1558

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

Quantitative Masking Strength: Quantifying
the Power Side-Channel Resistance
of Software Code

Hassan Eldib, Chao Wang, Member, IEEE, Mostafa Taha, Member, IEEE,
and Patrick Schaumont, Senior Member, IEEE

Abstract—Many commercial systems in the embedded space
have shown weakness against power analysis-based side-channel
attacks in recent years. Random masking is a commonly used
technique for removing the statistical dependency between the
sensitive data and the side-channel information. However, the
process of designing masking countermeasures is both labor
intensive and error prone. Furthermore, there is a lack of
formal methods for quantifying the actual strength of a coun-
termeasure implementation. Security design errors may there-
fore go undetected until the side-channel leakage is physically
measured and evaluated. We show a better solution based
on static analysis of C source code. We introduce the new
notion of quantitative masking strength (QMS) to estimate the
amount of information leakage from software through side
channels. Once the user has identified the sensitive variables,
the QMS can be automatically computed from the source
code of a countermeasure implementation. Qur experiments,
based on measurement on real devices, show that the QMS
accurately reflects the side-channel resistance of the software
implementation.

Index Terms—Countermeasure, differential power analy-
sis (DPA), quantitative masking strength (QMS), satisfiability
modulo theory (SMT) solver, security, verification.

I. INTRODUCTION

N RECENT years, many commercial systems in the embed-

ded space have shown weaknesses against side-channel
attacks [2]-[4], where an adversary can utilize secondary
information such as timing and power consumption resulting
from the execution of sensitive algorithms on these devices.
For example, the power consumption of an embedded device
executing instruction a=t@k may depend on the value of the
secret data k [5] and, as a result, k may be reliably deduced by

Manuscript received September 24, 2014; revised January 19, 2015;
accepted March 4, 2015. Date of publication April 21, 2015; date of current
version September 17, 2015. This work was supported in part by the NSF
under Grant CNS-1128903 and Grant CNS-1115839, and in part by the ONR
under Grant N00014-13-1-0527. Some of the preliminary results appeared
in [1]. This paper was recommended by Associate Editor R. Karri.

H. Eldib, C. Wang, and P. Schaumont are with the Bradley Department
of Electrical and Computer Engineering, Virginia Polytechnic Institute and
State University (Virginia Tech), Blacksburg, VA 24061 USA (e-mail:
chaowang@vt.edu).

M. Taha is with the Department of Electrical and Computer Engineering,
Worcester Polytechnic Institute, Worcester, MA 01609 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2015.2424951

an adversary using statistical methods such as the differential
power analysis (DPA [6]).

Masking, which is a randomization technique for remov-
ing the statistical dependency between the sensitive data and
the side-channel information, is a commonly used mitiga-
tion strategy. For example, Boolean masking uses an XOR
operation of a random bit r with a variable a to obtain a
masked variable: a,, = a @ r [4], [7]. Later, the original
Boolean variable can be restored by a second XOR opera-
tion: a,, @ r = a. Other similar countermeasures have used
additive masking (a,, = a + r mod n), multiplicative masking
(am = axr mod n), as well as application-specific masking
such as RSA blinding (a,, = ar® mod N).

However, side-channel countermeasures based on masking
are difficult to design and implement because the process
is both labor intensive and error prone. There is also no
formal method to quantify how secure a software implemen-
tation of the countermeasure really is. This is a problem in
practice because the source of the information leakage is
not the cryptographic algorithm itself, but the microproces-
sor hardware that executes the cryptographic software code.
For software developers who do not know all the architectural
details of the computing device, it can be difficult to under-
stand where and when the side-channel information may be
leaked.

In this paper, we solve the problem by first introducing the
new notion of quantitative masking strength (QMS) to esti-
mate the side-channel resistance of a software implementation.
To demonstrate the effectiveness of QMS in quantifying the
side-channel resistance, we conduct experiments on a set of
cryptographic software on real devices while launching DPA
attacks. For each software implementation, we record the
number of power consumption measurement traces required
to successfully break the countermeasure. Our experimen-
tal results show that the number of required measurement
traces, which correlates to the difficulty in breaking the
countermeasure, matches the QMS.

We also develop a design automation tool that leverages
static code analysis techniques to compute the QMS of a
given program, without executing it on the actual device. The
tool can be used to evaluate the quality of the countermeasure
implementation. It can also be used as a formal verification
procedure to decide whether a given program satisfies a desired
QMS requirement. In case that some intermediate computation

0278-0070 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ELDIB et al.: QMS: QUANTIFYING THE POWER SIDE-CHANNEL RESISTANCE OF SOFTWARE CODE

results of the program do not satisfy the QMS requirement,
our method can produce a side-channel attack scenario, con-
sisting of a combination of the plaintext bits, the secret bits,
and the relevant code region that leaks an excessive amount
of information about the secret bits.

Our static code analysis tool builds upon the popular
LLVM compiler [8] for C/C++ and the Yices satisfiabil-
ity modulo theory (SMT) solver [9]. We encode the veri-
fication problem into a series of quantifier-free first-order
logic (FOL) formulas, whose satisfiability can be decided
by the SMT solver. Although in the literature, there is a
large body of work on SAT/SMT solver-based verification
techniques [10], [11] and some methods for analyzing side
channels leaks [12]-[15], e.g., using type-based information
flow analysis [16], [17], they do not focus on the power side-
channel leakage. Bayrak er al. [18] proposed a method that
uses a Boolean SAT solver to check if a piece of software
code is masked by some random bits, but they cannot quan-
titatively check the masking strength. To the best of our
knowledge, our method is the first fully automated static
analysis method for quantitatively checking the strength of
masking.

We have conducted experiments on a set of cryptographic
software implementations to evaluate the performance of our
static analysis tool. The benchmarks include several recent
countermeasures for AES as well as message authentication
code (MAC)-Keccak, an MAC based on the new secure hash
algorithm (SHA-3) standard of NIST. Our experimental results
show that the new method is effective in detecting vulnerabil-
ities in cryptographic software code and is scalable enough to
handle software code of practical size.

To sum up, this paper makes the following contributions.

1) We propose the new notion of QMS as a way to estimate
the side-channel resistance of a software implementation
in practice.

2) We conduct DPA attack experiments on real embedded
computing devices to confirm that the QMS is indeed
a good indicator of the side-channel resistance of the
masked software.

3) We propose a static code analysis method for comput-
ing the QMS of a given program decorated with the
sensitive variables and the masks. The method can also
quantify the impact of bias in the random variables
and formally verify that a program satisfies a QMS
requirement.

4) When a program fails to satisfy the QMS requirement,
our tool can produce an attack scenario, consisting of
a plaintext and two sets of key bits, together with the
related code region that have side-channel leaks.

The remainder of this paper is organized as follows. We
establish notation in Section II and define the QMS in
Section III. We present our static code analysis method in
Section IV, and our method for modeling bias in random
number generators in Section V. We describe our DPA attack
experiments in Section VI. We present our experimental evalu-
ation results for the static code analysis method in Section VII.
We review related work in Section VIII, and finally, the
conclusion is given in Section IX.

1559

II. PRELIMINARIES

In this section, we provide a brief introduction to power
analysis-based side-channel attacks as well as randomization-
based countermeasures.

Following the notation used by Blomer er al. [19], we
assume that the program to be analyzed implements a function
¢ <« enc(x, k), where x is the plaintext, k is the secret key,
and c is the ciphertext. Let I, I, ..., I; be the sequence of
intermediate computation results inside the function, and each
Ii(x, k, r), where 1 <i <t, be a function of x, k, and r. Here,
r is a random number used to make the power leakage asso-
ciated with the value of function /; statistically independent
of k.

