
Towards Precise and Scalable Verification of Embedded
Software

Malay K. Ganai, Aarti Gupta, Franjo Ivančić, Vineet Kahlon, Weihong Li,
Nadia Papakonstantinou, Sriram Sankaranarayanan and Chao Wang

NEC Laboratories America, Princeton, NJ, 08540
malay@nec-labs.com

Abstract— Inspired by the success of model checking in hardware veri-
fication and protocol analysis, there has been growing interest in research
and development of tools for the automated verification of software. This
paper provides an overview of our efforts towards achieving precise and
scalable verification of embedded software in a model checking-based
verification platform called F-SOFT. We combine the complementary
strengths of static program analysis based on techniques such as abstract
interpretation and model checking to ensure high efficiency with low false
alarm rate. The model checker is also able to provide valuable debugging
output in the form of witness traces, if a bug is discovered in the model
of the program. We elaborate on techniques that enhance scalability of
our bounded model checking (BMC) by communicating high-level model
information from the source code to the back-end model checking engine.
This includes model transformations that guide the model checker better,
as well as a state-of-the-art SMT-based (Satisfiability Modulo Theories)
BMC framework. Finally, we present several case studies that highlight
the significance of the various steps in the overall F-SOFT flow.

I. INTRODUCTION

Formal methods such as model checking and static program anal-
ysis are now routinely used in hardware and safety-critical embedded
software, respectively. High costs of a faulty hardware/software
incurred in repairs and damages, justify the additional up-front
investment. However, with the widespread use of ever more complex
embedded software, the development and maintenance costs are
increasing substantially.

Model checking is an automatic technique for the verification
of concurrent systems, and has several advantages over simulation,
testing, and deductive reasoning. Inspired by the success of model
checking in hardware verification and protocol analysis [1], there has
been growing interest in research and development of model checking
tools for the automated verification of software [2].

In practice, complementary verification approaches with different
strengths are used to address the inherent scalability problem. Pro-
gram analysis uses incomplete (but sound) methods such as numerical
domain analysis, to provide correctness proofs for a pre-defined set
of software errors. Such methods though scale well usually, they
suffer from large false alarms. Model checking relies on use of finite
models of the program (either through abstraction or by the restriction
to finite control and data) so that it can explore the state space in
an exhaustive and systematic manner to guarantee the validity of
a generic temporal property specification. Furthermore, the model
checker is able to provide valuable debugging output in the form of
witness traces, if a bug is discovered in the model of the program.
Model checking based methods, typically, do not scale with the
model size, but are sound and complete with respect to the model.
Understandably, both methods can be useful if combined suitably, but
are too limited when applied individually to cope with the challenges
of embedded software validation and verification.

We present a precise and scalable verification framework called
F-SOFT [3] targeted for embedded system software written in C.
We combine the above two approaches with recent static analysis

and model checking advancements to address the scalability and low
false alarm rate. It considers reachability properties for verification, in
particular whether certain labeled statements are reachable in an au-
tomatic instrumentation of the program. It also includes checkers for
a set of standard programming bugs such as array bound violations,
string errors, null pointer dereferences, use of uninitialized variables,
memory leaks, lock/unlock violations, division by zero, etc. These
checkers are implemented by automatically adding property monitors
to the given source code programs. Verification is performed via a
translation of the given C program to a finite state circuit model,
derived automatically by considering the control and data flow of
the program (under the assumptions of bounded data and bounded
recursion). The back-end model checking is performed by a tool
called VERISOL [4], [5] (formerly, DIVER), which includes several
state-of-the-art symbolic model checking techniques, geared towards
software verification [6], [7].

II. BOUNDED MODEL CHECKING

Bounded Model Checking (BMC) [8] has been successively ap-
plied to verify real-world designs, and provides a more scalable
verification solution compared to BDD-based symbolic model check-
ing [9]. BMC is a model checking technique where the falsification
of a given LTL property is checked at a given sequential depth.
Typically, it consists of the following steps: unrolling of the design
for the given number of time frames, translating the BMC instance
into a decision problem φ such that φ is satisfiable iff the property
has a counter-example of depth (less than or) equal to k, and using
a decision procedure to check if the problem is satisfiable. In SAT-
based BMC, φ is a propositional formula, and the decision procedure
is a Boolean SAT solver. Though several state-of-art advancements
have been proposed in SAT-based BMC [5], there are inherent disad-
vantages in using a Boolean representation. Propositional translations
of richer data types, e.g., integer, and high-level expressions, linear
arithmetic, lead to large bit-blasted formulas. Note, it is often useful to
perform range analysis to determine adequate bounds for the integer
data values. Moreover, the high-level semantics are often “lost” in
such low-level translation, thereby, the SAT search becomes more
difficult. With the growing use of high-level design abstraction to
capture today’s complex design features, the focus of verification
techniques has been shifting towards Satisfiability Modulo Theory
(SMT) solvers [10], [11], [12], [13] and SMT-based verification
methods, using richer expressive theories beyond Boolean logic.
Model checking methods such as SMT-based BMC [14], [15], [16],
[6] overcome many of the limitations of SAT solvers applied on
Boolean expressions. In SMT-based BMC, the BMC problem φ

is translated into a quantifier-free formula (QFP) in a decidable
subset of first order logic, which is then solved by SMT solver.
With recent advancements in SMT solvers built over DPLL style
SAT solvers [11], [10], SMT-based verification methods look quite

224

C programs

Checkers

Modeling

Model Reduction

Model Xformation

Model Checking

Error Diagnosis

Slicing

Range Analysis

Constant folding

Pointer Analysis

Merging

Path/Loop
Balancing

Property
decomposition

Control State
Reachability

Termination
Criteria

SMT-based BMC

Learning

Error Localization

Error Correction

Control Data FlowC programs

Checkers

Modeling

Model Reduction

Model Xformation

Model Checking

Error Diagnosis

Slicing

Range Analysis

Constant folding

Pointer Analysis

Merging

Path/Loop
Balancing

Property
decomposition

Control State
Reachability

Termination
Criteria

SMT-based BMC

Learning

Error Localization

Error Correction

Control Data Flow

Fig. 1. F-SOFT Tool Overview

promising in providing more scalable alternatives than SAT-based
or BDD-based methods. Further, with property preserving model
transformation, and the use of static control flow information [6],
SMT-based BMC can find deeper bugs, in comparison to SAT-based
BMC.

III. VERIFICATION OF SOFTWARE PROGRAMS: OVERVIEW

We describe our software verification tool F-SOFT [3], shown in
Figure 1. Our verification procedure can be viewed as comprising
three phases: (I) Generate a reduced model of the software that
includes monitors, if required, to check properties of interest, (II)
Transform the model to suit the verification back-end, and (III) Verify
properties using state-of-the-art SAT/SMT-based BMC.

