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• Plaintext is encrypted using the Secret Key stored on chip.

• System will become useless if the adversary knows the Secret Key.

Cryptographic Algorithm: an example
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Fault Sensitivity Attack        [Ghalaty et al 2014, 2015]

• The goal of fault injection is to induce sufficiently 

many faulty outputs to reveal the secret key.



Fault Sensitivity Attack        [Ghalaty et al 2014, 2015]

• Exploiting dependence between secret key and 

the circuit’s fault sensitivity
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Our Vision
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Motivating Example

PPRM1 AES S-box implementation [Morioka & Satoh, in CHES 2002]

1. The only non-linear function in AES

2. Vulnerable to FSA attack
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Signal Delay for AND Gates

TA -- arrival time for signal A

TB -- arrival time for signal B

TC -- arrival time for signal C

TAND -- delay of AND gate

Assume TA < TB

When signal   A = 0, TC = TA + TAND (small)

When signal A = 1, TC = TB + TAND (large)

Timing Dependency !

Analyzing the (TC) may help decide 

the value of (A)



Signal Delay for AND Gates

When signal   A = 0, TC = TA + TAND (small)

When signal A = 1, TC = TB + TAND (large)

• If A = ’0’ 

TC = TA + TAND
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Countermeasure

• FSA Attack can be prevented by eliminating the 

timing dependency 

– Between signal path delay and sensitive input



Countermeasure Synthesis

Original circuit
[Morioka & Satoh, 

CHES 2002]
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[Endo et al, IEEE TVLSI, 2014]
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Our Contribution

• The first countermeasure synthesis method to 

defend against FSA attacks of crypto circuits



Inductive Synthesis

Verification:

(1) Checking the functional equivalence

(2) Checking the FSA resistance



Inductive Synthesis

Verification:

(1) Checking the functional equivalence

(2) Checking the FSA resistance           .



Template Circuit

• FSA resistance by construction



Template Circuit

• FSA resistance by construction



Template Circuit

• SyGuS specification to generate instantiation (candidate circuit)



Scalability Problem

• Our solution: Partitioned Synthesis

– (1) Divide the circuit into smaller regions

– (2) Synthesize countermeasures for each region

– (3) Compose them together

Compositionality:

(1) The delay of a path is the summation of delays of all segments

(2) If each region is FSA resistant, the entire circuit is FSA resistant



Partitioned Synthesis



Experiments

• Implemented in a software tool
– Circuit-to-SyGuS translator 

– + SyGuS solvers (www.sygus.org)

• Evaluated on 10 crypto circuits



Compared to Buffer Insertion Methods

Existing countermeasures (buffer insertion)

[Ghalaty et al, DATE 2014]

[Endo et al, IEEE TVLSI, 2014]



Compared to Classic EDA Algorithms

Logic synthesis and optimization algorithms

• Two-Level Minimization

• Multi-Level Minimization

• …
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Conclusions

• New countermeasure synthesis method for FSA 

attacks of crypto circuits
– Guarantee to eliminate sensitive timing dependency

– Efficient (Fewer gates, Shorter critical paths, etc.)

• Future work
– Synthesizing countermeasures for other side-channel attacks
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