
11

Formal Verification of Software Countermeasures against
Side-Channel Attacks

HASSAN ELDIB, CHAO WANG, and PATRICK SCHAUMONT, Virginia Polytechnic Institute
and State University

A common strategy for designing countermeasures against power-analysis-based side-channel attacks is
using random masking techniques to remove the statistical dependency between sensitive data and side-
channel emissions. However, this process is both labor intensive and error prone and, currently, there is a
lack of automated tools to formally assess how secure a countermeasure really is. We propose the first SMT-
solver-based method for formally verifying the security of a masking countermeasure against such attacks.
In addition to checking whether the sensitive data are masked by random variables, we also check whether
they are perfectly masked, that is, whether the intermediate computation results in the implementation of
a cryptographic algorithm are independent of the secret key. We encode this verification problem using a
series of quantifier-free first-order logic formulas, whose satisfiability can be decided by an off-the-shelf SMT
solver. We have implemented the proposed method in a software verification tool based on the LLVM compiler
frontend and the Yices SMT solver. Our experiments on a set of recently proposed masking countermeasures
for cryptographic algorithms such as AES and MAC-Keccak show the method is both effective in detecting
power side-channel leaks and scalable for practical use.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs; D.4.6
[Operating Systems]: Security and Protection

General Terms: Verification, Security

Additional Key Words and Phrases: Side-channel attack, differential power analysis, countermeasure, perfect
masking, satisfiability modulo theory (SMT), cryptographic software, AES, MAC-Keccak

ACM Reference Format:
Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014. Formal verification of software countermeasures
against side-channel attacks. ACM Trans. Softw. Eng. Methodol. 24, 2, Article 11 (December 2014), 24 pages.
DOI: http://dx.doi.org/10.1145/2685616

1. INTRODUCTION

Security analysis of the hardware and software systems implemented in embedded
computing devices is becoming increasingly important, since an adversary may have
physical access to such devices and therefore can launch a whole new class of side-
channel attacks that utilize secondary information resulting from the execution of
sensitive algorithms on these devices. For example, the power consumption of an
embedded device such as the SmartCard executing the instruction tmp=text⊕key

This article extends and generalizes the results presented in Eldib et al. [2014a]. It contains a more detailed
description of the algorithm for handling high-order attacks, additional data in the experimental results,
and a more detailed review of the related work.
This work was primarily supported by the NSF under grant CNS-1128903 for H. Eldib. Partial support was
provided by the ONR under grant N00014-13-1-0527 for C. Wang.
Authors’ addresses: H. Eldib, C. Wang (corresponding author), P. Schaumont, Department of Electrical and
Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; email:
chaowang@vt.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 1049-331X/2014/12-ART11 $15.00

DOI: http://dx.doi.org/10.1145/2685616

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:2 H. Eldib et al.

depends on the value of the secret key [Mangard et al. 2007]. This value can be reliably
deduced using a statistical method known as differential power analysis (DPA) [Kocher
et al. 1999]. In recent years, commercial systems in the embedded computing space have
shown weaknesses against such power-analysis-based side-channel attacks [Paar et al.
2009; Moradi et al. 2011a; Balasch et al. 2012].

A common mitigation strategy against such attacks is masking, which is a
randomization-based technique for removing the statistical dependency between the
sensitive data and the side-channel emission. This can be done in multiple ways. For
example, Boolean masking uses an XOR operation of a random number r with a sen-
sitive variable a to obtain a masked (randomized) variable am = a ⊕ r [Chari et al.
1999; Balasch et al. 2012; Prouff and Rivain 2013]. Later, the sensitive variable can be
restored by a second XOR operation with the same random number am ⊕ r = a, thanks
to the inherent property of the XOR operation. Other randomization-based counter-
measures have used additive masking (am = a + r mod n), multiplicative masking
(am = a ∗ r mod n), and application-specific code transformations such as RSA blinding
(am = are mod N).

However, manually designing, implementing, and verifying such countermeasures
are labor intensive and error prone and, currently, there is a lack of automated ver-
ification tools to evaluate how secure a countermeasure really is. Software counter-
measures are particularly challenging to design, since the source of the information
leakage is not the cryptographic software code but rather side channels of the mi-
croprocessor hardware that executes the software. From the perspective of average
software developers—who may not know all the physical and architectural details of
the embedded computing device—it is difficult to predict the myriad possible ways in
which side-channel information may be leaked. Furthermore, bugs in implementation
can also break an otherwise secure masking countermeasure.

In this article, we propose a new method for formally verifying the security of masking
countermeasures. Our method uses an SMT solver to check whether any intermediate
computation result of the software code statistically depends on the sensitive data.
Since the security of the countermeasure against power analysis attacks is a statistical
property, the problem cannot be solved by conventional techniques such as symbolic
model checking based on Binary Decision Diagrams (BDDs) and satisfiability (SAT)
solvers [Clarke et al. 1999; Wang et al. 2006, 2007; Yang et al. 2009]. Although there
is a large body of work on language/type-based information flow analysis [Agat 2000;
Sabelfeld and Myers 2003] in the literature, these methods are geared toward detecting
information leakage in the standard computation flows as opposed to the power side
channels, and therefore may lead to the classification of countermeasures as secure
when they actually are not. In contrast, our new method always returns the precise
result.

Bayrak et al. [2013] recently proposed a constraint-solver-based method for verifying
masking countermeasures. However, their analysis is significantly less precise than
ours, since they only check whether an intermediate computation result is masked by
some random variables but do not check whether it is perfectly masked, that is, whether
the result is statistically dependent on sensitive data. To the best of our knowledge,
our method is the first SMT-solver-based fully automated verification method that can
check for perfect masking. This is important because, when a software implementation
is perfectly masked by some random variables, it is provably secure against any type of
adversaries, regardless of their capabilities in carrying out power analysis attacks [Joye
et al. 2005].

Figure 1 illustrates the difference between naive and perfect masking countermea-
sures. Here, we assume that k is the sensitive data, r1 and r2 are the random variables,
and o1, o2, o3, and o4 are the results of four different masking schemes. We assume

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

Formal Verification of Software Countermeasures against Side-Channel Attacks 11:3

Fig. 1. Masking examples: the secret bit k is perfectly masked by random bits r1 and r2 at node o4, but not
at nodes o1, o2, and o3.

all these variables are Boolean and we can construct the truth table in Figure 1 (right).
The method by Bayrak et al. [2013] would have classified o1,o2,o3 as being securely
masked because their values all logically depend on the random variables r1 and r2.
However, they are still vulnerable to side-channel attacks. To see why, consider the
case when o1 is logical 1. By observing the power side channel of the output of o1,
we know for sure that k is logical 1, regardless of the values of the random variables.
Similarly, when o2 is logical 0, we know for sure that k is logical 0. Although o3 does
not directly leak sensitive information about k as in o1 and o2, the masking is still not
perfect. When o3 is logical 1 (or 0), there is a 75% chance that k is also logical 1 (or
0). Therefore, by launching a statistical-analysis-based attack such as DPA [Kocher
et al. 1999; Taha and Schaumont 2013], an adversary can reliably deduce the value
of k.

In contrast, we say that o4 is perfectly masked because the output value is statistically
independent of the sensitive data k. When k is logical 1 (or 0), there is 50% chance that
o4 is logical 1 (or 0) and vice versa. Therefore, the computation is provably secure
against any first-order power analysis attack, where the adversary can observe the
side channel of at most one intermediate computation result.

To sum up, the example in Figure 1 demonstrates a weakness of the existing
method [Bayrak et al. 2013]. Since this existing method only checks whether an in-
termediate computation result is masked but not whether it is perfectly masked, it
would (falsely) classify all of o1,o2,o3,o4 as secure. In contrast, our new method can
differentiate o4 from the other three, since only o4 is perfectly masked. In addition
to first-order attacks, our method can check for higher-order power analysis attacks,
where the adverasary can observe the side-channel of more than one intermediate
computation result. Finally, our method checks for power side-channel leaks at the bit
level, where leakage freedom automatically implies the implementation is leakage free
at coarser levels of granularity (e.g., at the word level).

We have implemented our new method in a verification tool based on the LLVM
compiler frontend [Lattner and Adve 2004] and the Yices SMT solver [Dutertre and
de Moura 2006]. We encode the verification problem using a series of quantifier-free
first-order logic formulas, whose satisfiability can be decided by an off-the-shelf SMT
solver such as Yices. Our SMT encoding scheme is significantly different from the ones
used in standard verification methods such as bounded model checking [Biere et al.
1999; Li et al. 2005] because the perfect masking property checked by our tool is not
a functional property but statistical in nature. Specifically, it involves the calculation
of the probability for an intermediate computation result to be logical 1, based on the
assumption that all random bits are uniformly distributed in the domain of {0, 1}.
This is in contrast to the purely functional properties checked by standard verification
methods.