As part of Phase I, we first use CIL [17] in the frontend to make all
expressions side-effect-free (adding temporary variables as needed),
to make all identifiers globally unique, and to rewrite complex C
constructs in terms of simpler ones (e.g. switch and for in terms
of if and goto). Then, software modeling is performed to extract a
finite state model, which is represented using Boolean and arithmetic
expressions (Section IV). We instrument the model with a set of
monitors to check correctness properties. Next we reduce the model
using abstract interpretation and various other program analysis
techniques (Section V). Specifically, we use program slicing, constant
folding, range analysis [18], and merging to reduce the model size.
We also use several sound numerical analysis techniques [19], [20] to
conservatively prove the correctness of many properties. A reduction
in the set of properties implies further scope for model reduction
using program slicing. Since these static techniques are quite efficient
and thus have a relatively low overhead compared to model checking,
we generally try to resolve as many properties as possible in this
phase of the analysis. For a typical null pointer dereference checker,
we can resolve 50-80% properties by static analysis alone. Though
several such properties get resolved during this phase, many of
them still remain unresolved. To reduce the burden on the designer,
we apply BMC to find precise witness traces that can guide the
debugging effort of the user.

To provide a robust and scalable BMC, we apply property pre-
serving modeling transformation, in Phase II, to obtain “verification-
friendly” models [6], [21]. We also decompose set of the properties
and use property-based slicing to improve the effectiveness of analy-
sis on resulting smaller models. We extract high-level information
such as invariants, control flow graphs and program semantics,
which are used for guidance in the following phase. These model

transformations have been found to be very effective in improving
the performance of BMC (Section VI).

In Phase III, we use SMT-based BMC framework to exploit the
high-level information obtained from the previous phase to reduce the
BMC instance sizes. We use SMT solvers [22], [23], [24], [25] instead
of a traditional SAT solver, to exploit the richer expressiveness, in
contrast to bit-blasting. Furthermore, in a typical verification scenario
with multiple properties to resolve, it is often not clear how to devise
a good verification procedure, i.e., how to balance the limited time
resources between proving or falsifying the correctness properties.
We have devised cheaper-to-compute termination criteria for BMC
when applied to commonly-used programs [7] (Section VII). If a
true counterexample is discovered, a testbench program (in C) is
automatically generated, which can be executed in the user’s favorite
debugger for analyzing the trace. As part of ongoing work, we are
adding support for error diagnosis, comprising techniques for error
localization and error correction.

Using several industry case studies, we describe our verification
procedure highlighting the significance of each step in the flow. We
also compare with contemporary practices and evaluate our approach
against them (Section VIII).

A product based on F-SOFT is now being used internally in our
company to find bugs in production-level software. Due to its flexible
and modular infra-structure, F-SOFT provides a very productive
verification platform for research and development.

IV. BUILDING MODELS FROM C

We briefly discuss our model building step (details in [3]) from
a given C program under the assumption of a bounded heap and
a bounded stack. We begin with full-fledged C and apply a series
of source-to-source transformations into smaller subsets of C, until
program state is represented in a simplified control flow graph (CFG)
as a collection of simple scalar variables of simple types (Boolean,
integer, float) and each program step is represented as a set of parallel
assignments to these variables. We handle pointer accesses using
direct memory access on a finite heap model, and apply standard
slicing constant propagation, and points-to analysis [26].

We do not inline non-recursive procedures to avoid blow up, but
bound and inline recursive procedures. Each non-recursive function is
inlined exactly once; function calls are replaced with gotos to the
function’s first statement. Parameters and return values are passed
via global variables, by adding assignments at each function call.
Function return is handled by storing a unique id of the call site in a
global variable before the call, and replacing returns with groups
of gotos conditioned on this variable. An alternative is to inline
each function at each call site [27], but this can significantly increase
the model size. The C program now consists of labeled blocks of
assignments followed by conditional gotos, corresponding a CFG.
From the simplified CFG, we build an EFSM1 where each block is
identified with a unique id value, and a control state variable PC

denoting the current block id. We construct a symbolic transition
relation for PC, that represents the guarded transitions between the
basic blocks. For each data variable, we add an update transition

1An EFSM model M is a 5-tuple (s0, C, I, D, T) where s0 is an initial
state, C is a set of control states (or blocks), I is a set of inputs, D is an
n dimensional linear space D1 × . . . × Dn (each point in D is described
by the valuation of n datapath variables with possibly infinite ranges), and T

is a set of 4-tuple (c, x, c′, x′) transitions where c, c′ ∈ C, and x, x′
∈ D.

An ordered pair < c, x >∈ C × D is called a (program) state of M . A
SINK (SOURCE) state is a unique control state with no outgoing (incoming)
transition.

225

relation based on the expressions assigned to the variable in various
basic blocks in the CFG. We use Boolean and arithmetic expressions
to represent the update and guarded transition functions. We rewrite
the assignments in each block so that they can be executed in
parallel while preserving the sequential semantics; for instance, in
the sequence {x=y; z=x+2} the second assignment is rewritten
as {z=y+2}. Then, we rewrite the entire program as a group of
iterated parallel assignments. The common design errors such as array
bound violations, null-pointer deferences, and assertion violations are
modeled as ERROR blocks. We focus on the reachability of such
ERROR blocks.

1. int bar(int x, int y) 10. int foo()
2. { 11. {
3. int d; 12. int a=-10, b=5;
4. if (x ≥ y) 13. a = bar(a,0);
5. d = x-y; 14. b = bar(b,0);
6. else 15. while(b!=0) {
7. d = y-x; 16. t = bar(a,b);
8. return d; 17. if (a ≥ b) a=t;
9. } 18. else b=t;

19. }
20. assert(a!=0);
21. }

Fig. 2. A sample C code with function calls

In Figure 2, we present a sample C program, and its corresponding
EFSM M obtained by our modeling is shown in Figure3. Each box
represents a control state (or basic block) and the unique number in
the attached square denotes its block id. For example, the edge (4, 5)
represents a transition from block 4 to 5 is predicated on x ≥ y, with
update function d := x − y. Blocks 4 and 5 correspond to source
lines 4 and 5, respectively. We obtain a CFG by simply ignoring the
enabling predicates and update functions. Blocks 4 and 7 are entry
and exit blocks of function bar, respectively. Block pairs [2, 9], [3, 8],
and [14, 10] correspond to call and return sites for bar. The variable
cxt id identifies the various contexts i.e., call/return sites.

