
Efficient State Space Exploration: Interleaving Stateless and

State-based Model Checking

Malay K. Ganai
NEC Laboratories America

Chao Wang
NEC Laboratories America

Weihong Li
NEC Laboratories America

Abstract—State-based model checking methods comprise computing
and storing reachable states, while stateless model checking methods

directly reason about reachable paths using decision procedures, thereby

avoiding computing and storing the reachable states. Typically, state-

based methods involve memory-intensive operations, while stateless
methods involve time-intensive operations. We propose a divide-and-

conquer strategy to combine the complementary strengths of these

methods for efficient verification of embedded software. Specifically,
our model checking engine uses both state decomposition and state

prioritization to guide the combination of a Presburger arithmetic

based symbolic traversal algorithm (state-based) and an SMT based

bounded model checking algorithm (stateless). These two underlying
algorithms are interleaved—based on memory/time bounds and dynamic

task partitioning—in order to systematically explore the state space and

to avoid storing the entire reachable state set. We have implemented our
new method in a tightly integrated verification tool called HMC (Hybrid

Model Checker). We demonstrate the efficacy of the proposed method

on some industry examples.

I. INTRODUCTION

Model checking [1]–[4] plays an important role today in the

automated verification of hardware [5] and safety-critical embedded

software [6]–[9]. In this paper, we focus on model checking tech-

niques that are based on symbolic reasoning. Based on whether they

compute and store the reachable states, symbolic model checking

techniques can be classified as either state-based or stateless.

State-based model checking methods, e.g. those based on Boolean

level reasoning using BDDs [2] and integer level reasoning using

Presburger arithmetic solvers [11]–[13], comprise computing and

storing sets of states. Given the transition relation of the model and

a set of states, they use image computations to repeatedly obtain a

set of states reachable in either the forward (image) or the backward

(pre-image) directions. This process is often referred to as unbounded

model checking due to its capability of exploring the entire state space

without a predetermined bound on the execution depth. State-based

methods generally perform well when the state sets have compact

representations, but can suffer from memory explosion otherwise.

Stateless model checking methods, e.g. SAT based bounded model

checking (BMC) [3], [4] and high-level bounded model check-

ing [14], [15] based on Satisfiability Modulo Theory (SMT) solvers

(e.g. [16], [17]) directly reason about the execution paths of the

model, thereby avoiding the explicit manipulation of state sets. Typ-

ically memory explosion is less severe; however, stateless methods

often involve time-intensive computations. They generally perform

well when the execution paths required to decide the validity of the

properties are short, but can perform poorly when paths are long.

In this paper, we propose a unified model checking framework for

verifying embedded software called HMC (Hybrid Model Checking),

which combines the often complementary strengths of the state-

based [12], [13] and stateless [14], [15] methods. The goal is to

provide a robust verification solution for industrial-strength embedded

software applications. In our unified framework, as illustrated in

Fig. 1 (a), the state traversal (ST) and the path-based reasoning (PR)

are interleaved seamlessly in order to systematically search the state

space of the model, at the same time avoiding the storage of the

entire (explored) reachable state set. More specifically, at any point

of time, the hybrid procedure stores only a set of frontier states, as

illustrated in Fig. 1 (b), which are the states reachable from the initial

states in a fixed number of execution steps.

We focus on verifying reachability properties of sequential pro-

grams under the assumptions of finite recursion and finite data.

Both user-defined assertions and common programming errors (array

bounds violations, null pointer de-referencing, uninitialized variables,

etc.) can be formulated into the reachability of some error blocks.

Our HMC procedure is designed specifically to target bugs that are

hard-to-find by either state-based or stateless methods in isolation.

The search engine of HMC implements a state traversal algo-

rithm [12], [13] based on a Presburger arithmetic solver [10], and a

SMT-based bounded model checking algorithm [14], [15]. The finite-

state model is represented as combination of a set of linear integer

constraints whenever possible, as opposed to the more conventional,

bit-blasted, pure Boolean logic. Our choice of using higher level

reasoning rather than pure Boolean logic is because, as shown in

[12]–[15], for example, it tends to scale much better when applied to

models of embedded software. Since state-based methods typically

involve memory-intensive operations, regardless of the logic levels to

which they are applied, whereas stateless methods typically involve

time-intensive operations, we have designed a heuristic algorithm

to automatically interleave the state traversal and the path-based

reasoning. To improve the overall robustness, we use a memory bound

to switch from ST to PR and use a depth/time bound to switch from

PR back to ST; we repeatedly switch between these two modes to

avoid blowup within a particular method.

We use both state partitioning and state prioritization to guide the

interleaving of state traversal and path-based reasoning in our hybrid

search. Large frontier state sets are partitioned dynamically based on

heuristics with respect to their size, in terms of the number of linear

equations (for Presburger arithmetic) and BDD nodes. The partitioned

state sets are ranked to decide their processing order, and the ranking

functions are designed to favor those with a higher likelihood of

reaching the error states.

The divide-and-conquer style of our HMC procedure introduces

data parallelism, which can be exploited by parallelization for many-

core CPUs. Below are some highlights of HMC:

• It employs a divide-and-conquer procedure to compute the

frontier states and to represent them efficiently.

• Although it has avoided storing the entire reachable state set, for

terminating programs, it still guarantees exhaustive coverage.

• It employs abstract interpretation to over-approximate the set of

states backward-reachable from error states in k steps, allowing

the search to target states likely to lead to errors quicker.

• It employs control-state reachability to build simplified transition

relations on-the-fly, to guide both ST and PR.

PR: Find CEX to Error blocks

E from states σ

BMC (σ,E)

ST: Compute Image, Partition,

Store frontier states F

D= Img(σ)

F = (F\ σ) ∪ Partition(D)

Switch

PR↔ST

State

Prioritization

State

Partitioning

H M C: Hybrid Model CheckingHeuristics

Initial

states

Error

states

Explored states

(not stored)

Un-explored

states

Frontier States (stored)

(a) (b)

Fig. 1. (a) Overview of the HMC procedure; and (b) the set of frontier states

.

The remainder of this paper is organized as follows. After es-

tablishing notation in Section II and review the basics of symbolic

computation in Section III, we present our main contributions in

Sections IV-VI. This is followed by the experimental results in

Section VII, and the review of related work in Section VIII. We

give our conclusions in Section IX.

II. PRELIMINARIES

We briefly discuss the essential model building steps under the

typical assumptions of bounded heap/stack for embedded software.

