to make all intermediate results statistically independéthe secret keyk().

Whenenc(z, k) is a linear function in the Boolean domain, masking and deking
are straightforward. However, whenc(z, k) is a non-linear function, masking and de-
masking often require a complete redesign of the implentientaHowever, this manual
design process is both labor intensive and error prone, amdrtly, there is a lack of
automated tools to assess how secure a countermeasuyageall

We assume that an adversary knows the pair) of plaintext and ciphertext in
¢ + enc(z, k). For each paifz, ), the adversary also knows the joint distribution of at
mostd intermediate computation results(x, k, r), ..., I4(x, k,r), through access to
some aggregated quantity such as the power dissipatione\owthe adversary does
not have access tq which is produced by a true random number generator. The goa
of the adversary is to compute the secret kgy ih embedded computing, for instance,
these are realistic assumptions. In their seminal work hi€oet al. [10] demonstrated
thatford = 1 and2, the sensitive data can be reliably deduced using a statistiethod
known as differential power analysis (DPA).

Perfect Masking Given a pair(z, k) of plaintext and secret key for the function
enc(z, k), andd intermediate result$, (z, k,r), ..., Is(z, k,r), we useD, ,(R) to



denote the joint distribution afy, . . ., I; — while assuming that the bit random num-
berr is uniformly distributed in the domaifi0, 1}°. Following Bldmeret al. [4], we
do not put restrictions on the technical capability of aneadary. As long as there is
information leak, we consider the implementation to be etdible.

Definition 1. Given an implementation of functienc(x, k) and a set of intermediate
results{I;(x, k,r)}, we say that the implementation is ordéperfectly masked if, for
all d-tuples(Iy, ..., 1), we have

D, x(R) = D, x(R) forany two pairs(z, k) and(z, k) .

The notion ofperfect maskingised here is more accurate than seasitivity[2].
There, an intermediate result is considered tebesitivef (1) it depends on at least
onesecretinput and (2) it is independent of amgndominput. We have demonstrated
the difference between them using the example in Fig. 1, etero2, 03, o4 are all
insensitive but onlyo4 is perfectly maskedn general, if an intermediate result is per-
fectly masked, it is guaranteed to be insensitive. Howerinsensitive intermediate
result may not be perfectly masked.

To check for violations operfect maskingve need to decide whether there exists a
d-tuple (I, ...,I) such thatD, (R) # D, i (R) for some(x, k) and(z, k). Here,
the main challenge is to compuf; ;(R). We will present our solution in Section 3.

In this work, we focus on verifying security-critical pragns, e.g. those that im-
plement cryptographic algorithms, as opposed to arbitsafiware programs. (Our
method would be too expensive for verifying general-puepsaftware.) In general,
the class of programs that we consider here do not have thgpegndent control flow,
meaning that we can easily remove all the loops and functdia from the code using
standard loop unrolling and function inlining techniguesrthermore, the program can
be transformed into a branch-free representation, wherié-#ise branches are merged.
Finally, since all variables are bounded integers, we canexthe program to a purely
Boolean program through bit-blasting. Therefore, in thagpgr, we shall present our
new verification method on the bit-level representation bfanch-free program. Our
goal is to verify that all intermediate bits of the prograra perfectly masked.

3 SMT based Verification of Perfect Masking

We first illustrate the overall flow of our verification methosing the program in Fig. 2.
The program is a masked version©ot— (k1 A k2), wherek1 andk2 are two secret
keys,r1 andr2 are random variables with independent and uniform distiobuin
{0, 1}, andc is the computation result. The objective of masking is to endle power
consumption of the device executing this code independemt the values of the secret
keys. This masking scheme originated from Blomer et al. T4le return value: is
logically equivalent tqk1 A k2) @ (r1 A r2). The corresponding demasking function,
which is not shown in the figure, is® (r1 Ar2). Therefore, demasking would produce
aresult that is logically equivalent to the desired valkie A k2).

Our method will determine if all the intermediate variabddéshe program are per-
fectly masked. We use the Clang/LLVM compiler to parse thputrBoolean program
and construct the data-flow graph, where the root represeatsutput and the leaf
nodes represent the input bits. Each internal node repsetien result of a Boolean
operation of one of the following types: AND, OR, NOT, and XCFr the example



1: compute(bool ki, bool k2, bool ri, bool r2){
2: boolnl,n2,n3,n4,n5,n6,n7,n8, c;

3 nl =kl @ ri;

4 : n2 = k2 @ r2;

5: n3 = nl A n2;

6: nd = k2 @ r2;

7 nb = rl A né;

8: n6 = kil P ri;

9: n7 = r2 A n6é;

10 : n8 =nb @ nT7;
11: ¢ =n3@ns;
12: return c;

Fig. 2. Example: a program and its graphic representatipal¢notes XORA denotes AND).

in Fig. 2, our method starts by parsing the program and crgatgraph representation.
This is followed by traversing the graph in a topologicalerdrom the program inputs

(leaf nodes) to the return value (root node). For each iaternde, which represents
an intermediate result, we check whether it is perfectlykedsThe order in which we

check the internal nodes is as follows:, n2, n3, n4, n5,n6,n7,n8, and finally,c.