For experimental comparison, we have also implemented the method of Bayrak
et al. [2013] in our verification tool. We have conducted experiments on a set of mask-
ing countermeasures for cryptographic software, including the ones applied to AES

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:4 H. Eldib et al.

and the MAC-Keccak reference code submitted to Round 3 of NIST’s SHA-3 competi-
tion [Bertoni et al. 2013]. Our experimental results show the new method is effective
in detecting imperfectly masked implementations of countermeasures from the source
code. Furthermore, our results show the new method is scalable enough to handle soft-
ware code of practical size and complexity. In particular, it is able to formally verify
one round of the MAC-Keccak implementation with 285K Boolean-level operations in
a matter of minutes.

Summary of contributions. We make the following contributions in this article.

—We propose the first SMT-solver-based method for formally verifying the secu-
rity of perfect masking countermeasures against power-analysis-based side-channel
attacks.

—We implement the new method in a software tool built upon the LLVM compiler fron-
tend and the Yices SMT solver for directly checking the C programs of cryptographic
software implementations.

—We conduct experimental evaluation on a set of recently proposed masking counter-
measures for cryptographic algorithms such as AES and MAC-Keccak to demonstrate
the effectiveness of the proposed method.

Organization of the Article. The remainder of this work is organized as follows. We will
establish notation in Section 2 before presenting our SMT-based verification algorithm
in Section 3. Then, we will illustrate the verification process using an example in
Section 4. We will present our incremental verification method in Section 6, which
further improves the scalability of our SMT-solver-based verification method. We will
present the experimental results in Section 7, review related work in Section 8, and
finally give our conclusions in Section 9.

2. PRELIMINARIES

In this section, we define the type of power side-channel attacks considered in this
article and review the notion of perfect masking.

2.1. Side-Channel Attacks

Following the notation used by Blömer et al. [2004], we assume the program to be
verified implements a function c ← enc(x, k), where x is the plaintext, k the secret
key, and c the ciphertext. We assume that x, k, and c are all finite-length bit-vectors.
Furthermore, the implementation of the function enc(x, k) consists of a sequence of
computations. Let I1(x, k, r), I2(x, k, r), . . . , It(x, k, r) be the sequence of intermediate
computation results inside the enc(x, k) function, where r is a random variable added
to the implementation of enc(x, k) to mask the secret key k. Here, r is an s-bit random
number uniformly distributed in the domain {0, 1}s. The purpose of using r to mask k
is to make all intermediate computation results statistically independent of the secret
key. We assume that, by default, the pseudorandom number generators available on
chip are uniformly distributed, which is typically the case in practice.

When enc(x, k) is a linear function of k in the Boolean domain, for example, masking
and demasking are straightforward. Specifically, when x and k are Boolean variables,
we can take advantage of the fact that enc(x, k ⊕ r) = enc(x, k) ⊕ enc(x, r), by first
masking k with r using the XOR operation and then demasking the result with the
XOR of enc(x, r) because, according to the property of XOR, enc(x, k ⊕ r) ⊕ enc(x, r) =
enc(x, k) ⊕ enc(x, r) ⊕ enc(x, r) = enc(x, k). In this case, the implementation of function
enc(x, k) does not need to be changed. However, when enc(x, k) is a nonlinear function,
masking and demasking become complicated, since they often require a complete
redesign of the implementation of function enc(x, k). Manually designing such a

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

Formal Verification of Software Countermeasures against Side-Channel Attacks 11:5

masking countermeasure is labor intensive and error prone and, currently, there is a
lack of automated tools to assess how secure the resulting countermeasure really is.

The verification method proposed in this article can accommodate power leakage
models at different levels of granularity. The most generic and basic power model is
the Hamming Weight (HW) on variables model [Mangard et al. 2007], which has been
widely used in the context of differential power analysis. In this model, the power
consumption of an embedded computing device executing an instruction is statistically
dependent on the Hamming weight of the operands of this instruction. Here, the Ham-
ming weight of a bit-vector is simply the number of bits that are set to the logical 1.
For ease of presentation, we shall use the HW model during the illustration of our
verification method. However, we can also plug in more accurate power models, such
as the Hamming Distance (HD) model, if the exact register location for each program
variable is known. The HD model relies on the number of bits flipped between the
current and the previous values of the register overwritten by a program variable.

The attack model considered in this work is as follows. We assume an adversary
knows the pair (x, c) of plaintext and ciphertext in c ← enc(x, k). For each pair (x, c),
the adversary also knows, by observing the power side channels, the joint distribution
of at most d intermediate computation results I1(x, k, r), . . . , Id(x, k, r). However, the
adversary does not have access to the random variable r that is produced by a true
random number generator. The goal of the adversary is to compute the secret key
(k). In embedded computing devices such as the SmartCard, for instance, this is a
realistic attack model. Kocher et al. demonstrated in their seminal work [1999] that,
for d = 1, the sensitive data can be reliably deduced using a statistical method known
as differential power analysis (DPA).

2.2. Perfect Masking

Given a pair (x, k) of plaintext and secret key for the function enc(x, k), a random vari-
able r, and d intermediate computation results I1(x, k, r), . . . , Id(x, k, r) of the function,
we use Dx,k(R) to denote the joint distribution of I1, . . . , Id while assuming that the
s-bit random number r is uniformly distributed in the domain R = {0, 1}s. Following
Blömer et al. [2004], we consider the implementation vulnerable as long as there is
any statistical dependence between Dx,k(R) and the sensitive data k. In other words,
we do not put restrictions on the technical capability of an adversary.

Definition 2.1. Given an implementation of function enc(x, k) and a set of inter-
mediate results {Ii(x, k, r)} inside the function, we say the implementation is order-d
perfectly masked if, for any d-tuple 〈I1, . . . , Id〉, we have

Dx,k(R) = Dx,k′ (R)

for any two pairs of plaintexts and keys, denoted (x, k) and (x, k′).

The notion of perfect masking [Blömer et al. 2004] used in our work is more accu-
rate than the notion of sensitivity used by Bayrak et al. [2013]. In their method, an
intermediate computation result Ii(x, k, r) is considered sensitive if its value is logically
dependent on the secret data and logically independent of any random variable. A
function f is logically dependent on a variable x if and only if the value of x can affect
the value of f . We have demonstrated the difference between logical and statistical
dependence using the example in Figure 1, where o1,o2,o3,o4 are all insensitive ac-
cording to the method of Bayrak et al. while only o4 is perfectly masked. In general,
if an intermediate computation result is perfectly masked, it is statistically indepen-
dent of the secret input and therefore guaranteed insensitive. However, the reverse is
not always true; an insensitive intermediate computation result may not be perfectly
masked.

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:6 H. Eldib et al.

Fig. 2. Example: a Boolean program and its graphic representation (⊕ denotes XOR; ∧ denotes AND).

As the preceding definition of perfect masking has alluded, checking for violations
of perfect masking requires us to decide whether there exists a d-tuple 〈I1, . . . , Id〉 such
that Dx,k(R) 	= Dx,k′ (R) for some (x, k) and (x, k′). Here, the main challenge is to compute
Dx,k(R) for a given pair of plaintext x and key k. We will present our SMT-solver-based
solution to this problem in Section 3.

2.3. Cryptographic Software

In this work, we focus on verifying security-critical software programs, such as the C
code, that implement cryptographic algorithms such as AES and MAC-Keccak, as op-
posed to arbitrary software applications. Indeed, our SMT-solver-based method would
be too expensive for verifying general-purpose software applications. The class of C
programs considered in this work, in general, does not have nonmanifest control (such
as input-dependent loops), meaning that we can easily remove all the loops and func-
tion calls from the code using standard loop unrolling and function inlining techniques.
Furthermore, the targeted program can be transformed into a branch-free represen-
tation where the if-else branches are merged. Finally, since all variables in this type
of programs are bounded integers, we can model them as finite-length bit-vectors or
convert the entire program to a purely Boolean program through bit-blasting. There-
fore, in the remainder of this article we shall present our new verification method on
the bit-level representation of a branch-free program. Our goal is to verify that all
intermediate bits of the Boolean program are perfectly masked.

3. SMT-BASED VERIFICATION OF PERFECT MASKING

We first illustrate the overall flow of our verification method using the program in
Figure 2. The program is a masked version of c ← (k1 ∧ k2), where k1 and k2 are
two secret-key bits, r1 and r2 are two random bits with independent and uniform
distribution in the domain of {0, 1}, and c is the computation result. The objective of
masking is to make the power side channel of the computing device independent of the
values of the secret-key bits.

