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Abstract. Concurrent trace programs (CTPs) are slices of the concurrent pro-
grams that generate the concrete program execution traces,where inter-thread
event order specific to the given traces are relaxed. For suchCTPs, we introduce
transaction sequence graph (TSG) as a model for efficient concurrent data flow
analysis. The TSG is a digraph of thread-local control nodesand edges corre-
sponding to transactions and possible context-switches. Such a graph captures
all the representative interleavings of these nodes/transactions. We use a mutu-
ally atomic transaction (MAT) based partial order reduction to construct such a
TSG. We also present a non-trivial improvement to the original MAT analysis to
further reduce the TSG sizes. As an application, we have usedinterval analysis
in our experiments to show that TSG leads to more precise intervals and more
time/space efficient concurrent data flow analysis than the standard models such
as concurrent control flow graph.

1 Introduction
Verification of multi-threaded programs is hard due to the complex and often un-expected
interleaving between the threads. Exposing concurrency related bugs—such as atom-
icity violations and data races—require not only bug-triggering inputs but also bug-
triggering execution interleavings. Unfortunately, testing a program for every interleav-
ing on every test input is often practically impossible. Runtime-based program analy-
sis [1–13] infer and predict program errors from an observedtrace. Compared to static
analysis [14–20], runtime analysis often result in fewer false alarms.

Runtime analysis can be broadly classified into three categories: runtime monitor-
ing, runtime prediction, andruntime model checking. In thefirst category, analysis such
as [1–6] monitor the observed trace events (such as shared memory accesses) and flag
true or potential violations of intended atomic transactions. In thesecondcategory, the
analysis can also predict violations in other interleavings of the events in the observed
trace. Some of these approaches [7, 8] use data abstraction,and thereby report false
alarms as the interleaving may not be feasible; while other approaches such as [21]
use happens-before causal relation to capture only (but maynot be all) the feasible
interleavings, and thereby, report no bogus (but may miss some true) violations. The
third category includes more heavy-weight approaches such as dynamic model check-
ing [9–11] and satisfiability-based symbolic analysis [12,13]. These methods search for
violations in all feasible alternate interleavings of the observed trace and thereby, report
a true violation if and only if one exists.

In dynamic model checking, for a given test input, systematic exploration of a pro-
gram under all possible thread interleavings is performed.Even though the test input is
fixed, explicit enumeration of interleavings can still be quite expensive. Although par-
tial order reduction techniques (POR) [9, 22] reduce the setof necessary interleavings



to explore, the reduced set often remains prohibitively large. Some previous work used
ad-hoc approaches such as perturbing program execution by injecting artificial delays
at every synchronization points [23], or randomized dynamic analysis to increase the
chance of detecting real races [24].

In trace-based symbolic analysis [12,13], explicit enumeration is avoided via the use
of symbolic encoding and decision procedures to search for violations in a concurrent
trace program (CTP) [25]. A CTP corresponds to data and control slice of the concurrent
program (unrolled, if there is a thread local loop), and is constructed from both the
observed trace and the program source code. One can view a CTPas ageneratorfor
both the original trace and all the other traces corresponding to feasible interleavings of
the events in the original trace.

In this paper, we present a light-weight concurrent data flowanalysis which can be
used as an efficient preprocessor to reduce the subsequent efforts of the more heavy-
weight symbolic analysis for concurrency verification suchas [12, 13]. Our primary
focus is on a suitable graph representation of CTP to conductmore precise and scalable
concurrent data flow analysis than the standard models such as concurrent control flow
graph (CCFG). In the sequel, we use interval analysis as an example.