The Theory As the starting point, we mark all the plaintext bitsanas public, the
key bits ink as secret, and the mask bitsriras random. Then, for each intermediate
computation resulf(z, k, ) of the program, we check whether it is perfectly masked.
Following Definition 1, we formulate this check as a satigfigbproblem as follows:

Je. 3k, K. (27‘6{0,1}5[(557 k,r) # Yreqoy1(z, k/,r))

Here,z represents the plaintext bits,andx’ represent two different valuations of the
key bits, and- is the random number uniformly distributed in the domflin1 } ¢, where
s is the number of random bits. For any fixed k, k'),

- Yo,y 1 (z, k,r) is the number of satisfying assignments foz, &, ), and
- Yreqoy+ I (z, k', r) is the number of satisfying assignment g, &', r).

Assume that is uniformly distributed in the domaifo, 1}¢, the above summations
can be used to indicate the probabilities/obeing logical 1 under two different key
valuesk andk’.
If the above formula is satisfiable, there exists a plainteahd two different keys
(k, k') such that the distribution df(z, k, ) differs from the distribution of (z, &/, r).
In other words, some information of the secret key is leakedugh!, and therefore
we say that/ is not perfectly masked. If the above formula is unsatiséiatiien such
information leakage is not possible, and therefore we satyltls perfectly masked.
Another way to understand the above satisfiability problenoilook at the nega-
tion. Instead of checking theatisfiabilityof the formula above, we check thalidity
of the formula below:

Vo VE, k. (27‘6{0,1}5[(557 k,r) = Yreqoy1(2, k/,r))

If this formula is valid — meaning that it holds for all vali@is of z, k andk’ — then
we say thafl is perfectly masked.



The Encoding Let ¢ denote the SMT formula to be created for checking interntedia
resultl (x, k,r). Lets be the number of random bitsin Our encoding method ensures
that® is satisfiable if and only if is not perfectly masked. We defideas follows:

25 -1 2°5—-1
D = </\ Wg) A </\ W}Z/) /\WbQi /\g/sum /\Wdifj y

r=0 r=0
where the subformulas are defined as follows:

— Program logic (¥}): Each subformula@; encodes a copy of the functionality of
I(x, k,r), with the random variable set to a concrete value {0, ..., 2°— 1} and
the key set to valué or &’. All copies share the same plaintext variable

— Boolean-to-int (¥,5;): It encodes the conversion of the Boolean valued output of
I(z, k,r) to an integer (true becomes 1 and false becomes 0), so thattéyer
values can be summed up later to compufe , I(z, k, ).

— Sum-up-the-1s (¥,,,,,): It encodes the two summations of the logical 1s in the out-
puts of the2® program logic copies, one fdi(x, k, r) and the other fof (z, k', 7).

— Different sums (W4, ): It asserts that the two summations should have different
results.

i

‘ code checke# ‘ code checkec‘ ‘code checkeq ‘code checke(%
] SAT?
112

|
k1| k2 r1 r2 ki k2 rl1 r2 ki k2 2 k1 k2
0 0 0 1 10 11 @

i

‘ code checke# ‘ code checke# ‘code checkeq ‘code checke#

k1’ |k2'| r1| r2 k1" k2’ r1| r2 k1" k2’ r1| r2 k1" k2’ r1| r2
00 0 1 1 0 1 1

Fig. 3. SMT encoding for checking the statistical dependence ofigoub on secret datg1, £2).

Fig. 3 is a pictorial illustration of our SMT encoding for antérmediate result
I(k1,k2,7r1,r2), wherekl, k2 are the secret key bits and, »2 are two random bits.
Here, the first four boxes, encoding, ..., ¥}, are the four copies of the program
logic for key bits ¢1%2), with the random bits set to 00, 01, 10, and 11, respectively
The other four boxes, encoding,, ..., ¥}, are the four copies of the program logic
for key bits ¢1’k2’), with the random bits set to 00, 01, 10, and 11, respectiVdig
formula checks for security against first-order DPA attackshether there exist two
sets of keysK1 k2andk1’ k2") under which the distributions dfare different.