When f(x, k) is a linear function of k with respect to the
XOR operator, masking and de-masking the sensitive com-
putations inside f(x, k) become trivial, because f(x, k ® r) &
fG,r) =f(x, k) df(x,r) ®f(x,r) = f(x, k). That is, we can
mask the sensitive bit k£ by the XOR with r before the compu-
tation, and then de-masking the result by the XOR with f(x, r).
The main advantage of this approach is that the implementa-
tion of core computations inside f(x, k) does not need to be
modified. However, when f(x, k) is a nonlinear function of k
with respect to the XOR operator, masking and de-masking
often require a complete redesign of the software. This pro-
cess is both labor intensive and error prone. Indeed, designing
a new masking scheme for a reputable cryptographic algorithm
such as AES [20] would be considered as publishable work
in top cryptography venues.

In this paper, we assume that an adversary knows the pair
(x, ¢) of plaintext and ciphertext in ¢ <— enc(x, k). For each
pair (x, ¢), the adversary may measure the side-channel leak-
age of at most d intermediate computation results I, ..., I.
However, the adversary does not have access to r, which is
assumed to be the output of a true random number generator.
The goal of the adversary is to compute the secret key (k).
Kocher et al. [6] demonstrated in their seminal work that it is
possible to deduce such information (k) from the power side
channels using a statistical method known as the DPA.

A necessary condition for power side-channel resistance is
for all the intermediate computation results of a function to
be insensitive with respect to the secret bits, as defined by
Bayrak er al. [18]. Here, we say that an intermediate result
I; is sensitive if it logically depends on the secret bits and, at
the same time, it does not logically depend on any random
variable. According to [18], this logical dependency analy-
sis is equivalent to computing don’t cares (DCs) in logic
synthesis [21]. If random bit r is a DC of the Boolean func-
tion [;, then the value of I; does not depend on the value
of r. Recall that, in logic synthesis, r is a DC if [; remains
unchanged whether r is set to logical 0 or 1. However, even
an insensitive /; may still leak secret information, because
logically depending on random bits does not mean that /; is
statistically independent from the secret bits.

Fig. 1 shows an example, where k is the secret bit, r1 and r2
are the random bits, and o1, o2, o3, and o4 are the results
of four masking schemes. According to the truth table on the
right-hand side, all four outputs depend on r1 and r2 and
therefore are insensitive [18], but three of them still leak secret

1560

X k rl r2 ol 02 o3 o4
0 0 0 0 0 0 0 0
0ol = xAkKA(rlAr2) 0 0 0 1 0 0 0 1
02 = xXAkV (rlAr2) 0 0 1 0 0 0 0 1
0 0 1 1 0 1 1 0
03 = xAk@ (r1lAr2) 0 1 0 0 0 T T T
04 = xAk® (r1hpr2) 0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 0
0 1 1 1 1 1 0 1

Fig. 1. Four masking schemes with different side-channel leakages and
the corresponding truth table when x = 0. Although o1, o2, and o3 are
masked by random bits r1 and r2, they still leak secret information about k.
In contrast, 04 does not have side-channel leakage.

information. For instance, when o1 is logical 1, we know for
sure that the secret k is also 1, regardless of the values of the
random variables. Similarly, when o2 is logical 0, we know
for sure that k is also 0. When o3 is logical 1 (or 0), there is a
75% chance that k is logical 1 (or 0). Furthermore, in practice,
techniques for mitigating the overhead of masking may lead to
unbalanced masks, which can cause hidden leakages [22]. In
contrast, o4 is the only side-channel resistant output because
it is statistically independent of k. When k is logical 1 (or 0),
there is 50% chance that o4 is logical 1 (or 0).

In the context of power side-channel analysis, a leak-
age model specifies the amount of side-channel informa-
tion observable during program execution. In simple power
analysis- and DPA-based attacks, an effective and widely used
leakage model is the Hamming weight (HW) model. We will
show in Section VI that, based on our measurements on
real embedded computing devices, the HW model is accurate
enough for our analysis.

Sometimes, however, a device does not leak the HW of
the processed data, but the Hamming distance (HD) between
these data and an initial state [23]. Extending our static code
analysis method to handle this so-called HD model is left for
future work.

III. QUANTITATIVE MASKING STRENGTH

In this section, we first introduce the new notion of QMS
and then present methods for checking whether a program
satisfies a given QMS.

A. Notion of Masking Strength

Given a pair (x, k) of plaintext and secret key for the func-
tion enc(x, k), an s-bit random number r uniformly distributed
in the domain R = {0, 1}, and d intermediate computation
results Iy(x, k,r),...,Ig(x, k,r), if the joint distribution of
Iy, ..., 1, is statistically independent of the secret k, following
the terminology of [19], we say that the function is order-d
perfectly masked. Otherwise, we say that the function is vul-
nerable to side-channel attacks, and in this section, we would
like to propose a new metric (Agms) for quantifying the bias
of each [;(x, k, r) with respect to x = x and k = k, where
and « are certain values for variables x and k, respectively.

Definition 1: Given an implementation of the function
enc(x,k) and a set of intermediate computation results
{I;(x, k, r)} inside the function, we define the QMS as the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

minimal value of (1 — Agms) such that, for any [;(x, k, r)
|EUilk =k Ax=x) —E(lilk =" Ax=x)| < Agms

holds for all values x, «, and k" where k # «’.

In the context of DPA, we can regard the value « in the
above definition as the correct value of variable k, and «’ as any
of the incorrect values. For verification purposes, we cannot
fix k to any particular value; instead, we keep it symbolic
in order to prove that there is no side-channel information
leakage for any « and «’.

As an example, consider the four masking schemes in Fig. 1.
Let Aqms(li) = |E(lilk =k Ax = x) —E(lilk = k" Ax = x)l,
where y = 0, k = 0, and ¥’ = 1. In the context of order-1
side-channel attacks, we have

Agms(01) = 1/4 —0/4 = 0.25
Aqms(02) = 4/4 —1/4 = 0.75
Agqms(03) = 3/4 — 1/4 = 0.50
Agms(04) = 2/4 —2/4 = 0.00

>
K=}

E
)
Z
I

g
E
AA@/—\
I

=4/4—3/4=025
3/4—0/4=0.75

All four outputs satisfy the insensitivity requirement [18]
because of their logical dependence on the random bits, but
only o4 is statistically independent of the secret k. In other
words, only for o4, we have Agms = 0.0, which is the same
as QMS = (1 —Agms) = 1.0, indicating it is perfectly masked.

Our new notion of QMS in Definition 1 subsumes
both the notion of perfect masking [19] and the notion of
sensitivity [18] in the following sense. First, the perfect mask-
ing criterion introduced by Blomer et al. [19] can be viewed
as an extreme where Agms = 0. Second, the insensitivity crite-
rion introduced by Bayrak ef al. [18] can be viewed as another
extreme where Agys = 1. They represent two extreme cases
of the spectrum, whereas QMS allows us to quantify the side-
channel resistance of the vast number of design choices in
between.

B. Checking the Masking Strength

To decide whether a function satisfies the given QMS
requirement, we need to decide whether there exists any
intermediate computation result /;(x, k, r) such that |E(/;|k =
k ANx = x)— EUilk = k" Ax = x)| > Agms for some
(x,«) and (x, k), where k # «’. The function enc(x, k) satis-
fies the QMS requirement if and only if no such intermediate
computation result exists for the given Agms.

The main challenge for static code analysis methods—
whether it is to compute the QMS of a given program or to
verify that the program satisfies the QMS requirement—is to
compute E(Ijlk =k Ax =).

Our new method works as follows. As the starting point,
we mark all the plaintext bits in x as public, the key bits
in k as secret, and the mask bits in r as random. Then,
for each node I(x, k, r), which represents a Boolean func-
tion, we check whether it satisfies the QMS requirement.
Following Definition 1, we formulate the order-1 QMS check
as a satisfiability problem as follows:

I,k KL (Srerl(x k1) — Zpepl (%, K, 7)) > Agms.