V. MODEL REDUCTION: STATIC ANALYSIS

Numerical domain static analysis has been used to prove the
runtime safety of programs for properties such as the absence of
buffer overflows, null pointer dereferences, division by zero, string
library usage and floating point errors [28], [29], [30]. Domains
such as intervals, octagons and polyhedra are used to symbolically
over-approximate the set of possible values of integer and real-
valued program variables along with their inter-relationships under
the abstract interpretation framework [31], [32], [33], [34], [35], [36],
[37]. These domains are classified by their precision, i.e, their ability
to represent sets of states and tractability, the complexity of common

bar_x :=a
bar_y :=0
cxt_id :=0

(line 4)

bar_r := d
(line 8)

a := bar_r
(line 13)

t := bar_r
(line 16)

b := bar_r
(line 14)

(line 20)

SOURCE
a :=-10,b := 5

(line 10)

(line 15)

cx
t_

id
=

2

2

1

5

7

9

10

11

12

13

6

8

d: = y-x
(line 7)

x ≥ y
4

bar_x :=b
bar_y :=0
cxt_id :=1

3

a=0

d := x-y
(line 5)

(line 17)

bar_x:=a
bar_y :=b
cxt_id :=2

ERROR
(line 20)

cxt_id=0

b := t
(line 17)

a := t
(line 18)

(line 19)

b≠0

a≥ ba<b

16

15

17

18

19

14

SINK
(line 21)

cxt_id =1

b=0

foo

bar

Return updates

Call
sites

x < y

a≠0

bar_x :=a
bar_y :=0
cxt_id :=0

(line 4)

bar_r := d
(line 8)

a := bar_r
(line 13)

t := bar_r
(line 16)

b := bar_r
(line 14)

(line 20)

SOURCE
a :=-10,b := 5

(line 10)

(line 15)

cx
t_

id
=

2

2

1

5

7

9

10

11

12

13

6

8

d: = y-x
(line 7)

x ≥ y
4

bar_x :=b
bar_y :=0
cxt_id :=1

3

a=0

d := x-y
(line 5)

(line 17)

bar_x:=a
bar_y :=b
cxt_id :=2

ERROR
(line 20)

cxt_id=0

b := t
(line 17)

a := t
(line 18)

(line 19)

b≠0

a≥ ba<b

16

15

17

18

19

14

SINK
(line 21)

cxt_id =1

b=0

foo

bar

Return updates

Call
sites

x < y

a≠0

Fig. 3. EFSM of the sample code

operations such as union (join), post-condition, widening and so on.
In general, enhanced precision leads to more proofs and less false
positives, while resulting in a costlier analysis.

On the simplified CFG instrumented with ERROR blocks, we
perform various static analyses to simplify the model and focus our
search on the potential alarms raised by the static analyzer. By em-
ploying a sequence of static analyses, one building upon the other, we
hope to find many simple proofs for many properties. Common static
analyses that we employ include program slicing, constant folding,
range analysis [35], [32], [18], and abstract interpretation [38] on
numerical domains such as the the octagon domain [34], [19] and
polyhedral domain [39], [20]. Some details are described below.

We efficiently determine conservative value ranges of program
variables by performing range analysis. Our main method [18] is
based on the framework suggested in [40] which formulates each
range analysis problem as a system of inequality constraints between
symbolic bound polynomials. It then reduces the constraint system to
an LP (linear programming) problem, which can be analyzed by any
available LP solver. The solution to the LP problem provides interval
values of all variables. In other words, for each variable x, we obtain
the upper and lower bound such that lx ≤ x ≤ ux, where lx, ux are
integer constants.

Octagonal invariants are invariants of the form ±x±y ≤ c, where
x and y are integer program variables and c is an integer constant.
These invariants can be computed efficiently by the octagon abstract
domain [34], [19]. The octagon abstract domain has been used within
Astrée [29], and was shown instrumental in reducing the number
of false alarms when detecting runtime errors in critical embedded
software [41].

For properties that may need constraints of a more complex form
than octagon domain, we employ a more precise analysis (and
costlier) based on the polyhedral domain [20]. Specifically, for a
variable x, symbolic range constraints are used, i.e., fx

l ≤ x ≤ fx

u ,
where fx

l , fx

u are polynomial functions of other program variables.
Such symbolic bounds have been found useful in proving more
properties in real code than octagon domain does not, with some
more overhead.

To show the relative advantages of these static proof techniques,
we experimented on two industry example sets, with total of 480
and 15878 error reachability properties corresponding to array bound
violations, respectively. The interval analysis (with constant folding)
proves many of the properties including the common case of static
arrays accessed in loops with known bounds. While the octagon
domains and symbolic ranges can complete on all the examples even
in the absence of such simplifications, we run interval analysis as a
first step. Using interval range analysis alone, we are able to resolve
more than 60% properties. Additional 5-10% proofs are obtained
using octagon and symbolic range analysis on the model reduced after
removing the proved properties. The overhead of precise analyses
are found to be small and quite affordable on these set of examples.
For set 1, complete analysis takes around 2 minutes (= 10s (interval
analysis) + 29s (octagona) + 81s (symbolic)), with 30s per proof on
average. For set 2, complete analysis takes around 4 hours (= 3.6 hr
(interval analysis) + 180s (octagon) + 439s (symbolic)), with 1s per
proof on average.

In addition to proving properties that do not require further scrutiny
in our framework, static analysis allows us to remove error blocks
corresponding to such properties. We apply property-based slicing to
further simplify the model post-static analysis. Further, we use the
value and symbolic ranges for restricting the possible values in state
space search during model checking. Specifically, we use octagon

226

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2Example set

%
 P

ro
o

fs

Interval octagon symbolic unresolved

480 (total) 15878 (total)

29

1676

13798

112

23 379

25

316

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2Example set

%
 P

ro
o

fs

Interval octagon symbolic unresolved

480 (total) 15878 (total)

29

1676

13798

112

23 379

25

316

Fig. 4. Static Proofs

invariants to strengthen [19], [6] the concrete transition relation at a
given program location (block) l by conjoining it with the octagonal
invariants that hold at the program location l (Section VII).

VI. VERIFICATION “AWARE” MODEL TRANSFORMATION

We have proposed the use of model transformation in the con-
text of synthesis-for-verification (SFV) methodology to improve the
verification performance [21]. As part of the SFV methodology, we
identified various modeling techniques which results in “verification-
friendly” models that are relatively easier to model check. Such SFV
paradigm of generating verification aware models has been found
very effective in practice [6]. To improve the performance of SMT-
based BMC, we discuss a control-flow based model transformation
that preserves the validity of the model with respect to the property
checked.

