Interval Analysis for Concurrent Trace Programs using
Transaction Sequence Graphs

Malay K. Ganai and Chao Wang

NEC Labs America, Princeton, NJ, USA

Abstract. Concurrent trace programs (CTPs) are slices of the congupre-
grams that generate the concrete program execution tratese inter-thread
event order specific to the given traces are relaxed. For Gli€ts, we introduce
transaction sequence graph (TSG) as a model for efficierducent data flow
analysis. The TSG is a digraph of thread-local control naates edges corre-
sponding to transactions and possible context-switchesh @& graph captures
all the representative interleavings of these nodesacitns. We use a mutu-
ally atomic transaction (MAT) based partial order reduttio construct such a
TSG. We also present a non-trivial improvement to the oagMAT analysis to
further reduce the TSG sizes. As an application, we have insedval analysis
in our experiments to show that TSG leads to more precisevaiteand more
time/space efficient concurrent data flow analysis thantédredsird models such
as concurrent control flow graph.

1 Introduction

Verification of multi-threaded programs is hard due to thmptex and often un-expected
interleaving between the threads. Exposing concurrenayee bugs—such as atom-
icity violations and data races—require not only bug-teédgg inputs but also bug-
triggering execution interleavings. Unfortunately, tegta program for every interleav-
ing on every test input is often practically impossible. Rume-based program analy-
sis [1-13] infer and predict program errors from an obsetxace. Compared to static
analysis [14—20], runtime analysis often result in fewésdalarms.

Runtime analysis can be broadly classified into three caiegountime monitor-
ing, runtime predictionandruntime model checkingn thefirst category, analysis such
as [1-6] monitor the observed trace events (such as shamedmaccesses) and flag
true or potential violations of intended atomic transatdidn thesecondcategory, the
analysis can also predict violations in other interleaginfithe events in the observed
trace. Some of these approaches [7, 8] use data abstraatidrthereby report false
alarms as the interleaving may not be feasible; while otippr@aches such as [21]
use happens-before causal relation to capture only (butmoaype all) the feasible
interleavings, and thereby, report no bogus (but may missestwue) violations. The
third category includes more heavy-weight approaches such asrdgmodel check-
ing [9-11] and satisfiability-based symbolic analysis 13}, These methods search for
violations in all feasible alternate interleavings of theserved trace and thereby, report
a true violation if and only if one exists.

In dynamic model checking, for a given test input, systeoploration of a pro-
gram under all possible thread interleavings is perforra@dn though the test input is
fixed, explicit enumeration of interleavings can still betgexpensive. Although par-
tial order reduction technigues (POR) [9, 22] reduce theoakecessary interleavings

to explore, the reduced set often remains prohibitivelgdaSome previous work used
ad-hoc approaches such as perturbing program executianjdnting artificial delays
at every synchronization points [23], or randomized dyraamalysis to increase the
chance of detecting real races [24].

Intrace-based symbolic analysis [12,13], explicit enuwatien is avoided via the use
of symbolic encoding and decision procedures to searchiéations in a concurrent
trace program (CTP) [25]. A CTP corresponds to data and elbslice of the concurrent
program (unrolled, if there is a thread local loop), and iastoucted from both the
observed trace and the program source code. One can view asageneratorfor
both the original trace and all the other traces correspmnii feasible interleavings of
the events in the original trace.

In this paper, we present a light-weight concurrent data 8oalysis which can be
used as an efficient preprocessor to reduce the subseqtmts ef the more heavy-
weight symbolic analysis for concurrency verification sash[12, 13]. Our primary
focus is on a suitable graph representation of CTP to condat precise and scalable
concurrent data flow analysis than the standard models sucbreurrent control flow
graph (CCFG). In the sequel, we use interval analysis as amgbe.

In a nutshell, our approach proceeds as follows: from a gi€RG (correspond-
ing to a CTP), we construct a transaction sequence graph)(@&ted as+(V, E)
which is a digraph with nodel representing thread-local control states, and edgjes
representing either transactions (sequences of threatlttaositions) or possible con-
text switches. On the constructed TSG, we conduct an iritanadysis for the program
variables, which require8(| E|) iterations of interval updates, each costingV'|-| E|)
time. Our main contributions are two fold:

— Precise and effective interval analysis using TSG
— ldentification and removal of redundant context switches

For construction of TSGs, we leverage our mutually atonaageaction (MAT) analy-
sis [26]—a partial-order based reduction technique thattifies a subset of possible
context switches such thatl andonly representative schedules are permitted. Using
MAT analysis, we first derive a set of so-calledlependent transactionfAs defined
later, an independent transaction is globally atomic watspect to a set of schedules.)
The beginning and ending control states of each indepenidarsaction form the ver-
tices of a TSG. Each edge of a TSG corresponds to either apéndent transaction
or a possible context switch between the inter-thread obsiate pairs (also identified
in MAT analysis). Such a TSG is much reduced compared to thesponding CCFG,
where possible context switches occur between every painafed memory accesses.
Most prior work such as [15-19] apply the analysis directty@CFGs. In contrast,
we conduct interval analysis on TSGs which leads to moreiggeatervals, and more
time/space-efficient analysis than doing on CCFGs.

We improve our original MAT analysis further by reducing gt of possible con-
text switches, and at the same time guarantee that such eegtdat captures all nec-
essary schedules. Such improvement is important because:

— It significantly reduces the size of TSG, both in the numberastices and in the
number of edges; this in turn, results in a more precisevatemalysis with im-
proved runtime performance.

— The more precise intervals reduce the size and the search spdecision prob-
lems that arise during the more heavy-weight symbolic asisily

The outline of the rest of the paper is as follows: We provigieal definitions and
notations in Section 2. In Section 3, we give an informal @iew of our approach, and
in Section 4, we present our approach formally. We preseméxyperimental results in
Section 5, followed by conclusions, related, and futurelwniSection 6.

2 Formal Definitions

A multi-threaded concurrent prograf comprises a set of threads and a set of shared
variables, some of which, such as locks, are used for synctation. LetM; (1 < i <

n) denote a thread model represented by a control and data faph gf the sequential
program it executes. Lat; be a set of local variables ib/; andV be a set of (global)
shared variables. L&l be the set of global states of the system, where a staté is
valuation of all local and global variables of the system.ldbgl transition system for

P is an interleaved composition of the individual thread msde;.

A thread transitiort € p is a 4-tuple(c, g, u, ¢’) that corresponds to a thredd;,
wherec, ¢’ represent the control states df;, g is an enabling condition (oguard)
defined onV; U V, andu is a set of update assignments of the farm= exp where
variablev and variables in expressienp belong to the se¥; U V. As per interleaving
semantics precisely one thread transition is schedulexktouge from a state.

A scheduleof the concurrent programR is an interleaving sequence of thread tran-
sitionsp =t; - - - t.. In the sequel, we focus only on sequentially consisterjt§2ied-
ules. An event occurs when a unique transitiaris fired, which we refer to as the
generatorfor that event, and denote it as= gen(P, e). A run (or concrete execution
trace)o = e; - - - e; 0f a concurrent prograrf? is an ordered sequence of events, where
each event; corresponds to firing of a unique transitign= gen(P, e;). We illustrate
the differences between schedules and runs in Section 3.

Let begin(t) andend(t) denote the beginning and the ending control states-of
(¢, g,u, '), respectively. Letid(t) denote the corresponding thread of the transition
We assume each transitiotis atomic, i.e., uninterruptible, and has at most one shared
memory access. Ldf; denote the set of all transitions &f;.

A transactionis an uninterrupted sequence of transitions of a partichlaad. For
a transactionr = t; - - - t,,,, we useltr| to denote its length, angt[i] to denote th&'"
transition fori € {1,---, |¢tr|}. We definebegin(tr) andend(tr) asbegin(tr(1]) and
end(tr[|tr|]), respectively. In the sequel, we use the notiotrafsactionto denote an
uninterrupted sequence of transitions of a threaoka®grvedn a system execution.

We say a transaction (of a thread)}i®micw.r.t. a schedule, if the corresponding
sequence of transitions are executed uninterruptedwiitout an interleaving of an-
other thread in-between. For a given set of schedules, #reséction is atomic w.r.t. all
the schedules in the set, we refer to it asratependent transaction.r.t. the set?