ELDIB et al.: QMS: QUANTIFYING THE POWER SIDE-CHANNEL RESISTANCE OF SOFTWARE CODE

Here, the variable x represents the plaintext, variables k and k’
represent two different secret keys, and r represents the s-bit
random number in domain R = {0, 1}*. For any fixed value
of (x, k, k'), the summation X,cgl(x, k, r) represents the num-
ber of satisfying assignments of /(x, k,) and the summation
S,erl(x, k', r) represents the number of satisfying assignment
of I(x, k', r). In both cases, the assignment count is in terms
of the random variable r. Assume that r is uniformly dis-
tributed in the domain R = {0, 1}*, the summations represent
the probabilities of / being logical 1 under certain values
of (x, k) and (x, k'), respectively.

If the above formula is satisfiable, there exist values for
x and (k, k') such that the distribution of I(x, k, r), in terms
of r € R, differs from the distribution of I(x, k', r) by more
than Agms. In other words, the secret values of k and K
are leaked, and the amount of information leakage is more
than expected. On the other hand, if the above formula is
unsatisfiable, then / satisfies the given QMS requirement.

IV. STATIC SOFTWARE CODE ANALYSIS

In this section, we first present our verification proce-
dure, which takes a Boolean program and a QMS as input
and checks whether the program satisfies the QMS require-
ment. It is an extension of our verification method, called
SC Sniffer [24], for verifying whether a program is perfectly
masked. Then, we present our algorithm for estimating the
QMS of a given program, which uses the aforementioned
verification procedure as a subroutine.

A. Checking Program Against QMS Requirement

Our method is based on translating the verification problem
into a set of quantifier-free FOL formulas and then deciding
the formulas using an off-the-shelf SMT solver. For each inter-
mediate computation result /(x, k,) of the given program, we
construct a formula & such that it is satisfiable if and only
if there exist a plaintext value x = x and two different key
values « and «’ such that the probability for I(x, k, r) to be
logical 1 differs from the probability for I(x, k', r) to be log-
ical 1 by more than Agpys. Although SAT/SMT solver-based
verification techniques have been widely used in electronic
design automation for verifying hardware/software compo-
nents, our method is different in that existing methods typically
focus on functional correctness whereas the QMS checked by
our method is nonfunctional—it is a quantitative property and
is statistical in nature.

Given a Boolean program as input, we first construct a
data-flow graph, where the root represents the return value
and the leaf nodes represent the inputs. Each internal node
represents the result of a Boolean operation of one of the
following types: AND, OR, NOT, and XOR. For the exam-
ple in Fig. 2, our method starts by parsing the program and
creating a graph representation. This is followed by travers-
ing the graph in a topological order, from the program inputs
(leaf nodes) to the return value (root node). For each inter-
nal node, which represents an intermediate computation result,
we check whether it satisfies the given QMS requirement.

1561

1 : compute(bool k1, bool k2,bool ri1, bool r2){
2: bool nl1,n2,n3,n4,n5,n6,n7,n8, c;

3 nl = k1 Hri;

4 : n2 = k2@ r2;

5: n3 = nl & n2;

6: nd = k2P r2;

7 n5 = r1 & n4;

8 n6 = k1 G ri;

9: n7 = r2 & n6;
10 : n8 = n5 @ n7;
11: ¢ =n3@ns;
12 : return c;

Fig. 2. Example for static analysis of the QMS. The input program and its
abstract syntax tree (AST).

The order in which we check the internal nodes is as follows:
nl, n2,n3, n4, n5, n6, n7, n8, and finally, c.

Notice that the program in Fig. 2 is a masked version of
¢ < (k1 Ak2), where k1 and k2 are the secret keys, »1 and r2
are the random variables, and c is the computation result. The
return value c is logically equivalent to (k1 A k2) @ (r1 A r2).
This masking scheme (from [19]) is used to make the power
consumption of the computation of ¢ independent of the val-
ues of k1 and k2. The corresponding de-masking function
(not shown in the figure) is ¢ @ (r1 A r2). Since (k1 A k2) &
(rlLAr2) ® (rl Ar2) = (k1 A k2), de-masking would produce
the desired value (k1 A k2).

Our method will determine if all intermediate variables
of the program have a masking strength higher than Agms.
Toward this end, we formulate a satisfiability problem for
each intermediate computation result /(x, k, r). Let ® denote
the SMT formula to be created for checking the intermediate
result I(x, k, r). Recall that I is a Boolean function in terms
of x, k and r. Let s be the number of random bits in ». Our
encoding method ensures that @ is satisfiable if and only if /
does not satisfy the QMS requirement. Therefore, we define
@ as follows:

251 21

o = (/\ W,:) A (/\ \I-’;;,) A Wpoi A Weum A Wifr
r=0 r=0

where the subformulas are defined as follows.

1) Program Logic (¥/): Each subformula W encodes
a copy of the function of I(x,k,r) with the ran-
dom wvariable r set to a concrete value in the
domain {0,...,2° — 1} and the secret values set to k
or k'. Notices that all copies of the program logics for
Wy and Wy, share the same plaintext value x.

2) Boolean-to-Int (Wy;): It encodes the conversion of the
output of I(x, k, r) from Boolean to integer (where true
becomes 1 and false becomes 0), so that the integer val-
ues can be summed up later to compute X,ecrl(x, k, r).

3) Sum-Up-the-1s (Wg,m): It encodes the two summations
of the logical 1s in the outputs of the 2° copies of pro-
gram logic, one for the program logic copies of the form
I(x, k, r) and the other for the program logic copies of
the form I(x, k', r).

4) Different Sums (Wgyr): It asserts that the difference
between the two summations is bigger than the required
Agms—recall that the leakage and the QMS has the
following relation: Agms = 1 — QMS.

1562
I
‘ ‘ SAT?
‘code checked ‘ ‘code checked ‘ ‘code checked ‘ ‘code checked ‘
i —— e ——— e ———]
ki kZ‘rI‘rZ‘ K k2 r]‘rZ‘ Kl k2 rl rZ‘ Kl k2 rl| 2 A
00 01 10 11 qms
I
code checked code checked code checked code checked
T e ——— e ———]
kI kZ" rl‘ rZ‘ Kl k2 rl‘ rZ‘ kI k2 rl rZ‘ kI k2 rl|r2
00 0 1 10 11
Fig. 3. Illustrating the SMT encoding for checking the QMS of the function

I(k1, k2,71, r2).

Faummy 1;

I, =1, ®de-M(z,k,r)
= Thew @ (2, k,7) @ de-M (z, k, 1)
= Tnew ® (- - -)

‘= Tdummy

Fig. 4. Checking the QMS by incrementally applying the SMT-based analysis
(see [24]). Here, we assume that rpew is fresh random bit that has not been
used in the support of /3.

Fig. 3 is a pictorial illustration of the SMT encoding for
an intermediate computation result /(kl, k2, rl, r2), where
k1 and k2 are the secret bits and r1 and r2 are two ran-
dom bits. The first four boxes, encoding ‘IIO,...,\IIE, are
copies of the program logic for key bits (k1k2) with ran-
dom bits set to 00, 01, 10, and 11, respectively. The other
four boxes, encoding \I/I?,, cee, \IJS,, are copies of the program
logic for key bits (k1’k2) with random bits set to 00, 01, 10,
and 11, respectively. The formula checks for security against
first-order DPA attacks—whether there exist two sets of
keys (kI k2 and kI’ k2’) under which the probabilities of I (for
being logical 1 and 0, respectively) differs from each other by
more than Agps.

B. Checking the Fan-In AST Nodes Incrementally

Since the SMT formula size is linear in the size of the pro-
gram but exponential in the number of random variables, it
may become a bottleneck if the program uses a large number
s of random bits. To avoid the potential performance prob-
lem, we propose an incremental analysis algorithm similar
to the one used in SC Sniffer [24], which applies the SMT-
based analysis only to small code regions as opposed to the
entire fan-in cone of each intermediate computation result.
This is crucial for scaling our method to software code of
practical size.