Consider the C program in Fig. 2(a), which has a while loop

and some embedded assertions. Fig. 2(b) shows the corresponding

control and data flow graph. The boxes associated with control

states (i.e. basic blocks) show their unique id’s. An edge between

blocks corresponds to the control flow between associated program

points. Each edge is associated with an enabling predicate. Updates of

program variables (i.e. assignments) are shown at each control state.

Embedded assertions and common programming errors, such as array

bounds violation, null pointer dereferencing, and failed assertion, can

be modeled as the reachability of some error blocks. In this figure,

for example, blocks 12 and 14 correspond to the assertions P1 (line
18) and P2 (line 19), respectively.

A. Modeling C Programs as EFSMs

An Extended Finite State Machine (EFSM) is a 3-tuple M =
(C,X , T), where C is a set of control states, X is an n-dimensional

space of valuations of the datapath variables, and T is a set of transi-

tions. Each transition is a 4-tuple (ci, di, cj , dj), where ci, cj ∈ C are
control states, and di, dj ∈ X are valuations of datapath variables.

We use C to denote the program counter variable which takes values

from the set C. We use X = {x1, · · · , xn} to denote the set of

datapath variables, which take values from the set X . A state of M

is an ordered pair 〈ci, di〉 ∈ C×X . Let gij : X 7→ B = {0, 1} be the
guarded transition predicate associated with the transition from ci to

cj . Let ui : X × I 7→ X be the update transition relation associated

with the assignments in ci. Let Γ : C × C 7→ {0, 1} be the Boolean
predicate such that, for ci, cj ∈ C, Γ(ci, cj) = true iff gij is defined.

We construct a symbolic transition relation for the EFSM to capture

the set of all guarded transitions between basic blocks. For each

data variable, we add an update transition relation based on the

expressions assigned to the variable in various basic blocks. Recall

that C is the program counter variable and X is the set of datapath

variables. We shall use C′ and X ′ to denote the next-state copies of

C and X, respectively. Furthermore, let X = XB ∪XI , where XB

and XI are the subsets of Boolean variables and integer variables

in X, respectively. We use Boolean and Linear integer arithmetic

expressions to represent the update and guarded transition relations

of XB and XI , respectively.

A transition from 〈ci, di〉 to 〈cj , dj〉 under enabling predicate gij

and update relation ui with n assignments is denoted 〈ci, di〉
g/u
−→

〈cj , dj〉. Let Tij be its transition relation. The transition relation of

the entire model M , denoted T (C,X,C′,X ′), is the union of all

these individual transitions.

T
def
=

∨

Γ(ci,cj)=true

(C = ci ∧ C
′ = cj ∧ gij ∧ ui

︸ ︷︷ ︸

Tij

) (1)

Let xk := ei,k be an assignment to variable xk in control state ci.

Let x′
k be the next-state variable of xk. The update relation ui is

defined as follows:

ui
def
= (C = ci) ∧

k=n∨

k=1

(x′
k = ei,k) (2)

We assume x′
k = xk if variable xk is not explicitly updated.

The control flow graph (CFG), denoted G = (V,E, r), can be

viewed as the control-state abstraction of the EFSM. The set V of

nodes corresponds to the set of control states in the EFSM. E is

the set of control flow edges. r ∈ V is the entry block. The CFG

can be obtained from an EFSM by ignoring all enabling predicates

and updated transitions. More formally, we assume that V = C,

E = {(c, c′) | Γ(c, c′) = true}, and r is the unique entry block

with no incoming transition.

B. Symbolic Expressions and Solvers

We represent both the transition relations and the state sets sym-

bolically as logic formulas, with Boolean level expressions as well

as integer expressions in Presburger arithmetic. Presburger arithmetic

is a decidable fragment of quantifier-free first-order logic.

Solving Decision Problems using SMT: A Satisfiability Modulo

Theory (SMT) problem for a theory T , denoted SMT (T), comprises
a formula with arbitrary Boolean combination of a set of elementary

constraints, each of which is expressed in the theory T . For example,
if T is the theory of linear integer arithmetic (LIA), then each

elementary constraint is of the form (a1x1 + . . . anxn ≤ c), where
a1, . . . , an and c are integer constants, and x1, . . . , xn are integer

1. void foo(void) {
2. i=x=0;

3. while(1){
4. if (i==x) {
5. x = i+3;

6. if (i==0) {
7. y = ND();

8. assume (y ≤ 0);

9. }else y++;

10. }else {
11. if (i==0) {
12. y = ND();

13. assume(y < 0);

14. } else y--;

15. }
16. if (x==15 && i>35)

17. break;

18. assert(y>5); /*P1*/

19. assert(y<-5); /*P2*/

20. i++;

21. }
22.}

Replace transition

by Dr@4, r∈∈∈∈R(4)

x=i+3 x++

y++

i++

Err: P1

i=x=0

Sink
[x==15

&& i>35]

1

2

3
4

5

11

16

Error blocks:

P1, P2

10

1

2

3 4

6

9

15

k=0

k=1

k=2

k=3

k=4

k=5

k=6

R(0) = {1}

R(1) = {2}

R(2) = {3,4}

R(3) = {5,6,7,8}

R(4) = {9,10}

R(5) = {11}

R(6) = {12,13,14,16}

R(7) = {15}

k=8

y=? y++y=?

Err: P2NOP

[i==0]

6

9

14

15

12 13

7
8 5 7 8

10

11

13

1

k=7

R(8) = {1}

T0,1

T1,2

T2,3

T3,4

T4,5

T5,6

T6,7

T7,8

D10@4

D9@4

T8,9

T5,6

T6,7

T7,8

T8,9

Control Reachable Set R,

State -disjunct Dr@d, r∈∈∈∈R(d)

D1@0

D2@1

D3@2 D4@2

D9@4 D10@4

∨∨∨∨

1216 14

(a) (b) (c) (d)

Fig. 2. (a) An example C program, (b) its EFSM M , (c) the CSR for depth 8, and (d) the replacing transition T 0,5 by a reachable set.

variables. Given an SMT formula φ, the decision problem is to

determine whether φ is T -satisfiable, i.e., there exists a valuation

of the Boolean and integer variables in φ such that φ evaluates to

true. In this work, we use an off-the-shelf SMT solver [16] to decide

the formulas in SMT modulo linear integer arithmetic (LIA).