The masking scheme illustrated by Figure 2 came from Blömer et al. [2004]. After
masking, the value c in the program is logically equivalent to (k1 ∧ k2) ⊕ (r1 ∧ r2). The
corresponding demasking function (not shown in the figure) would be c ⊕ (r1 ∧ r2).
Due to the property of the XOR operation, demasking would produce a result logically
equivalent to the desired value (k1 ∧ k2).

Our verification method will determine whether all the intermediate variables of the
program in Figure 2 are not only logically dependent on some random bits (meaning
they are masked) but also statistically independent of the secret bits (meaning they
are perfectly masked). We use the Clang/LLVM compiler frontend to parse the input C

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

Formal Verification of Software Countermeasures against Side-Channel Attacks 11:7

program and construct the dataflow graph, where the root node of the graph represents
the output and the leaf nodes represent the input bits. Each internal node represents
the result of a Boolean operation of one of the following types: AND, OR, NOT, and
XOR. For the example in Figure 2, our method starts by parsing the function compute
on the left-hand side and creating the graph representation on the right-hand side.
This is followed by traversing the graph in a topological order, from the program inputs
(leaf nodes) to the return value (root node). For each internal node, which represents
an intermediate computation result, our method checks whether the node is perfectly
masked. The order in which the internal nodes are checked in the graph is as follows:
n1, n2, n3, n4, n5, n6, n7, n8, and finally, c.

3.1. The Theory

As the starting point, we mark all the plaintext bits in x as public, the key bits in k
as secret, and the bits in r as random. Then, for each intermediate computation result
I(x, k, r) of the function enc(x, k) where I(x, k, r) is a Boolean function in terms of x, k,
and r, we check whether it is perfectly masked. Following Definition 2.1, we formulate
this check as a satisfiability problem as follows:

∃x.∃k.∃k′ .
(
�r∈{0,1}s I(x, k, r) 	= �r∈{0,1}s I(x, k′, r)

)
.

With a little abuse of notion in the following paragraphs, we use x to represent the
value of the plaintext bits, k and k′ to represent two different valuations of the key bits,
and r to represent the random value in the domain of {0, 1}s, where s is the number of
random bits: For any fixed value combination (x, k, k′):

—�r∈{0,1}s I(x, k, r) is the number of assignments of r under which I(x, k, r) evaluates to
1; and

—�r∈{0,1}s I(x, k′, r) is the number of assignments of r under which I(x, k′, r) evaluates
to 1.

Assume that r is uniformly distributed in the domain of {0, 1}s, the prior summations
can be used to represent the probabilities of node I being logical 1 under the given
plaintext value x and two different key values k and k′.

If the previous formula is satisfiable, then there exists a plaintext x and two differ-
ent keys (k, k′) such that the probability distribution of I(x, k, r) differs from that of
I(x, k′, r). In other words, some information of the secret key k is leaked through the
power side channel. In this case, we say that I is not perfectly masked. If the preceding
formula is unsatisfiable, it means that such an information leak is never possible. In
this case, we say I is perfectly masked.

Another way to understand the aforesaid solution is to look at the negation of the
satisfiability problem, which is a validity checking problem. That is, instead of checking
the satisfiability of the preceding formula, we can check the validity of the following
one.

∀x.∀k.∀k′.
(
�r∈{0,1}s I(x, k, r) = �r∈{0,1}s I(x, k′, r)

)
If this formula is valid (meaning the equality holds for all valuations of x, k, and k′) we
say that I is perfectly masked.

3.2. The Encoding Method

We now explain the method for generating the satisfiability modulo theory (SMT)
formula defined in the previous section. Let � denote the formula to be created for
checking whether the intermediate computation result I(x, k, r) has information leak-
age. Let s be the number of random bits in r. We want � to be satisfiable if and only if

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:8 H. Eldib et al.

Fig. 3. SMT encoding for checking the statistical dependence of an output on secret data (k1, k2).

the current node I(x, k, r) is not perfectly masked by the random variable r. We define
� as

� :=
(

2s−1∧
r=0

�r
k

)
∧

(
2s−1∧
r=0

�r
k′

)
∧ �b2i ∧ �sum ∧ �diff,

where the subformulas �r
k, �

r
k′ , �b2i, �sum, �diff are defined as follows.

—Program logic (�r
k). Each subformula �r

k encodes a copy of the input-output relation
of function I(x, k, r), with the random value r set to a concrete value in {0, . . . , 2s − 1}
and the key set to one of the two values k or k′. All copies of the program logic share
the same plaintext value x.

—Boolean-to-int (�b2i). It encodes the conversion of the Boolean valued output of
I(x, k, r) to an integer (true becomes 1 and false becomes 0), so that the integer
values can be summed up later to compute �2s

r=1 I(x, k, r).
—Sum-up-the-1’s (�sum). It encodes the two summations of the logical 1’s in the outputs

of the 2s program logic copies, one for the input-output relation of I(x, k, r) and the
other for the input-output relation of I(x, k′, r).

—Different sums (�diff). It asserts that the two summations should have different
results.

Figure 3 is a pictorial illustration of our SMT encoding method for an example inter-
mediate computation result I(k1, k2, r1, r2), where k1 and k2 are the secret-key bits,
and r1 and r2 are two random bits. Here, the first four boxes, which encode �0

k , . . . , �3
k ,

are four copies of the program logic for key bits (k1k2) with the random bits set to 00,
01, 10, and 11, respectively. The other four boxes, which encode �0

k′ , . . . , �
3
k′ , are four

copies of the program logic for key bits (k1′k2′) with the random bits set to 00, 01, 10,
and 11, respectively. The comparison on the right-hand side checks for vulnerabilities
against first-order DPA attacks as to whether there exist two sets of key values (k1k2
and k1′k2′) under which the probabilities of I(x, k, r) being logical 1 are different.

Consider node n8 in Figure 2 as an example. The function of n8 in terms of
k1, k2, n1, n2 is defined as n8 = (r1 ∧ (k2 ⊕ r2)) ⊕ (r2 ∧ (k1 ⊕ r1)). The SMT
formula that our encoding method generates (by instantiating r1r2 to 00, 01, 10, and

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

Formal Verification of Software Countermeasures against Side-Channel Attacks 11:9

Fig. 4. Example: the conjunction set of SMT formulas generated for checking the side-channel leaks of node
n8 in Figure 2.

11) is the conjunction of all of the formulas shown in Figure 4. We solve the conjunc-
tion of these formulas using an off-the-shelf SMT solver called Yices [Dutertre and
de Moura 2006]. In this particular example, the entire conjunctive formula is satis-
fiable. One satisfying assignment, for example, is k1k2=00 and k1’k2’=01. We shall
show in the next section that, when the key bits are 00, the probability for n8 to be
logical 1 is 0%, whereas when the key bits are 01, the probability for n8 to be logical
1 is 50%. This makes n8 vulnerable to first-order DPA attacks in that, by observing
the power side channel corresponding to the value of n8, an adversary may deduce the
values of the key bits. Therefore, we say node n8 is not perfectly masked.

Since our SMT encoding method closely follows the satisfiability formula defined in
Section 3.2 that in turn closely follows Definition 2.1 of perfect masking, we have the
following theorem regarding the correctness of our method.

THEOREM 3.1. Let � be the formula created by the SMT encoding method for interme-
diate computation result I(x, k, r). Formula � is satisfiable if and only if node I(x, k, r)
is perfectly masked.

The size of the SMT formula resulting from our method is linear in the software
code size and exponential in the number of random bits, due to the fact that we make
2s+1 copies of the program logic �r

k, one for each a distinct value of the s-bit random

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:10 H. Eldib et al.

Fig. 5. The truth tables for internal nodes n3, n8, and c of the example program in Figure 2.

variable. In practice, the formula size can become a performance bottleneck, which will
be mitigated by our new incremental verification algorithm in Section 6.

4. THE WORKING EXAMPLE

Consider the verification of our running example in Figure 2. For each internal node
I in the graph representation, we first identify all the transitive fanin nodes of I in
the program to form a code region for the subsequent SMT-solver-based analysis. In
the worst case, the extracted code region should start from the instruction (node) to be
verified and cover all those transitive fanin nodes on which it depends logically. In the
next section, we shall present new algorithms to systematically reduce the size of the
code region, thereby leading to a faster and more scalable verification procedure. In
this section, for ease of presentation we assume the region consists of the entire fanin
cone.

Once the code region is extracted, it is given to our SMT-solver-based verification
procedure, whose goal is to prove (or disprove) that the node is statistically independent
of the secret key. Following a topological order, our method starts the verification
process with node n1 as defined in line 3 of the program in Figure 2. The extracted code
region consists of n1 = k1 ⊕ r1 itself. Since the code region involves only one secret key
and one random variable in the XOR operation, a simple static analysis can prove it is
perfectly masked. That is, a secret bit will be randomized if it is XOR-ed with a fresh
random bit. By fresh, we mean that the random bit has not been used in other parts of
the program. Therefore, although we could have verified n1 using the SMT-solver-based
method, we avoid it for efficiency reasons. Such simple static analysis is able to prove
that nodes n2, n4, and n6 are also perfectly masked.