Given a runc for a programP we saye happens-before’, denoted ag <, ¢’
if i < j, whereo[i] = e ando[j] = €, with o[i] denoting thei*" access event in.
Lett = gen(P,e) andt’ = gen(P,e’). We sayt <, t'iff e <, ¢/. We usee <, ¢’
andt <,, t' to denote that the corresponding events and the transiiens thread

! We compare the notion of atomicity used here, vis-a-visiptes/works [2, 6, 8]. In our work,
the atomicity of transactions corresponds to the obsenvati the system, which may not
correspond to the user intended atomicity of the transastiBrevious work assume that the
atomic transactions are system specification that showlalyal be enforced, whereas we infer
atomic (or rather independent) transactions from the géyastem under test, and intend to use
them to reduce the search space of symbolic analysis.

program order. We extend the definition-ef, to thread local control states such that
corresponding transitions are in the thread program order.

Reachable-before relatiom(): We say a control state pdit, b) is reachable-before
(a’,b"), where each pair corresponds to a pair of threads, repesbasia, b) = (o', ')
such that one of the following is trug) a <,, a’,b = b, 2) a = d',b <, V,

3) a <poa,b<po b

Dependency Relatior)): Given a sefl” of transitions, we say a pair of transitions
(t,t') € T x T is dependent, i.€z,t") € D iff one of the following holds (a} <, ',
(b) (¢,t') is conflicting, i.e., accesses are on the same global variabl at least one
of them is a write access. (f, ') ¢ D, we say the pair imdependent

Equivalency Relation¥): We say two scheduleg = t; -« - ¢;-t;41 - - - t, andps =
ty---tip1 - t; -+ - t, are equivalent ift;, t;+1) ¢ D. An equivalent class of schedules
can be obtained by iteratively swapping the consecutivepeddent transitions in a
given schedule. Aepresentativeschedule refers to one of such an equivalent class.

Definition 1 (Concurrent Trace Programs (CTP), Wang 09).A concurrent trace
program with respect to an execution trage= e; --- ¢, and concurrent program
P, denoted a&'T P,, is a partial ordered setT,, <, o)

- T, = {t|t = gen(P,e) wheree € o} is the set of generator transitions
—t <opo t'iff t <ot/ It t €T,

Let p = t;--- ¢, be a schedule corresponding to the eunwheret; = gen(P, e;).
We say schedulg’ = ¢}, - - ,t} is analternate schedulef CT P, if it is obtained by
interleaving transitions gf as per<,,,. We sayp’ is afeasible schedulé there exists
aconcrete trace’ = ¢} - - - e}, wheret, = gen(P,e}).

We extend the definition of CTP over multiple traces by firdirdeg a mergeop-

erator [13] that can be applied on two CTRE['P, andCT Py, as: (T, < po) def

merge((To, <o.po), (LT, <v.po)), WhereT, = T, UT, andt <. p, ¢ iff at least one
of the following is true: (a¥ <., t' wheret,t’ € T,, and (b)t <y . t' where
t,t' € Ty. A merged CTP can be effectively represented as a CCFG wéthching
structure but no loop. In the sequel, we refer to such a meggdtias a CTP.

3 Our Approach: An Informal View

In this section, we present our approach informally, wheeemotivate our readers
with an example. We use that example to guide the rest of @audsion. In the later
sections, we give a formal exposition of our approach.

Consider a systen® comprising interacting thread®, and M, with local vari-
ablesa; andb;, respectively, and shared (global) variablésY, Z, L. This is shown
in Figure 1(a) where threads are synchronized wibk/Unlock ThreadM,, is created
and destroyed using fork-join primitives. Figure 1(b) is thttice representing the com-
plete interleaving space of the program. Each node in tliedatenotes a global control
state, shown as a pair of the thread local control statesd@e denotes a shared event
write/read access of global variable, labeled Witli.) / R(.) or Lock(.)/Unlock(.)Note,
some interleavings are not feasible due to Lock/Unlockcivhwe crossed outx) in
the figure. We also labeled all possible context switchek egt The highlighted inter-
leaving corresponds to a concrete execution (puaj programpP

0 =R(Y)s-Lock(L)a - --Unlock(L)q-Lock(L)p - -- W (Z)p- W (Y)a-Unlock(L)s-W (Y)s

where the suffices, b denote the corresponding thread accesses.

A thread transition(1b, true, by = Y, 2b) (also represented d$ sy 2b) is a
generator of access eveR(Y '), corresponding to the read access of the shared variable
Y. The corresponding schedylef the runo is

= (16”2 26)(1a " 24) - - (40 UL 50) (20 3b) - (6b Jb)
Fromo (andp), we obtain a slice of the original program called concurteace pro-
gram (CTP) [25]. A CTP can be viewed as a generator of contrates, where the
inter-thread event order specific to the given trace arexeelaFigure 1(c) show the
CTP, of the corresponding rus shown as a CCFG (This CCFG happens to be the
same as, although it need not be the case). Each node in CCFG dentitessaal con-
trol state (and the corresponding thread location), antl edge represents one of the
following: thread transition, a context switch, a fork, aamgbin. To not clutter up the
figure, we do not show edges that correspond to possiblexdswétches (30 in total).
Such a CCFG captures all the thread schedulesor, .

(la 1b)

Lock(L) Y =bj+bo
—

cs: possible context-switch

'I)'{hria;i/ J\iaz _ .2} Locky/ R(%16 2y . blocked transiions
- e (2alb)fes ¢ Lock(L)
0 fork(M); RN / 1
la. lock(L) (a3b)
2o Lockh) (3;;;» Q?XX ey
3a. X =a1 +1; (4a,1b) ¥ cs W(Z; 5b)
da. unlock(L)§ UnIuck(AL)/ /\\X (1a,5b)
5a. Y = ay; (sa,1b)g{cs o

Ja join(My); W(\i/ /\/ /X %\” ua\i]z)

T e 9K K 2N e
1b 'erre:aﬂ UQ&Z}‘X&%X/E/G Jb)

E 5 . cs (2a,Jb)

2b. Lock(L) (Ja,3b) \/\/\/\/

cs cs
3b. b2 = X; s ? (3a,3b)
4b. =b;+1 '
5b. Unlock(L) (a5b) N\ 7<°5/ (4a,b)
?8 /Z/ j:olinn-’_]\% «/ (9a,6b) {47 (5a,Jb)

(Ja,Jb) ‘ assert(Y <5)
(@) (b) (c)

Fig. 1. (@) Concurrent systen? with threadsM,, M, and local variables;, b; respectively,
communicating with shared variahlé, Y, Z, L. (b) lattice and a rua (c) CT P, as CCFG

3.1 Transaction Sequence Graph

We now briefly describe the construction of TSG from the CCHffaimed above.

Assuming we have computed—using MAT analysis (describetiémext section)—
independent transactions seit$, and AT, and necessary context switches for threads

M, andM;, whereAT, = {la---5a,5a- Ja}, AT, = {1b-2b,2b---6b,6b- Jb}, and

the context switching pairs af¢2b, 1a), (Ja, 1b)(6b, 1a)(5a, 2b), (Ja, 6b)(Jb, 1a)(Ja, 2b)(Jb,5a)}.
The independent transactions are shown in Figure 2(a) aedhactangles.

Given such sets of independent transactions and contetdtsmg pairs, we con-
struct a transaction sequence graph (TSG), a digraph asmsihadrigure 2(b), as fol-
lows: the beginning and ending of each independent traioseftirms nodes, each in-
dependent transaction forms a transaction edge (solid daiget), and each context-
switching pairs forms a context-switch edge (dash edge)u¥ed’, TE, andCE to
denote the set of nodes, transaction edges, and contextsuges, respectively. Such
a graph captures all and only the representative interigawhere each interleaving
is a sequence of independent transactions connected lptatiredges. The number

of nodes [V]) and the number of transaction edgéEK|) in TSG are linear in the
number of independent transactions, and the number of xiesiétch edges|CE|) is
quadratic in the number of independent transactions. Th@ {ii$ Figure 2(b)) has 7
nodes and 13 edges (= 5 transaction edges + 8 context-swigese

If we do not use MAT analysis, a naive way of defining an indejesr transac-
tion would be a sequence of transitions such that only thetdassition has a global
access. This is the kind of graph representation used by ofidlsé prior work in the
literature [15-19]. In the sequel, we refer to a TSG obtainédout MAT analysis as
a CCFG. Such a graph would have 13 nodes, and 41 edges (=%adtiam edges + 30
context-switch edges).