CSR, i.e., control state reachability, is a breadth-first traversal of
the CFG (corresponding to an EFSM model), where a control state
b is one step reachable from a iff there is some enabling transition
a −→ b. At a given sequential depth d, let R(d) represent the set of
control states that can be reached statically, i.e., ignoring the guards,
in one step from the states in R(d − 1), with R(0) = c0. We say a
control state a is CSR-reachable at depth k if a ∈ R(k). For some d,
if R(d−1) �= R(d) = R(d+1), we say the CSR saturates at depth
d. Computing CSR for the CFG of M (in Figure 2), we obtain the set
R(d) for 0 ≤ d ≤ 7 as follows: R(0) = {1}, R(1) = {2}, R(2) =
{5, 6}, R(3) = {7}, R(4) = {8, 9, 10}, R(5) = {13, 3, 11},
R(6) = {14, 17, 4, 12, 15}, R(7) = {4, 18, 19, 5, 6, 16}.

CSR can be used to reduce the size of BMC instances [6]. Basi-
cally, if a control state r �∈ R(d), then the unrolled transition relation
of variables that depend on r can be simplified, as described in the
following. We define a Boolean predicate Br ≡ (PC = r), where
PC is the program counter that tracks the current control state. Let
vd denote the unrolled variable v at depth d during BMC unrolling.
Consider again model M in Figure 2, where the next state of variable
bar x is defined as next(bar x) = (B2||B14) ? a : B3 ? b : bar x;
(using the C language notation for cascaded if-then-else). For depths
2 ≤ k ≤ 4, blocks 2, 3, 14 �∈ R(k), and therefore, Bk

2 = Bk

3 =
Bk

14 = 0. Using this unreachability control state information, we can
hash the expression representation for bar xk+1 to the existing ex-
pression bar xk, i.e., bar xk+1 = bar xk. This hashing, i.e., reusing
of expression, considerably reduces the size of the logic formula,
i.e., the BMC instance. Note, a large cardinality of the set R(d),
i.e., |R(d)|, reduces the scope of above simplification and hence,
the performance of BMC. Re-converging paths of different lengths
and different loop periods are mainly responsible for saturation of

CSR [6]. Typically, saturation of CSR leads to large |R(d)|, and
adversely affects the size of the unrolled BMC instances.

To avoid saturation, we proposed a model transformation strategy
called Balancing Re-convergence or Path/Loop Balancing (PB) [6].
It transforms an EFSM by inserting NOP states such that lengths of
the re-convergent paths and periods of loops are the same, thereby
reducing the statically reachable set of non-NOP control states. Note,
an NOP state does not change the transition relation of any variable.
As an example, consider the CFG shown in Figure 5(a) (taken
from [6]). It has 3 loops with backedges (6, 3), (8, 3) and (7, 1),
respectively. CSR on this CFG saturates at depth 6 with |R(6)| = 8.
By using the PB strategy, the re-converging paths between 1 and 3, 3
and 5, and 4 and 6 are balanced by inserting nodes shown as unshaded
circles in Figure 5(b). Similarly, the loops are balanced by inserting
new nodes in the backedges so that their periods are matched. Note,
the number of nodes to be inserted is determined by computing the
weights of the re-convergent paths as described in [6]. CSR on the
CFG shown in Figure 5(b) does not saturate, and max |R(d)| = 4.
Such PB techniques have shown to be very effective in accelerating
BMC [6].

1

3

2

5

6

7

4

8

10

12

1613

14

1511

1

3

2

5

6

7

4

8
Balancing

Reconvergence

1

3

2

5

6

7

4

8

10

12

1613

14

1511

1

3

2

5

6

7

4

8

10

12

1613

14

1511

1

3

2

5

6

7

4

8

1

3

2

5

6

7

4

8
Balancing

Reconvergence

Fig. 5. CFG transformation using PB

PB techniques are applicable [6] only when the CFG is re-
ducible [42]. A reducible graph has the property that there is no jump
into the middle of a loop from outside, and there is only one entry
node per loop. Note that the CFG of M , shown in Figure 2, is not
reducible, although the program in Figure 2 is well-structured, i.e., it
has only a reducible loop. The CSR on the CFG leads to saturation
and therefore, is not effective in accelerating BMC. One cause for
irreducibility of CFG is the introduction of unstructured loops during
modeling, which are not present in the original program. For example
(in Figure 2), the loop 3 → 4 → 5 → 7 → 9 → 3 is an unstructured
loop, and is not present in the original program (Figure 2). Such false
loops are introduced due to non-inlining of functions. A function
return, denoted by edge (7, 9), does not correspond to the function
call, denoted by the edge (3, 4). We overcome this problem by
making PB strategy context-sensitive. (One can choose to inline
function calls, but it may result in a blow-up in size of EFSM.)
Similarly, we make the CSR context-sensitive; otherwise, many false
paths through CFG will make R(d) large.

To show the effect of context-sensitive analysis on PB and CSR,
we experimented with various combinations of strategies on a real-
world test case tcas (air traffic control and avionic system). Note,
PB refers to context-sensitive path/balancing technique (as the model
is irreducible), and CXT refers to context-sensitive CSR. We compare
CSR performed for the following cases: (a) CSR: model with
no PB and no CXT, (b) CSR+PB: model with PB, but no CXT,
and (c) CSR+PB+CXT: model with PB and CXT. We present their
reachability graphs in Figure 6(a)-(c) up to depth D. The width of

227

CSR:
w/ PB,
w/ CXT

D=168

|R(d)|=0, #NOP=0

CSR:
w/ PB,
w/ CXT

D=168

|R(d)|=0, #NOP=0

(a) CSR (b) CSR+PB (c) CSR+PB+CXT

Fig. 6. Combining CSR with PB/CXT

the graph, proportional to |R(d)| where 0 ≤ d ≤ D, indicates the
scope of BMC simplification. We observe that using method CSR,
R(d) saturates at depth D = 59; CSR+PB does not saturate but R(d)
is significantly larger compared to the method CSR+PB+CXT. Thus,
the method CSR+PB+CXT has the largest potential to improve the
performance of BMC.

VII. VERIFICATION ENGINE

We present the flow of our approach for SMT-based BMC as
shown in Figure 7. Given an EFSM Model M and a property P

(box 0), we perform a series of property preserving transforma-
tions (box 1). After that we perform context-sensitive CSR on the
transformed model (box 2). Using the reachability information, we
generate simplification constraints on-the-fly at each unroll depth k

(Section VII-B, box 3). These simplification constraints are used by
the expression simplifier (Section VII-A box 4) during unrolling to
reduce the formula. These constraints are also used to improve the
search on the translated problem. We also use incremental learning
technique (box 15) i.e., re-use of theory lemmas in SMT-based BMC
framework. We present various anlaysis modules in the order of ease
of explanation.