The Running Example Consider nodes8 in Fig. 2 as the node under verification. The
functionis definedas8 = (r1 & (k2 xor r2)) xor (r2 & (k1 xor r1)).The
SMT formula that our method generates — by instantiatihge to 00, 01, 10, and11 —

is the conjunction of all of the formulas listed below:

n8_1 = (0 & (k2 xor 0)) xor (0 & (k1 xor 0)) /1 four copies of I(k, r)
n8_2 = (0 & (k2 xor 1)) xor (1 & (k1 xor 0))

n8_3 = (1 & (k2 xor 0)) xor (0 & (k1 xor 1))

n8_4 = (1 & (k2 xor 1)) xor (1 & (k1 xor 1

n8_1" = (0 & (k2" xor 0)) xor (0 & (k1 xor 0)) /1 four copies of I(k',r)
n8_2'" = (0 & (k2" xor 1)) xor (1 & (k1" xor 0))

n8_3" = (1 & (k2" xor 0)) xor (0 & (k1 xor 1))

n8_4" = (1 & (k2 xor 1)) xor (1 & (k1" xor 1))

(C numk = 1) &n8_1) | ((nunml=0) & not n8_1 ) /'l convert bool to integer
(C nun2 = 1) &n8_2) | ((nunk=0) & not n8_2 )

(C nunB =1) &n8_3) | ((nunB=0) & not n8_3 )

(( num =1) &n8_4 ) | ((num=0) & not n8_4 )

((C numl” =1 ) &n8_1") | ((nunml’=0) & not n8_1") /1 convert bool to integer
(( nun2” =1) &n8_2") | ((nunk’ =0) & not n8_2")

(( nun8 =1) &n8_3") | ((nunB =0) & not n8_3")

(C numd =1) &n8_4") | ((numd =0) & not n8_4")

(numl + nun2 + nunB + numd) !'= (nunl’ + nunm?’ + nunB + numd’) /'l the check

We solve the conjunction of the above formulas using an fedfghelf SMT solver
called Yices [6]. In this particular example, the formula&isfiable. For example, one
of the satisfying assignmentskd4k2=00 andk1’ k2’ =01. We shall show in the next
section that, when the key bits are 00, the probability:#®to be logical 1 is 0%; but
when the key bits are 01, the probability is 50%. This makesliterable to first-order
DPA attacks. Thereforey8 is not perfectly masked.

High-Order Attacks For a masked code to be resistarfitst-orderdifferential power
analysis (DPA) attacks, all the intermediate results magidrfectly masked. However,
even if each intermediate result is perfectly masked, iiliswt sufficient to resishigh-
order DPA attacks, where an adversary can simultaneously obksakage from more
than one intermediate computation result. For a maskingraetio be resistant twder-

d DPA attacks, we need to ensure that the joint distributicengfd intermediate results
(whered = 2,3,...) is independent of the secret key. That is, for @nptermediate
results/y, ..., I4, we check the satisfiability of the following formula:

o3k, k. (Zreonye Dy Li(@, k1) # Sreqoye Sy Li(z, k', 1))

Our encoding can be easily extended to implement this newkchie practice, most

countermeasures assume that the adversary has accessitetivthannel leakage of
either one or two intermediate results, which correspondi#st-order and second-
order attacks. In our actual implementation, we handle fittiorder and second-order
attacks. In our experiments, we also evaluate our new metheerifying countermea-

sures against both first-order and second-order attacker@uih= 1 or 2).

4 The Working Example

Consider the automated verification of our running exampleg. 2. For each internal
nodel, we first identify all the transitive fan-in nodes bin the program to form aode

regionfor the subsequent SMT solver based analysis. In the wos#t, the extracted
code region should start from the instruction (node) to bdfied, and cover all the



transitive fan-in nodes on which it depends. Then, the etéthcode region is given
to our SMT based verification procedure, whose goal is tog@(ov disprove) that the
node is statistically independent of the secret key.

Following a topological order, our method starts with nadewhich is defined in
Line 3 of the program in Fig. 2. The extracted code region ste®fnl = k1 & r1
itself. Since it involves only one key and one random vagahlthe XOR operation,
a simple static analysis can prove that it is perfectly mdsKéerefore, although we
could have verified it using SMT, we skip it for efficiency reas. Such simple static
analysis is able to prove tha®, n4 andn6 are also perfectly masked.