In a nutshell, our approach proceeds as follows: from a givenCCFG (correspond-
ing to a CTP), we construct a transaction sequence graph (TSG) denoted asG(V, E)
which is a digraph with nodesV representing thread-local control states, and edgesE
representing either transactions (sequences of thread local transitions) or possible con-
text switches. On the constructed TSG, we conduct an interval analysis for the program
variables, which requiresO(|E|) iterations of interval updates, each costingO(|V |·|E|)
time. Our main contributions are two fold:

– Precise and effective interval analysis using TSG
– Identification and removal of redundant context switches

For construction of TSGs, we leverage our mutually atomic transaction (MAT) analy-
sis [26]—a partial-order based reduction technique that identifies a subset of possible
context switches such thatall andonly representative schedules are permitted. Using
MAT analysis, we first derive a set of so-calledindependent transactions.(As defined
later, an independent transaction is globally atomic with respect to a set of schedules.)
The beginning and ending control states of each independenttransaction form the ver-
tices of a TSG. Each edge of a TSG corresponds to either an independent transaction
or a possible context switch between the inter-thread control state pairs (also identified
in MAT analysis). Such a TSG is much reduced compared to the corresponding CCFG,
where possible context switches occur between every pair ofshared memory accesses.
Most prior work such as [15–19] apply the analysis directly on CCFGs. In contrast,
we conduct interval analysis on TSGs which leads to more precise intervals, and more
time/space-efficient analysis than doing on CCFGs.

We improve our original MAT analysis further by reducing theset of possible con-
text switches, and at the same time guarantee that such a reduced set captures all nec-
essary schedules. Such improvement is important because:

– It significantly reduces the size of TSG, both in the number ofvertices and in the
number of edges; this in turn, results in a more precise interval analysis with im-
proved runtime performance.

– The more precise intervals reduce the size and the search space of decision prob-
lems that arise during the more heavy-weight symbolic analysis.



The outline of the rest of the paper is as follows: We provide formal definitions and
notations in Section 2. In Section 3, we give an informal overview of our approach, and
in Section 4, we present our approach formally. We present our experimental results in
Section 5, followed by conclusions, related, and future work in Section 6.

2 Formal Definitions
A multi-threaded concurrent programP comprises a set of threads and a set of shared
variables, some of which, such as locks, are used for synchronization. LetMi (1 ≤ i ≤
n) denote a thread model represented by a control and data flow graph of the sequential
program it executes. LetVi be a set of local variables inMi andV be a set of (global)
shared variables. LetS be the set of global states of the system, where a states ∈ S is
valuation of all local and global variables of the system. A global transition system for
P is an interleaved composition of the individual thread models,Mi.

A thread transitiont ∈ ρ is a 4-tuple(c, g, u, c′) that corresponds to a threadMi,
wherec, c′ represent the control states ofMi, g is an enabling condition (orguard)
defined onVi ∪ V , andu is a set of update assignments of the formv := exp where
variablev and variables in expressionexp belong to the setVi ∪ V . As per interleaving
semantics precisely one thread transition is scheduled to execute from a state.

A scheduleof the concurrent programP is an interleaving sequence of thread tran-
sitionsρ = t1 · · · tk. In the sequel, we focus only on sequentially consistent [27] sched-
ules. An evente occurs when a unique transitiont is fired, which we refer to as the
generatorfor that event, and denote it ast = gen(P, e). A run (or concrete execution
trace)σ = e1 · · · ek of a concurrent programP is an ordered sequence of events, where
each eventei corresponds to firing of a unique transitionti = gen(P, ei). We illustrate
the differences between schedules and runs in Section 3.

Let begin(t) andend(t) denote the beginning and the ending control states oft =
〈c, g, u, c′〉, respectively. Lettid(t) denote the corresponding thread of the transitiont.
We assume each transitiont is atomic, i.e., uninterruptible, and has at most one shared
memory access. LetTi denote the set of all transitions ofMi.

A transactionis an uninterrupted sequence of transitions of a particularthread. For
a transactiontr = t1 · · · tm, we use|tr| to denote its length, andtr[i] to denote theith

transition fori ∈ {1, · · · , |tr|}. We definebegin(tr) andend(tr) asbegin(tr[1]) and
end(tr[|tr|]), respectively. In the sequel, we use the notion oftransactionto denote an
uninterrupted sequence of transitions of a thread asobservedin a system execution.