Our incremental algorithm can be illustrated by the example
in Fig. 4, where the output of mask(x, k,) is masked again
with the new random variable ryey before it is de-masked from
the old random variable r. In practice, a common used strat-
egy for implementing randomization-based countermeasures is

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

Algorithm 1 Iteratively Computing the QMS of a Given Program

1: comPUTEQMS (Prog) {
Ajoy < 0.00
Apjgh < 1.00
while (A, < Ahigh)|
Apig < (Djow + Dhign)/2.0
if (CHECKQMS(Prog, A,,;q) = SAT)
Aoy < Appig +0.01;
else
} Ahigh <« Ahigh —0.01;

return Ay,

P oYX N WY

2

to have a chain of modules, where the inputs of each mod-
ule are masked before executing its logic, and are de-masked
afterward. To avoid having an unmasked intermediate value,
the inputs to the successor module are masked with fresh ran-
dom variables, before they are de-masked from the random
variables of the previous module.

In Fig. 4, before verifying mask2, if we have already proved
that I, is perfectly masked, and ryey is @ new random variable
not used elsewhere (not in computing /3), then for the purpose
of checking mask2, we can substitute /5 with a new random
variable 7qummy While verifying mask2.

Due to associativity of the @ operator, reordering the mask-
ing and de-masking operations would not change the logical
result. For example, in Fig. 4, the instruction being analyzed
is in mask2(). Since random variable rpew is not used inside
mask() or de-mask(), or in the support of I3, we can replace
the entire fan-in cone of I by a new random variable rgummy
while verifying mask2().

The effectiveness of our incremental algorithm relies on this
design pattern. We shall see in the experimental results sec-
tion that such optimization opportunities are abundant in real
applications.

C. Computing the QMS of Program

Given a C program, we can estimate the QMS of all the
intermediate computation results of the program by itera-
tively invoking our SMT-based verification procedure as a
subroutine. We start with Agys = 1.0, and check whether
the program satisfies this QMS requirement. If the answer is
no, then we decrease Agms by a minimum step of 0.01 each
time and check again. We stop as soon as the program satisfies
the QMS requirement. At that moment, the value for Agps is
the estimated QMS of the given program.

Algorithm 1 shows the overall flow of our iterative
procedure. To make it efficient, we have used the binary
search. To further reduce the unnecessary runtime overhead
of the SMT-based analysis, we use simple static analysis dur-
ing preprocessing to quickly identify nodes where Agpms = 0.0.
For example, if the internal node n does not have any secret
bit in its fan-in cone, then by definition there is no side-
channel leakage associated with n. Sometimes, even if secret
bits appear in the fan-in cone of a node n, they may be DCs.
That is, the actual value of node n may be logically indepen-
dent of these secret bits. In such cases, we can safely skip the
SMT-based analysis. We will show in our experiments that

ELDIB et al.: QMS: QUANTIFYING THE POWER SIDE-CHANNEL RESISTANCE OF SOFTWARE CODE

such simple static analysis allows us to skip the SMT-based
analysis for a significantly large number of nodes.

In this paper, we focus on verifying security critical software
code, such as implementations of cryptographic algorithms, as
opposed to arbitrary software applications. The program under
verification typically does not have input-dependent control
flow, meaning that we can easily remove all the loops and
function calls from the code using standard loop unrolling and
function in-lining techniques. Furthermore, the program can be
transformed into a branch-free representation, where the if-
else branches are merged. Finally, since all program variables
are bounded integers, we can convert the program to a purely
Boolean program through bit-blasting. Therefore, in this paper,
our static code analysis method is concerned with only the
bit-level representation of a branch-free program.

V. MODELING BIAS IN RANDOM
NUMBER GENERATORS

In previous sections, we assume that random bits used
by the masking countermeasures are unbiased in that they
output a equal number of logical 1s and Os over time.
However, real-world random number generators may be
biased, sometimes intentionally (e.g., a tradeoff between secu-
rity and efficiency [25]) with either logical Is or Os pre-
dominating. Such bias may have a significant impact on
the QMS of the countermeasure. However, in general, we
are not aware of prior work on statically quantifying the
impact of bias in masks on the effectiveness of masking
countermeasures.

In this section, we first use an example to illustrate the
problem. Then, we propose a nonintrusive method for model-
ing such bias during the static analysis of the software code,
as well as the measurement of power leakage on real devices
(Section VI).

Consider an example from the MAC-Keccak implemen-
tation, where the masking operation for an instruction is

na =01 ®k)® (=2 ® k) A (3D k3)) @ (2 ® ko) AT3).

Here, the secret bits are ki, k, and k3 and the random bits are
r1, r2, and r3. We can prove that the output ny4 is perfectly
masked if all the random bits are uniformly distributed,
i.e., with an equal probability of having logical 1 and 0.
However, when rq, rp, and r3 are biased, this may no longer
be true.

Take the two values 000 and 001 for the secret bits as an
example. By setting k1, k2, and k3 to 000 and 001, respectively,
we can simplify the function of nj4 to make it dependent
only on ry, r2, and r3. The Agms, which is the difference
in probability for nj4 to be logical 1 and 0, is reduced to
[(Poo1 + P1oo) — (Pooo + Pio1)|, where Pog, for instance, is
the probability for r;rpr3 to be 001. If we assume that the
probabilities for r1, r2, and r3 are all Py, the Agns is further
simplified to [4P3 — 8P? 4+ 5P, — 1. In other words, we have
QMS = 1— |[4P3 —8P2 + 5P, — 1|.

Fig. 5 shows a plot for the relation between the P, and the
QMS. The x-axis is the value of P,, where 0.5 means there
is no bias. The y-axis is the QMS, where 1.0 means there
is no first-order side-channel leakage. When P, = 0.5,

1563

1

0.9

0.8

0.7F

0.6

0.5r

Qms

0.4

0.3r

0.2

0.1,

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Random generator probabilty output of 1 (ideal case = 0.5)

Fig. 5. Relationship between the QMS and the bias of the random number
generator (0.5 on the x-axis means there is no bias).

we can see that QMS = 1.0, meaning that the output is
perfectly masked. However, as P, moves away from 0.5, the
QMS starts to degrade, meaning that side-channel leakage
starts to occur. Although the QMS reaches 1.0 again as P,
reaches 1.0, it does not mean that there is no side-channel leak-
age when the random bits become constant logical 1s. Instead,
it only means that the two selected values (000 and 001) are
indistinguishable. However, there are other pairs of values for
the secret bits, for which the QMS is not 1.0 when P, = 1.
Indeed, among all the P, values, the only one that leads to
perfect masking of ny4 is P, = 0.5.

In the presence of bias in the random number generators, we
want to make sure that static analysis method still can compute
the QMS correctly. Furthermore, we want to find a convenient
way to measure the actual power leakage of the software with
biased random variables. Toward this end, we propose a new
method for constructing biased random bit streams from a
set of unbiased random bit streams. We implement such con-
struction in a piece of software code, which in turn can be
merged with the original piece of software code, for both static
analysis as well as hardware-based measurement.

The main idea of our construction can be illustrated by ana-
lyzing the impact of an AND gate on two random bit streams
r1 and . Let r = r; A rp. Since the output of r is logical 1
only when both r; and r, are logical 1s, the probability for
r to be logical 1 is P, = P, P,,. If P,, = P,, = 0.5, for
example, meaning the two input bit streams are unbiased, we
have P, = 0.25, with logical Os predominating in the output
bit stream. Similarly, if we use an OR gate, i.e., ¥ = 1] V 12,
then we have P, = (.75, with logical 1s predominating in the
output bit stream. If, on the other hand, we want to construct a
random bit stream with the desired value P, = 0.125, we need
to use three unbiased random bit streams: r = r| A ry A 3.