7 T » Context -switch Edge (CE)
@ 2 —> Transaction Edge (TE)
n @)
< ar
(42
(&)

&)
ta, th, -
%bj
\JK‘{@’
Join
p
N

¥ assert(Y s5)

(a) (b) ()
Fig. 2. (a) CCFG with independent transactions (b) TSG (c) Traversd SG

Range Propagation on TSGAIthough TSG may have cycles (as shown in Figure 2(b)),
the sequential consistency requirement does not perniiteuates in any feasible path.
A key observation is that any feasible path will have a seqeesf transactions of
length at mostT E|. As per the interleaving semantics, any schedule can net tray

or more consecutive context switches. Thus, a feasible wikthave at most|T E|
context switches. For example, path - 2b - 1a - 5a involves two consecutive context
switches, and therefore, can be ignored for range propagdiilearly, one does not
require a fixed point computation for range propagation ratiter a bounded number
of iterations of size&)(|T E).

Let D[i] denote a set of TSG nodes reachable at BFS defotim an initial set of
nodes. Starting from each nodefiNi], we compute range along one transaction edge
or along one context switch edge together with its subsddguansaction edge. We
show such a traversal on TSG in Figure 2(c), where dashedaddiddesiges correspond
to context switch and transaction edges, respectively.idues inD[i] are shown in
dotted rectangles. As a transaction edge is associatedatvittost one context switch
edge, a range propagation would requirgV| - |T E|) updates per iteration.

3.2 MAT Analysis

We now discuss the essence of MAT analysis used to obtain Ta@sider a pair
(ta™, tb™1), shown as the shaded rectanglein Figure 3(a), wheré&a™* = Lock(L),-
R(Z)o---W(Y), andtb™* = R(Y), are transactions of thread$, and M, respec-
tively. For the ease of readability, we use an event to impdydorresponding generator
transition.

. BV “‘*(;L\a,lp,)""'

» th,
OLR(Y
LOCky/ ¢ %1a,2>4

(2a,1b)

. th.
NS
-

Lock(L R(Y)
(1a,2b)
(2a1b) / %»,\Nick(u
/ (1a,3b)
£

R(X)

W(2)
(1a,5b) thy

NS

tag (1a,5b) b, (4a,1b)

ta,
\U“nlock(LN 2 /Unlock(L)
%o\ g (12,60) (5a,1b)
mm w(y)
. m;/.(la,.]b) (a.10)
(Ja,2b)

(2a,Jb)

Unlock(y
(5a,1b)
W(Y)

e
(Ja,3b)
Context-Switching Pairs (TP(M.AT,))= {(2b,1a)(Ja,1b)(3b,1a) Context-Switching Pairs(TP(M.AT,,))={(2b,1a)(Ja,1b)
(5a,2b),(2a,3b)(6b,1a)(Ja,2b)(Jb,5a) (Ja,3b)(Ja,6b)(Ib,1a)(Jb,2a)} (6b,1a) (5a,2b), (Ja,6b)(Jb,1a)(Ja,2b)(Jb,5a)}
(@) (b)

Fig. 3. MATs m,; shown as rectangles, obtained using@@hMAT (b) GenMAT’

From the control state pa{fla, 1b), the pair(Ja,2b) can be reached by one of
the two representative interleavings™: - tb™! andtb™* - ta™*. Such a transaction
pair (ta™*,tb™*) is atomic pair-wiseas one avoids interleaving thembetweenand
hence, referred aklutually Atomic TransactionMAT for short [26]. Note that in a
MAT only the last transitions pair is dependent. Other MAts- - - m~ are similar. A
MAT is formally defined as:

Definition 2 (Mutual Atomic Transactions (MAT), Ganai 09). We say two transac-
tionstr; andtr; of threads)M; and M, respectively, are mutually atomic iff except for
the last pair, all other transitions pairs in the correspang transactions are indepen-
dent. Formally, a Mutually Atomic Transactions (MAT) is arpaf transactions, i.e.,
(t’l’i,t’l’j),i }é j iff Vk 1 S k S |t7’1|,Vh 1 S h S |t7’j|, (t’l’l[/{],ﬁ"][h]) Q D (k 7§
jtrs| and h # [tr;]), andér,|tr|], tr[|tr;]]) € D.

The basic idea of MAT-based partial order reduction [26]dsréstrict context
switching only between the two transactions of a MAT. A cahgsvitch can only occur
from the ending of a transaction to the beginning of the ottersaction in the same
MAT. Such a restriction reduces the set of necessary thigadeavings to explore.
For a given MATa = (f;---1;, fj -+ -1;), we define a sel'P(«) of possible context
switches as ordered pairs, i.E.P(a) = {(end(l;), begin(f;)), (end(l;), begin(f;))}.
Note that there are exactly two context switches for anyrgMaAT.

Let TP denote a set of possible context switches. For a given CTRaw& P is
adequatseff for each feasible thread schedule of the CTP there is anivalgnt sched-
ule that can be obtained by choosing context switching oatywben the pairs ifi’ P.
Given a seMAT of MATs, we defin€l’ P(MAT) = U, c pqar TP(a). ASetMAT
is calledadequateff TP(M.AT) is adequate. For a given CCFG, one can use an algo-
rithm GenVAT [26] to obtain an adequate set.8.47 that allows only representative
thread schedules, as claimed in the following theorem.

Theorem 1 (Ganai, 2009)GenVAT generates a set of MATSs that captures all (i.e.,
adequate) and only (i.e., optimal) representative thregteslules. Further, its running
cost isO(n? - k?), wheren is number of threads, and is the maximum number of
shared accesses in a thread.

The GenMAT algorithm on the running example proceeds as follows. Itstaith

the pair(la, 1b), and identifies two MAT candidate$ia - - - Ja, 1b - 2b) and (1la -
2a,1b---6b). By giving M, higher priority over)M,, it selects the former MAT (i.e.,
my) uniquely. Note that the choice dff;, over M, is arbitrary but is fixed through
the MAT computation, which is required for the optimalitystdt. After selecting MAT
my, it inserts in a queué), three control state paird a, 2b), (Ja, 2b), (Ja, 1b) cor-
responding to thébegin and theend pairs of the transactions im;. These corre-
spond to the three corners of the rectangle In the next step, it pops out the pair
(1a,2b) € Q, selects MATm, using the same priority rule, and inserts three more pairs
(1a, 3b), (5a, 2b), (5a, 3b) in Q. Note that if there is no transition from a control state
such as/a, no MAT is generated fror/a, 2b). The algorithm terminates when all the
pairs in the queue (denoted @sn Figure 3(a)) are processed. Note that the order of
pair insertion can be arbitrary, but the same pair is nevsarbed more than once.

For the running example, a s8t A7 ., = {m1,---m7} of seven MATSs is gen-
erated. Each MAT is shown as a rectangle in Figure 3(a). Tta¢ tnamber of context
switches allowed by the set, i.€[,P(M.AT ;) is 12. The highlighted interleaving
(shown in Figure 1(b)) is equivalent to the representatiterleaving:b™ - ta™* - tb™3
(Figure 3(a)). One can verify (the optimality) that thish& tonly representative sched-
ule (of this equivalence class) permissible by thelSB{ M AT ;).

Reduction of MAT We say a MAT isfeasibleif the corresponding transitions do not
disable each other; otherwise itiisfeasible For example, as shown in Figure 3(a),
MAT ms = (ta™2,tb™2) is infeasible, as the interleaviny™2 - ta™ is infeasible due
to locking semantics, although the other interleavia? - tb™2 is feasible.

The GenMAT algorithm does not generate infeasible MATs when both tierin
leavings are infeasible. Such case arises when contrel gtats such aga, 3b) are
simultaneously unreachable. However, it generates amgsitfle MAT if such pairs
are simultaneously reachable with only one interleavinthefMAT (while the other
one is infeasible). For example, it generates M#L as (5a, 3b) is reachable with
only interleavingLock(L), - - - Unlock(L), - Lock(L); while the other ond.ock(L)y -
Lock(L), - - - Unlock(L), is infeasible. Such infeasible MAT may result in generation
of other MATS, such as; which may be redundant, amd, which may be infeasible.
Although the interleaving space capturedfyA7 ,; is still adequate and optimal, the
set apparently may not be “minimal” as some interleavingg beainfeasible.

To address the minimality, we modifgenMAT such that only feasible MATs are
chosen as MAT candidates. We refer to the modified algorith@aMAT'. We use ad-
ditional static information such as lockset analysis [1dbtain a reduced se¢1.A7 ",
and later show (Theorem 2) that such reduction do not exdngdeasible interleav-
ing. The basic modification is as follows: stating from thé& géegin(f;), begin(f;)),
if a MAT (f;---ls, f; - - -1;) is infeasible, then we select a MAF; - - - 1}, f; - - - 1) that
is a feasible, wherend(l;) <, end(l}) orend(l;) <po end(l}) or both.