Next, we check if23 is perfectly masked. The truth tablerat is shown in Fig. 4 (left).
In all four valuations of1 andk2, the probability ofn3 being logical 1 is 25%. There-
fore,n3 is perfectly masked. When we apply our SMT based method diversis not
able to find any satisfying assignment for and k2 under which the probability dis-
tributions ofn3 are different. Note that our method does not check the piibityadsf
the output being logical 0, since having an equal probagtdiistribution of logical 1 is
equivalent to having an equal probability distribution limgical 0.

kIk2r1Ir2[n3 kI1k2r1Ir2[n8 kIk2r1r2]c
0 0 0 00 0 0 0 0f0 0 0 0 0f0
0 0 0 110 0 0 0 110 0 0 0 110
0 0 1 0|0 0 0 1 0|0 0 0 1 0|0
001 1)1 0 0 1 110 00 1 111
01 0 O0f0 01 0 O0f0 0 1 0 O0fJ0
010 1|0 010 1|0 010 1|0
011 002 011 002 01 1 0|0
01 1 110 011 1)1 01 1 111
1 0 0 010 1 0 0 010 1 0 0 010
100 111 100 111 1 00 1|0
101 010 101 010 1 01 0|0
1 0 1 1]0 1 0 1 1]1 101 1]1
1 1 0 0|1 1 1 0 0|0 1 1 0 0|1
110 1]0 110 11 11011
111010 11101 11101
111 110 111 110 111 110

Fig. 4. The truth-tables for internal nodes), n8, andc of the example program in Fig. 2.

The verification steps for node$ andn7 are similar to that of,3 — all of them are
perfectly masked.

Next, we check iin8 is perfectly masked. The proof would fail because, as shown
in the truth table in Fig. 4 (middle), the probability fa8 to be logical 1 is not the same
under different valuations of the keys. For example, if tegkare00, thenn8 would
be 0 regardless of the values of the random variables. Recalvtbehave shown the
detailed SMT encoding for8 in Section 3. Using our method, the solver can quickly
find two configurations of the key bits (for exampl®,and11) under which the prob-
abilities ofn8 being logical 1 are different. Therefore§ is not perfectly masked.

The remaining node ig, whose truth table is shown in Fig. 4 (right). Similants,
our SMT based method will be able to show that it is not pelfanotaisked.

It is worth pointing out that the result of applying tBéeuthmethod [2] would have
been different. Althoughg8 andc are clearly vulnerable to first-order DPA attacks, the
Sleuthmethod, based on the notion sénsitivity would have classified them as “se-
curely masked.” This demonstrates a major advantage ofewmnmethod oveSleuth



5 The Incremental Verification Algorithm

Note that the size of the formula created by our SMT encodirijpear in the size of
the program and exponential in the number of random vaigabfers random bits, we
need to mak&s*! copies of the program logic. This is the main bottleneck faglging
our method to large programs. In this section, we propos@eminental verification
algorithm, which applies SMT solver based analysis onlyni@ls code regions — one
at a time — as opposed to the entire fan-in cone of the noder wediéication. This is
crucial for scaling the method up to programs of practicz si

Iy :=I; ® de-mask(z, k, )
1= Thew ® mask(z, k, ) ® de-mask(z, k, r)
= Tnew @ (.- )

e I3 Taummy I3 = Tdummy
Iy
+) |:‘> Before verifyingmask? if we have already
Tnew ‘ proved thatl is perfectly maskedandr,cq
x k r is a new random variable not used elsewhere,
then for the purpose of checkimgask2only,
we can substituté, with r,..,, while verify-
ks ing mask2

Fig. 5. Incremental verification: applying the SMT based analysia small fan-in region only.

Extracting the Verification Region In practice, a common strategy in implementing
randomization based countermeasures is to have a chainchfles where the inputs
of each module are masked before executing its logic, andlemasked afterward.
To avoid having an unmasked intermediate value, the inpute successor module
are masked with fresh random variables, before they are sieddrom the random
variables of the previous module. This can be illustratedh®y example in Fig. 5,
where the output afmask(x,k,rJs masked with the new random variablg., before it
is demasked from the old random variable

Due toassociativityof the @ operator, reordering the masking and demasking oper-
ations would not change the logical result. For examplejgn; the instruction being
verified is inmask2() Since the newly added random variablg,, is not used inside
mask()or de-mask()or in the support of 3, we can replace the entire fan-in cone of
I, by a new random variable;,,, (Or evenr,., itself) while verifying mask2()
We shall see in the experimental results section that supbrgynities are abundant in
real-world applications. Therefore, in this subsectioa,present a sound algorithm for
extracting a small code region from the fan-in cone of theenaader verification.

Our algorithm relies on some auxiliary data structures @ased with the current
node: under verificationsupportV[i], uniqueM[i] andperfectMi].

— supportV[i]is the set of inputs in the support of the function of nede
— unigueM][i] is the set of random inputs that each reachasng only one path.



— perfectM][i] is a subset ofiniqueM[i] where each random variable, by itself, guar-
antees that nodeis perfectly masked.