A. Expression Simplifier

High-level expressions in our framework include Boolean expres-
sions bool-expr and term expressions term-expr. Boolean expressions
are used to express Boolean values true or false, Boolean variables
(bool-var), propositional connectives (∨,∧,¬) relational operators
(<, >,≤,≥, ==) between term expressions, and uninterpreted pred-
icates (UP). Term expressions are used to express integer values
(integer-const) and real values (real-const), integer variables (integer-
var) and real variables (real-vars), linear arithmetic with addition (+)
and multiplication (*) with integet-const and real-const, uninterpreted
funtions (UF), if-then-else (ITE), read and write to model memories.
To model behavior of a sequential system, we also have a next
operator to express the next state behavior of the state variables.

Our high-level design description is represented in a semi-
canonical form using an expression simplifier. The simplifier rewrites
expressions using local and recursive transformations in order to
remove structural and multi-level functionally redundant expressions,
similar to simplifications proposed for Boolean logic [43] and also
for first order logic [44]. Our expression simplifier has a compose
operator [45], that can be applied to unroll a high-level transition rela-
tion and obtain on-the-fly expression simplification; thereby achieving
simplification not only within each time frame, but also across time
frames during unrolling of the transition relation in BMC.

B. Simplification Constraints

At any unrolling depth d of BMC, we apply the following on-
the-fly structural and clausal (learning-based) simplification on the

corresponding formula [6]. Note, these simplifications are effective
for small |R(d)|.

• Unreachable Block Constraint (UBC): If a control state r is not
reachable at depth d, the predicate Br ≡ (PC = r) will evaluate
to FALSE at depth d. We simplify the formula by propagating
Br = 0 at depth d.

• Reachable Block Constraint (RBC): At any depth d, at least one
control state in R(d) is reachable.

• Mutual Exclusion Constraint (MEC): At any depth d, at most
one control state in R(d) is the current state.

• Forward Reachable Block Constraint (FRBC): At any depth d,
if current control state is r i.e. Bd

r = TRUE, then the next state
must be among the from(r) set, where from(r) is the set of
control states reachable from r in one step.

• Backward Reachable Block Constraint (BRBC): At any depth
d > 0, if current state is r, i.e., Bd

r = TRUE, then the previous
state at depth d− 1, must be among the to(r) set, where to(r) is
the set of control states reachable to r in one step.

• Block-Specific Invariant (BSI): At any depth d, a given invariant
Cr for a given state r is valid only if r is the current state at
depth d. We obtain Cr from static numerical domain analysis
(Section V).

C. BMC Termination Criteria

BMC, in general, is incomplete unless checking is performed up
to the completeness threshold (CT) bound [8], [46], [47]. In general,
computing CT bound is computationally expensive. For a safety
property Gp (where p is a non-temporal expression), optimum CT
is shown [8] to be equal to the reachability diameter rd, i.e., the
longest shortest path from the initial state. Finding rd requires solving
a Quantified-Boolean Formula (QBF) with increasing k, and is
computationally expensive. Instead, one can compute the recurrence
reachability diameter rrd, i.e., the longest loop-free path (LFP),
by computing a series of SAT checks with increasing k [8]. Such
computation requires solving SAT instances of size O(k2). Thus,
each LFP check for computing rrd grows quadratic in size and
becomes harder to solve with unrolling. As every shortest path is a
loop-free path, rrd over-approximates rd, i.e., rrd ≥ rd and hence,
CT so obtained is sub-optimum.

In a typical verification scenario with multiple properties to resolve,
it is not often clear how to devise a good verification procedure,
i.e., how to balance the limited time resource between proving and
falsifying the correctness properties. Therefore, it is important to
reduce the time for computing completeness threshold. Most appli-
cation software programs terminate. Embedded software programs,
which are typically reactive, do not terminate; however, parts of the
software such as loops must terminate for correct functionality [48].
We devised efficient proof techniques geared for terminating software
programs in an SMT-based BMC framework. We proposed a new
formulation for determining CT that requires solving an SMT/SAT
formula of size O(k) corresponding to the longest non-terminating
path (NTP) in the program. We showed that for a terminating pro-
gram, the length of the longest NTP corresponds to the recurrence
diameter of the corresponding EFSM [7].

D. SMT-based BMC

We describe the flow of SMT-based BMC with NTP checks,
shown in Figure 7. Note that the flow is applicable to both terminating
and non-terminating programs; however, we will not obtain a CT
bound for the latter. Note, we avoid an expensive LFP check that

228

SAT?

M: EFSM
P:Error Block
S: Sink Block

k=0;

Unroll using
High-level Logic

Simplifier

QFP
Bk

P=1

SMT
Solver

k++

Path/Loop
Balancing

M→→→→M’

Control State
Reachability (CSR)

R(k)

Generate
Simplification
Constraints
∀∀∀∀r∉∉∉∉R(k) Bk

r=0

Y

Context
Sensitive

Information

S∈∈∈∈R(k)
?

P∈∈∈∈R(k)
?

QFP
NTP(s0..k),

Bk
s=0

SMT
Solver SAT?

N Y

N

N
YYN

Note:
1. Bk

r= (PCk==r)
2. R(k) = {Set of statically reachable control states at depth k}

|R(k)|
=1?

N

Y

Y

1

2
3

4

5
6

7 8

10 11 12
1314

0

9

0

Proof

CEXIncremental
Learning

15

SAT?

M: EFSM
P:Error Block
S: Sink Block

k=0;

Unroll using
High-level Logic

Simplifier

QFP
Bk

P=1

SMT
Solver

k++

Path/Loop
Balancing

M→→→→M’

Control State
Reachability (CSR)

R(k)

Generate
Simplification
Constraints
∀∀∀∀r∉∉∉∉R(k) Bk

r=0

Y

Context
Sensitive

Information

S∈∈∈∈R(k)
?

P∈∈∈∈R(k)
?

QFP
NTP(s0..k),

Bk
s=0

SMT
Solver SAT?

N Y

N

N
YYN

Note:
1. Bk

r= (PCk==r)
2. R(k) = {Set of statically reachable control states at depth k}

|R(k)|
=1?