Using this approach, we can construct a random bit stream
with the bias set to a rational value between 0.0 and 1.0. We
generate a piece of software code that implements the above
construction and merge it with the original software code that
uses the biased random bit streams. The combined software
code is then subjected to both static analysis of the QMS and
hardware-based measure of the actual power leakage.

The advantage of this approach is that the bias model-
ing is made nonintrusive and transparent with respect to the

1564

]

T

Embedded Computing HW

USB

! Cryptographic SW | Ciphertext Oscilloscope
i T ()

Plaintext Key |
) i~

,,,,,,,,,,,,,,,,,

enc(x,k)

QO

Power

! —

- Time

Current
sensor

Fig. 6. Side-channel attack measurement system setup.

verification and measurement methods. More specifically, our
SMT solver-based method for analyzing the QMS does not
need to be changed. What is changed is the input, which
includes not only the original code but also the additional
code for generating biased random bit streams. Similarly, in
our hardware-based measurement experiments (Section VI),
we can easily control the bias of the random bit streams
without using specialized hardware for biased random number
generation.

VI. MEASUREMENT ON REAL DEVICES

To check whether the QMS actually reflects the mask-
ing strength of a piece of software, we conducted a set of
power analysis-based side-channel attacks on implementations
of MAC-Keccak, AES, and a few other cryptographic algo-
rithms. We ran all software code on a 32-bit Microblaze
processor [26] built on a Xilinx Spartan-3e FPGA (Fig. 6).
To measure the power consumption of the processor core, we
used a Tektronix DPO 3034 oscilloscope and a CT-2 cur-
rent probe to sample the power consumption of the FPGA.
The side-channel attack was conducted using the classic DPA
(difference of means [6]). To limit the effect of measurement
noise, we collected each trace after running the same software
code 128 times and using the oscilloscope to calculate the
average. Here, a trace refers to a set of samples taken during
the execution of the software.

We used the DPA to determine whether a key guess was
correct. Recall that DPA relies on the observation that power
consumption variations correlate to the values of the sensitive
bits being manipulated. Using the same input vector stream of
plaintext as in the measured traces, we computed the value of
the sensitive variable assuming that the secret key was one
of the key guesses. For an n-bit key, there would be 2" key
guesses. For each key guess, we divided the set of measure-
ment traces into two bins, one for all the sensitive values of
logic 0, and one for all the sensitive values of logic 1. Then
we computed the difference of means between those two bins,
for each key guess. We selected the key guess that result in
the maximum difference.

We conducted three sets of experiments. Table I shows
the statistics of the benchmarks, including the name of
the program, a short description, the lines of code, the
number of computation nodes, as well as the numbers of
key bits, plaintext bits, and random bits. The first two

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

sets consist of various versions of the MAC-Keccak and
AES implementations [27]-[30] with gradually degrading
QMS values. We measured the average number of traces
needed to determine the secret key. In the third set of
experiments, we used a set of recently published software
countermeasures [18], [19], [31]-[33], with fixed QMS val-
ues, and measured the average number of traces needed to
determine the secret key.

Fig. 7 shows our results on the SHA3 benchmark. The
x-axis is the QMS value, while the y-axis is the measured
average number of traces needed to determine the secret
key. Notice that the y-axis is in logarithmic scale. In addi-
tion to the measured data, we have plotted an empirical
approximation rule generated by hit and trial (dotted curve)
to estimate the measured data. We can see that when the
QMS value approaches 1.0, the number of traces needed to
determine the secret key will approach infinity. This is as
expected because QMS = 1.0 means that the code is per-
fectly masked—since there is no information leakage, the
implementation is provably secure. However, when the QMS
value deviates from 1.0 slightly, the number of traces needed
to determine the secret key drops drastically—QMS = 0.90
corresponds to around 100 DPA traces. Overall, the side-
channel resistance, as measured by the number of traces
needed to determine the secret key, is exponentially dependent
on QMS.

Fig. 8 shows our results on the AES benchmark. Here, the
measured data are similar to those in Fig. 7. Furthermore,
we note that the approximate empirical formula computed to
estimate the number of required DPA traces has the following
relation with the QMS value:

1

Nirace = 0= o)

where ¢ =~ 2.0 for these two sets of experiments. This is con-
sistent with theoretical analysis results in the literature, which
says that ¢ should be 2.0 since (1 — QMms) represents the stan-
dard deviation of power analysis measurements under certain
assumptions—see the rough approximation by Mangard [34]
of the number of measurement traces needed for a suc-
cessful DPA, which is a function of the standard deviation
of the power analysis measurements. In the context of this
paper, what is important is our discovery that the side-channel
resistance is indeed closely dependent on QMS.

Table II shows our results on the third set of benchmarks.
Here, columns 1 and 2 show the program name and the node
to which we have applied the DPA attack. Column 3 shows
the QMS value computed statically for the software code.
Column 4 shows the number of traces needed to determine
the secret key. T.O. means timed out after 100 000 traces are
measured. It is worth pointing that we performed second order
analysis on P3-P5. Overall, we have observed a similar expo-
nential dependence between the number of measured traces
and the QMS value. For example, when the QMS is 0.00—
meaning that the node is not masked at all—we have found
that the secret key can be determined with merely a handful of
DPA traces. When the QMS is 1.00—meaning it is perfectly
masked—the key cannot be determined within our time limit

ELDIB et al.: QMS: QUANTIFYING THE POWER SIDE-CHANNEL RESISTANCE OF SOFTWARE CODE

TABLE I
STATISTICS OF MASKED SOFTWARE BENCHMARKS USED IN OUR MEASUREMENT-BASED DPA ATTACK EXPERIMENTS ON REAL DEVICES

1565

[Name | Description | Lines of Code | Intermediate Nodes | Key Bits | Plain Bits | Rand Bits |
SHA3 | A series of masked MAC-Keccak with varying levels of masking (biased random 61 31 3 3 3
number generators from 0.01 to 0.5 to vary QMS from 0.0 to 1.0)
AES A series of masked AES with varying levels of masking (biased random number 52 37 8 8 8
generators from 0.01 to 0.5 to vary QMS from 0.5 to 1.0)
P1 CHES13 Masked Key Whitening 79 47 16 16 16
P2 CHES13 De-mask and then Mask 67 31 8 8 16
P3 CHES13 AES Shift Rows 21 21 2 2 2
P4 CHES13 Messerges Boolean to Arithmetic (bit0) 23 24 1 1 2
P5 CHES13 Goubin Boolean to Arithmetic (bit0) 27 60 1 1 2
P6 Logic Design for AES S-Box (Ist implementation) 32 9 2 2 2
P7 Masked Chi function MAC-Keccak (1st implementation) 59 19 3 3 4
P8 Masked Chi function MAC-Keccak (2nd implementation) 60 19 3 3 4
P9 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 22 3 3 4
P10 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 22 3 3 4
10° TABLE II
= SHA3 Measured DPA ATTACKS ON P1-P10: SHOWING THE RELATION BETWEEN QMS
- - Empirical (c = 2.0) AND THE NUMBER OF TRACES NEEDED TO DETERMINE THE KEY
10 :
- i [Name | Node [QMS | Trace || Name | Node [QMS | Trace |
% o P1 n011 0.00 2 P1 n012 1.00 T.O.
S . / P2 n21 0.00 3 P2 n 1l 100 | TO.
2107 I P3 st10 & st2 0.00 2 P3 X2 @ st2 1.00 T.O.
° J P4 X ® A3 0.00 2 P4 Al ® A3 1.00 T.O.
S ! P5 X @ R2 0.00 3 P5 T1 @ R2 1.00 T.O.
§ 2 L P6 n09 0.50 936 P6 n07 1.00 T.O.
o 10¢ E P7 n32 050 | 992 P7 n35 1.00 | TO.
I3 P8 n02 0.50 587 P8 n23 1.00 T.O.
"_E - P9 n47 0.50 255 P9 n39 1.00 T.O.
10'k Pt | P10 n47 0.50 426 P10 n48 1.00 T.O.
P I ‘ ‘
0 0.2 0.4 ams 0.6 0.8 1 VII. EXPERIMENTS

Fig. 7. DPA attacks on MAC-Keccak. Plotting the number of traces needed
to determine the key with respect to the QMS value.