These tables can be computed by a traversal of the prograesasdiescribed in Algo-
rithm 1. For example, for nodg in Fig. 5,supportV[l1|= {x, k, 7, 7pew }, UniqueM[l;] =
{7, rnew }» andperfectM[l1]1= {r,e. }, @ssuming- is not repeated in the mask block.
For nodel,, we havesupportVll;]1= {z, k, 7, Thew }, uniqueM[s]= {7 }, Sincer
reached, twice and so may have been de-masked,@ertectM[l2] = {7cw }-

Algorithm 1 Computing the auxiliary tables for all internal nodes of pinegram.

supportV[i]+ { v } for each input node i with variable v

2: uniqueM[i] +— { v } for each input node i with random mask variable v
3: perfectM[i]+ { v } for each input node i with random mask variable v
4: for each (internal node i in a leaf-to-root topological ordér)

5: L+« LEFTCHILD(i)

6.
7
8

=

R+ RIGHTCHILD (i)
supportV[i]«+ supportV[L] U supportV[R]
©uniqueM<— (uniqueM[L] U uniqueM[R])\ (supportV[L] N supportV[R])
9: if (iis an XOR node)
10: perfectM[i]< uniqueM[i] N (perfectM[L]uperfectM[R])
11: else
12: perfectM[i]« { }
13: }

Algorithm 2 Extracting a code region for noddor the subsequent SMT based analysis.

1: GETREGION (n, uniqueMATi){
if (nis an input node with variable v)
region.add— (n, v)
else if(3 random variable £ perfectM[n] N uniqueMATi)
region.add— (n, r)
else
region.add— (n, {})
region.add— GETREGION(n.Left, uniqueMATi)
region.add— GETREGION(n.Right, uniqueMATi)
return region

EooNouswn

11: }

Our idea of extracting a small code region for SMT based amalg formalized in
Algorithm 2. Given the nodeé under verification, andniqueM][i] as the set of random
variables that each reachealong only one path, we call & ReGION(i,uniqueM[i])
to compute the region. InsideEBREGION, uniqueM[i] is renamed tdreshMasksATi
More specifically, we start by checking each transitiveifaneden of the current node
. If nis a leaf node (Line 2), then we addand the input variable to the region. If
n is not a leaf node, we check if there is a random variableuniqueMATithat, by
itself, can perfectly mask node(Line 4). In Fig. 5, for examples,,..,, by itself, can

10



uniformly mask nodds. If such random variable exists, then we add pairn, r) to
the region and return — skipping the entire fan-in cone.ddtherwise, we recursively
invoke GETREGION to traverse the two child nodes of

The Overall Algorithm  Algorithm 3 shows the overall flow of our incremental verifi-
cation method. Given the program and the lists of secredaarand plaintext variables,
our method systematically scans through all the interndesdrom the inputs to the
return value. For each nodeour method first extracts a small code region (Line 4).
Then, we invoke the SMT based analysis. If the node is noeplyfmasked, we add it
to the list ofbadnodes.

Algorithm 3 Incremental verification of perfect masking.

1: VERIFYPERFECTMASKING (Prog, keys, rands, plaing)
badNodes— { }
for each (internal node i Prog in a topological order{)
region<— GETREGION(i, uniqueM][i])
notPerfeck— CHECKMASKINGBY SMT (i, region, keys, rands, plains )
if (notPerfect)
badNodes.add( i)

return badNodes

}

EooNouswn

To optimize the performance of Algorithm 3, we conduct a dergiatic analysis
between Line 4 and Line 5 to quickly check whether it is fulitio invoke the SMT
solver. The first one checks if the region contains any séexe, if not then the solver
is not invoked and the instruction is perfectly masked. T#eoad analysis checks some
syntactic conditions — if all of these conditions are safthe current nodeis guar-
anteed to be perfectly masked. In such case, we also avalimythe SMT solver.
The implemented syntactic conditions are listed as follows

— The instruction has no secret input as its child. This guaemthat when a secret
variable is introduced, its masking operation will be vexfi

— None of the random variables appears in both operandi®ortV tables. This
guarantees that no perfectly masking of a secret variabéynof the operands
may be affected.

— Both operands are perfectly masked. This guarantees tolfithet aesultant imper-
fect masked instructions due to an initial imperfectly neslastruction.

To further optimize the performance of Algorithm 3, we implent a method for
identifying random variables that aden’t caresfor the node under verification, and
use the information to reduce the cost of the SMT based asalsor to the SMT
encoding, for each random variablecsupportV[il, we check if the value of can
ever affect the output of If the answer is no, thenis adon’t care During our SMT
encoding, we will set to logical O rather than treatas a random variable, to to reduce
the size of the SMT formula. This can lead to a significant@enfince improvement
since the formula size is exponential in the number of relex@ndom variables.