With this modified stepGenMAT’ producesa seMIAT ., = {m1, m}, m3, me, m7}
of five MATs, as shown in Figure 3b. Note that infeasible MAtsandm, are replaced
with MAT m),. MAT ms is not generated as, is no longer a MAT, and therefore, con-
trol state pairf5a, 3b) is no longer inQ).

The basic intuition as to whyns is redundant is as follows: Fons;, we have
TP(ms) = {(Ja,2b), (5a, Jb)}. The context switching paif/a, 2b) is infeasible, as
the interleaving allowed by, i.e., R(Y)y Lock(L)y- Lock(L)q- W (Y)g-R(X)q - - -
is an infeasible interleaving. The other context switchpar (5a, .Jb) is included
in eitherT P(ms) or TP(m7), wheremgs, mr are feasible MATs (Figure 3(b)). The
proof thatT P(M.AT",) allows the same set of feasible interleavings as allowed by
TP(MAT 4), is given in Section 4.

Independent Transactions Given a set of MATS, we obtain a set of independent trans-
actions of a thread/;, denoted asiT;, by splitting the pair-wise atomic transactions
of the threadV/; as needed into multiple transactions such that a conteittswg (un-

der MAT-based reduction) can occur either to the beginninfyan the end of such
transactions.

For the running example, the sets of independent transectiorresponding to
MAT'!, areAT, = {la---5a,5a- Ja} andAT, = {1b-2b,2b- - - 6b,6b- Jb}. These
are shown in Figure 2(a) as shaded rectangles, and are slsawuilimes of the lattice
in Figure 3(b). The size of set of independent transactidardenes the size of TSGs.

If we usedM AT .4, we would have obtainedT,, = {1a-2a,2a - - -5a,5a-Ja} and
AT, = {1b-2b,2b-3b,3b- - -6b,6b- Jb}, as shown outlining the lattice in Figure 3(a).
A TSG constructed using1.A7 ,; (not shown) would have 8 nodes and 17 edges (=7
transaction edges + 10 context-switch edges). Note, oheof? context-switches, one
can remové3b, 1a) and(2a, 3b) as they are simultaneously unreachable.

4 Our Approach: TSG-based Interval Analysis

We now present our approach formally. We first discuss MATuotidn step. Then we

describe the construction of TSGs in Section 4.1, followgékerval analysis on TSG

in Section 4.2. For comparison, we introduce a notion ofrirtemetric in Section 4.3.
Given a CTP with thread¥/; - - - M,,, and a dependency relati@h we useGenMAT [26]

to generateM AT ;; for each pair of threads/; and M}, ¢ # j, and obtainIAT =

U, .j MAT ;. Note thatD may not include the conflicting pairs that are unreachable.

We now define the feasibility of MAT to improve the MAT analysi

Definition 3 (Feasible MAT). A MATm = (tr;, tr;) is feasible such that both repre-
sentative (non-equivalent) interleavings, ite;;tr; andtr;-tr;, are feasible; otherwise
it is infeasible. In other words, in a feasible MAT, the cepending transitions do not
disable each other.

We modify GenMAT such that only feasible MATs are chosen as MAT candidates. We
denote the modified algorithm & nMAT’ . The modified step is as follows: starting
from the pair(f;, f;), if a pair(l;, ;) € D is found that yields an infeasible MAT, then

— we selectanother paft;, /) € D suchthatl;, ;) C (I}, 1;) and(f; - - 1, f5 -+ 1})
is a feasible MAT, and
— thereisno paifl}, l”) € Dsuchthatl;, ;) C (I}, 17) C (I}, ;) and(f; - - - If', fj -+ - 1)
is a feasible MAT.
wherer is the reachable-before relation defined before. Intedlest@ders may refer to
the complete algorithm in Appendix A (also available at [28]
Let MAT and M AT’ be the set of MATs obtained usit@nMAT andGenNAT”

respectively. We state the following MAT reduction theorem
Theorem 2 (MAT reduction). MA7" is adequate, andP(MAT’) C TP(MAT).
The proofis provided in Appendix B (also available at [28]).

4.1 Transaction Sequence Graph

To build a TSG, we first identify independent transactiongath thread, i.e., those
transactions that are atomic with respect to all schedllesed by the set of MATS,
as discussed in the following. Here we us€A7 to denote the set of MATS obtained.

Identifying Independent Transactions Given a seiM AT = U#j {1, n} MAT 5,
we identify independent transactions, denoted@sas follows:

— We first define a set of transactioNg. AT ; of thread)M;:
MAT,; = {tm|m = (t’f‘i,tT‘j) S MATU) #] S {1, v ,n}}
In other words, M A7 ; comprises all transactions of thread, that are pairwise
atomic with some other transactions.
— Given two transactiongr, tr’ € MAT;, we saybegin(tr) <p, begin(tr') if

tr[l] <po tr'[1]. Using the setM.AT;, we obtain a partial order set of control
statesS;, referred agransaction boundarget, that is defined ovet,, as follows:

S; = {begin(tr; 1), begin(tr;2), -, begin(tr; m), end(tr; m)}

wheretr; , € MAT,, andtr; ,,, denote the last transaction of the thrédg Note
that due to conditional branching the order may not be total.
— Using the sef;, we obtain a set of transactiodd; of thread); as follows:

AT, ={t---t'| ¢t ¢ wherec <,, ¢’ and ¢, € S; andt,--- ,t' € T; and
there is na’ € S; such that <,, ¢’ <, '}

Recall thatT; is the set of transitions in/;.

Proposition 1. Each transactionr € AT; fori € {1,--- ,n} is an independent trans-
action and is maximal, i.e., can not be made larger withoute€iing an independent
transaction. Further, for each transitione T, there exist$r € AT; such that € ¢r.

Constructing TSG Given a set of context-switching paifs?(M.AT), a set of inde-
pendent transactiong, AT;, and a set of transaction boundarig¢ss;, we construct a
transaction sequence graph, a digréfil, £') as follows:

— V = U,V is the set of nodes, whefé denotes a set of thread local control states
corresponding to the sét,
— E=TF |J CFE isthe set of edges, where
e TFE is the set oftransaction edgesorresponding to the independent transac-
tionsi.e.. TE = {(begin(tr),end(tr)) | tr € |, AT;}
e CE is the set ofcontext switch edgesorrespondingd’ P(MAT) i.e.,CE =
{(ci¢j) | (ci,cj) € TP(MAT)}

ATSGG(V,E = (CE UTE)), as constructed, hd¥ | = O(X;|AT;|), ITE| =
(X;|AT;|), and|CE| = (X, |AT;| - |AT}|), wherei, j € {1,--- ,n}, andn is number
of threads. In the worst case, howeVét| = O(n - k), |TE| = O(n - k), and|CE| =
O(n? - k*) wherek is the maximum number of shared accesses in any thread.

Proposition 2. TSG as constructed captures all and only the representatteeleav-
ing (of a given CTP), each corresponding to a total orderegusmce of independent
transactions where the order is defined by the directed edfjéSG.

4.2 Range Propagation on TSG

Range propagation uses data and control structure of aggrderive range informa-
tion. In this work, we consider intervals for simplicitytabugh other abstract domains
are equally applicable. For each program variahleve define an intervallt, ug),
wherel¢, [are integer-valued lower and upper boundsdat a control locatiore.
One can define, for example, the lower boud@pper bound I{) of an expression
exp = exp; + exps ata control locatiom asL(exp, ¢) = L(exps, ¢) + L(exps, c) and
Ul(exp,c) = Ulexps, c) + Ulexps, ¢), respectively (more details in [29]).

We say an intervallé, u¢) is adequateif value of v at locatione, denoted as
val(v, c) is bounded in all program executions, i£.,< val(v,c) < uf. As there are
potentially many feasible paths, range propagation iscbiyi carried out iteratively
along bounded paths, where the adequacy is achieved catigely. However, such
bounded path analysis can still be useful in eliminatingppétat do not satisfy sequen-
tial consistency requirements. As shown in Figure 2(c)cmueacéea - 2b- 6b - 1a does
not follow program order, and therefore, paths with suchqaisace can be eliminated.