We say a transaction (of a thread) isatomicw.r.t. a schedule, if the corresponding
sequence of transitions are executed uninterrupted, i.e.,without an interleaving of an-
other thread in-between. For a given set of schedules, if a transaction is atomic w.r.t. all
the schedules in the set, we refer to it as anindependent transactionw.r.t. the set.1

Given a runσ for a programP we saye happens-beforee′, denoted ase ≺σ e′

if i < j, whereσ[i] = e andσ[j] = e′, with σ[i] denoting theith access event inσ.
Let t = gen(P, e) andt′ = gen(P, e′). We sayt ≺σ t′ iff e ≺σ e′. We usee ≺po e′

andt ≺po t′ to denote that the corresponding events and the transitionsare in thread

1 We compare the notion of atomicity used here, vis-a-vis previous works [2,6,8]. In our work,
the atomicity of transactions corresponds to the observation of the system, which may not
correspond to the user intended atomicity of the transactions. Previous work assume that the
atomic transactions are system specification that should always be enforced, whereas we infer
atomic (or rather independent) transactions from the givensystem under test, and intend to use
them to reduce the search space of symbolic analysis.



program order. We extend the definition of≺po to thread local control states such that
corresponding transitions are in the thread program order.

Reachable-before relation (<): We say a control state pair(a, b) is reachable-before
(a′, b′), where each pair corresponds to a pair of threads, represented as(a, b) < (a′, b′)
such that one of the following is true:1) a ≺po a′, b = b′, 2) a = a′, b ≺po b′,
3) a ≺po a′, b ≺po b′.

Dependency Relation (D): Given a setT of transitions, we say a pair of transitions
(t, t′) ∈ T × T is dependent, i.e.(t, t′) ∈ D iff one of the following holds (a)t ≺po t′,
(b) (t, t′) is conflicting, i.e., accesses are on the same global variable, and at least one
of them is a write access. If(t, t′) 6∈ D, we say the pair isindependent.

Equivalency Relation (≃): We say two schedulesρ1 = t1 · · · ti ·ti+1 · · · tn andρ2 =
t1 · · · ti+1 · ti · · · tn are equivalent if(ti, ti+1) 6∈ D. An equivalent class of schedules
can be obtained by iteratively swapping the consecutive independent transitions in a
given schedule. Arepresentativeschedule refers to one of such an equivalent class.

Definition 1 (Concurrent Trace Programs (CTP), Wang 09).A concurrent trace
program with respect to an execution traceσ = e1 · · · ek and concurrent program
P , denoted asCTPσ, is a partial ordered set(Tσ,≺σ,po)

– Tσ = {t | t = gen(P, e) wheree ∈ σ} is the set of generator transitions
– t ≺σ,po t′ iff t ≺po t′ ∃ t, t′ ∈ Tσ

Let ρ = t1 · · · tk be a schedule corresponding to the runσ, whereti = gen(P, ei).
We say scheduleρ′ = t′1, · · · , t′k is analternate scheduleof CTPσ if it is obtained by
interleaving transitions ofρ as per≺σ,po. We sayρ′ is afeasible scheduleiff there exists
a concrete traceσ′ = e′1 · · · e

′
k wheret′i = gen(P, e′i).

We extend the definition of CTP over multiple traces by first defining amergeop-

erator [13] that can be applied on two CTPs,CTPσ andCTPψ as: (Tτ ,≺τ,po)
def
=

merge((Tσ,≺σ,po), (Tψ,≺ψ,po)), whereTτ = Tσ ∪ Tψ andt ≺τ,po t′ iff at least one
of the following is true: (a)t ≺σ,po t′ wheret, t′ ∈ Tσ, and (b)t ≺ψ,po t′ where
t, t′ ∈ Tψ. A merged CTP can be effectively represented as a CCFG with branching
structure but no loop. In the sequel, we refer to such a mergedCTP as a CTP.

3 Our Approach: An Informal View
In this section, we present our approach informally, where we motivate our readers
with an example. We use that example to guide the rest of our discussion. In the later
sections, we give a formal exposition of our approach.