10 w
« AES Measured
- - Empirical (c = 2.0)

10* i
> !
Q i
X 1
o 10°F 7]
hel /
[} ’

O .
3 ;

2 v
S10°¢ E
[0}

[}
o
'_ e
10" - :
10 0 0.2 0.4 0.6 0.8 1
QMs

Fig. 8. DPA attacks on AES. Plotting the number of traces needed to
determine the key with respect to the QMS value.

of 100000 traces. When the QMS is between 0.00 and 1.00,
the number of DPA traces closely follows the same empir-
ical formula (exponential dependence on the QMS) that we
have discovered earlier, but with a slightly different value for
constant c.

We have implemented our new QMS checking algorithm
in a static code analysis tool called SC Sniffer [24]. The
new method, called Sniffer-QMS, can verify whether a piece
of Boolean program satisfies an arbitrary QMS requirement
(ranging from 0.0 to 1.0), whereas the original tool only checks
whether it is perfectly masked. In addition, Sniffer-QMS can
compute the QMS value for a given program. Our implemen-
tation uses the LLVM compiler [35] as the front end, and the
Yices SMT solver [9] as the analysis engine at the back end.

During the experiments, we have evaluated the efficiency
and effectiveness of our new static code analysis method for
both QMS estimation and QMS checking. Our experimental
evaluation was designed to answer the following questions.

1) Is it practical to compute the QMS of a program through

purely static code analysis?

2) Does the new method offer significant advantages over

existing methods such as Sleuth [18]?

Our benchmarks included a set of published imple-
mentations and/or masking schemes for cryptographic
algorithms [18], [19], [27], [28], [30]-[33], many of which
(e.g., P1-P6) were shown to be vulnerable to power side-
channel attacks according to our method. The statistics of these
benchmarks are presented in Table I. All our experiments were
obtained on a desktop computer with a 3.4 GHz Intel 17-2600
CPU, 3.3 GB RAM, and a 32-bit Linux operating system.

Table III shows the results of applying our new method
to compute the QMS of a given software. Column 1 shows
the name of the software. Column 2 shows the number of
internal nodes checked. Columns 3-6 show the QMS com-
puted, including the minimal, maximal, local average, and

1566

TABLE III
STATICALLY COMPUTING THE QMS OF THE C PROGRAMS

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

TABLE V
VERIFYING A C PROGRAM AGAINST THE QMS REQUIREMENT

[Program | QMS [Performance | Program Sleuth [18] Sniffer-QMS
| Name | Nodes | Min. | Max. | Local Avg | Global Avg | TIters | Time | name | nodes | masked | nodes | time masked | nodes | time
P1 7 0.00 | L.00 0.00 0.66 31 | 0.13s | failed | qms=1.0 | failed |
P2 31 0.00 1.00 0.00 0.74 23 | 041s 3 47 No 16 0.16s No 16 0.00s
P3 21 0.00 1.00 0.33 0.71 108 1.6s P2 31 No 8 0.21s No 8 0.14s
P4 24 0.00 1.00 0.17 0.93 151 1.7s P3 21 No 9 1.17s No 9 1.14s
P5 60 0.00 1.00 0.17 0.97 367 3.1s P4 24 No 2 0.58s No 2 1.25s
P6 9 0.50 1.00 0.50 0.83 11 | 0.15s P5 60 No 2 1.19s No 2 2.53s
P7 19 0.00 1.00 0.17 0.86 19 | 0.17s P6 9 Yes 0 0.06s No 2 0.08s
P8 19 0.50 1.00 0.50 0.92 20 | 0.16s P7 19 No 1 0.15s No 3 0.12s
P9 22 0.50 1.00 0.50 0.97 23 | 0.18s P8 19 Yes 0 0.13s No 2 0.10s
P10 22 0.50 1.00 0.50 0.97 23 | 0.24s P9 22 Yes 0 0.18s No 1 0.16s
P10 22 Yes 0 0.20s No 1 0.18s
P11 128k Yes 0 91m53s Yes 0 11m20s
TABLE IV pis | 1%k | ve | 0| ommsss | Ne | 1024 | 1omose
(& m3os o mz0s
SMT RELATED STATISTICS DURING THE QMS COMPUTATION Pl4 150k Yes o | 132m10s No s12 37m17s
P15 | 128k No 512 | 113m12s No 1536 | 17mdds
[Program | Nodes Checked | Tterations | Variables in SMT | P16 131k No 4096 | 103m56s No 4096 18m29s
| Name | Total | Static [SMT | Total | Per node | Avg. | Min. | Max. |
P1 a7 31 16 31 19 23 23 23
P2 31 23 8 23 2.9 26 26 26
P3 21 6 15 108 2.4 67 30 82 .. .
P4 24 15 9 151 6.0 106 | 30 143 In addition to the P1-P10 examples, we have experimented
}132 690 572 328 31617 ‘S‘g 19976 137(31 g; on a set of full-sized MAC-Keccak implementations [27]
P7 19 16 3 19 6:3 161 34 204 (Pll—P16) in order to compare the scalability of the two
P8 19 16 3 20 6.7 161 34 204 methods.
P9 22 20 2 23 11.5 313 | 272 | 434
P10 2 19 3 23 77 312 | 275 | 434 From the results, we have observed several advantages of

global average. Columns 7 and 8 show the number of iter-
ations and the total execution time. The number of iterations
is for the combination of checks on all internal nodes. Also,
for P3—P5, we have applied second-order DPA following [18]
as opposed to first-order DPA, so each node has been checked
against every other node of the program. The results show
that our iterative method converged quickly in all cases. Our
tool can report several addition pieces of useful information
reported by our new method, e.g., which node in the program
has the lowest QMS and therefore is the most vulnerable to
side-channel attacks.

Table IV shows the statistics of SMT solver-based checks
during the above experiments. Here, Column 1 shows the
name of each benchmark. Columns 2-4 show the number
of nodes in the program, the number of nodes skipped by
the simple static analysis (Section IV-C), and the number of
nodes checked by the SMT-based method in Algorithm 1,
respectively. Columns 5 and 6 show the total number of
iterations and the average number of iterations per node
needed to compute the QMS in Algorithm 1. The last three
columns show the average, minimum, and maximum number
of variables in the formulas fed to the SMT solver.

Table V shows the results of applying our new method to
check whether a program satisfies a given QMS requirement.
For comparison, we have reimplemented and evaluated the
Sleuth algorithm of Bayrak et al. [18] in our framework. Here,
Columns 1 and 2 show the program name and the number of
nodes checked. Columns 3-5 show the statistics of Sleuth,
including whether it finds any unmasked node, the number of
unmasked nodes, and the total execution time. Columns 6-8
show the statistics of our new method, including whether it
finds any node that leaks side-channel information, the num-
ber of vulnerable nodes found, and the total execution time.

our new method over Sleuth. First, our new method can check
for the quantitative masking strength—for any QMS value
ranging from 0.00 to 1.00—whereas Sleuth can only check
whether a node is masked (whether the QMS is zero or
nonzero). The results in Table V clearly show that there are
many cases (e.g., in P6 and P8) where the nodes are masked
by some random bits, but the masking is not perfect, and there-
fore the nodes can still leak sensitive information. Second, our
new method is more scalable than Sleuth. Although the two
methods have comparable run time on small programs, our
new method is significantly faster than Sleuth on large pro-
grams, despite the fact that it is checking a more sophisticated
quantitative property. This is due to the fact that we are using
incremental SMT analysis as described in Section IV-B.