At an iteration step of range propagation, let>?[i] denote the range information

(i.e., a set of intervals) at nodealong a feasible path, and is defined as:
roP[i] = {(I$P[i], uSP[i])| interval forv computed at nodealong pattp at stepi}
One can merge“*[i] andr?'[i] conservatively as follows:

roP[i] Lre 1] = {(ISP[i], uSP[i]) U (167 [i], us? [i])| interval forv computed at node
c along path, p’ at stepi}

where the interval merge operatar) is defined as¢l, u)L(l’, u') = (min(l,l"), max(u,u')).
Letr<[i] denote the range information at nodat stepi, i.e.,

reli] = {(I¢[7], uS[z]) | interval forv computed at nodeat iteration step}.

Let F'P denote a set of feasible paths starting from nad@$ of lengthB > 1, where
B is alookaheadparameter that controls the trade off between precisionugaite
cost. Givenr®P[i] with p € F P, we obtain the range information at stepsr°[i] =

Uperp P[] and cumulative range information at ste@s R°[i] = L/ —r¢[j].

We present a self-explanatory flow of our forward range pgatian procedure,
referred afkPT, fora given TSG~ = (V, F) in Figure 4(a). As observed in Section 3.1,
in any representative feasible path, a transaction edgssisceated with at most one
context switch edge. Thus, the length of such a path is at Ja@3E |. At every iteration
of range propagation, we compute the range along a sequéhBétoansaction edges
interleaved with at mogtB| context switch edges. Such a range propagation requires
[|TE|/B] iterations. The cost of range propagation at each iteraioi| V|- |T E|5).
After RPT terminates, we obtain the final cumulative range infornrafs[:] at each
nodec, denoted agz°.

Proposition 3. Given a TSGA = (V,E = (TE U CE)) that captures all feasible
paths of a CTP, the proceduRPT generates adequate range informati&f for each
nodec € V, and the cost of propagation 8(|V| - [T E|B+1).

We show a run oRPT in Figure 4(b) on the TSG shown in Figure 2(b). At each
iteration step, we show the range computet{i] (for each global variable) at the con-
trol statesla, 5a, Ja, 1b, 2b, 6b, Jb. Since there are B E edges in the TSG, we require

5 iterations withB = 1. The cells with(—, —) correspond to no range propagation to
those nodes. The cells bold at stepi correspond to nodes iR[i]. The final intervals

at each node, i.e., R¢, is equal to the data-union of the range values edbmputed

at each iteration = 1 - - - 5. We show the corresponding cumulative intervals obtained
for the CCFG aften 1 iterations (as it hasl T'E edges). Note that using TS@PT

not only obtains more refined intervals, but also requiregfaterations. Also observe
that the assertiolr < 5 (line 7, Figure 1(a)) holds atb with the final intervals for”
obtained using TSG, while it does not holdJ/dtwhen obtained using CCFG.

Ranges-“[¢] at each step=0..5 on TSG with B=1
Input: G(V,E=(TE O CE)) 1 [V] 1a 5a Ja 1b 2b 6b Jb
D[0] = set of source nodes X[(0.2 — — 0,2 [(—) [(= (=D
=)) ,2) =)) ; :
r°[0] = set of initial range information at oly (0 2) (_ —) (_ _> <0 2> (_ _> <_ —) (_ —)
each source node ¢ z (072> (_7_> (_7_> <0’2> (_7_> <_’_> (_7_>
i = 0 // initialize iteration step. 2 2 2 : 2 : 2
B = look ahead parameter, B > 1 X {0,2) 1,3 —)] (0,2 (0,2) (=, — T
S L 1Lt A== AL L BRI
% 3) > — = >) — = - =
-, ouiput: X[(0,2) [(1,3) [(L,3) | (0,2) [(0,3) | (0,8) [(—,—
o 2|Y| (0,2) | (0,2) | (0,2) | (0,2) | (0,2) | (0,2) | (—,—)
N Z| (0,2) | (0,2) | (0,2) | {0,2) | (0,2) |{~1,2)| (—,—)
Enumerate paths P with k transaction X1 (0, 3> 0,3) <1= 3> <07 3) <0= 3> <0= 3> 0,2)
edges \(vhefre k=mig(B, (|1D'E[|))[_]mod B) 3 ; ((01 2%> (<0i22>) 283; 287 g; 283; <<0122>> (<0i52>)
starting from nodes ¢ i —1, —1,) 5 > —1, —1,
X[(0,3) | (0,3) | (0,3) [(0,3)] (0,3) | (0,3}] (0,3
= = isfi 4 1Y] (0,5) | (0,5) |(—1,2) (0,2) | (0,2) | (0,2) | {0,5)
eental orene 21,2 (-1,2)|{(-1.2)] (0.2) |(-1.2)|(-1.2)[(-1,2)
7 X[(0, 3) 0,3 (0,3) | (0,3 (0, 3) (0, 3) 0,3
. 5 Y| (0,5) | (0,5) |(=1,2)|(~1,2)|(-1,5)|(-1,5)| (0,5)
bt] o e 2| (~1,2)|(~1,2) | (~1,2)| (-1, 2)| (~1,2) | {(~1,2)[(~1,2)
ot 1] domg a3 R R BN RN RN KRR
T P ReY| (0,5) | (0,5) |(=1,2)|(=1,2)|(=1,5)|(=1,5)| (0,5)
Zl(=1,2)| (—=1,2) [(=1, 2)|(~1.2)| {=1,2) | (~1,2)| (~1,2
Merge range information obtained (F|n>al <ranges>on< CCFG (I<:|gure 1((<:)) with B=<1| atll> (>
along different paths: r<[i] = L J, re[i], and
Cumulate: Rl =L b 1] e[R L [0 [O [S 6
_ I z)(—1.2)| (~1.2) | (~1.2) [{~1.2)[(~1.2) | (~1,2)| (~1.2)
L| Obtain nodes for next iteration, Notes: Cells with ranges ibold correspond to nodes ib[4).
Dli+1] = {Cw | POFP, P=Co---Cunk (—, —) corresponds to unreachable node at dépth

@ (b)
Fig. 4. (a) RPT: Range Propagation on TSG (b) A runRFPT on TSG (Figure 2) and CCFG

4.3 Interval Metric
Given the final intervalgi, u$) € R°, we use the total number of bits needed (the
fewer the better) to encode each interval, as a metric to eoegdfectiveness of interval
analysis on CCFG and TSGs. We refer to thahésrval metric It has two components:
local (denoted agtB;) and global (denoted aBB,;) corresponding to the total range
bits of local and global variables, respectively.

The local componen® B; is computed as follows:

RB, = EtEU, " E’L)Eassgnl(t) 1Og2(u2n

whereassgn,;(t) denotes a set of local variables assigned (or updated)risitien.

For computing the global componeRiB,, we need to account for context switch-
ing that can occur between global updates. Hence, we addchmymzation compo-
nent, denoted aBB;¥"¢, in the following:

RBy = EtGU,Ti, Vveassgng (t) 10g2(“5nd(t) - lgnd(t)) + BB

whereassgn,(t) denotes a set of global variables assigned in transitiand R 3"
is the synchronization component corresponding to a glsthéd before an independent
transaction begins, and is computed as follows:

d(t) . lsnd(t))

RB;ync _ Etre UI AT, EUEV 1Og2(uzegin(tr) . lgegin(tr))
wherev € V is a global variable, antt is an independent transaction.

For the running example, the interval metrics obtained afellows: CCFG:RB; =
8, RB, = 95; TSG usingMAT ,,: RB, = 6,RB, = 57; TSG usingMAT,,:
RB; =6,RB, = 43.

5 Experiments

In our experiments, we use several multi-threaded bendtsrarvaried complexity
with respect to the number of shared variable accessese Hrer4 sets of bench-
marks that are grouped as follows: simple to complex comeatiprograms [26]dp),
our Linux/Pthreads/C implementation [12] of atomicity kations reported in apache
server[30] &t om), bank benchmarks [31b&nk), and indexer benchmarks [9]idex).
Each set has concurrent trace programs (CTP) generateft¢dbihe runs of the cor-
responding concurrent programs. These benchmarks arelgubailable at [32]. We
used constant propagation algorithm [16] to preprocessethenchmarks in order to
expose the benefits of our approach.

Our experiments were conducted on a linux workstation with4GHz CPU and
2GB of RAM, and a time limit 0f20 minutes. From these benchmarks, we first ob-
tainedCCFG. Then we obtainedSGandTSG after conducting MAT analysis on the
CCFGs, usingzenMAT andGenMAT’ , respectively, as described in Section 4.1. For
all three graphs, we removed context switch edges betweda pairs that are found
unreachable using lockset analysis [1].