11



We check whether € support[i] is adon’t carefor nodei by constructing a SAT
formula and solving it using the SMT solver. The SAT formdalefined as follows:
wr=0 A=l AN Wgigo

region region
wherew; =0 encodes the program logic of the region, with the randomr lsiet to
0, ¥/l encodes the program logic of the region, with the randon Isiet to 1,
and® 0 asserts that the outputs of these two copies differ. If trevalformula is
unsatisfiable, thenis adon’t carefor nodes.

6 Experiments

We have implemented our method in a verification tool caB&iSnifferbased on the
LLVM compiler and the Yices SMT solver [6]. It runs in two maglemonolithic and
incremental. The monolithic mode applies our SMT based dingdo the entire fan-in
cone of each node in the program, whereas the incrementhbohétes to restrict the
SMT encoding to a localized region. In addition, we impleteertheSleuthmethod [2]
for experimental comparison. The main difference is thatroathod not only checks
whether a node is masked (asSteuth, but also checks whether it is perfectly masked,
i.e. it is statistically independent of the secret key.

We have evaluated our tool on some recently proposed conessures. Our ex-
periments were designed to answer the following researektpns:

— How effective is our new method? We know that in theory, the nethod is more
accurate than th8leuthmethod. But does it have a significant advantage over the
Sleuthmethod in practice?

— How scalable is our new method, especially in verifying agtions of realistic
code size and complexity? We have extended our SMT basedcheiith incre-
mental verification. Is it effective in practice?

Table 1 shows the statistics of the benchmarks. Column 1 slttesvname of each
benchmark example. Column 2 shows a short description ofntiplemented algo-
rithm. Column 3 shows the number of lines of code — here, eastnuction is a bit
level operation. Column 4 shows the number of nodes thaeseptt the intermediate
computation results. Columns 5-7 show the number of indgatthat are the secret key,
the plaintext, and the random variable, respectively.

The benchmarks are classified into three groups. The firsipgobtest cases (P1 to
P5) are taken from th8leuthbenchmark [2], all of which contain intermediate variables
that are not masked at all. More specifically, P1 is the magskay whitening code on
Page 12 of th&leuthpaper. P2 is the AES8 example, a smart card implementation of
AES resistant to power analysis, originated from Hewgisal. [8]. P3 is the code on
Page 13 of the&Sleuthpaper, also originated from Herbst al. [8]. P4 is the code on
Page 18 of th&leuthpaper, originated from Messerges [13]. P5 is the code on Page
of the Sleuthpaper, originated from Goubin [7].

The second group of test cases (P6 to P11) are examples whstefthe interme-
diate variables are masked, but none of the masking schenpesfect. P6 and P7 are
the two examples used by Blometral.[4] (on Page 7). P8 and P9 are the SHA3 MAC-
Keccak computation reordered examples, originated fronoBeet al.[3] (Eg. 5.2 on

12



Page 46). P10 and P11 are two experimental masking schemtae fGhi function in
SHAS, none of which is perfectly masked.

The third group of test cases (P12 to P17) comes from the esgtéon of MAC-
Keccak reference code submission to NIST in the SHA-3 contipe{15]. There are a
total of 285k lines of Boolean operation code. The diffeeamong these test cases is
that they are protected by various countermeasures, sowlgcti are perfectly masked
(e.g. P12) whereas others are not.

Table 1. The benchmark statistics: in addition to the program nantkaashort description, we
show the total lines of code, the numbers of intermediates@ad the various inputs.

[ Name] Description [ Code Size] Nodes] Keys [ Plains| Rands]
P1 CHES13 Masked Key Whitening 79 47 16 16 16
P2 CHES13 De-mask and then Mask 67 31 8 0 16
P3 CHES13 AES Shift Rows [2nd-order] 21 21 2 0 2
P4 CHES13 Messerges Boolean to Arithmetic (bitO) [2-order 23 24 1 0 2
P5 CHES13 Goubin Boolean to Arithmetic (bit0) [2-order] 27 60 1 0 2
P6 Logic Design for AES S-Box (1st implementation) 32 9 2 0 2
P7 Logic Design for AES S-Box (2nd implementation) 40 6 2 0 3
P8 Masked Chi function MAC-Keccak (1st implementation) 59 19 3 0 4
P9 Masked Chi function MAC-Keccak (2nd implementation) 60 19 3 0 4
P10 | Syn. Masked Chi func MAC-Keccak (1st implementation) 66 22 3 0 4
P11 | Syn. Masked Chi func MAC-Keccak (2nd implementation 66 22 3 0 4
P12 | MAC-Keccak 512b Perfect masked 285k 128k | 288 | 288 | 805
P13 | MAC-Keccak 512b De-mask and then mask — compiler efror 285k 128k | 288 | 288 805
P14 | MAC-Keccak 512b Not-perfect Masking of Chi function (v{L) 285k 128k | 288 | 288 | 805
P15 | MAC-Keccak 512b Not-perfect Masking of Chi function (vR) 285k 152k | 288 | 288 805
P16 | MAC-Keccak 512b Not-perfect Masking of Chi function (v3) 285k 128k | 288 | 288 805
P17 | MAC-Keccak 512b Unmasking of Pi function 285k 131k | 288 | 288 | 805