Simplifying Presburger formulas: We use a Disjunctive Normal

Form (DNF) representation for the formulas representing state sets,

i.e., formula Ω expressed as Ω =
∨nΩ

i=1
ΩB

i ∧ Ω
I
i , where Ω

B
i is a

Boolean formula, ΩI
i is an integer formula in Presburger arithmetic,

and nΩ is the number of disjunctions, respectively. Let vI be the

set of integer variables and vB be the sets of Boolean variables. We

assume that the formulas, i.e. ΩI
i and Ω

B
i , are always type-consistent;

that is, vB ∩ vI = ∅.
Consider two DNF formulas Ω and f =

∨nf

i=1
(fB

i ∧ fI
i).

Common set operations such as union (∪), conjunction (∩), negation
(¬), and existential quantification (∃v.) can be defined over DNF

formulas [11], [12]. The union of two DNF formulas is simply the

union of their subformulas. The conjunction is the union of the pair-

wise conjunctions of their subformulas.

Ω ∧ f =

nΩ,nf∨

i=1,j=1

(ΩB
j ∧ f

B
i) ∧ (Ω

I
j ∧ f

I
i)

Since there is no common variable, subformulas from different

domains do not interfere with each other. The negation of a DNF

formula is implemented in a similar way. Since there is no common

variable, existential quantification distributes not only over unions (as

in general) but also over subformulas in different domains:

∃vB
, v

I
. Ω =

nΩ∨

i=1

(∃vB
. ΩB

i) ∧ (∃v
I
. ΩI

i)

The DNF representation is not a canonical form, and there exist

heuristic algorithms [11], [12] to compact the result. Although the

resulting DNF can be (nΩ × nf) for conjunction (and 2nΩ for

negation), such worst-case results rarely happen in practice. In

our implementation, we use CUDD [18] to represent and simplify

Boolean formulas, and the Omega library [10] to represent and

simplify Presburger arithmetic formulas.

III. SYMBOLIC COMPUTATIONS

A. Path-based Reasoning

Let si ≡ 〈C,X〉 denote a symbolic state. A path is a finite

sequence π0,k = (s0, . . . , sk) satisfying the following predicate:

T
0,k def

=
∧

0≤i<k

T (si, si+1) (3)

where T is the transition relation as in Eq. (1). Let T 0,0
def
= true. In

bounded model checking, whether an LTL property φ can be falsified

in k execution steps from some initial state ψ is formulated as a

satisfiability problem [3]:

BMC
k(ψ,φ)

def
= ψ(s0) ∧ T

0,k ∧ ¬φ(sk) (4)

where φ(sk) means that φ holds in state sk, and ψ(s0) means ψ
holds in state s0. Given a predetermined bound n, BMC iteratively

checks the satisfiability of BMCk for 0 ≤ k ≤ n using a SAT or

SMT solver. We define BMCk,k+d between depths k and k+ d as

BMC
k,k+d(ψ, φ)

def
= ψ(sk) ∧ T

k,k+d ∧ ¬φ(sk+d) (5)

For each variable v ∈ X, let vk be the copy of v at the BMC

unrolling depth k. When considering the reachability of error block

Err from a source block Src, we define ψ := (C = Src) and

¬φ := F(C = Err), where F is the LTL operator eventually.

B. State Traversal

Given the entry block c0 ∈ C and initial values for datapath

variables (x1 = e0,1; · · ·xn = e0,n), the initial state formula I is

I
def
= (C = c0) ∧

n∧

k=1

(xk = e0,k) (6)

Similarly, given a subset ρ ⊆ C of control states, the set Dρ(C,X)
of concrete states in ρ is defined as follows:

Dρ
def
=

∨

c∈ρ

(C = c) ∧ fB
c ∧ f

I
c (7)

where fB
c and fI

c denote the subformulas over datapath variables

in Boolean logic and Presburger arithmetic, respectively. We refer

to a state set like Dρ as a state-disjunct. Given a transition rela-

tion T (C,X,C′,X ′) and a state-disjunct Dρ(C,X), symbolic state
traversal typically comprises a series of image computations [12]

till a fixpoint is reached. Let f(X/X′) denote the substitution of X ′

variables in function f by the corresponding X. The image operation

Img, which computes the set of states reachable from Dρ in one

execution step, is defined as:

Img(Dρ)
def
= (∃C,X T ∧Dρ)(X/X′,C/C′) (8)

Similarly, the pre-image operation Pre is defined as:

Pre(Dρ)
def
= (∃C′,X′ T ∧ (Dρ)(X′/X,C′/C)) (9)

We use Imgk(Dρ) and Prek(Dρ) to denote the result of k suc-

cessive Img and Pre operations from Dρ, respectively. We use

Pre+(Dρ) to denote the result of an over-approximated pre-image

operator [19], which is a superset of states backward-reachable from

Dρ in one step.

C. Control State Reachability

A control path γ0,k = (c0, . . . , ck) is a sequence of control states
satisfying the following predicate:

Γ0,k
def
=

∧

0≤i<k

Γ(ci, ci+1) (10)

Recall that Γ(ci, cj) = true iff the guarded transition gij is defined

for ci and cj . Let Γ
0,0 = true. A control state reachability (CSR)

analysis is a breadth-first traversal of the CFG where control state b

is one step reachable from a iff Γ(a, b) = true, i.e,

CSR(c̃)
def
= {b|a ∈ c̃,Γ(a, b) = true} (11)

We use CSRd(c̃) to denote the result of d successive CSR op-

erations from a set c̃ of control states. At an execution depth d,

let R(d) be the set of control states reachable from R(d − 1) in

one step in the CFG by ignoring the guards. Let R(0) = c0, then

R(d) = CSRd(R(0)). Consider computing CSR for the CFG in

Fig. 2 (b). The resulting set R(d) is shown in Fig. 2 (c). We will use

control state reachability to simplify the formulas in both state-based

and stateless computations.

IV. HMC: THE OVERVIEW

We illustrate the basic ideas behind the hybrid model checking in

this section, and provide formal exposition in Sections V- VI.

A. Basic Strategy

Consider the example in Fig. 2 (a-b). We first obtain an unrolled

CFG by unwinding the CFG up to depth k = 8 as shown in

Fig. 2 (c). Each program (concrete) path in the depth-k BMC instance

corresponds to a control (abstract) path in this unrolled CFG. As the

unrolling depth increases, the number of control paths will increase

quickly, thereby making each successive BMC instance harder to

solve. As shown in Fig. 2 (c), the number of control paths from

block 1 at k = 0 to block 12 at k = 6 is 4, but is only 1 from

block 11 at k = 5. Clearly, if we can replace the unrolled transitions
T 0,4 in the dotted rectangle by the set of concrete reachable states at

k = 4, we can reduce the size of the BMC instances for k > 4, thus
making BMC search faster and deeper. Let Dc@k be a state-disjunct

in control state c at depth k from the initial states. We replace T 0,4

by D9@4 ∨D10@4.