Comparison oRPT on CCFG, TSG, andTSG are shown in Table 1 using looka-
head parameteB = 1. The characteristics of the corresponding CTPs are shown in
Columns 2-6, the results ®&PT on CCFG TSGandTSG are shown in Columns 7-
11, and Columns 12-17, and Columns 18-23, respectivelyur@os 2-6 describe the
following: the number of threads:}, the number of local variables (#L), the number
of global variables (#G), the number of global accesses,(#AJ the number of total
transitions (#T), respectively. Columns 7-11 describddhiewing: the number of con-
text switch edges (#CE), the number of transaction edges)(&ame as the number of
iterations ofRPT), the time taken (t, in sec), the number of local 8;, and number
of global bitsR B, respectively. Columns 12-17 and 18-23 describe simiffaryr SG
andTSG including the number of MATs obtained (#M). In caseQiFG, we obtained
a transaction by combining sequence of transitions sudfottip the last transition has
exactly one global access. The time reported includes MAllyais (if performed) and
run time of RPT.

As we notice,RPT on TSGandTSG (excepti ndex4) completes in less than
a minute, and is an order of magnitude faster compared tooth&@CFG. Also, the
interval metric @B, RB,) for TSGand TSG are significantly lower compared to
CCFG. Further, betweefiSG andTSG, the former generates tighter intervals.

Using the adequate intervals obtained, we also checkeafeachability of control
states. We found that using bofisG andTSG , we were able to show a few control
states (shown in brackets) unreachable in the followingmptas:bank2 (1), bank3
(1),i ndex1 (64),and ndex2 (32). However, we could not show a single unreachable
control state usin@CFGin these benchmarks.

Next we evaluate the reduction in the efforts of a heavy-ivgigce-based symbolic
analysis toolCONTESSA [13] usingRPT results. For each benchmark, we selected a
reachability property corresponding to a reachability adheead control state. Using

Table 1. Comparison oRPT on CCFG, TSG and TSG'.

Ex || Characteristics CCFG TSG TSG

n [HLI#G] #A T #T || #C THTE[T(S)[RB,[RB, || #M | #C [#THIS)RB[RB, || #M [#C [#THI(S)RB,[RB,
cpl [[3]4] 34128 90 [24|< 1] 6 [131 18 | 22 [13[< 1] 6 | 82 9 1419 |<1] 6 [50
cp2 [[3]4] 3 [185]108][1562 88 [< 1| 22 [531 [] 330 [342 [45[|< 1| 22 | 354 || 121 222 25|< 1] 22 | 178
cp3 [[3]4] 3 [905]508([35807 408] 13 | 102 2531][] 7650] 7702[205] 2 [102] 1714 2601] 5102[105] 1 [102| 818
atomll|3[1]| 2| 27| 25 44 | 16 |[< 1] 29 | 493 11 14 | 11{< 1] 29 | 300 6 9 8 |< 1| 29 | 200
atomZ|3[2]| 3| 37| 31 68 | 20 [< 1| 30 | 647 14 19 | 13|< 1| 30 | 389 8 12 | 9 [< 1| 30 | 245
atom3| 3| 2| 11| 412] 243]| 4748] 153|< 1| 61 [10.5K][1321| 1350] 91 |< 1| 61 [6945|] 478 | 865 | 48|< 1| 61 [3605
atom4|| 3] 3] 13| 435] 251 5336| 160| 1 | 32 [12.4K]|[1344| 1342] 95 |< 1| 32 [7933][508 899 [50 < 1] 32 [4115
bank1]| 9[59] 16| 383 286([12.6K| 180| 10 | 855|22.8K]| 178 | 278 | 75|< 1| 808|10.6K]| 178 278 | 75|< 1| 808|10.6
bank2| 9[67| 25| 540| 369(|25.1K] 231| 63 | 818|35.9K|| 440 | 559 [155] 1 | 771[25.1K|]| 277 | 409 [115]< 1| 771] 19K
bank3[9[67] 26| 599] 386{[24.8K| 240| 38 | 834[38.3K|| 384 | 454 [147|< 1[786(24.7K]| 212 320[99| 1 | 786(16.6
index1|| 9[11] 24]229] 168|| 7224 98 | 2 | 52 | 7653|| 6 12 [12[|< 1] 32 | 452 6 12 [12]< 1] 32 | 452
indexd|19]21| 54| 514 363[[40.1K| 213] 51 | 154[43.5K]| 351 | 513|106 1 | 132|11.6K][225| 366 | 64| 1 | 132]6613
index3d[31]33[184[2125149(| 627K| 821 TO| NA | NA || 2573] 3386|496] 40 | 883][399K][1399| 2024]265| 22 | 883[121K
index4|33|35[246/39142793|1.98M[1490 TO | NA | NA [[29.6K[31.4K|922[822|1814] IM [[10.8K|11.9K 479 275[1814 307K
Notes: n: num. of threads, #L: num. of focal vars, #G: num. of globaky&A: num. of global accesses, #T: num. of transitions,

#CE: num. of context switch edges, #TE: num. of transactéges (=num. of iterations), t(s): time in sec (TQs t1200s),
#M: num. of MATs, RB;: num. of local bits,R B, : num. of global bits B = 1 for the experiments

the tool, we then generated Satisfiability Modulo Theory {S¥brmula such that the
formulais satisfiable if and only if the control state is fealsle. We then compared the
solving time of two such SMT formula, one encoded using theMdths of variables
as obtained usin®PT (denoted a%g), and other encoded using integer bit-width of
32 (denoted a&s53). We used SMT solver Yices-1.0.28 [33]. For each benchmaek, w
present the time taken by the SMT solver to solve the properfiable 2 for a time
limit of 1500s.

Column 1 lists the benchmarks. Column 2 show whether thegutpjis satisfiable
(S) or unsatiable (U). Columns 3—4, 5-6, 7—8 present thettiken by the solver o3,
and¢gr on CCFG, TSG, andTSG , respectively. We observe that the intervals obtained
usingRPT reduces the efforts of the symbolic analysis by 1-2 ordersagnitude.

Table 2. Time Taken (in sec) by Symbolic Analysis [13] on CCFG, TSG afd'.

Ex [S/] CCFG TSG TSG
U? P32 [Pr[[P32[PR P32 | PR
cpl [S[<T[KT[KIKTI[KT
cp2 (S| 4 <1 3 |<1 T |[<1
cp3 [S| TO [432[[366] 10[] 34 5
atomll S| <1 [|[<1|[< 1|<]| <1]|<1
atom S| <1 [|[<1|[< 1|<]| <1]|<1
atom3d S| 6 31 15] 6 3 1
atom4 S| 35 [44| 15 4 2
bank]U| 6 6 II<I 1T [<1
bank2U| 16 [15]] 2 | 1 2 1
bank3 U[16 [15[2 1 2 1
index]U| 4 4 I<TI 1T [<1
indexJU| 40 [41]] 2 1 2 1
index3U| TO |[TOJ| 30| 23] 24 15
indexqU| TO [TO|[TO|TO|] TO | 252
Notes: S/U: Satisfiable/Unsatisfiable instand¢
¢32: using 32-bit for each variable
¢ r: using bit-width obtained usinBPT
TO: Time out (time taken> 1500s)

6 Conclusion, Related and Future Work

We presented an interval analysis for CTPs using the nevomati TSGs, which is
often more precise and space/time efficient than using #relatd CCFGs. We use a
MAT analysis to obtain independent transactions and tomiire the size of the TSGs.
We also propose a non-trivial improvement to the MAT analytsi further simplify
the TSGs. Our work is related to the prior work on static asialjor concurrent pro-
grams such as [15-19], although such analysis were diragiied to the CCFG of
a whole program. Our notion of TSG is also different from ttesaction graph (TG)
[20] and the task interaction concurrency graph (TICG) thé4} have been used in con-
current data flow analysis. Such graphs, i.e, TG and TICGesgmt a product graph
where nodes correspond to the global control states andsemtgesspond to thread
transitions—such graphs are often significantly biggeide than TSGs.

Although we have applied our TSG approach only to CTPs, we fdaeneralize
it for concurrent programs with loops. Such generalizationld involve extending the
MAT analysis to handle loops (e.g. by considering the loopkbadges during MAT
generation) and introducing abstract domains to handlintieedeaving of interacting
loops (e.g. by considering independent transactions in@)l&Ve leave that as a future
work.

References

1. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and Tefswh. Eraser: a dynamic data
race detector for multithreaded programs AlBM Trans. Comput. Syst997.