Next, we check whether n3 is perfectly masked. The truth table of n3 is shown in
Figure 5 (left). According to the truth table, in all four valuations of k1 and k2, the
probability of n3 being logical 1 is 25%, therefore n3 is perfectly masked. This needs to
be proved using our SMT-solver-based verification method. When we apply the SMT-
solver-based method, the solver is not able to find any satisfying assignment for k1
and k2 under which the probability distributions of n3 are different. Note that we
do not need to check the probability of the output being logical 0, since having an
equal probability distribution for logical 1 is equivalent to having an equal probability
distribution for logical 0.

The verification steps for nodes n5 and n7 are similar to that of n3; all can be proved
perfectly masked using the SMT-solver-based verification method.

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

Formal Verification of Software Countermeasures against Side-Channel Attacks 11:11

Next, we check whether n8 is perfectly masked. The attempt to obtain a proof using
the SMT solver would fail because, as shown in the truth table in Figure 5 (middle), the
probability for n8 to be logical 1 is not the same for all valuations of the secret-key bits.
For example, if the key bits are 00, then n8 would be logical 0 regardless of the values of
the random variables. Recall that we have shown the detailed SMT encoding for n8 in
Section 3.2. Using our new method, the SMT solver can quickly find two configurations
of the key bits (for example, 00 and 11) under which the probabilities of n8 being logical
1 are different. Therefore, n8 is not perfectly masked.

The remaining node is c, whose truth table is shown in Figure 5 (right). Similar to
n8, our SMT-solver-based method would be able to show it is not perfectly masked.

It is worth pointing out that the result of applying the Sleuth method [Bayrak et al.
2013] to this example would have been different. The Sleuth method, based on the
notion of sensitivity, would have (incorrectly) classified n8 and c as being “securely
masked” despite the fact that our new method has shown n8 and c are still vulnerable
to first-order DPA attacks. Therefore, the example in Figure 2 demonstrates a major
advantage of our new method over Sleuth.

5. CHECKING FOR HIGH-ORDER ATTACKS

The encoding method presented in Section 3.2 considers only first-order attacks, where
an adversary can have access to the side channel of at most one intermediate compu-
tation result. Under this assumption, for an implementation to resist power analysis
attacks, each intermediate computation result must be perfectly masked. However,
even if each intermediate computation result is perfectly masked, the implementation
may still be vulnerable to high-order DPA attacks, where an adversary may simulta-
neously observe the side channels of multiple intermediate computation results. Here,
the order of attack is defined as the number of intermediate computation results whose
side channels are observable by the adversary.

In the general case, to defend against order-d side-channel attacks, the implemen-
tation must have the following property: the joint distribution of any d intermediate
computation results (where d = 1, 2, 3, . . .) must be statistically independent of the
secret data. We formalize this requirement as a satisfiability problem as follows. There
exist d intermediate computation results such that

∃x.∃k.∃k′ . �r∈{0,1}s
(⊕d

i=1 Ii(x, k, r)
) 	= �r∈{0,1}s

(⊕d
i=1 Ii(x, k′, r)

)
.

Here, ⊕d
i=1 computes the symmetric difference of the d intermediate computation re-

sults (their exclusive-or). When d = 1, the previous formula degenerates to the one
we presented in Section 3.1. When d > 1, the SMT encoding method presented in
Section 3.2 can be extended accordingly to implement this check.

Specifically, I(x, k, r) and I(x, k′, r) in the encoding for checking first-order attacks
are replaced by ⊕d

i=1 Ii(x, k, r) and ⊕d
i=1 Ii(x, k′, r), respectively. Therefore, the resulting

SMT formula, denoted �d, contains (2r × d) copies of the program logic; there are d
intermediate computation results involved, each producing 2r copies of its program
logic. Since the method closely follows the definition of perfect masking, we have the
following theorem regarding the correctness of our method.

THEOREM 5.1. Let �d be the formula created by the SMT encoding method for d
intermediate computation results I1(x, k, r), . . . , Id(x, k, r). Formula �d is satisfiable if
and only if nodes I1(x, k, r), . . . , Id(x, k, r) are perfectly masked.

In practice, most of the countermeasures proposed by cryptographic system engineers
assume the adversary has access to the side-channel leakage of either one or two inter-
mediate computation results, which corresponds to either first-order or second-order

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:12 H. Eldib et al.

Fig. 6. Incremental verification: applying the SMT-solver-based analysis to small fanin regions only.

attacks. When d = 2, the symmetric differences become (I1(x, k, r) ⊕ I2(x, k, r)) at the
left-hand side and (I1(x, k′, r) ⊕ I2(x, k′, r)) at the right-hand side. This is due to the
relationship between the Hamming Distance (HD) model and the Hamming Weight
(HW) model. In other words,

HD(I1(x, k, r), I2(x, k, r)) = HW(I1(x, k, r) ⊕ I2(x, k, r)),
HD(I1(x, k′, r), I2(x, k′, r)) = HW(I1(x, k′, r) ⊕ I2(x, k′, r)).

In the implementation of our verification tool, we have included the checks for both
first- and second-order attacks. In our experiments, we have also evaluated our new
method in detecting vulnerabilities against both first- and second-order power analysis
attacks (the results will be presented in Section 7).

6. THE INCREMENTAL VERIFICATION ALGORITHM

Although our new method is extremely effective in detecting even minor side-channel
leaks, the size of the SMT formula created by our encoding method can become large,
since it is linear in the size of the program and exponential in the number of random
variables. Recall that, for s random bits, we would need to make 2s+1 copies of the
program logic �r

k, each for a distinct random value r. This is the main performance
bottleneck for applying our method to large programs. In this section, we propose an
incremental verification algorithm that applies the SMT-solver-based analysis only to
small code regions, one at a time, as opposed to the entire fanin cone of the node under
verification. This is crucial for scaling the new verification method to cryptographic
software of practical size.

6.1. Extracting the Verification Region

Our incremental verification algorithm relies on the following observation. In practice,
a common strategy used by cryptographic system engineers in implementing masking
countermeasures is to create a chain of modules, where the inputs of each module
are masked before executing its logic and demasked afterward. To avoid having un-
masked intermediate values, the inputs to the successor module are masked with fresh
random variables before they are demasked from the random variables used by the pre-
vious module. This can be illustrated by the example in Figure 6, where the output of
mask(x,k,r) is masked with the new random variable rnew before it is demasked from
the old random variable r using the XOR with de-mask(x,k,r).

Due to associativity of the ⊕ operator, reordering the masking and demasking oper-
ations would not change the logical result. For example, in Figure 6, we assume that
the current instruction being verified is in mask2(). Since the newly added random
variable rnew is not used inside mask() nor de-mask() nor in the support of I3, we can
safely replace the entire fanin cone of I2 by rnew or a new random variable rdummy while

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

Formal Verification of Software Countermeasures against Side-Channel Attacks 11:13

verifying mask2(). We shall see in the experimental results section that such oppor-
tunities for performance optimization are abundant in real-world applications. In the
remainder of this section, we present an algorithm that leverages this idea to soundly
extract a small code region from the fanin cone of the node under verification.

Our algorithm relies on constructing some auxiliary data structures associated with
node i, the current under verification. These data structures are defined as follows.

—supportV[i] is the set of inputs in the support of the function of node i.
—uniqueM[i] is the set of random inputs, each reaching node i along only one path in

the graph representation.
—perfectM[i] is a subset of uniqueM[i], where each random variable, by itself, guaran-

tees that node i is perfectly masked.

These tables can be computed by a topological traversal of the program nodes as
described in Algorithm 1. The input of this procedure is the current node v and the
output is the set of auxiliary data structures defined before.

For example, for node I1 in Figure 6, we have supportV[I1] = {x, k, r, rnew},
uniqueM[I1] = {r, rnew}, and perfectM[I1] = {rnew}, assuming r is not repeated in the
mask block. For node I2, we have supportV[I2] = {x, k, r, rnew}, uniqueM[I2] = {rnew},
since r reaches I2 twice and so may have been demasked, and perfectM[I2] = {rnew}.