Definition 1 (Frontier Set): Let F be a set of state-disjuncts

reachable from the initial states. F is a frontier set with respect to

the error states BErr (in the error block Err) iff some error states

in BErr are reachable from F in k steps; that is, there exists D ∈ F

such that BErr ∩ Img
k(D) 6= ∅, with Img0(D)

def
= D.

Lemma 1: If F is a frontier set with respect to BErr and BErr∩
D = ∅, then F := F\{D} ∪ {Img(D)} is also a frontier set.

Essentially, F maintains a set of state-disjuncts that divides the

reachable state space into explored and unexplored as in Fig. 1 (b).

In HMC, we pick the next to-be-explored state-disjunct Dρ ∈ F

using a state prioritization heuristic (Section V-B). The set Dρ is then

encoded as a SMT(LIA) formula sc, to be used as reachable state

constraints in BMCk,k+d(ψ, φ). Based on the disjunctive partition

of F , we can solve a series of independent satisfiability problems

given by

ω
def
= BMC

k,k+d(ψ, φ) ∧ (ψ = sc) (12)

where each sc is the constraint for a small subset of the frontier F

computed symbolically. More specifically, we employ the following

strategies in HMC to avoid the memory blowup:

• We store only the frontier sets, not the entire set of reached

states.

• When the size of a state-disjunct ∈ F exceeds a threshold, we

partition it further (Section V-A) to make its image computation

less memory-intensive.

• For computing Img(Dρ), we build a simplified transition rela-

tion T |Dρ

1 on the fly and release its memory immediately after

the computation (ref. Section V).

We switch between computing reachable states and solving the

satisfiability problem based on some predetermined memory/time

bounds.

B. Completeness Discussion

In HMC we do not accumulate the entire set of reachable states,

therefore avoiding the main memory bottleneck in symbolic state

traversal. This also means, in general, that we cannot guarantee

to detect the reachable fixpoint. Fortunately, if the programs under

verification are terminating programs, state traversal with frontier

sets is guaranteed to terminate after L steps, where L is the longest

program path [12].

For path-based reasoning, we can also obtain a completeness

criteria [3], [4] from the BMC completeness threshold CT . For
example, for a state set ψ, we know that the threshold CT is reached

if the formula below becomes unsatisfiable:

LFP
k,k+d def

= BMC
k,k+d(ψ, φ) ∧

∧

k≤i<j≤k+d

(si 6= sj) (13)

In our HMC implementation, we also use the more recent improve-

ment in [15], which requires solving a formula of only size O(d)
as opposed to the conventional O(d2). The key is to note that for

a terminating problem, the SINK control state (exit block) does not

have outgoing transitions.

NTP
k,k+d def

= (BMC
k,k+d(ψ, φ) ∧ (φ = BSINK)) (14)

Lemma 2: For terminating programs, NTP k,k+d is satisfiable if

and only if LFP k,k+d+1 is satisfiable.

1For f and g, we define a constraint (or simplify) operator, denoted f |g , so
that f |g = f if g = 1; otherwise, f |g = don′t care. Thus, f |g ∧g = f ∧g.

V. STATE DECOMPOSITION AND PRIORITIZATION

We use the cheap control state reachability analysis to simplify

the subsequent precise image computations in state traversal. Given

the transition relation T and a state-disjunct Dρ(C,X) with the

corresponding control states ρ ⊆ C, conceptually we can obtain T |Dρ

by projecting T to Dρ,

T ∧Dρ = T |Dρ ∧Dρ = (∨ci∈ρ,cj∈CSR(ρ)Tij)
︸ ︷︷ ︸

Tρ,CSR(ρ)

∧Dρ (15)

The number of disjuncts in Tρ,CSR(ρ) is bounded by the number of

distinct control edges. Typically the number of outgoing edges from

a basic block is either 1 or 2 (for if-else); therefore the number of

disjuncts is between |ρ| and 2|ρ|. In contrast, the number of disjuncts
in T , as in equation (1), is bounded by total number of control edges

in the CFG. Thus, instead of building T , we build Tρ,CSR(ρ) on

the fly for each given Dρ using the CSR information. Since the

symbolic representation of Tρ,CSR(ρ) is often smaller than that of

T , the peak memory requirement during the state traversal can be

reduced significantly. Further, since CSR is an over-approximated

analysis, the precise image Img(Dρ), where Dρ is a subset of the

set ρ of control states, is always a subset of CSR(ρ) as stated in the
following:

Lemma 3: Let D′
ρ′ = Img(Dρ). If ρ ∈ R(k), then ρ′ ⊆

CSR(ρ) ⊆ R(k + 1).

Lemma 4: If Dρ ⊆ Imgk(I), then ρ ⊆ R(k).

A. State Decomposition

Our DNF representations in general are not canonical. In particular,

the polyhedrons used to represent linear integer constraints may

become fragmented after being propagated through branching and

re-converging points of the CFG during image computation. This

often lead to memory blow up when verifying large programs. We

mitigate this problem by dynamically decomposing the frontier sets.

The goal is to avoid computing images/pre-images for large

state representations. Given a state-disjunct Dρ and its disjunction

{D1,ρ1 , · · ·Di,ρm} s.t. Dρ =
∨m

i
(Di,ρi), ρ =

⋃m

i
ρi, we divide

the image computation into multiple steps to avoid memory blowups,

Lemma 5: Img(Dρ) =
∨m

i=1
Img(Di,ρi)

In general computing a good state partition is hard due to often

conflicting requirements. Larger partitions can make each subproblem

more difficult to solve but can reduce the partitioning overhead.

Whereas smaller partitions can result in easier image computation

subproblems but can significantly increase the partitioning overhead.

Here we use low-overhead partitioning heuristics based on the CSR

information. We note that the size of Img(Dρ) often depends on

the sizes of both T and Dρ. We want to partition Dρ but want to

minimize the need for partitioning Img(Dρ). We propose a simple

mechanism to estimate the size of a state-disjunct and its image.