2. C. Flanagan and S. N. Freund. Atomizer: A dynamic atomdiycker for multithreaded
programs. IrProc. of IPDPS 2004.

3. M. Xu, R. Bodik, and M. D. Hill. A serializability violatio detector for shared-memory
server programs. IRrogramming Language Design and ImplementatRe05.

4. L. Wang and S. D. Stoller. Runtime analysis of atomicity faltithreaded programs. In
IEEE Transactions on Software Engineeri2§06.

5. A. Farzan and P. Madhusudan. Monitoring Atomicity in Qament Programs. [®Proc. of
CAV, 2008.

6. C. Sadowski, S. N. Freund, and C. Flanagan. Singletracgmamic determinism checker
for multithreaded programs. Buropean Symposium on Programmji2@§09.

7. A. Farzan and P. Madhusudan. Meta-analysis for atomigifations under nested locking.
In Proc. of CAV 2009.

8. L. Wang and S. D. Stoller. Accurate and efficient runtimeedgon of atomicity errors in
concurrent programs. I8ymposium on Principles and Practice of Parallel Programni
2006.

9. C. Flanagan and P. Godefroid. Dynamic partial-orderctdn for model checking software.
In Proc. of POPL. 2005.

10. M. Musuvathi and S. Quadeer. CHESS: Systematic stressgef concurrent software. In
Logic-based Program Synthesis and Transformat&fioe.

11. Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A RoatModel Checker for Multi-
threaded C Programs. Technical Report UUCS-08-004, Usityesf Utah, 2008.

12. C. Wang, R. Limaye, M. Ganai, and A. Gupta. Trace-basetbsiic analysis for atomicity
violations. InProc. of TACAS2010.

13. S. Kundu, M. Ganai, and C. Wang. CONTESSA: CONcurrenc$firig Augmented with
Symbolic Analysis. IrProc. of CAV 2010.

14. D.L.Longand L. A. Clarke. Task interaction graphs fan@arrent analysis. Imternational
Conference on Software Engineerjii$89.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

26.

27.

28.
29.

30.

31.

32.

33

M. B. Dwyer and L. A. Clarke. Data flow analysis for verifgi properties of concurrent
programs. Irinternational Symposium on the Foundations of Softwarareeging 1994.

J. Lee, D. A. Padua, and S. P. Midkiff. Basic compiler &thms for parallel programs.
Symposium on Principles and Practice of Parallel Programgnil999.

A. Farzan and P. Madhusudan. Causal dataflow analyst®fmurrent programs. IRroc.
of TACAS2007.

R. Chugh, J. W. Voung, R. Jhala, and S. Lerer. Dataflowyaisalor concurrent programs
using datarace detection. Rrogramming Language Design and Implementat2008.

A. Lal, T. Touili, N. Kidd, and T. Reps. Interproceduraladysis of concurrent programs
under a context bound. FProc. of TACAS2008.

V. Kahlon, S. Sankaranarayanan, and A. Gupta. Sematiction of thread interleavings
in concurrent programs. IRroc. of TACAS2009.

F. Chen and G. Rosu. Parametric and sliced causaliBrda of CAV 2007.

G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesidiaporder reduction. Ifroc.
of SPIN Worksho2007.

O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsabyd & Ur. Framework for Testing
Multi-threaded Java Programs. Goncurrency and Computation: Practice and Experience
2003.

K. Sen. Race directed random testing of concurrent progr InPLDI, 2008.

. C. Wang, S. Chaudhuri, A. Gupta, and Y. Yang. Symboliaimg of concurrent program
executions. IEESEC-FSE2009.

M. K. Ganai and S. Kundu. Reduction of Verification Coiuttis for Concurrent System
using Mutually Atomic Transactions. Broc. of SPIN Workshqp2009.

L. Lamport. How to make multiprocessor computer thatewty executes multiprocess
programs.|[EEE Transactions on Computers979.

M. K. Ganai. Conference Notelsttp://www.nec-labs.com/malay/notes.htm

R. Rugina and M. C. Rinard. Symbolic bounds analysis aftpcs, array indices, and ac-
cessed memory regions. Rrogramming Language Design and ImplementatRe00.

S. Lu, J. Tucekt, F. Qin, and Y. Zhou. AVIO: detecting aittity violations via access
interleaving invariants. IArchitectural Support for Programming Languages and Ofiaa
Systems2006.

E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns aowl to test them. IParallel and
Distributed Processing Symposiugd03.

System Analysis and Verification Team. NECLA SAV Benchitaa http://www.nec-
labs.com/research/system/syste®#s/-website/benchmarks.php

. SRI. Yices: An SMT solvemhttp://fm.csl.sri.com/yices

+x The appendi x should not be considered as a part of the
submni ssi on. **=*

A Appendix: MAT Generation Algorithm

We present the algorithi@enMAT’ (Algorithm 1), where we us©LD/NEW pred-
icate to show the difference between previous [26] and oop@sed improvements,
respectively.

Given a CTP with thread®/; - - - M,,, and a dependency relatiéh we useGenNVAT’
to generateM AT ;; for each pair of threads/; andM;, ¢ # j, and obtainI AT =
U# . MAT ;;. Note thatD may not include the conflicting pairs that are unreachable.

For the ease of explanation, we assume there is no conditioaaching in each
thread. (For threads with conditional branching, pleafer [8].) We also assume that
each shared variable has at least one conflicting accessashmair of threads. (Such
an assumption can be easily met by adding a dummy sharedaggdéss at the end of
each thread without affecting the cost of MAT analysis. Nb& such an assumption is
needed for the adequacy and optimality for validity of Theorl for a multi-threaded
system).

With abuse of notation, we use transitioio also indicatéegin(t), the control state
of the thread where the transitierbegins. Further, we uset to denote the transition
immediately aftet in program order, i.ehegin(+t) = end(t).

We discuss the inner loop (lines 15-18) to genevetelT ;; for a thread pait\/;
andM;, i # j. Let(;,+;) and(-;, 1;) denote the start and end control pair locations,
respectively, of the thread¥/; andA/;. We first initialize a queu€) with control state
pair (F;, ;) representing the beginning of the threads, respectivelyafreviously
unchosen paif f;, f;) in the Q, we can obtain a MATm = (tr; = f;---l;,tr; =
fi---1;). There can be other MAT-candidates = (tr; = f;---Ii,tr; = f;---1})
such that] <, I; orl;- ~po 5 but not both, as that would invalidate as a candidate.
Let M. denote a set of such choices as obtained using the mé&hbd26]. Using our
proposed methoMEW, we will restrict our choices to feasible MAT candidatesyonl

The algorithm selects, € M. uniquely by assigning thread priorities and using the
following selection rule. If a thread/; is given higher priority ovef;, the algorithm
prefersm = (tr; = f;---l;, trj = f;---1;) overm’ = (tr; = f; - --lg,tr;- =fi- -l;-)
if I; <po 1}, i.€.,[tr;| < [tr}|. The choice of\/; overM; is arbitrary but fixed through
the MAT computation, which is required for the optimalitystét. We presented MAT
selection (lines 10-11) in a declarative style for bettedarstanding. However, algo-
rithm finds the unique MAT using the selection rule, withoahstructing the set ...

We addm to the setMAT ;. If (+1; #;) and(+1; #;), we update) with three
pairs, i.e.,(+l;, +1;), (+, f;), (fi, +1:); otherwise, we insert selectively as shown in
the algorithm (lines 14—16). The algorithm terminates whkithe pairs in the queue
are processed. Note that the order of pair insertion cantbeany, but the same pair is
never inserted more than once.

A run of GenMAT: We present a run deenMAT (OLD) in Figure 5(a) for the running
example. We gaveé/, higher priority overM;. The table columns provide each itera-
tion step (#l), the paip € Q\Q’ selected, the chosewt AT ., and the new pairs added
in Q\Q' (shown in bold). It starts with the pa(ta, 1b), and identifies two MAT candi-
dates:(la---Ja,1b- 2b) and(la - 2a,1b- - - 6b). Note that the paifla - 2a,1b- - - 3b)

is not a MAT candidate as the pdi2a, 3b) is an unreachable pair. By givinyg;, higher
priority over M, it selects a MAT uniquely from the MAT candidates. The cleodt
M, over M, is arbitrary but fixed through the MAT computation, whichésgjuired for
the optimality result. After selecting MATn4, it inserts in a queu€), three control
state pairg1la, 2b), (Ja, 2b), (Ja, 1b) corresponding to thbeginand theend pairs of
the transactions im;. These correspond to the three corners of the rectangldn
the next step, it pops out the péir, 2b) € Q, selects MATm, using the same priority
rule, and inserts three more paifsy, 3b), (5a, 2b), (5a, 3b) in Q. Note that if there is
no transition from a control state such.&s, no MAT is generated fromiJa, 2b). Also,
if @ pair such ag2a, 2b) is unreachable, no MAT is generated from it. One may not
insert such pair in the first place. The algorithm terminatéen all the pairs in the
queue (denoted asin Figure 3(a)) are processed.