VIII. RELATED WORK

This paper is an extension of [1] that proposed the notion
of QMS for the first time. In this extended version, we have
provided a more detailed description of the static analysis
algorithm, explained our modeling of bias in random number
generators, and presented more experimental results.

The notion of perfect masking was first introduced by
Blomer et al. [19], following Shannon’s notion of perfect
secrecy. They also proposed a provably secure masking
scheme for AES. When implemented properly, perfect mask-
ing countermeasures are provably secure against power analy-
sis attacks regardless of the technological capability of the
adversary. However, they did not consider quantifying the
strength of masking countermeasures. To the best of our
knowledge, we are the first to propose the new notion of QMS
as a metric for evaluating masking countermeasures.

We also propose the first SMT solver-based method for
checking the QMS of the source code of cryptographic soft-
ware. The Sleuth [18] method only checks whether sensitive
data are masked by some random bits, but does not check

ELDIB et al.: QMS: QUANTIFYING THE POWER SIDE-CHANNEL RESISTANCE OF SOFTWARE CODE

whether it is perfectly masked. The SC Sniffer method pro-
posed in [24] can check whether sensitive data are perfectly
masked, but cannot check it against an arbitrary QMS require-
ment. Furthermore, neither of these previous methods can
statically estimate the QMS of a piece of software code.

There is a large body of work on designing and
implementing masking countermeasures for cryptographic
algorithms [31]-[33], [36]-[38]. However, in all these prior
works, the countermeasures were manually designed and
implemented, and in general, there was a lack of automated
verification tools to ensure that the masking countermeasures
were indeed secure. Our new method would be particularly
useful in this situation.

There have been some recent works on automated construc-
tion of side-channel countermeasures [39]-[41]. However, they
are typically based on compiler transformations that match
known leakage patterns and apply predetermined transforma-
tion rules. In contrast, we recently proposed a new method
for generating masking countermeasures [42] based on induc-
tive synthesis, which is application agnostic and therefore can
handle unknown leakage patterns.

There are many other types of side channels through which
sensitive information of the software code may be leaked.
They include the execution time [43], [44], faults [45], and
cache side channels [46], etc. Techniques for detecting and
mitigating such side-channel attacks have also been proposed.
For example, Kopf et al. [12] and Backes et al. [13] pro-
posed methods for conducting quantitative information flow
analysis. Doychev et al. [14] developed a static analysis tool
for detecting information leaks through cache side channels.
Barthe et al. [15] proposed a mitigation method designed for
defending against concurrent cache attacks. Since these meth-
ods focus on other types of side channels, they are orthogonal
to this paper.

IX. CONCLUSION

We have proposed the new notion of QMS, which can, for
the first time, represent the resistance of a masking counter-
measure numerically. We have confirmed through evaluations
on real devices that the QMS is a good indicator of the
actual masking strength of the software. We have developed
a static analysis tool to compute the QMS of a C program;
the method can also be used to verify a program against a
QMS requirement. Our experiments show that the new static
analysis method is effective in detecting masking flaws and
scalable for handling software of practical size. We have ana-
lyzed the source code of a full SHA-3 implementation. For
future work, we plan to analyze a full AES. We are also
interested in extending our method to handle countermeasures
that use other masking schemes such as additive masking,
multiplicative masking, and RSA blinding.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions expressed in this
paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

1567

REFERENCES

H. Eldib, C. Wang, M. Taha, and P. Schaumont, “QMS: Evaluating
the side-channel resistance of masked software from source code,”
in Proc. ACM/IEEE Design Autom. Conf., San Francisco, CA, USA,
2014, pp. 1-6.

C. Paar, T. Eisenbarth, M. Kasper, T. Kasper, and A. Moradi,
“Keeloq and side-channel analysis-evolution of an attack,” in Proc.
Int. Workshop Fault Diagn. Toler. Cryptography, Lausanne, Switzerland,
2009, pp. 65-69.

A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the vulnerability of
FPGA bitstream encryption against power analysis attacks: Extracting
keys from Xilinx Virtex-II FPGAs,” in Proc. 18th ACM Conf. Comput.
Commun. Security, Chicago, IL, USA, 2011, pp. 111-124.

J. Balasch, B. Gierlichs, R. Verdult, L. Batina, and I. Verbauwhede,
“Power analysis of Atmel CryptoMemory—Recovering keys from
secure EEPROMS,” in Proc. Cryptograph. Track RSA Conf. (CT-RSA),
San Francisco, CA, USA, 2012, pp. 19-34.

S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards. New York, NY, USA: Springer, 2007.

P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proc.
19th Annu. Int. Cryptol. Conf. Adv. Cryptol. (CRYPTO), Santa Barbara,
CA, USA, 1999, pp. 388-397.

E. Prouff and M. Rivain, “Masking against side-channel attacks: A for-
mal security proof,” in Advances in Cryptology—EUROCRYPT. Berlin,
Germany: Springer, 2013, pp. 142-159.

C. Lattner and V. Adve, “The LLVM instruction set and compila-
tion strategy,” Dept. Comput. Sci., Univ. Illinois Urbana-Champaign,
Champaign, IL, USA, Tech. Rep. UIUCDCS-R-2002-2292, Aug. 2002.
B. Dutertre and L. de Moura, “A fast linear-arithmetic solver for
DPLL(T),” in Proc. 18th Int. Conf. Comput. Aided Verif., Seattle, WA,
USA, 2006, pp. 81-94.

C. Wang, G. D. Hachhtel, and F. Somenzi, Abstraction Refinement for
Large Scale Model Checking. New York, NY, USA: Springer, 2006.

Z. Yang, C. Wang, F. Ivanci¢, and A. Gupta, “Mixed symbolic repre-
sentations for model checking software programs,” in Proc. IEEE Int.
Conf. Formal Methods Models Codesign, Napa, CA, USA, Jul. 2006,
pp. 17-24.

B. Kopf, L. Mauborgne, and M. Ochoa, “Automatic quantification of
cache side-channels,” in Proc. Int. Conf. Comput. Aided Verif., Berkeley,
CA, USA, 2012, pp. 564-580.

M. Backes, B. Kopf, and A. Rybalchenko, “Automatic discovery and
quantification of information leaks,” in Proc. IEEE Symp. Security
Privacy, Berkeley, CA, USA, 2009, pp. 141-153.

G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke,
“CacheAudit: A tool for the static analysis of cache side channels,”
in Proc. 22nd USENIX Conf. Security, Auckland, New Zealand, 2013,
pp. 431-446.

G. Barthe, B. Kopf, L. Mauborgne, and M. Ochoa, “Leakage resilience
against concurrent cache attacks,” in Proc. 3rd Int. Conf. Principles
Security Trust, Grenoble, France, 2014, pp. 140-158.

J. Agat, “Transforming out timing leaks,” in Proc. ACM SIGACT-
SIGPLAN Symp. Principles Program. Lang., Boston, MA, USA, 2000,
pp. 40-53.

A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE J. Sel. Areas Commun., vol. 21, no. 1, pp. 5-19,
Jan. 2003.

A. Bayrak, F. Regazzoni, D. Novo, and P. Ienne, “Sleuth: Automated ver-
ification of software power analysis countermeasures,” in Cryptographic
Hardware and Embedded Systems—CHES. Berlin, Germany:
Springer, 2013.

J. Blomer, J. Guajardo, and V. Krummel, “Provably secure masking of
AES,” in Selected Areas in Cryptography. Berlin, Germany: Springer,
2004, pp. 69-83.

M. Rivain and E. Prouff, “Provably secure higher-order masking of
AES,” in Cryptographic Hardware and Embedded Systems—CHES.
Berlin, Germany: Springer, 2010, pp. 413—427.

G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification
Algorithms. New York, NY, USA: Springer, 2006.