ALGORITHM 1: Computing the auxiliary tables for all internal nodes of the program.
1: supportV[i] ← { v } for each input node i with variable v
2: uniqueM[i] ← { v } for each input node i with random mask variable v
3: perfectM[i] ← { v } for each input node i with random mask variable v
4: for each (internal node i in a leaf-to-root topological order) {
5: L ← LEFTCHILD(i)
6: R ← RIGHTCHILD(i)
7: supportV[i] ← supportV[L] ∪ supportV[R]
8: uniqueM ← (uniqueM[L] ∪ uniqueM[R]) \ (supportV[L] ∩ supportV[R])
9: if (i is an XOR node)
10: perfectM[i] ← uniqueM[i] ∩ (perfectM[L]∪perfectM[R])
11: else
12: perfectM[i] ← { }
13: }

ALGORITHM 2: Extracting a code region for node i for the subsequent SMT based analysis.
1: GETREGION (n, uniqueMATi) {
2: if (n is an input node with variable v)
3: region.add ← (n, v)
4: else if (∃ random variable r ∈ perfectM[n] ∩ uniqueMATi)
5: region.add ← (n, r)
6: else
7: region.add ← (n, {})
8: region.add ← GETREGION(n.Left, uniqueMATi)
9: region.add ← GETREGION(n.Right, uniqueMATi)
10: return region
11: }

Our idea of extracting a small code region from the fanin cone for the SMT-solver-
based analysis is formalized in Algorithm 2. Given the node i under verification and

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:14 H. Eldib et al.

uniqueM[i] as the set of random variables, each reaching node i along only one path in
the graph representation, we call GETREGION(i,uniqueM[i]) to compute the code region.
Inside GETREGION, the table uniqueM[i] is renamed to freshMasksATi. We start by
checking each transitive fanin node n of the current node i. If n is a leaf node (line 2),
then we add n and the input variable v to the region. If n is not a leaf node, we check
whether there is a random variable r ∈ uniqueMATi that, by itself, can perfectly mask
node n (line 4). In Figure 6, for example, rnew, by itself, can uniformly mask node I2. If
such a random variable r exists, then we add the pair (n, r) to the region and return,
skipping the rest of the fanin cone of n. If such a random variable r does not exist, we
recursively invoke GETREGION() to traverse the two child nodes of n.

6.2. The Overall Algorithm

Algorithm 3 shows the overall flow of our incremental verification method. Given the
program Prog and the lists of secret, random, and plaintext variables, our method
systematically scans through all the internal nodes in topological order, from the inputs
to the return value. For each node i, our method first extracts a small code region (line 4).
Then, it checks whether the node is perfectly masked by invoking the SMT-solver-based
verification method (line 6). If the node is not perfectly masked, we add it to the list of
bad nodes.

ALGORITHM 3: Incremental verification of perfect masking.
1: VERIFYPERFECTMASKING (Prog, keys, rands, plains) {
2: badNodes ← { }
3: for each (internal node i ∈ Prog in a topological order) {
4: region ← GETREGION(i, uniqueM[i])
5: if (NEEDTOBECHECKED(i, region)) {
6: notPerfect ← CHECKMASKINGBYSMT (i, region, keys, rands, plains)
7: if (notPerfect)
8: badNodes.add(i)
9: }
10: return badNodes
11: }

To reduce the runtime overhead of the SMT-solver-based verification method, we add
a set of simple static checks between line 4 and line 6 to quickly decide whether the
SMT-solver-based verification needs to be invoked. These simple static checks have
been implemented inside the subroutine NEEDTOBECHECKED(i,region). There are three
main computation steps inside this subroutine.

—Don’t-Care Random Variables. We compute the set of random variables in the fanin
cone of node i whose values do not affect the output of node i. The result of this
computation will be used in the subsequent static checks.

—No-Secret-Variable Check. We check whether the code region associated with node i
contains any secret-key bit. If the answer is no, then the region is guaranteed free of
side-channel leaks. In this case, we can skip the check of masking by SMT.

—Three Syntactic Conditions. We check three static conditions associated with the
current region and node i and, if all of these conditions are satisfied, the region is
guaranteed perfectly masked. In such a case, we can skip the check of masking by
SMT.

In the following paragraphs, we explain the first and third steps of NEEDTOBECHECKED

in more detail.

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

Formal Verification of Software Countermeasures against Side-Channel Attacks 11:15

We identify the set of random variables that are don’t-cares for the current node i.
These variables will be used later to reduce the computational cost of verifying masking
by SMT. Specifically, for each random variable r ∈ supportV[i], we check whether the
value of r can ever affect the output of node i logically. If the answer is no, then r is a
don’t-care. If r has been proved a don’t-care, we will leverage the information to speed
up the subsequent SMT formulas. Specifically, during our SMT encoding, we will set
r to logical 0 rather than treat r as a random variable, to reduce the size of the SMT
formula. This can lead to a significant performance improvement, since the formula
size is exponential in the number of relevant random variables.

Whether a random variable r ∈ support[i] is a don’t-care for node i can be decided by
using the SMT solver. Toward this end, we construct an SMT formula as

�r=0
region ∧ �r=1

region ∧ �diffO ,

where �r=0
region encodes the function of node i with the random bit r set to 0, �r=1

region
encodes the function of node i with the random bit r set to 1, and �diffO asserts that
their outputs differ. If the preceding formula is unsatisfiable, it means that the value
of node i remains the same regardless of the value of r. In other words, r is a don’t-care
for node i.

We check the following three syntactic conditions in order to quickly decide whether
the current code region is perfectly masked. All three conditions must be satisfied for
us to conclude that the region is perfectly masked. If any of them is not satisfied, we
need to continue with the check for masking by SMT.

—Node i has no secret input as its immediate child. The condition ensures that, when-
ever a secret variable is introduced to the region, its masking operation will be
checked by SMT.

—None of the random variables appears in the supportV tables of both operands of
node i. This condition ensures that no perfect masking of a secret variable in any of
the operands may be affected.

—Both operands of node i are perfectly masked. This condition ensures our method
will find all the resultant imperfectly masked nodes due to an initial imperfectly
masked node.

The effectiveness of using these simple static checks to reduce the computational cost of
the SMT-solver-based verification method will be evaluated empirically in Section 7.3.

7. EXPERIMENTS

We have implemented our method in a verification tool called SC Sniffer, based on the
LLVM compiler frontend [Lattner and Adve 2004] and the Yices SMT solver [Dutertre
and de Moura 2006]. Our verification tool runs in two modes: monolithic and incre-
mental. In the monolithic mode, SC Sniffer applies the SMT-based encoding method
(Section 3.2) to the entire fanin cone of each intermediate node in the program, whereas
in the incremental mode, SC Sniffer restricts the SMT encoding to a localized code re-
gion (Section 6.2).

We have implemented the Sleuth method [Bayrak et al. 2013] for the purpose of
experimental comparison. The main difference between these two methods is that our
new method not only checks whether a node is masked (as in Sleuth), but also whether
it is perfectly masked, that is, whether the node is statistically independent of the
secret key.

We have evaluated our new method on a set of masking countermeasures for re-
cently proposed cryptographic software implementations, including real-world algo-
rithms such as AES and MAC-Keccak. Our new method is designed for verifying perfect

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:16 H. Eldib et al.

Table I. Benchmark Statistics

Name Description Code Nodes Keys Plains Rnds

P1 CHES13 Masked Key Whitening 79 47 16 16 16
P2 CHES13 De-mask and then Mask 67 31 8 0 16
P3 CHES13 AES Shift Rows [2nd-order] 21 21 2 0 2
P4 CHES13 Messerges Boolean to Arithmetic (bit0)

[2-order]
23 24 1 0 2

P5 CHES13 Goubin Boolean to Arithmetic (bit0)
[2-order]

27 60 1 0 2

P6 Logic Design for AES S-Box (1st
implementation)

32 9 2 0 2

P7 Logic Design for AES S-Box (2nd
implementation)

40 6 2 0 3

P8 Masked Chi function MAC-Keccak (1st
implementation)

59 19 3 0 4

P9 Masked Chi function MAC-Keccak (2nd
implementation)

60 19 3 0 4

P10 Syn. Masked Chi func MAC-Keccak (1st
implementation)

66 22 3 0 4

P11 Syn. Masked Chi func MAC-Keccak (2nd
implementation)

66 22 3 0 4

P12 MAC-Keccak 512b Perfect masked 285k 128k 288 288 805
P13 MAC-Keccak 512b De-mask and then mask –

compiler error
285k 128k 288 288 805

P14 MAC-Keccak 512b Not-perfect Masking of Chi
function (v1)

285k 128k 288 288 805

P15 MAC-Keccak 512b Not-perfect Masking of Chi
function (v2)

285k 152k 288 288 805

P16 MAC-Keccak 512b Not-perfect Masking of Chi
function (v3)

285k 128k 288 288 805

P17 MAC-Keccak 512b Unmasking of Pi function 285k 131k 288 288 805

In addition to the program name and a short description, we show the total lines of code, the numbers of
intermediate nodes and the various inputs.

masking countermeasures for nonlinear operations. Therefore, all of the benchmarks
used in our experiments have nonlinear operations/functions (e.g., the S-BOX in AES).
During the construction of the SMT formula, we use both Boolean logic and bit-vector
arithmetic, which can efficiently encode linear and nonlinear operations. Our experi-
ments were designed to answer the following research questions.