Given Dρ =
∨

ci∈ρ
(C = ci)∧ f

B
i

∧
fI

i , we define size(Dρ) as

size(Dρ)
def
= Σci∈ρ(#P (f

I
i) +#B(fB

i)) (16)

where #P is the number of polyhedra in fI
i , and #B is the number

of BDD nodes in fB
i . We estimate the size of Img(Dρ) before

actually computing it. The size, denoted size(TDρ), is defined based
on the size of Tρ,CSR(ρ) ∧Dρ:

size(TDρ)
def
= Σci∈ρ#P (f

I
i ∧ u

I
i) ∗ (Σcj∈CSR(ρ)#P (g

I
ij))

+ Σci∈ρ#B(f
B
i ∧ u

B
i) ∗ (Σcj∈CSR(ρ)#B(g

B
ij)) (17)

Given Dρ, we define a no-need-to-partition predicate NP (Dρ):

NP (Dρ)
def
= (size(Dρ) < tsize) ∧ (size(TDρ)) < isize) (18)

The partitioning problem is stated as follows. Given the threshold

sizes tsize and isize and a state-disjunct Dρ, divide Dρ into a set

{D1,ρ1 , · · ·Dm,ρm} such that, for 1 ≤ i 6= j ≤ m, ρi ⊆ ρ,

NP (Di,ρi) is true, and m is minimum. We use two low-overhead

greedy procedures, Partition and Group, which are geared toward

minimizing the number of partitions and at the same time obtaining

a good balance among the partition sizes.

Partition: Given Dρ s.t NP (Dρ) = false.

• Initialize H = {D1,ρ1 , · · · ,Dn,ρn}, s.t. ρi = {ci}, ci ∈ ρ.
• For each Di,ρi ∈ H , if NP (Di,ρi) = false, bi-partition Di,ρi

greedily s.t. Di,ρi = Da,ρi ∧ Db,ρi
. Update H , i.e., H :=

H\{Di,ρi} ∪ {Da,ρi , Db,ρi
}.

• Repeat till all partitions in H satisfies predicate NP .

Group: Given a set J = {D1,ρ1 , · · · ,Dm,ρm} s.t. ρi ∈ R(k).

• Merge two smallest state-disjuncts in J , i.e. D12,ρ1∪ρ2 =
D1,ρ1 ∨D2,ρ2 . (Implemented using priority-queues.)

• Update J = J\{D1,ρ, D2,ρ}∪{D12,ρ1} and repeat the previous
step if NP (D12,ρ1∪ρ2) = true; otherwise stop.

B. State Prioritization

We propose two heuristics, one is goal-directed and another is

driven by the search depth, to prioritize the processing of state-

disjuncts in the frontier set F . Following the terminology of [21], we

use lighthouses to refer the intermediate states serving as guidance

of the search for error states.

Goal-directed lighthouses (glh). These lighthouses are derived

based on the observation that a state is more likely to reach an error

block if the block is only few execution steps away. We compute the

over-approximated execution steps using the Pre+ operator (below).

Let BRk be a set of abstract (backward) states obtained by applying

Pre+ operator k times from the error block. Then each state-disjunct

D ∈ F is given an abstract distance k iff D∩BRk 6= ∅ and ∀0≤i<k,

D∩BRi = ∅. Our glh strategy is to give D1 ∈ F a higher priority

over D2 ∈ F if the abstract distance of D1 is less than that of D2.

Pre+ operator: From a given state disjunct D, we first compute its

pre-image using equation (9), then obtain an over-approximation by

computing the convex union of the disjuncts, i.e., (Pre(D))+. Let K
be a predetermined threshold for the maximal number of polyhedra

allowed in each state-disjunct. If the actual number of polyhedra

in Pre(D) exceeds K, we replace the Polyhedra-part of the state-

disjunct with at most K number of polyhedra, the later of which is

computed by heuristically merging the polyhedra as in [12], [13].

Example: Let K = 1, and the state disjunct D be

D = (C = 0) ∧ (x = 0) ∧ (y = 0) ∨ (C = 1)∧
((x ≥ 1) ∧ (x ≤ 5) ∧ (y ≥ 2) ∨ (x ≥ 10) ∧ (y ≥ 1))

where the expressions C = 0 and C = 1 are in Boolean logic and

are represented as BDDs. The over-approximated set D+ is

(C = 0) ∧ (x = 0) ∧ (y = 0) ∨ (C = 1) ∧ (x ≥ 1) ∧ (y ≥ 1)

Targeting deeper states (dfs): To target deep error blocks, we give

priority to the state-disjuncts at a deeper execution depth. Let Dc̃k
∈

F be the set reachable from the initial states in the k execution

steps. In the dfs strategy, we give a higher priority to state-disjunct

Dc̃k
∈ F over priority over Dc̃j ∈ F , iff k > j.

C. BMC Simplification

We also use CSR information to simplify the BMC instances. The

set of control paths of length d from c ∈ c̃k(⊆ R(k)) is

γ̃c̃k,d = {(ck · · · ci · · · ck+d) | ∀k≤i≤k+d ci ∈ CSR
i(c̃k)} (19)

We constrain BMCk,k+d using γ̃c̃k,d; that is, BMCk,k+d|γ̃c̃k,d
, to

remove the statically unreachable control paths:

BMC
k,k+d|γ̃c̃k,d

(ψ,φ)
def
= T

k,k+d|UBC(γ̃c̃k ,d) ∧ ψ ∧ ¬φ(sk+d)
(20)

where UBC, or Unreachable Block Constraint, uses unreachable

control states to simplify T k,k+d using on-the-fly size reduction

techniques such as hashing and constant folding [14]. Note that Br

is a control-state predicate, i.e., Br ≡ (C = r).

UBC(γ̃c̃k,d)
def
=

∧

0≤i<d,r 6∈CSRi(c̃k)

¬Bk+i
r (21)

Lemma 6: BMCk,k+d|γ̃R(k),d
⇐⇒SAT BMCk,k+d.

VI. HMC: THE PROCEDURE

The pseudo code of our HMC procedure is shown in Algorithm

1. Given an error block Err and the initial states I , the procedure

interleaves subprocedures PR and ST till Err is proved to be either

reachable or unreachable from I . The frontier set F of state-disjuncts

is stored in a priority queue (Section V-B). F is initialized to I .

Subprocedure PR. It always chooses the state Dc̃k
∈ F with the

highest priority. For k ≤ i ≤ k + d, it first computes CSRi(c̃k) for
a fixed depth d. It then obtains the BMCk,i instance as follows: (a)

for each i, build a simplified transition relation T k,k+i (Section V-C),

and (b) translate Dc̃k
into a state constraint sc at depth k. For

each BMCk,i instance, it performs following two checks. When the

depth/time bound is reached, we switch from PR to ST.