N

Y

Y

1

2
3

4

5
6

7 8

10 11 12
1314

0

9

0

Proof

CEXIncremental
Learning

15

Fig. 7. SMT-based BMC

hardly ever succeeds in practice for non-terminating programs. We
describe the SMT-based BMC flow, where each step number matches
the tagged block in Figure 7.

• Step 1: Given EFSM M , with an ERROR block P and a SINK
block S, carry out context-sensitive PB to transform the model
to M ′.

• Step 2: Generate context-sensitive CSR information R(k) of the
CFG of M ′.

• Steps 3-4: At depth k, use CSR information to simplify the
data path expressions that depend on a block that is unreachable
at depth. Use a high-level logic simplifier to simplify the unrolled
transition relations.

• Step 5: Check if SINK S is CSR-reachable at k. If so, goto
step 6; else goto step 10.

• Step 6: Check if S is the only control state. If so, return Proof
with CT = k; else goto step 7.

• Steps 7-9: Generate a QFP formula for NTP , and check if it
is SAT using an SMT solver. If not, return Proof with CT = k;
else goto step 10.

• Steps 10-13: Check if block P is CSR-reachable at k. If not,
goto step 14; else generate QFP formula Bk

P ≡ (PCk = P)
for the error reachability, and check if Bk

P is SAT . If so, return
counter-example CEX; else goto step 14.

• Step 14: Increase k, and goto to step 3.
Note that calls to an SMT solver for NTP checks are made only

when the SINK block is CSR-reachable at that depth. Also, when
R(k) = 0 for k > d during CSR, we immediately obtain CT = d.
In such cases (typically seen in programs without loops), we do not
perform NTP checks at all (not shown in the flow). Using PB and
context-sensitive CSR (Section VI), we also reduce static reachabil-
ity SINK states, and hence reduce the number of NTP checks.
As shown in Figure 6, we observe that using method CSR, SINK

block appears every step after saturation; using method CSR+PB, it
appears every other step; and using method CSR+PB+CXT, it appears
only once. Thus, the method CSR+PC+CXT also has a better proof
finding capability.

VIII. EXPERIMENTS

In our first set of experiments, we demonstrate the role of model
transformation and learning in model checking on an industry ex-
ample. In the second set of experiments, we provide results of our

TABLE I
EFFECT OF MODEL TRANSFORMATION AND LEARNING

I: M+No Learning II: M+Learning III: M
′+LearningP

D sec W? D sec W? D sec W?
P1 9* TO N 38* TO N 41 1 Y
P2 9* TO N 41* TO N 44 1 Y
P3 9* TO N 43* TO N 92 156 Y
P4 9* TO N 30 188 Y 94 151 Y
P5 9* TO N 21 6 Y 60 4 Y
P6 9* TO N 31 164 Y 70 22 Y

verification analysis engines, and compare it with a related tool
CBMC [27].

A. Model Transformation Results

To show the effect of model transformation (Section VI) and
learning (Section VIIB), we experimented on industry software
written in C with about 17K lines of code. We first generated
an EFSM model M with 259 control states and 149 state (term)
variables. The data path elements include 45 adders, 987 if-then-else,
394 constant multipliers, 53 inequalities, 501 equalities and 36 un-
interpreted functions. The corresponding flow graph has 12 natural
loops. We consider reachability properties P1-P6 corresponding to six
control states. CSR on M saturates at depth 84. After transforming
M using path and loop balancing algorithms, we obtain a model
M ′ with 439 control states and max loop period N=4. We ran
SMT-based BMC for 500s (for each of P1-P6) on: (I) Model M

without learning (using only expression simplification), (II) Model
M with learning, and (III) transformed Model M ′ with learning. We
present our results in Table I. Column 1 shows the property checked;
Columns 2-4 report BMC depth reached (* denotes depth at time
out, TO), time taken (in sec) and whether witness was found (Y/N),
respectively, for combination (I). Similarly, Columns 5-7 and 8-10
present information for combinations (II) and (III), respectively. The
results clearly show that combination (III) is superior to (II) and (I),
with significant improvement in the performance, though at increased
witness depth.

B. Verification Results

We used as benchmarks C programs from public domain and
industry, including linux drivers, network application software, and
embedded programs in portable devices. Among the 18 benchmarks
we considered, t0-t8 is an air traffic control and avionic system
with assertions checks; f is a restart module of wu-ftpd with
array bound violations checks; m1-m2 examples are for a network
protocol with null pointer de-references checks; and h1-h4 examples
correspond to software for cell phones with array bound violation
checks.

Our experiments were conducted on a workstation with 3.4GHz,
2GB of RAM running Linux, with a time limit of 1000s for each
run. In practice, verification engineers have to run several examples,
and they typically allocate 10-20 minutes for each example. We first
apply static proof techniques (SA), and resolve as many properties
as possible statically, and thereby, reduce the model size. In the
next phase, we apply model transformation and learning, followed
by SMT-based BMC on the unresolved properties. In order to reduce
the overhead of running BMC multiple times for a given example, we
run BMC in multiple check mode, where all properties (unresolved so
far at depth k) are checked at depth k, rather than checking them in
separate BMC runs. We perform a controlled experiment with various
strategies, and show the BMC comparison results in Table II.

Column 1 shows the name of the benchmark with number of
lines of code (LoC), Column 2 shows the total number of checkers

229

TABLE II
VERIFICATION RESULTS: COMBINING STATIC ANALYSIS WITH SAT/SMT BMC

SA BMC with(+)/without(–) SMT, SAT, PB: Path/Loop Balance, CXT: ConteXT-sensitivem LFP: Loop-Free Path Check,
Proof NTP: Non-Terminating Path Check (P≡# Proofs, W≡# Witnesses, TO≡Time-out, D≡BMC Depth, MO≡Mem-out)