—How effective is our new method? We know that, in theory, the new method is
more accurate than the Sleuth method since it checks for statistical dependence
in addition to logical dependence. But does it have a significant advantage over
Sleuth in detecting side-channel leaks in practice?

—How scalable is our new method, especially when used for verifying cryptographic
software of realistic size and complexity? We have extended our SMT-based method
with incremental analysis. Is it effective in practice?

7.1. Benchmarks

Table I shows the statistics of the benchmarks. Column 1 shows the name of each
benchmark example, while column 2 shows a short description of the implemented
algorithm. Column 3 shows the number of lines of code—here, each instruction occupies
a line and each instruction is a bit-level operation. Column 4 shows the number of nodes
that represent the intermediate computation results and columns 5 through 7 show

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

Formal Verification of Software Countermeasures against Side-Channel Attacks 11:17

the number of input bits that represent the secret key, the plaintext, and the random
variable, respectively.

The benchmarks are classified into three groups. The first group of test cases (P1
to P5) are examples taken from the Sleuth benchmark [Bayrak et al. 2013], all of
which contain intermediate variables that are not masked at all. More specifically, P1
is the masking key whitening code in Bayrak et al. [2013, page 12]. P2 is the AES8
example originated from Herbst et al. [2006]—it is a smartcard implementation of
AES resistant to power analysis. P3 is the code in Bayrak et al. [2013, page 13] that
also originated from Herbst et al. [2006], while P4 is the code in Bayrak et al. [2013,
page 18] that originated from Messerges [2000]. Finally, P5 is the code in Bayrak
et al. [2013, page 18] that originated from Goubin [2001]. The Boolean-to-arithmetic
mask conversion algorithm has possible second-order attack points that can be suc-
cessfully detected by our new method.

The second group of test cases (P6 to P11) are examples where most of the interme-
diate variables are masked, but none of the masking schemes is perfect. Specifically,
P6 and P7 are the two examples used by Blömer et al. [2004, page 7], while P8 and
P9 are the MAC-Keccak computation reordered examples that originated from Bertoni
et al. [2013, page 46, Eq. (5.2)]. P10 and P11 are two experimental masking schemes
for the Chi function in MAC-Keccak, neither perfectly masked.

The third group of test cases (P12 to P17) comes from the regeneration of the MAC-
Keccak reference code submission to NIST in the SHA-3 competition [NIST 2013].
There are a total of 285K lines of Boolean operation code. The difference among these
test cases is that they are protected by various masking countermeasures, some of
which are perfectly masked (e.g., P12) whereas others not.

7.2. Results

Table II shows the experimental results obtained on a desktop machine with a 3.4 GHz
Intel i7-2600 CPU, 4GB RAM, and a 32-bit Linux OS. We have compared the perfor-
mance of three methods: Sleuth, SC Sniffer (monolithic), and SC Sniffer (incremental).
Here, Sleuth is the method proposed by Bayrak et al. [2013], while the other two are our
new methods. In this table, column 1 shows the name of each test program. Columns 2
through 5 show the results of running Sleuth, including whether the program passed
the check, the number of nodes not masked, and the total number of nodes checked.
Columns 6 through 9 show the results of running our new monolithic method. Here, MO
(mem-out) means the method requires more than 4GB of RAM. Columns 10 through 14
show the results of running our new incremental method. Here, we also show the
number of SMT-based masking checks made, which is often much smaller than that of
nodes checked because many of them are already resolved by our static checks.

First, the results show that our new algorithm is more accurate than Sleuth in
deciding whether a node is securely masked. Every node that failed the security check
of Sleuth would also fail the security check of our new method. However, there are many
nodes that passed the check of Sleuth, but failed the check of our new method. These
are the nodes that are masked, but their probability distributions are still dependent
on the sensitive inputs; in other words, they are not perfectly masked.

Second, the results show that our incremental method is significantly more scalable
than the monolithic method. On the first two groups of test cases where the programs
are small, both methods can complete and the difference in runtime is small. However,
on large programs such as the MAC-Keccak reference code, the monolithic method
could not finish since it quickly ran out of the 4GB RAM, whereas the incremen-
tal method finished in a reasonable amount of time. Moreover, although the Sleuth
method implements a significantly simpler (and hence weaker) check, it is also based

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:18 H. Eldib et al.

Ta
bl

e
II.

E
xp

er
im

en
ta

lR
es

ul
ts

:C
om

pa
rin

g
ou

r
S

C
S

ni
ffe

r
M

et
ho

d
w

ith
th

e
S

le
ut

h
M

et
ho

d
[B

ay
ra

k
et

al
.2

01
3]

S
le

u
th

[B
ay

ra
k

et
al

.2
01

3]
S

C
S

n
if

fe
r

(m
on

ol
it

h
ic

)
S

C
S

n
if

fe
r

(i
n

cr
em

en
ta

l)
n

od
es

n
od

es
m

as
ke

d
n

od
es

n
od

es
m

as
ke

d
n

od
es

n
od

es
S

M
T

N
am

e
m

as
ke

d
fa

il
ed

ch
ec

ke
d

ti
m

e
pe

rf
ec

t
fa

il
ed

ch
ec

ke
d

ti
m

e
pe

rf
ec

t
fa

il
ed

ch
ec

ke
d

m
as

k
ti

m
e

P
1

N
o

16
47

0.
16

s
N

o
16

47
0.

22
s

N
o

16
47

16
0.

09
s

P
2

N
o

8
31

0.
21

s
N

o
8

31
0.

20
s

N
o

8
31

8
0.

09
s

P
3

N
o

9
21

1.
17

s
N

o
9

21
1.

27
s

N
o

9
21

18
0.

46
s

P
4

N
o

2
24

0.
58

s
N

o
2

24
0.

65
s

N
o

2
24

8
0.

57
s

P
5

N
o

2
60

1.
19

s
N

o
2

60
1.

40
s

N
o

2
60

20
1.

12
s

P
6

Ye
s

0
9

0.
06

s
N

o
2

9
0.

10
s

N
o

2
9

2
0.

08
s

P
7

Ye
s

0
6

0.
04

s
N

o
1

6
0.

07
s

N
o

1
6

1
0.

03
s

P
8

N
o

1
19

0.
15

s
N

o
3

19
0.

26
s

N
o

3
19

3
0.

11
s

P
9

Ye
s

0
19

0.
13

s
N

o
2

19
0.

27
s

N
o

2
19

2
0.

10
s

P
10

Ye
s

0
22

0.
18

s
N

o
1

22
0.

32
s

N
o

1
22

2
0.

14
s

P
11

Ye
s

0
22

0.
20

s
N

o
1

22
0.

37
s

N
o

1
22

3
0.

18
s

P
12

Ye
s

0
12

8k
91

m
-

0
34

M
O

Ye
s

0
12

8K
0

10
m

P
13

N
o

25
60

12
8k

92
m

N
o

1
46

M
O

N
o

25
60

12
8K

25
60

14
m

P
14

Ye
s

0
12

8k
97

m
-

0
31

M
O

N
o

10
24

12
8K

10
24

18
m

P
15

Ye
s

0
15

2k
13

2m
-

0
32

M
O

N
o

51
2

15
2K

10
24

37
m

P
16

N
o

51
2

12
8k

11
3m

-
0

40
M

O
N

o
15

36
12

8K
15

36
17

m
P

17
N

o
40

96
13

1k
10

3m
-

0
34

M
O

N
o

40
96

13
1K

40
96

17
m

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

Formal Verification of Software Countermeasures against Side-Channel Attacks 11:19

Fig. 7. Result: comparing the scalability of the three methods. The x-axis is the size of the program under
verification, and the y-axis is the runtime in seconds.

on a monolithic approach. Our results in Table II show that, on large examples, our
incremental method is significantly faster than Sleuth.

As a measurement of the scalability of the three algorithms, we have conducted more
experiments on a 1-bit version of test program P1 for 1 to 10 encryption rounds. In each
parameterized version, the input for each round is the output from the previous round.
We ran the experiment twice, once with an unmasked instruction in each round, and
once with all instructions perfectly masked. The results of the two experiments are
almost identical, and therefore we only plot the result for the perfectly masked version
in Figure 7. In this figure, the x-axis shows the program size and the y-axis the total
verification time in seconds. The results show that, among the three methods, our
incremental method is the most scalable.