Completeness Check: If SINK ∈ CSRi(c̃k) and if only SINK state

(i.e. no non-SINK state) is reachable from Dc̃k
, then we can remove

state-disjunct Dc̃k
from F as it will never lead to any new state.

Error Check: If Err ∈ CSRi(c̃k) and if Err is reachable from Dc̃k
,

then HMC terminates with a return value FAIL as the Err block is

reached.

Subprocedure ST. If F = ∅, HMC terminates with a return value

PASS since the fixpoint is reached. Otherwise, a switching condition

from ST to PR is checked as follows: if the sum of the sizes of all

state-disjuncts in F is above a predetermined memory bound fsize,

then fsize is scaled up by factor 2, and simultaneously a switch is

made to BMC. Such a switching heuristic allows us to have a finer

control over the overall memory usage.

If no switching is needed, it computes a new frontier set as

follows: (1) Pick Dc̃k
∈ F with the highest priority. If Err ∈ c̃k,

HMC terminates with FAIL; otherwise, obtain a simplified transition

relation Tρ,CSR(ρ) (Section V). (2) Compute img := Img(Dc̃k
),

and if required, partition img further (Section V-A). (3) Remove

Dc̃k
from F and then add img or its partitions. If required, also

merge small state-disjuncts in F together (Section V-A). The entire

process is repeated.

A. Correctness of HMC

Lemma 7: States in F are reachable from the initial state I , i.e.,

If Dρ ∈ F , then Dρ ∈ Img
k(I) and ρ ⊆ R(k) for some k ≥ 0.

Lemma 8: F is indeed a frontier set (definition 1), i.e., if Err is

reachable from I , then it is reachable from some states in F .

Algorithm 1 HMC

1: input: CFG: G, Initial States: I , Transition: T , Error Block: Err
2: output: FAIL/PASS
3:

4: F = I
5: //Switch between PR and ST

6: while true do

7: PR(G, F, T, Err)
8: ST(G, F, T, Err)
9: end while

1: Procedure PR (G, F, T, Err) //Perform CSR, BMC

2: //Stop if time bound is reached

3: //Pick a state-disjunct with highest priority

4: for all Dc̃k
∈ F, c̃k ∈ R(k) do

5: Compute CSR(CFG, c̃k, d) //depth bound is d

6: for k ≤ i ≤ k + d do

7: BMCk,k+i
γ̃c̃k

,i := BMCk,k+i|γ̃c̃k,i
//Section V-C

8: sc = Enc2LIA(Dc̃k
) //Encode into SMT

9: //Completeness: is block other than SINK reachable?

10: if SINK ∈ R(k) then

11: is sat = SAT (BMCk,k+i
γ̃c̃k,i

(sc, BSINK))

12: if (is sat = false) then
13: F := F\Dc̃k

//Remove dead-end states

14: end if

15: end if

16: if Err ∈ R(k) then

17: is sat = SAT (BMCk,k+i
γ̃c̃k,i

(sc,¬BErr))

18: if (is sat = true) then
19: return FAIL //Err is reachable

20: end if

21: end if

22: end for

23: end for

1: Procedure ST (G, F, T, Err) //Compute new frontier set

2:

3: while true do

4: if F = ∅ then

5: return PASS //Err is unreachable

6: end if

7: Prioritize(F)
8: if Σd∈F size(d) > fsize then

9: fsize := 2 ∗ fsize

10: break //Switch to PR

11: end if

12: if Err ∈ ρ then

13: return FAIL //Err is reachable

14: end if

15: //Pick a state-disjunct with highest priority

16: Tρ,CSR(ρ) = T |Dρ

17: img = Img(Dρ)
18: //Move the frontier forward

19: F := F\Dρ

20: F := F∪ Partition(img) //Section V-A

21: F := Group(F) //Section V-A

22: end while

Lemma 9:
∨

Dρ∈F
BMCk,k+d(ψ, φ) ∧ (ψ = Dρ) ⇐⇒SAT

BMCk(I, φ)

Theorem 1: The procedure HMC will terminate eventually with

a decision FAIL if the error block is reachable. Further, for a

terminating programs, HMC will terminate eventually with a decision

PASS if the error block is unreachable.

Proof of termination: From Lemma 8, we have the set F as a

frontier set. After every image computation, the frontier set moves

closer to the Err block. If the Err block is reachable, the procedure

will eventually find it reachable from some state-disjunct in F , and

it will terminate. If the Err block is unreachable, the frontier set

F will eventually become ∅ for a terminating program model, and

therefore, the procedure will also terminate.

Proof of correctness: Using Lemma 6 we show that PR correctly

decides FAIL when the Err block is reachable. Using Lemmas 2

and 6 we show that PR correctly decides unreachability of Err from

a given state in F . Using Lemmas 7 and 8 we show that ST correctly

decides FAIL. Further, when there are no new frontier states, i.e,

F = ∅, it correctly decides PASS as all states have been explored,

and no violation was previously reported as per Lemma 9. 2

VII. EXPERIMENTS

We have implemented the HMC algorithm using the SMT solver

yices-1.0.20 [22], the CUDD Library [18], and the Omega li-

brary [10]. We obtained EFSMs from C programs of several in-

dustry applications as benchmarks, including information manage-

ment system utilities, ftp utilities, network applications, embedded

applications in portable devices, lightweight directory access protocol

(LDAP), and Dhrystone benchmark programs. After aggressive pro-

gram slicing and constant value propagation, each EFSM has control

states ranging from 300 to 400. We checked for reachability errors

related to array bound violations, pointer validity, memory leaks, and

illegal string operations.

We present our experimental results for 23 benchmarks (s1-s23),
whose error blocks are known to be hard reach by either state-

based methods or path-based methods in isolation. We compare the

performance of HMC with a SMT-based BMC algorithm (BMC) and

a Presburger arithmetic solver based state traversal algorithm (MIX).

For a fair comparison, we have used the same set of EFSM models,

the same SMT solvers, the same BDD packages, and the same

Presburger solvers.

Our experiments were conducted on a Linux workstation with a

3.4GHz CPU and 2GB of RAM. The time limit is 2000 seconds and
the memory limit is 2GB for each run. In HMC, we used 100s time-

bound and 30 depth-bound (whichever is reached earlier) to switch

from PR to ST. We used tsize = 10, isize = 10, and initial value of

fsize = 30 to switch from ST to PR. We experimented with both the

deep-state (dfs) and the goal-directed (glh) prioritization strategies.