Ex #prp -PB-CXT -PB-CXT +PB-CXT +PB+CXT +PB-CXT +PB+CXT
(LoC) +LFP+SAT +LFP+SMT +LFP+SMT +LFP+SMT +NTP+SMT +NTP+SMT

#P sec P/W/? D(sec) P/W/? D(sec) P/W/? D(sec) P/W/? D(sec) P/W/? D(sec) #NTP P/W/? D(sec) #NTP

t0 (445) 1 0 0.3s 0/0/1 82(TO) 0/0/1 22(TO) 0/0/1 73(TO) 1/0/0 168(0s) 0/0/1 83(TO) 3 1/0/0 168(0s) 0
t1 (445) 1 0 0.3s 0/0/1 78(TO) 0/0/1 22(TO) 0/0/1 71(TO) 1/0/0 168(0s) 0/0/1 83(TO) 3 1/0/0 168(0s) 0
t2 (445) 1 0 0.3s 0/0/1 82(TO) 0/0/1 22(TO) 0/0/1 70(TO) 1/0/0 168(0s) 0/0/1 83(TO) 3 1/0/0 168(0s) 0
t3 (445) 1 0 0.3s 0/0/1 76(TO) 0/0/1 22(TO) 0/0/1 70(TO) 1/0/0 168(0s) 0/0/1 83(TO) 3 1/0/0 168(0s) 0
t4 (445) 1 0 0.3s 0/0/1 67(TO) 0/0/1 22(TO) 0/0/1 71(TO) 1/0/0 168(0s) 0/0/1 83(TO) 3 1/0/0 168(0s) 0
t5 (445) 1 0 0.3s 0/0/1 93(TO) 0/0/1 25(TO) 0/0/1 72(TO) 1/0/0 164(3s) 0/0/1 87(TO) 5 1/0/0 164(3s) 0
t6 (445) 1 0 0.3 0/0/1 81(TO) 0/0/1 26(TO) 0/0/1 73(TO) 0/1/0 161(6s) 0/0/1 86(TO) 5 0/1/0 161(6s) 0
t7 (445) 1 0 0.3s 0/0/1 76(TO) 0/0/1 22(TO) 0/0/1 71(TO) 1/0/0 168(0s) 0/0/1 83(TO) 3 1/0/0 168(0s) 0
t8 (445) 1 0 0.3s 0/0/1 76(TO) 0/0/1 49(TO) 0/0/1 71(TO) 1/0/0 168(0s) 0/0/1 83(TO) 3 1/0/0 168(0s) 0

ng4 (135) 14 11 2s 0/2/1 74(TO) 0/2/1 88(TO) 0/2/1 226(TO) 0/2/1 256(TO) 1/2/0 430(26s) 12 1/2/0 430(26s) 12
ok4 (114) 9 7 2s 0/1/1 67(TO) 0/1/1 94(TO) 0/1/1 233(TO) 0/1/1 257(TO) 1/1/0 331(17s) 12 1/1/0 331(17s) 12
h1 (2K) 144 132 24s 0/7/5 61(TO) 0/7/5 41(TO) 0/7/5 92(TO) 0/7/5 97(TO) 0/7/5 137(TO) 13 0/7/5 232(TO) 9
h2 (2K) 158 144 26s 0/10/4 61(TO) 0/9/5 43(TO) 0/8/6 88(TO) 0/8/6 94(TO) 0/9/5 146(TO) 14 0/10/4 195(TO) 8
h3 (389) 116 59 57s 0/7/50 41(TO) 0/9/48 43(TO) 0/11/46 97(TO) 0/11/46 97(TO) 0/25/32 172(TO) 2 0/25/32 172(TO) 2
h4 (2K) 188 155 274s 0/9/24 53(TO) 0/9/24 45(TO) 0/11/22 79(TO) 0/14/19 97(TO) 0/15/18 106(TO) 23 0/21/12 184(TO) 23

m1 (423) 25 3 0.2s 0/13/9 115(TO) 0/19/3 79(TO) 0/20/2 165(TO) 0/20/2 184(TO) 2/20/0 288(132s) 2 2/20/0 288(129s) 2
m2 (2.5K) 104 16 1s 0/46/42 30(TO) 0/41/47 29(TO) 0/55/33 81(TO) 0/56/32 90(TO) 0/56/32 118(TO) 7 0/56/32 118(TO) 4

f (839) 26 21 2s 0/2/3 48(TO) 0/2/3 48(TO) 0/2/3 111(TO) 0/2/3 119(TO) 0/3/2 154(TO) 1 0/3/2 261(TO) 3

added, and Columns 3-4 show the number of static proofs and time
required, respectively. Columns 5-18 provide results of BMC with
(+) and without (–) combinations of context-sensitive PB (PB),
context-sensitive CSR (CXT), NTP checks (NTP), LFP checks
(LFP), using solvers SAT or SMT. Note, -CXT denote CSR without
context-sensitive analysis. To illustrate, Columns 5-6 show results
for the method -PB-CXT+LFP+SAT, i.e., SAT-based BMC with
LFP checks, without PB model transformation, and without CXT,
where Column 5 shows number of proofs (P), witnesses found (W)
and unresolved properties (P/W/?), and Column 6 shows number of
BMC unrollings (D) performed with time (in sec) in parenthesis.
As an example, for m1 with 423 LoC and 25 total checkers,
SA proved 3 properties taking less than a sec. For the remaining
22 properties, -PB-CXT+LFP+SAT times out (TO) with 0 proof
and 13 witnesses at depth 115. Similar results are presented for
other columns using SMT solver. For methods +PB-CXT+NTP+SMT
and +PB+CXT+NTP+SMT, we also report number of NTP checks
(#NTP) in Columns 15 and 18, respectively. For methods using
LFP, number of LFP checks equals D (not shown separately), as
it is performed at every depth. Note, the time needed for performing
PB and CXT are negligible, and so, we do not report them separately.

We use the strategy -PB-CXT+LFP+SAT as our baseline [3].
Note, for some benchmarks such as tcas, using methods
+PB+CXT+LFP+SMT and +PB+CXT+NTP+SMT, we obtain CT =
168 statically, as R(k) = 0 for k > 168. Thus, for these methods we
skip the CT checks. Note, tcas examples did not have a structured
loop, but the models have unstructured loops, which were introduced
during the modeling phase. In our controlled experiments, we observe
that the techniques PB, CXT and NTP always help in resolving more
properties, or in performing deeper and faster search, or both. In
general, we see far fewer NTP checks compared to LFP checks.
Overall, the strategy +PB+CXT+NTP+SMT is the clear winner.

C. Comparison with Related Tools

We also performed experiments on these examples using
CBMC [27], a SAT-based BMC for verifying C programs. For fair
comparison, we used the post-static analysis models and property
sets (i.e., after applying SA). CBMC could not resolve any property
in any of these examples, due to mem-out. In contrast, the model
checking engine in F-SOFT is able to resolve 157 out of 242 (=65%)
properties within the given resource limitations. Such a result is not

surprising, given many differences between CBMC and F-SOFT. In
CBMC [27], given a BMC bound, the C program is transformed
into an equivalent static single assignment (SSA) form with bounded
loop and recursion, which is then bit-blasted to derive a Boolean
SAT formula. In F-SOFT a finite state model (not just a formula) is
generated from the C program, without unwinding loops and without
multiple function inlinings. Our model building approach, as opposed
to directly generating formula, also help us to apply light-weight
static analysis to reduce the model and the property set. Further,
using the model transformation and simplification constraints during
unrolling we are able to reduce the BMC instance sizes at each depth.
These techniques allow F-SOFT to scale better than CBMC on larger
programs, as also demonstrated by our experimental results.