7.3. Statistics

In this section, we show the statistics of running our incremental verification method
on the same set of benchmarks.

Table III shows how many of the code regions are verified using the SMT-solver-based
verification method as opposed to the simple static checks as described in Section 6.2.
Recall that, before applying the SMT-based verification, we first check whether the
code region contains any secret variable and then check three syntactic conditions. If
the static checks can guarantee the region is free of side-channel leaks, we will skip the
SMT-based verification. In Table III, columns 1 and 2 show the program name and the
number of nodes checked. Columns 3 through 5 show the number of nodes discharged
by the two static checks and the SMT-based method, respectively. The results show
that many of the verification subproblems were solved by the two simple static checks.

Table IV shows the number of calls to the SMT solver during the computation of
don’t-care random variables and during the verification of perfect masking. In this
table, columns 2 and 3 show the number of calls to the SMT solver and the time spent
on computing the don’t-care random variables. Similarly, columns 4 and 5 show the
number of calls to the SMT solver and the time spent on checking for perfect masking
by SMT. For example, in P12, the execution time was spent entirely on computing the
don’t-care random variables, which invoked the SMT solver 38,400 times and spent
8 minutes and 15 seconds. Since all nodes are discharged by the simple static checks,
the number of calls to the SMT solver during the check for perfect masking is 0.

Table V shows the average, minimum, and maximum number of variables in the
SMT formulas generated during the computation of don’t-care random variables and
during the verification of perfect masking, respectively. Here, column 1 shows the name
of the test program. Columns 2 through 4 show the statistics for computing don’t-care

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:20 H. Eldib et al.

Table III. Statistics: Number of Nodes Discharged by the Two Simple Static Checks and the SMT-Based
Verification Method, respectively

Benchmark Nodes Discharged in Different Verification Steps
name nodes checked no-secret-variable check three syntactic conditions check masking by SMT

P1 47 0 31 16
P2 31 8 15 8
P3 21 0 3 18
P4 24 0 16 8
P5 60 0 40 20
P6 9 4 3 2
P7 6 3 2 1
P8 19 6 10 3
P9 19 7 10 2
P10 22 8 12 2
P11 22 7 12 3
P12 128k 11,648 116,251 0
P13 128k 9,088 116,351 2,560
P14 128k 11,136 115,839 1,024
P15 152k 13,152 138,399 1,024
P16 128k 10,624 115,839 1,536
P17 131k 11,136 115,327 4,096

Table IV. Statistics: Number of Calls to SMT Solver during the Computation of Don’t-Care Random Variables
and during the Incremental Check for Perfect Masking by SMT, respectively

Compute Don’t Care Random Variables Check for Perfect Masking by SMT
Name calls to SMT solver total SMT solving time calls to SMT solver total SMT solving time

P1 0 0.00s 16 0.08s
P2 8 0.04s 8 0.04s
P3 54 0.32s 18 0.12s
P4 77 0.38s 8 0.15s
P5 161 0.96s 20 0.07s
P6 6 0.03s 2 0.03s
P7 3 0.02s 1 0.01s
P8 9 0.06s 3 0.04s
P9 9 0.06s 2 0.03s
P10 12 0.10s 2 0.05s
P11 12 0.08s 3 0.08s
P12 38,400 8m 15s 0 0.00s
P13 38,400 8m 43s 2,560 2m 15s
P14 38,400 8m 04s 1,024 7m 42s
P15 47,552 14m 1s 1,024 14m 57s
P16 37,888 8m 28s 1,536 5m 30s
P17 38,400 8m 32s 4,096 5m 35s

random variables and columns 5 through 7 show the statistics for the verification of
perfect masking by SMT. The results show most of the hard-to-solve SMT formulas are
generated during the verification of perfect masking.

Together, the experimental results presented in this section confirm our conjecture
that the set of simple static checks added before the more heavyweight SMT-based
verification method are effective in reducing the overall computational cost.

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

Formal Verification of Software Countermeasures against Side-Channel Attacks 11:21

Table V. Experimental Results: Average, Minimum, and Maximum Number of Variables in the SMT Formulas
Generated during the Verification Process

Compute Don’t Care Random Variables Check for Perfect Masking by SMT
Name avg. variables min. variables max. variables avg. variables min. variables max. variables

P1 - - - 28 28 28
P2 12 12 12 26 26 26
P3 14 12 19 30 30 30
P4 17 12 19 49 30 67
P5 16 12 19 60 30 67
P6 28 25 31 194 175 212
P7 27 25 28 91 91 91
P8 30 25 37 131 34 183
P9 32 25 41 179 175 183
P10 40 28 52 353 272 434
P11 39 33 46 336 281 434
P12 92 59 232 - - -
P13 88 54 232 79 75 85
P14 83 59 218 708 688 750
P15 94 59 233 1,310 996 1,710
P16 80 59 218 291 149 355
P17 84 59 228 112 83 221

7.4. Discussion

It is worth pointing out that the side-channel leaks detected by our new method are real
security threats. We have confirmed these vulnerabilities in a follow-up study using
real embedded computing hardware, where we conducted a set of power-analysis-based
side-channel attacks on implementations of MAC-Keccak, nonlinear components of
AES (such as the S-BOX), and a few other cryptographic algorithms. Specifically, we
ran all software code on a 32-bit Microblaze processor [Xilinx 2014] built on a Xilinx
Spartan-3e FPGA. We used a Tektronix DPO 3034 oscilloscope and a CT-2 current
probe to sample the power consumption of the microprocessor core. The side-channel
attack was conducted using differential power analysis (difference of means [Kocher
et al. 1999]). Overall, the power side-channel attack resistance, as measured by the
number of power measurement traces needed to determine the secret key, is dependent
on the side-channel leaks detected by our method. For more information, please refer
to the paper Eldib et al. [2014b].

8. RELATED WORK

Throughout the article, we have reviewed most of the related work on detecting power
side-channel leaks in the source code of cryptographic software, such as Sleuth [Bayrak
et al. 2013]. In this section, we will review the related work in general on the masking
methods, compiler-assisted masking, and the detection/mitigation of other types of
side-channel leaks.

8.1. Masking

There is a large body of work on designing and implementing masking countermeasures
for cryptographic algorithms [Messerges 2000; Goubin 2001; Oswald et al. 2005; Herbst
et al. 2006; Canright and Batina 2008; Moradi et al. 2011b]. However, in all these prior
works, the countermeasures were manually designed and implemented and there was
a lack of verification tools to ensure the masking countermeasures are indeed secure.

The notion of perfect masking was introduced by Blömer et al. [2004], following Shan-
non’s notion of perfect secrecy. Blömer et al. also proposed a provably secure masking

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:22 H. Eldib et al.

scheme for AES. When implemented properly, perfect masking countermeasures are
provably secure against power analysis attacks regardless of the technological capa-
bility of the adversary, even on computing hardware that has power emissions. To the
best of our knowledge, the SMT-solver-based method proposed in this article is the first
for formally verifying perfect masking countermeasures.

8.2. Compiler-Assisted Masking

Beyond verification, an interesting line of research is the automated construction of
countermeasures against side-channel attacks. There has been some recent work along
this line, including the software tool developed by Bayrak et al. [2011], the compiler-
assisted masking method proposed by Moss et al. [2012], the code morphing method
proposed by Agosta et al. [2012], and our method for generating perfect masking coun-
termeasures using inductive synthesis [Eldib and Wang 2014]. Unlike previous work
that is based on compiler transformation, which typically relies on matching known
code patterns and then applying some predetermined transformation rules, our induc-
tive synthesis-based method for constructing perfect masking countermeasures [Eldib
and Wang 2014] is application agnostic and able handle both known and unknown
vulnerabilities.

8.3. Other Types of Side Channels

Beside power side channels, sensitive information may be leaked through many other
side channels, such as the execution-time [Kocher 1996; Köpf and Dürmuth 2009],
faults [Biham and Shamir 1997], and cache side channels [Grabher et al. 2007]. Various
leak detection and mitigation techniques have also been proposed for these types of side
channels. For example, Köpf et al. [2012] proposed methods for conducting quantitative
information flow analysis and Backes et al. [2009]. Doychev et al. [2013] developed a
static analysis tool for detecting information leaks through cache side channels. Barthe
et al. [2014] proposed a mitigation method designed for defending against concurrent
cache attacks. Since these methods focus on other types of side channels, they are
orthogonal to the new verification method proposed in this work.