Table 2 shows the experimental results run on a machine witd &Hz Intel i7-
2600 CPU, 4 GB RAM, and a 32-bit Linux OS. We have compared gréopmance
of three methodsSleuth New (monolithic), and New (incremental). Het®leuthis
the method proposed by Bayrak al. [2], while the other two are our own method.
In this table, Column 1 shows the name of each test progratun@e 2-5 show the
results of runningsleuth including whether the program passed the check, the number
of nodes failed the check, and the total number of nodes etk €olumns 6-9 show the
results of running our new monolithic method. Harem out means that the method
requires more than 4 GB of RAM. Columns 10-14 show the resdiltanning our new
incremental method. Here, we also show the number of SMTdoasesking checks
made, which is often much smaller than the number of nodeskelde because many
of them are resolved by our static analysis.

First, the results show that our new algorithm is more adeut@anSleuthin de-
ciding whether a node is securely masked. Every node tHatlfthie security check of
Sleuthwould also fail the security check of our new method. Howgtreare are many
nodes that passed the check3¥¢uth but failed the check of our new method. These
are the nodes that are masked, but their probability digtohs are still dependent on
the sensitive inputs — in other words, they are not perfendgked.

Second, the results show that our incremental method idis@mtly more scalable
than the monolithic method. On the first two groups of tesesawhere the programs
are small, both methods can complete, and the differenamitime is small. However,
on large programs such as the Keccak reference code, thdithammethod could not

13



Table 2. Experimental results: comparing o8€ Sniffermethod with theSleuthmethod [2].

Name| Sleuth [2] SC Sniffer (monolithic) SC Sniffer (incremental)
maskedinode$ nodes time/maskednode$ nodes time|maskednode$ nodes] SMT time
TfailechhecketL perfecjﬂf-‘ailechhecke(L perfecjifjailechheckeJi mask
P1 No 16 a7 0.165 No 16 47 0.223 No 16 47 16 0.09s
P2 No 8 31 0.213 No 8 31 0.203 No 8 31 8 0.09s
P3 No 9 21 1.178 No 9 21 1.273 No 9 21 18 0.46s
P4 No 2 24 0.583 No 2 24 0.658 No 2 24 8 0.57s
P5 No 2 60 1.193 No 2 60 1.403 No 2 60 20 1.12s
P6 Yes 0 9 0.06s No 2 9 0.10s No 2 9 2 0.08s
P7 Yes 0 6 0.04s No 1 6 0.07s No 1 6 1 0.03s
P8 No 1 19 0.158 No 3 19 0.26s No 3 19 3 0.11s
P9 Yes 0 19 0.133 No 2 19 0.273 No 2 19 2 0.10s
P10 Yes 0 22 0.183 No 1 22 0.323 No 1 22 2 0.14s
P11 Yes 0 22 0.203 No 1 22 0.373 No 1 22 3 0.18s
P12 Yes 0 128k | 91m53s - 0 34 | mem-out Yes 0 | 128K 0 | 10m48s
P13 No |2560| 128k | 92m59s No 1 46 | mem-out No |[2560| 128K | 2560 | 14m10s
P14 Yes 0 128k | 97m38s - 0 31 |mem-out No |1024| 128K | 1024 | 18m20s
P15 Yes 0 152k |132m10: - 0 32 |mem-out No | 512| 152K | 1024 | 37m37s
P16 No | 512| 128k |113m12s - 0 40 |mem-out No |1536| 128K | 1536| 17m24s
P17 No |4096| 131k |103m56s - 0 34 | mem-out No [4096| 131K | 4096 | 17m35s

finish since it quickly ran out of the 4 GB RAM, whereas the araental method can
finish in a reasonable amount of time. Moreover, althoughSteeithmethod imple-
ments a significantly simpler (and hence weaker) checkaisis based on a monolithic
verification approach. Our results in Table 2 show that, ogela@xamples, our incre-
mental method is significantly faster th&feuth

As a measurement of the scalability of the,,
algorithms, we have conducted experiments —m—ches13
on a 1-bit version of test program P1 for 1 to'” om0
10 encryption rounds. In each parameterized, e
version, the input for each round is the output
from the previous round. We ran the experi- '
ment twice, once with an unmasked instruc-o:
tion in each round, and once with all instruc-
tions perfectly masked. The results of thetwé™: = =+ s & 7 & s
experiments are almost identical, and there-
fore, we only plot the result for the perfectly masked varsim the right figure, the
x-axis shows the program size, and hraxis shows the verification time in seconds.
Among the three methods, our incremental method is the noakilse.