Note that the order of pair insertion can be arbitrary, bet $ame pair is never
inserted more than once. For the running example, av$&t7 ., = {m1,---m7} of
seven MATSs is generated. Each MAT is shown as a rectangleguwr&i3(a). The total
number of context switches allowed by the set, i[&2(MAT o) is 12.

A run of GenMAT' : We present a run deenMAT' (NEW) in Figure 5(b) for the
same running example. The table columns have similar ge&aeri In the second itera-
tion, starting from the paifla, 2b), the infeasible MAT(1a - - - 5a, 2b - - - 3b) is ignored
as the interleavin@a - - -3b - 1a - - - 5a is infeasible. Aq1a, 3b) is no longer inQ, my
is not generated (which is infeasible). Similarly, @&, 3b) is no longer inQ@, ms is
not generated (which is feasible). There &BIATS my, m,, ms, me, m7 generated,
shown as rectangles in Figure3(b). The total number of abstgitching allowed by
the setiss.

Algorithm 1 GenMAT’: Obtain a set of MATs

1: input: Thread Models); - - - M,,; Dependency RelatioP

2: output: MAT

3: for all pairs of thread {/;,M;) do

4 MAT ;= 0; Q :={(Fs,F5)}; Q = 0 {Initialize Queué;
5. while Q\Q' # (0 do

?1 Select(fi, f;) € Q\Q'
8
9

Q=Q\{(fi,)} Q =Q U{(fi, fi)}
if OLD MAT-candidates setM. = { m |m is MAT from (f;, f;)} [26]
if NEW MAT-candidates setM. = {m |m is feasible MAT from(f;, f;)}

10: Selecta MATm = (tr; = fi---li,tri = f;---1;) € M. such that

11: Vm' = (tri, tr}) € Mc,m' # m |trj| < |tr}|, (i.e.,M; has higher priority).
12: M.ATZJ = M.ATLJ U {m}

13: if (+1; = A+ ; =-;) then continue;

14: elseif(+1; =-;) thenq := {(fi, +1,)};

15: elseif(+1; =;) thenq := {(+1;, fj) };

16: elseq := {(+l7~7+l])7(+l17f])7(f27+lj)}1

17: Q:=QUg;

18: end while

190 MAT = MAT U MAT
20: end for

21: return MAT

| pOQWQ MAT,, QQ @ | pOo\Q MAT, o0
(1a,1b) (1a,1b)

1 | dalb) | mi:(la=Ja,1b=2b) (1a,2b) 1 | (ta1b) | m1:(1amJa 1b=2b) (1a,2b)

2 | (1a2b) | m2:(1a=5a,2b=>3b) | (5a,2b)(1a,3b)(5a,3b) 2 | (ta2b) | m2-(tas5a,2b=6b) | (5a,2b)(1a.6b)

4 (5a,2b) | m3:(5a=Ja,2b=>Jb) (5a,6b)

3 | (a3b) | ma:(la=2a,3b=6b) (1a,6b)(2a,6b) 3 | (5a,2b) | m3:(5a=Ja,2b=Jb)

5 | (5a,3b) | m5:(5a=>Ja,3b=>Jb) 4 | (1a,6b) | mé:(la=Ja,6b=>Jb)

6 (1a,6b) | m6:(la=Ja,6b=Jb) 5 (5a,6b) | m7:(5a=Ja,6b=Jb)

7 (2a,6b) | m7:(2a=Ja,6b=Jb)

Fig. 5. (a) Run of (a)GenMAT and (b)GenMAT’ on example in Figure 1

B Appendix: MAT Reduction Theorem

Let MAT and M AT’ be the set of MATs obtained usirgenMAT andGenMAT ,
respectively.

Theorem 1 (MAT reduction) MAT" is adequate, and’P(MAT") C TP(MAT).

Proof. Consider a pair of threadd, and M, such that the chosen priority @f/, is
higher thanM,. Let (a1,b1) be a pair picked at line 6, and the corresponding MAT
selected byzenMAT bem; = (taq, thy). GenMAT algorithm then inserts pai(g., b1),
(a1, b2), and(az, b2) in the worklist@, shown ase in Figure 6(a). Assume thab,
disablesay, i.e.,tb; - ta; is aninfeasible interleaving, and rest are feasible iatatihg.
Thus,m; is an infeasible MAT. Continuing the run @&nMAT, we have the following
MAT

— mg = (tay, thy - th3) from the pair(a, bs),
— ma = (tas, thy - thy) from the pair(az, by),
— my = (tag,tbe) from the pair(az, by).

Note, sincetb, disablesta,, there exists som&, - tbs that enablesa,, such that
its last transition have a conflicting access with thatmf (If not, one observe that any
interleaving of the forntb, - - - tb; - ta; is infeasible. In that case we will not hawe,).
Also, sincel,, is prioritized higher, we have the MAT3 with |tbe| > 0. The context
switching allowed by MATSn; - - - my4 are

TP({m1,ma,m3,my}) =
{(b2,a1), (a2, b1), (a2, b2)(bs, a1)(as, b1)(bs, az)(as, b2)}-

Now we consider the corresponding run @&nMAT’ from (a1, b;) where only
feasible MATs are generated. Such a run would produce MATs

— m} = (tay, tby - tby - tbs) from the pair(aq, ba),
— mg = (taz, tby - tby) from the pair(az, b1).

The context switching allowed by MATs, ms are

(az,b3) &(a;b)

N

(b)
Fig. 6. MATs generated using (a) GenMAT and (b) GenMAT’

Y

TP({m},ms}) ={(az,b1)(bs, a1), (a3, b1)(bs, az)}.

In the rest of the proof discussion, we consider the intergstase whergbs| > 0. (A
similar proof discussion can be easily made for the othez gas| = 0.) All the inter-
leaving/;-1;; (including the infeasible ones), as allowed by M&FL , mo, ms, my, are
shown as follows:

I : cootay - tasg -
Iy : <o othy - thy - thy - - -

I3 : ---tay - tag - thy - thy - - - allowed by{m3}

1y : ---tay - thy - thy - tag - - - allowed by{ml, mg}

I5 : ---tay - tby - thy - tbg cee allowed by{ml}

Is : ---thy - thy - thy - taq - - - allowed by{mg}

17 : <o thy -tay -tag - - (infeasible) allowed bym; }

Iy : <+ -thy - tay - tas - thy - - - (infeasible) allowed by{my, m4}

Iy : <othby - tay - tag - - - (infeasible) allowed by{m }

Tig: - -thy-tay -thy--- (infeasible) allowed by{mq, mo}

111 : ---tby - tay - thy - tag - - - (infeaSib|8) allowed b){ml, ma, m4}

One can verify that all but infeasible interleavings, ife-[g, are also captured by
mb andmg.

All the pairs that are inserted i@ are shown using in the Figures 6(a)-(b). After
the MATs {m1, m2, ms, m4} are selected (bnMAT), the following pairs inQ that
are yet to be processed are

Q\Q' = {(as, b1), (a3, b2), (a3, b3), (a2, b3), (a2, ba)(a1,bs)}

Similarly, after the MATs{m/, m3} are selected (b§enMAT"), the following pairs in
@ that are yet to be processed are

Q\Q" = {(as, b1), (a3, b3), (az,b3), (a2, ba)(a1,bs)}.

Note that MAT from(as, b2), as selected ienMAT, allows exclusively an interleaving
---tby -tay -tag - - - ; however such an interleaving is infeasible. For the reingipairs
we apply our argumentinductively to show that from a cordtate pair, one can obtain

a set of MATs from botfGenMAT andGenMAT’ respectively, that allow the same set
of feasible interleaving. These arguments show the adgmqfamr claim.
Further,GenMAT' inserts in the worklist a set of pairs that is a subset of pairs
inserted byGenMAT. The claimTP(MAT') C TP(MAT) trivially holds as the
worklist set is smaller witftGenMAT' as compared t&enMAT. Thus, the interleav-
ing space captured b1 A7 is not increased. A31.AT captures only representative
schedules as per Theorem 1, clealy, A7’ captures only representative schedulgs.