IX. CONCLUSION

We presented an overview of our efforts in combining precision
of model checking with scalability of light weight static analysis.
Each analysis targets capacity and performance issues inherent in
verifying complex software. Use of static program analysis and model
transformation are key to the success of model checking tools. Using
several industry examples, we described the interplay of these engines
highlighting their contributions at each step of verification.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support and assistance of
Yuusuke Hashimoto-san, Kenjiroh Ikeda-san, Shinichi Iwasaki-san,
and the NEC SWED team during the development of F-SOFT.

REFERENCES

[1] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

[2] T. Ball and S. Rajamani. The SLAM toolkit. In Proc. of CAV, 2001.
[3] F. Ivančić, Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar.

F-Soft: Software verification platform. In Proc. of CAV, 2005.
[4] M. K. Ganai, A. Gupta, and P. Ashar. DiVer: SAT-based model checking

platform for verifying large scale systems. In Proc. of TACAS, 2005.
[5] M. K. Ganai and A. Gupta. SAT-based Scalable Formal Verification

Solutions. Springer Science and Business Media, 2007.
[6] M. K. Ganai and A. Gupta. Accelerating high-level bounded model

checking. In Proc. of ICCAD, 2006.
[7] M. K. Ganai and A. Gupta. Completeness in SMT-based BMC for

software programs. In Proc. of DATE, 2008.
[8] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model

checking without BDDs. In Proc. of TACAS, 1999.

230

[9] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[10] B. Dutertre and L. de Moura. A fast linear-arithmetic solver for
DPLL(T). In Proc. of CAV, 2006.

[11] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory
propogation and its application to difference logic. In Proc. of CAV,
2005.

[12] C. Barrett, D. Dill, and Jeremy Levitt. Validity Checking for Combina-
tions of Theories with Equality. In Proc. of FMCAD, November 1996.

[13] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. V. Rossum,
M. Schulz, and R. Sebastiani. The MathSAT 3 System. In Proc. of
CADE, 2005.

[14] L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded
model checking over infinite domains. In Proc. of CADE, 2002.

[15] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions and
uninterpreted functions. In Proc. of CAV, 2002.

[16] A. Armando, J. Mantovani, and L. Platania. Bounded model checking
of software using SMT solvers instead of SAT solvers. In Proc. of SPIN
Workshop, 2006.

[17] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer. CIL: Intermediate
language and tools for analysis and transformation of C programs.
In Proceedings of the 11th International Conference on Compiler
Construction, 2002.

[18] A. Zaks, I. Shlyakhter, F. Ivančić, S. Cadambi, Z. Yang, M. K. Ganai,
A. Gupta, and P. Ashar. Using range analysis for software verification. In
International Workshop on Software Verification and Validation, 2006.

[19] H. Jain, F. Ivančić, A. Gupta, I. Shlyakhter, and Chao Wang. Using stati-
cally computed invariants inside the predicate abstraction and refinement
loop. In Proc. of CAV, 2006.

[20] S. Sankaranarayanan, F. Ivančić, and A. Gupta. Program analysis using
symbolic ranges. In Proc. of SAS, 2007.

[21] M. K. Ganai, A. Mukaiyama, A. Gupta, and K. Wakabayashi. Synthe-
sizing “verification aware” models: Why and how? In Proc. Intl. Conf.
on VLSI, 2007.

[22] C. Wang, F. Ivančić, M. K. Ganai, and A. Gupta. Deciding Separation
Logic Formulae by SAT and Incremental Negative Cycle Elimination.
In Proc. of Logic Programming and Automated Reasoning, 2005.

[23] M. K. Ganai, M. Talupur, and A. Gupta. SDSAT: Tight Integration of
Small Domain Encoding and Lazy Approaches in a Separation Logic
Solver. In Proc. of TACAS, 2006.

[24] C. Wang, A. Gupta, and M. K. Ganai. Predicate learning and selective
theory deduction for a difference logic solver. In Proc. of DAC, 2006.

[25] SRI. Yices: An SMT solver. http://fm.csl.sri.com/yices.
[26] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In Proc.

of PASTE, 2001.
[27] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C

programs. In Proc. of TACAS, 2004.
[28] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards

automated detection of buffer overrun vulnerabilities. In Proc. of
Network and Distributed Systems Security Conference, 2000.

[29] B. Blanchet, P. Cousot, R. Cousot, J. Ferret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In Proc. of PLDI, 2003.

[30] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for
statically detecting all buffer overflows in c. In Proc. of PLDI, 2003.

[31] M. Karr. Affine relationship among variables of a program. In Acta Inf.,
1976.

[32] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In International Symposium on Programming, 1976.

[33] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among the variables of a program. In Proc. of POPL, 1978.

[34] A. Miné. A new numerical abstract domain based on difference-bound
matrices. In PADO II, 2001.

[35] S. Sankaranarayanan, M. Colon, H. Sipma, and Z. Manna. Efficient
strongly relational polyhedra analysis. In Proc. of VMCAI, 2006.

[36] R. Clarisó and J. Cortadella. The octahedron abstract domain. In Proc.
of SAS, 2004.

[37] E. Goubault and S. Putot. Static analysis of numerical algorithms. In
Proc. of SAS, 2006.

[38] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximate
of fixpoints. In Proc. of POPL, 1977.

[39] Z. Su and D. Wagner. A class of polynomially solvable range constraints
for interval analysis without widenings. In Theor. Comput. Sci., 2005.

[40] R. Rugina and M. C. Rinard. Symbolic bounds analysis of pointers,
array indices, and accessed memory regions. In Proc. of PLDI, 2000.

[41] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis,
2004.

[42] A. B. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-wesley Publishing Company, 1988.

[43] M. K. Ganai and A. Kuehlmann. On-the-fly compression of logical
circuits. In Proc. Intl. Workshop on Logic Synthesis, 2000.

[44] J.-C. Filliatre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated
canonizer and solver. In Proc. of CAV, 2001.

[45] M. K. Ganai and A. Aziz. Improved SAT-based bounded reachability
analysis. In Proc. of VLSI Design Conference, 2002.

[46] M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties
using induction and a SAT solver. In Proc. of FMCAD, 2000.

[47] P. Bjesse and K. Claessen. SAT-based verification without state space
traversal. In Proc. of FMCAD, 2000.

[48] P. Cousot and R. Cousot. Verification of embedded software: Problems
and perspectives. LNCS, 2001.

231

232