For glh, we set a time limit of 60s, and a threshold K = 1 for the

size of polyhedra to compute the abstract states.

The results are shown in Table I. Column 1 shows the benchmark

names. Columns 2—4 show the results of BMC, i.e., time (T, in

sec), mem (M, in Mb), and witness depth (wd) if a witness is

found (highlighted in bold); otherwise, the peak depth reached (d*).

Columns 5—7 shows the results of MIX. Columns 8—10, 11—13,

and 14—16 shows the results of HMC without state partitioning, and

the full-blown HMC with two different prioritization strategies dfs

and glh, respectively. For BMC and MIX, d* is the maximum search

depth for all paths from the initial state; for HMC, it is the depth for

some paths from the initial state.

Overall, HMC with dfs and glh find 19 and 15 witnesses,

respectively, while BMC and MIX in isolation can only find 6 and

14 witnesses, respectively. Furthermore, HMC with dfs finds 4

unique witnesses (not found by other methods). We also observe

that the MIX times out in several examples, which is due to the time-

consuming polyhedral simplification inside the Omega library which

gets invoked if the memory usage increases significantly during image

computations. The memory usage for BMC is often small. (Witnesses

in HMC may be longer since it is not a breadth-first traversal.)

In Table II, we provide statistics for HMC with both dfs and glh.

Columns 2–5, and 6–9 present the peak number of switches i.e.,

PR→ST→PR (#S), the number of image computations (#I), the size

of frontier set (#F), and the number of calls to Partition (#P),

respectively. For examples such as s10, s11, s12, where glh is

able to perform better than dfs, the number of image computations

and partitioning is also fewer for glh than that for dfs.

VIII. RELATED WORK

Prior work on integrating multiple verification algorithms can be

classified as either Combination strategies or Partition strategies.

Combination Strategies. In software verification, various comple-

mentary techniques, including testing, have been combined to address

the scalability problem [21], [23], [24]. Typically, testing is used

to reach a concrete state, which is then used as a seed for the

subsequent symbolic traversal. In particular, lighthouses have been

used to guide the seed selection [21]. Other methods have used target

enlargement [25] and retrograde analysis [26]. The goal is to increase

the set of states that are known to lead to errors. Over-approximated

pre-images of the error states [19] have been used as the enlarged

target either to guide simulation [27] or to improve BMC search [28].

In an interpolant-based approach [29], a bounded over-

approximated reachable state set is derived using interpolants, and

used as initial state constraints for the subsequent SAT-based BMC.

The difference is that such initial state constraints are not precise

(as is in our case), and therefore needs multiple refinement steps.

In [30], a state-based approach using BDDs is applied to obtain a set

of reachable set for some bound. This reachable set is then used as

an initial state constraint for witness search in a stateless approach

using SAT-based BMC. The approach is severely limited by the fact

that it invokes BDD-based model checking only once, and therefore

may run into severe memory blowup. In contrast, we interleave state

traversal with path-based reasoning at finer granularity, rather than

invoke the state-based approach only once as in [30].

Partition Strategies. There are prior work on state partitioning,

applied both to stateless and state-based model checking algorithms.

In CFG-based traversal methods [31], path conditions are generated

for a chosen program path in order to execute it symbolically. In

a recently improvement [32], BMC instances are partitioned based

on the control paths, to disjunctively decompose the problem into

smaller subproblems in tunnels. The work in [33] decompose BDD

representations of reachable states in order to parallelize the fixpoint

computation. In several other BDD-based approaches [34]–[36], the

transition relations, rather than the state sets, are decomposed dis-

junctively in order to break down the image computation over smaller

components. However, these methods do not repeatedly interleave the

state traversal with a path-based reasoning procedure such as PR.

IX. CONCLUSION

We presented a hybrid model checking algorithm that interleaves a

state-based procedure and a stateless symbolic procedure specifically

targeted to analyze embedded software. We combine the complemen-

tary strengths of both procedures in a tightly integrated framework.

We use control flow reachability information to simplify the transition

relation for both path-based reasoning and state traversal. We present

a simple and yet efficient mechanism to partition state sets for effi-

cient image computation. Furthermore, we present state prioritization

techniques that are targeted to find errors quicker. Our experimental

TABLE I
COMPARISON OF HMC WITH BMC(STATELESS), MIX(STATE-BASED)

Ex BMC [14] MIX [12] HMC-no-part HMC(glh) HMC(dfs)

T M d*/wd T M d*/wd T M d*/wd T M d*/wd T M d*/wd

s1 0.1 156 16 43 631 16 60 560 16 95 561 16 36 543 16

s2 102 156 55 TO 1G 31* 606 MO 39* 1.8K MO 108* 201 738 59

s3 1.8K 156 81 TO 1G 31* 601 MO 39* 991 1.1G 87 562 1G 90

s4 1.7K 156 80 TO 1G 31* 600 MO 39* 1K 1.1G 86 543 1G 89

s5 1.1K 156 75 TO 1G 31* 592 MO 39* 1K 1.3G 80 1.1K 1.6G 86

s6 752 156 69 TO 1G 31* 589 MO 39* 1K 1.3G 75 977 1.3G 78

s7 TO 160 71* TO 1G 31* 593 MO 39* 1.3K MO 108* 951 1.2G 76

s8 TO 160 75* TO 1G 31* 605 MO 39* 1.7K MO 51* 1.1K 1.6G 101

s9 TO 160 68* TO 1G 31* 594 MO 39* 1.8K MO 108* 289 837 69

s10 TO 160 114* 69 504 114 197 1G 114 324 952 117 1.3K 1.3G 220

s11 TO 160 117* 132 550 117 190 1.1G 117 334 960 120 1.7K 1.3G 223

s12 TO 160 120* 189 686 128 246 1.2G 128 353 1G 132 TO 1.6G 258*

s13 TO 160 113* 40 504 113 192 989 113 TO MO 521* TO 1.6G 152*

s14 TO 160 120* 896 1.7G 180 525 2G 180 TO MO 550* TO 1.6G 259*

s15 TO 160 122* 231 711 131 260 1.2G 131 353 1G 135 1.9K 1.6G 239

s16 TO 160 114* 69 504 114 194 1G 114 TO MO 519* TO 1.6G 259*

s17 TO 160 118* 1.4K MO 184* 1.6K MO 201* TO 1.6G 252* 1.6K 1.3G 224

s18 TO 160 226* 1.7 243 226 14 783 226 14 785 226 7 306 226

s19 TO 160 224* 2 244 229 14 774 229 14 776 229 7 306 229

s20 TO 160 213* 2.4 245 233 14 766 233 14 768 233 8 311 233

s21 TO 160 226* 1.7 244 226 14 783 226 14 785 226 7 306 226

s22 TO 160 222* 2 244 229 14 774 229 14 776 229 7 306 229

s23 TO 160 214* 2.4 245 233 14 766 233 14 768 233 8 311 233

no-part: no state partition glh,dfs: state prioritization
T: Time used (sec) TO: Time out (>2000 s)
M: Mem used (default Mb, G ≡ Gb) MO: Mem out (>2 Gb)