A. Moradi, S. Guilley, and A. Heuser, “Detecting hidden leakages,”
in Proc. Int. Conf. Appl. Cryptography Netw. Security, Lausanne,
Switzerland, 2014, pp. 324-342.

E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis
with a leakage model,” in Cryptographic Hardware and Embedded
Systems—CHES. Cham, Switzerland, 2004, pp. 16-29.

1568

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

H. Eldib, C. Wang, and P. Schaumont, “SMT based verification of soft-
ware countermeasures against side-channel attacks,” in Proc. Int. Conf.
Tools Algorithms Construct. Anal. Syst., 2014, pp. 62-77.

M. Nassar, Y. Souissi, S. Guilley, and J.-L. Danger, “RSM: A small
and fast countermeasure for AES, secure against Ist and 2nd-order
zero-offset SCAs,” in Proc. Design Autom. Test Europe Conf. Exhibit.,
Dresden, Germany, Mar. 2012, pp. 1173-1178.

Xilinx. (2014). Microblaze Soft Processor Core. [Online]. Available:
http://www xilinx.com/tools/microblaze.htm

G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V. Keer.
(2013). Keccak Implementation Overview. [Online]. Available:
http://keccak.neokeon.org/Keccak-implementation-3.2.pdf

NIST. (2013). Keccak Reference Code Submission to NIST’s SHA-3
Competition (Round 3). [Online]. Available: http://csrc.nist.gov/groups/
ST/hash/sha-3/Round3/documents/Keccak_FinalRnd.zip

M. Taha and P. Schaumont, “Differential power analysis of MAC-Keccak
at any key-length,” in Proc. 8th Int. Conf. Adv. Inf. Comput. Security,
Okinawa, Japan, 2013, pp. 68-82.

J. Boyar and R. Peralta, “A small depth-16 circuit for the AES
S-Box,” in Proc. Inf. Security Privacy Conf. (SEC), Crete, Greece, 2012,
pp. 287-298.

C. Herbst, E. Oswald, and S. Mangard, “An AES smart card implemen-
tation resistant to power analysis attacks,” in Proc. 4th Int. Conf. Appl.
Cryptography Netw. Security, Singapore, 2006, pp. 239-252.

T. S. Messerges, “Securing the AES finalists against power analysis
attacks,” in Fast Software Encryption. Berlin, Germany: Springer, 2000,
pp. 150-164.

L. Goubin, “A sound method for switching between Boolean and arith-
metic masking,” in Cryptographic Hardware and Embedded Systems—
CHES. Berlin, Germany: Springer, 2001, pp. 3-15.

S. Mangard, “Hardware countermeasures against DPA—A statistical
analysis of their effectiveness,” in Proc. Topics Cryptol. Cryptograph.
Track RSA Conf. (CT-RSA), San Francisco, CA, USA, Feb. 2004,
pp. 222-235.

C. Lattner and V. S. Adve, “LLVM: A compilation framework for life-
long program analysis & transformation,” in Proc. IEEE/ACM Int. Symp.
Code Gener. Optim., San Jose, CA, USA, 2004, pp. 75-88.

E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-channel
analysis resistant description of the AES S-Box.” in Proc. Int. Workshop
Fast Softw. Encrypt., Paris, France, 2005, pp. 413-423.

D. Canright and L. Batina, “A very compact ‘perfectly masked’ S-Box
for AES,” in Proc. 6th Int. Conf. Appl. Cryptography Netw. Security,
New York, NY, USA, 2008, pp. 446-459.

A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing
the limits: A very compact and a threshold implementation of AES,”
in Advances in Cryptology—EUROCRYPT. Berlin, Germany: Springer,
2011, pp. 69-88.

A. G. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne,
“A first step towards automatic application of power analysis counter-
measures,” in Proc. ACM/IEEE Design Autom. Conf., New York, NY,
USA, 2011, pp. 230-235.

A. Moss, E. Oswald, D. Page, and M. Tunstall, “Compiler assisted
masking,” in Cryptographic Hardware and Embedded Systems—CHES.
Leuven, Belgium, 2012, pp. 58-75.

G. Agosta, A. Barenghi, and G. Pelosi, “A code morphing methodol-
ogy to automate power analysis countermeasures,” in Proc. ACM/IEEE
Design Autom. Conf., San Francisco, CA, USA, 2012, pp. 77-82.

H. Eldib and C. Wang, “Synthesis of masking countermeasures against
side channel attacks,” in Proc. Int. Conf. Comput. Aided Verif., Vienna,
Austria, 2014, pp. 114-130.

P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Proc. 16th Annu. Int. Cryptol. Conf.
(CRYPTO), Santa Barbara, CA, USA, 1996, pp. 104-113.

B. Kopf and M. Diirmuth, “A provably secure and efficient counter-
measure against timing attacks,” in Proc. 22nd IEEE Symp. Comput.
Security Found., Port Jefferson, NY, USA, 2009, pp. 324-335.

E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Proc. 17th Annu. Int. Cryptol. Conf. (CRYPTO),
Santa Barbara, CA, USA, 1997, pp. 513-525.

P. Grabher, J. GroBschidl, and D. Page, “Cryptographic side-channels
from low-power cache memory,” in Proc. 11th Int. Conf. Cryptography
Cod., Cirencester, U.K., 2007, pp. 170-184.

Hassan Eldib received the B.S. and M.S. degrees
from the Arab Academy for Science and Technology
and Maritime Transport, Alexandria, Egypt, in 2006
and 2009, respectively. He is currently pursuing
the Ph.D. degree with the Bradley Department of
Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA, USA.

His current research interests include develop-
ing automated synthesis and verification methods
for embedded control software and cryptographic
software.

Mr. Eldib was a recipient of the 2013 FMCAD Best Paper Award.

1\

Chao Wang (M’02) received the Ph.D. degree from
the University of Colorado Boulder, Boulder, CO,
USA, in 2004.

He is currently an Assistant Professor with the
Bradley Department of Electrical and Computer
Engineering, Virginia Tech, Blacksburg, VA, USA.
He has published a book and over 50 papers in top
venues in the areas of software engineering and for-
mal methods.

Dr. Wang was a recipient of the ACM SIGDA
Outstanding Ph.D. Dissertation Award in 2004, the

ACM TODAES Best Journal Paper of the Year Award in 2008, the ACM
SIGSOFT Distinguished Paper Award in 2010, the NSF Faculty CAREER
Award in 2012, and the FMCAD Best Paper Award and the ONR Young
Investigator Award in 2013.

Mostafa Taha (S’12-M’14) received the B.E. and
M.S. degrees in electrical engineering from Assiut
University, Asyut, Egypt, in 2004 and 2008, respec-
tively, and the Ph.D. degree in computer engineering
from Virginia Tech, Blacksburg, VA, USA, in 2014.

He is currently an Assistant Professor with Assiut
University, Asyut, Egypt. His current research inter-
ests include hardware security and implementation
attacks.

Mr. Taha served as an Academic Reviewer for
several conferences, including CHES, COSADE,

CARDIS, HOST, and several journals, including the IEEE TRANSACTIONS
ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,
the IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON
VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, and IACR JCEN. He

is a member of TACR.

Patrick Schaumont (SM’06) received the Ph.D.
degree in electrical engineering from the University
of California at Los Angeles, Los Angeles, CA,
USA, in 2004.

He is currently an Associate Professor of
Computer Engineering with Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA.
His current research interests include cryptographic
engineering, and the conception, design, and imple-
mentation of next generation embedded systems.

Prof. Schaumont is an Associate Editor with sev-

eral journals, including the IEEE TRANSACTIONS ON COMPUTERS, IACR
JCEN, ACM TODAES, and ACM TECS. He has served on the Program
Committee of international conferences such as CHES, DATE, DAC, and
IEEE HOST. He is a member of the TACR.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