7 Conclusions

We have presented the first fully automated method for fdsmedrifying whether a
software implementation iperfectly maskedby uniformly random inputs, and there-
fore is secure against power analysis based side-chartaeksit Our new method re-
lies on translating the verification problem into a set of stoaint solving problems,
which can be decided by off-the-shelf solvers such as YiMéshave also presented
an incremental checking procedure to drastically imprdneedcalability of the SMT
based algorithm. We have conducted experiments on a latgd secently proposed
countermeasures. Our results show that the new method @nhommore precise than
existing methods, but also scalable for practical use.

14



Acknowledgments

This work is supported in part by the NSF grant CNS-1128908 the ONR grant
N00014-13-1-0527.

References

1. J. Balasch, B. Gierlichs, R. Verdult, L. Batina, and |.h&uwhede. Power analysis of Atmel
CryptoMemory - recovering keys from secure EEPROMSCTARRSA pages 19-34, 2012.

2. A.Bayrak, F. Regazzoni, D. Novo, and P. lenne. Sleuthofatted verification of software
power analysis countermeasuresChyptographic Hardware and Embedded Syste204 3.

3. G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. &t.Ki€eccak implementation
overview. URL: http://keccak.neokeon.org/Keccak-inmpémtation-3.2.pdf.

4. J. Blomer, J. Guajardo, and V. Krummel. Provably secuaskimg of AES. InSelected
Areas in Cryptographypages 69-83, 2004.

5. E. M. Clarke, O. Grumberg, and D. A. Pelédodel CheckingMIT Press, Cambridge, MA,
1999.

6. B. Dutertre and L. de Moura. A fast linear-arithmetic golfor DPLL(T). InInternational
Conference on Computer Aided Verificatipages 81-94. Springer, 2006.

7. L. Goubin. A sound method for switching between booleath arthmetic masking. In
Cryptographic Hardware and Embedded Systepagies 3—15, 2001.

8. C. Herbst, E. Oswald, and S. Mangard. An AES smart cardamehtation resistant to
power analysis attacks. IMCNS pages 239-252, 2006.

9. M. Joye, P. Paillier, and B. Schoenmakers. On second-ditferential power analysis. In
Cryptographic Hardware and Embedded Systepagies 293—-308, 2005.

10. P. C. Kocher, J. Jaffe, and B. Jun. Differential powelyais In Advances in Cryptology —
CRYPTO’99pages 388-397, 1999.

11. B.Li, C. Wang, and F. Somenzi. A satisfiability-basedrapph to abstraction refinement in
model checkingElectronic Notes in Theoretical Computer Scier8@(4), 2003.

12. S. Mangard, E. Oswald, and T. PopPower Analysis Attacks - Revealing the Secrets of
Smart Cards Springer, 2007.

13. T. S. Messerges. Securing the AES finalists against pamadysis attacks. IRast Software
Encryption pages 150-164, 2000.

14. A. Moradi, A. Barenghi, T. Kasper, and C. Paar. On the endhility of FPGA bitstream
encryption against power analysis attacks: Extracting Keym Xilinx Virtex-1l FPGAs. In
ACM Conference on Computer and Communications Secpatyes 111-124, 2011.

15. NIST. Keccak reference code submission to NIST's SHABgetition (Round 3). URL:
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/dents/KeccalFinalRnd.zip.

16. C. Paar, T. Eisenbarth, M. Kasper, T. Kasper, and A. Moratelog and side-channel
analysis-evolution of an attack. FDTC, pages 65-69, 2009.

17. E. Prouff and M. Rivain. Masking against side-channigciss: A formal security proof. In
Advances in Cryptology — EUROCRYPT 20p8ges 142-159. Springer, 2013.

18. A. Sabelfeld and A. C. Myers. Language-based informaflion security.|IEEE Journal on
Selected Areas in Communicatio24(1):5-19, 2003.

19. M. Taha and P. Schaumont. Differential power analysiglA€-Keccak at any key-length.
In IWSEG 2013.

20. C. Wang, G. D. Hachhtel, and F. Somen&bstraction Refinement for Large Scale Model
Checking Springer, 2006.

21. Z. Yang, C. Wang, F. lvanci¢, and A. Gupta. Mixed synbokpresentations for model
checking software programs. Formal Methods and Models for Codesjgrages 17-24,
July 2006.

15