d*: Peak depth before MO/TO wd: Witness Depth

TABLE II
STATISTICS OF HMC RUNS

Ex glh dfs

#S #I #F #P #S #I #F #P

s1 1 17 0 2 0 16 1 0

s2 5 145 22 14 4 59 18 7

s3 3 106 10 13 4 90 18 11

s4 3 105 10 13 4 89 18 11

s5 3 108 22 14 4 133 27 16

s6 3 108 22 14 4 120 18 12

s7 5 145 22 14 4 118 18 12

s8 4 141 22 14 4 133 27 16

s9 5 145 22 14 4 69 18 9

s10 1 153 1 2 4 328 11 17

s11 1 157 1 2 4 331 11 17

s12 1 166 16 3 4 368 26 21

s13 7 646 58 58 4 368 26 21

s14 7 681 64 62 4 368 26 21

s15 1 166 16 3 4 368 26 21

s16 7 645 58 58 4 368 26 21

s17 2 516 29 10 4 332 11 17

s18 1 226 1 0 1 226 1 0

s19 1 229 1 0 1 229 1 0

s20 1 233 1 0 1 233 1 0

s21 1 226 1 0 1 226 1 0

s22 1 229 1 0 1 229 1 0

s23 1 233 1 0 1 233 1 0

#S: # of switches (PR→ST→PR)

#F: Peak size of frontier set F

#I: # of image computations
#P: # of calls to Partition

results show that the hybrid approach is more robust than applying

both the state-based and stateless methods in isolation.

REFERENCES

[1] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[2] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In TACAS, 1999.

[4] M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties
using induction and a SAT solver. In FMCAD, 2000.

[5] M. Ganai and A. Gupta. SAT-based Scalable Formal Verification
Solutions. Springer, 2007.

[6] G. Holzmann. The model checker spin. IEEE Trans. Software
Engineering, 1997.

[7] T. Ball and S. Rajamani. The SLAM toolkit. In CAV, 2001.

[8] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In TACAS, 2004.

[9] F. Ivančić, Z. Yang, M. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar.
F-Soft: Software verification platform. In CAV, 2005.

[10] W. Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. In Proc. of Supercomputing, 1991.

[11] T. Bultan, R. Gerber, and C. League. Composite model checking:
verification with type-specific symbolic representations. In ACM Trans.
on Software Engineering Method, 2000.

[12] Z. Yang, C. Wang, A. Gupta, and F. Ivančić. Mixed symbolic represen-
tations for model checking software programs. In Formal Methods and
Models for Co-Design, 2006.

[13] C. Wang, Z. Yang, A. Gupta, and F. Ivančić. Using counterexamples for
improving the precision of reachability computation with polyhedra. In
CAV, 2007.

[14] M. Ganai and A. Gupta. Accelerating high-level bounded model
checking. In ICCAD, 2006.

[15] M. Ganai and A. Gupta. Completeness in SMT-based BMC for software
programs. In DATE, 2008.

[16] B. Dutertre and L. de Moura. A fast linear-arithmetic solver for
DPLL(T). In CAV, 2006.

[17] H. Kim, F. Somenzi and H. Jin. Efficient Term-ITE Conversion for
Satisfiability Modulo Theories. In SAT, 2009.

[18] F. Somenzi. CUDD: CU decision digram package. university of colorado
at boulder. ftp://vlsi.colorado.edu/pub/.

[19] H. Cho, G. Hatchel, E. Macii, B. Plessier, and F. Somenzi. Algorithms
for approximate fsm traversal based on state space decomposition. IEEE
Trans. on CAD, 1996.

[20] T. Yavuz-kahveci, M. Tuncer, and T.Bultan. A library for composite
symbolic representations. In TACAS, 2001.

[21] M. Ganai and W. Li. Bang for the buck: Improvising and scheduling
verification engines for effective resource utilization. In Formal Methods
and Models for Co-Design, 2009.

[22] SRI. Yices: An SMT solver. http://fm.csl.sri.com/yices.
[23] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated

random testing. In Proc. of PLDI, 2005.
[24] R. Majumdar and K. Sen. Hybrid concolic testing. In Proc. of ICSE,

2007.
[25] D. Yang and D. Dill. Validating and guided search of the state space.

In DAC, 1998.
[26] J. Yuan, J. Shen, J. Abraham, and A. Aziz. On Combining Formal and

Informal Verification. In CAV, July 1997.
[27] S. Shyam and V. Bertacco. Distance-guided hybrid verification with

guido. In DATE, 2006.
[28] A. Gupta, M. Ganai, C. Wang, and Z. Yang. Abstraction and bdds

complement SAT-based bmc in diver. In CAV, 2003.
[29] K. McMillan. Interpolation and sat-based model checking. In CAV,

2003.
[30] G. Bischoff, K. Brace, G. Cabodi, S. Nocco, and S. Quer. Exploiting

target enlargement and dynamic abstraction within mixed bdd and sat
invariant checking. In BMC workshop, 2004.

[31] T. Arons, E. Elster, S. Ozer, J. Shalev, and E. Singerman. Efficient
symbolic simulation of low level software. In DATE, 2008.

[32] M. Ganai and A. Gupta. Tunneling and Slicing: Towards Scalable BMC.
In DAC, 2008.

[33] A. Narayan, A. Isles, J. Jain, R. Brayton, and A. Sangiovanni-Vincentelli.
Reachability analysis using partitioned-ROBDDs. In ICCAD, 1997.

[34] S. Barner and I. Rabinovitz. Efficient Symbolic Model Checking of
Software Using Partial Disjunctive Partitioning. In Proc. of CHARME,
2003.

[35] C. Wang, Z. Yang, F. Ivančić, and A. Gupta. Disjunctive image
computation for embedded software verification. In DATE, 2006.

[36] D. Ward and F. Somenzi. Decomposing image computation for symbolic
reachability analysis using control flow information. In ICCAD, 2006.