9. CONCLUSIONS

We have presented a fully automated verification method for deciding whether a cryp-
tographic software implementation is perfectly masked by random variables and there-
fore provably secure against power-analysis-based attacks. Our new method relies on
translating the verification problem into a sequence of satisfiability problems that in
turn can be decided by an off-the-shelf SMT solver such as Yices. We have also pro-
posed an incremental analysis procedure to drastically improve the scalability of the
SMT-based method. Our experiments on a set of recently proposed masking counter-
measures for cryptographic algorithms such as AES and MAC-Keccak show the new
method is not only more precise than existing methods in detecting power side-channel
leaks, but also scalable for practical use.

REFERENCES

Johan Agat. 2000. Transforming out timing leaks. In Proceedings of the 27th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages (POPL’00). 40–53.

Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. 2012. A code morphing methodology to automate
power analysis countermeasures. In Proceedings of the 49th Annual ACM/IEEE Design Automation
Conference (DAC’12). 77–82.

Michael Backes, Boris Kopf, and Andrey Rybalchenko. 2009. Automatic discovery and quantification of
information leaks. In Proceedings of the 30th IEEE Symposium on Security and Privacy (SP’09). 141–
153.

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

Formal Verification of Software Countermeasures against Side-Channel Attacks 11:23

Josep Balasch, Benedikt Gierlichs, Roel Verdult, Lejla Batina, and Ingrid Verbauwhede. 2012. Power analysis
of atmel cryptomemory - Recovering keys from secure eeproms. In Proceedings of the Cryptographers’
Track at the RSA Conference (CT-RSA’12). 19–34.

Gilles Barthe, Boris Kopf, Laurent Mauborgne, and Martin Ochoa. 2014. Leakage resilience against concur-
rent cache attacks. In Proceedings of the 3rd International Conference on Principles of Security and Trust
(POST’14). 140–158.

Ali Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. 2013. Sleuth: Automated verification of soft-
ware power analysis countermeasures. In Proceedings of the 15th International Workshop Cryptographic
Hardware and Embedded Systems (CHES’13). 293–310.

Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, Francois-Xavier Standaert, and Paolo Ienne. 2011. A
first step towards automatic application of power analysis countermeasures. In Proceedings of the 48th

ACM/EDAC/IEEE Design Automation Conference (DAC’11). 230–235.
Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche, and Ronny Van Keer. 2013. Keccak

implementation overview. http://keccak.neokeon.org/Keccak-implementation-3.2.pdf.
Armin Biere, Alessandro Cimatti, Edmund Clarke, Masahiro Fujita, and Yunshan Zhu. 1999. Symbolic

model checking using sat procedures instead of BDDS. In Proceedings of the 36th Annual ACM/IEEE
Design Automation Conference (DAC’99). 317–326.

Eli Biham and Adi Shamir. 1997. Differential fault analysis of secret key cryptosystems. In Proceedings
of the 17th Annual International Cryptology Conference on Advances in Cryptology (CRYPTO’97). 513–
525.

Johannes Blomer, Jorge Guajardo, and Volker Krummel. 2004. Provably secure masking of AES. In Proceed-
ings of the 11th International Conference on Selected Areas in Cryptography (SAC’04). 69–83.

David Canright and Lejla Batina. 2008. A very compact “perfectly masked” s-box for AES. In Proceedings of
the 6th International Conference on Applied Cryptography and Network Security (ACNS’08). 446–459.

Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999. Towards sound approaches to
counteract power-analysis attacks. In Proceedings of the 19th Annual International Cryptology Confer-
ence (CRYPTO’99). 398–412.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 1999. Model Checking. MIT Press, Cambridge,
MA.

Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and Jan Reineke. 2013. CacheAudit: A tool
for the static analysis of cache side channels. In Proceedings of the 22nd USENIX Conference on Security
(SEC’13). 431–446.

Bruno Dutertre and Leonardo de Moura. 2006. A fast linear-arithmetic solver for DPLL(t). In Proceedings
of the 18th International Conference on Computer Aided Verification (CAV’06). Springer, 81–94.

Hassan Eldib and Chao Wang. 2014. Synthesis of masking countermeasures against side channel attacks.
In Proceedings of the International Conference on Computer Aided Verification (CAV’14). 114–130.

Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014a. SMT based verification of software counter-
measures against side-channel attacks. In Proceedings of the International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS’14). 62–77.

Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. 2014b. QMS: Evaluating the side-channel
resistance of masked software from source code. In Proceedings of the 51st Annual Design Automation
Conference (DAC’14). 1–6.

Louis Goubin. 2001. A sound method for switching between boolean and arithmetic masking. In Proceedings
of the 3rd International Workshop on Cryptographic Hardware and Embedded Systems (CHES’01). 3–
15.

Philipp Grabher, Johann Großschadl, and Dan Page. 2007. Cryptographic side-channels from low-power
cache memory. In Proceedings of the 11th IMA International Conference on Cryptography and Coding.
170–184.

Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. 2006. An AES smart card implementation resis-
tant to power analysis attacks. In Proceedings of the 4th International Conference on Applied Cryptogra-
phy and Network Security (ACNS’06). 239–252.

Marc Joye, Pascal Paillier, and Berry Schoenmakers. 2005. On second-order differential power analysis. In
Proceedings of the 7th International Conference on Cryptographic Hardware and Embedded Systems
(CHES’05). 293–308.

Paul C. Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems.
In Proceedings of the International Cryptology Conference (CRYPTO’96). 104–113.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis. In Proceedings of the
International Cryptology Conference (CRYPTO’99). 388–397.

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

11:24 H. Eldib et al.

Boris Kopf and Markus Durmuth. 2009. A provably secure and efficient countermeasure against timing
attacks. In Proceedings of the 22nd IEEE Symposium on Computer Security Foundations (CSF’09). 324–
335.

Boris Kopf, Laurent Mauborgne, and Martin Ochoa. 2012. Automatic quantification of cache side-channels.
In Proceedings of the 24th International Conference on Computer Aided Verification (CAV’12). 564–580.

Chris Lattner and Vikram S. Adve. 2004. LLVM: A compilation framework for lifelong program analysis and
transformation. In Proceedings of the IEEE/ACM International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization (CGO’04). 75–88.

Bing Li, Chao Wang, and Fabio Somenzi. 2005. Abstraction refinement in symbolic model checking using
satisfiability as the only decision procedure. Int. J. Softw. Tools Technol. Transfer 7, 2, 143–155.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer.

Thomas S. Messerges. 2000. Securing the AES finalists against power analysis attacks. In Proceedings of the
7th International Workshop on Fast Software Encryption (FSE’00). 150–164.

Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. 2011a. On the vulnerability of FPGA
bitstream encryption against power analysis attacks: Extracting keys from Xilinx Virtex-ii FPGAs. In
Proceedings of the 18th ACM Conference on Computer and Communications Security (CCS’11). 111–124.

Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. 2011b. Pushing the limits: A
very compact and a threshold implementation of AES. In Proceedings of the 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’11). 69–88.

Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. 2012. Compiler assisted masking. In
Proceedings of the 14th International Workshop on Cryptographic Hardware and Embedded Systems
(CHES’12). 58–75.

NIST. 2013. Keccak reference code submission to NIST’s SHA-3 competition (round 3). http://csrc.nist.gov/
groups/ST/hash/sha-3/Round3/documents/KeccakFinalRnd.zip.

Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen. 2005. A side-channel analysis
resistant description of the AES s-box. In Proceedings of the International Workshop on Fast Software
Encryption (FSE’05). 413–423.

Christof Paar, Thomas Eisenbarth, Markus Kasper, Timo Kasper, and Amir Moradi. 2009. KeeLoq and
side-channel analysis-Evolution of an attack. In Proceedings of the International Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC’09). 65–69.

Emmanuel Prouff and Matthieu Rivain. 2013. Masking against side-channel attacks: A formal security
proof. In Proceedings of the 32nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT’13). Springer, 142–159.

Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow security. IEEE J. Select.
Areas Comm. 21, 1, 5–19.

Mostafa Taha and Patrick Schaumont. 2013. Differential power analysis of MAC-Keccak at any key-length.
In Proceedings of the International Conference on Advances in Information and Computer Security
(IWSEC’13). 68–82.

Chao Wang, Gary D. Hachhtel, and Fabio Somenzi. 2006. Abstraction Refinement for Large Scale Model
Checking. Springer.

Chao Wang, Zijiang Yang, Franjo Ivancic, and Aarti Gupta. 2007. Disjunctive image computation for software
verification. ACM Trans. Des. Autom. Electronic Syst. 12, 2.

XILINX. 2014. MicroBlaze soft processor core. http://www.xilinx.com/tools/microblaze.htm.
Zijiang Yang, Chao Wang, Aarti Gupta, and Franjo Ivancic. 2009. Model checking sequential software pro-

grams via mixed symbolic analysis. ACM Trans. Des. Autom. Electronic Syst. 14, 1.

Received June 2014; revised August 2014; accepted September 2014

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 2, Article 11, Pub. date: December 2014.