Consider a systemP comprising interacting threadsMa andMb with local vari-
ablesai andbi, respectively, and shared (global) variablesX, Y, Z, L. This is shown
in Figure 1(a) where threads are synchronized withLock/Unlock. ThreadMb is created
and destroyed using fork-join primitives. Figure 1(b) is the lattice representing the com-
plete interleaving space of the program. Each node in the lattice denotes a global control
state, shown as a pair of the thread local control states. An edge denotes a shared event
write/read access of global variable, labeled withW (.)/R(.) or Lock(.)/Unlock(.). Note,
some interleavings are not feasible due to Lock/Unlock, which we crossed out(×) in
the figure. We also labeled all possible context switches with cs. The highlighted inter-
leaving corresponds to a concrete execution (run)σ of programP

σ = R(Y )b ·Lock(L)a · · ·Unlock(L)a ·Lock(L)b · · ·W (Z)b ·W (Y )a ·Unlock(L)b ·W (Y )b



where the sufficesa, b denote the corresponding thread accesses.

A thread transition(1b, true, b1 = Y, 2b) (also represented as1b
b1=Y
→ 2b) is a

generator of access eventR(Y )b corresponding to the read access of the shared variable
Y . The corresponding scheduleρ of the runσ is

ρ = (1b
b1=Y
→ 2b)(1a

Lock(L)
→ 2a) · · · (4a

Unlock(L)
→ 5a)(2b

Lock(L)
→ 3b) · · · (6b

Y =b1+b2→ Jb)

Fromσ (andρ), we obtain a slice of the original program called concurrent trace pro-
gram (CTP) [25]. A CTP can be viewed as a generator of concretetraces, where the
inter-thread event order specific to the given trace are relaxed. Figure 1(c) show the
CTPσ of the corresponding runσ shown as a CCFG (This CCFG happens to be the
same asP , although it need not be the case). Each node in CCFG denotes athread con-
trol state (and the corresponding thread location), and each edge represents one of the
following: thread transition, a context switch, a fork, anda join. To not clutter up the
figure, we do not show edges that correspond to possible context switches (30 in total).
Such a CCFG captures all the thread schedules ofCTPσ.

ThreadMa

X = Y = Z = [0..2];
0 fork (Mb);
1a. lock(L)
2a. a1 = Z;
3a. X = a1 + 1;
4a. unlock(L);
5a. Y = a1;
Ja. join (Mb);
7. assert(Y ≤ 5);

ThreadMb

1b. b1 = Y ;
2b. Lock(L)
3b. b2 = X;
4b. Z = b1 + 1
5b. Unlock(L)
6b. Y = b1 + b2
Jb. /* join Ma */
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X=[0..2]
Y=[0..2]
Z=[0..2]

Lock(L)

1a

2a

3a

4a

5a

0

1b

2b

3b

4b

5b

6b

7

JbJa

a1=Z

X=a1+1

Unlock(L)

Y=a1

Y=b1+b2

Unlock(L)

Z=b2-1

b2=X

b1=Y

Lock(L)

Join

Fork

assert(Y ≤≤≤≤5)

(a) (b) (c)
Fig. 1. (a) Concurrent systemP with threadsMa, Mb and local variablesai, bi respectively,
communicating with shared variableX, Y, Z, L. (b) lattice and a runσ (c) CTPσ as CCFG

3.1 Transaction Sequence Graph
We now briefly describe the construction of TSG from the CCFG obtained above.
Assuming we have computed—using MAT analysis (described inthe next section)—
independent transactions setsATa andATb and necessary context switches for threads
Ma andMb, whereATa = {1a · · ·5a, 5a · Ja}, ATb = {1b · 2b, 2b · · ·6b, 6b · Jb}, and
the context switching pairs are{(2b, 1a), (Ja, 1b)(6b, 1a)(5a, 2b), (Ja, 6b)(Jb, 1a)(Ja, 2b)(Jb, 5a)}.
The independent transactions are shown in Figure 2(a) as shaded rectangles.

Given such sets of independent transactions and context switching pairs, we con-
struct a transaction sequence graph (TSG), a digraph as shown in Figure 2(b), as fol-
lows: the beginning and ending of each independent transaction forms nodes, each in-
dependent transaction forms a transaction edge (solid boldedge), and each context-
switching pairs forms a context-switch edge (dash edge). WeuseV , TE, andCE to
denote the set of nodes, transaction edges, and context-switch edges, respectively. Such
a graph captures all and only the representative interleaving, where each interleaving
is a sequence of independent transactions connected by directed edges. The number



of nodes (|V |) and the number of transaction edges (|TE|) in TSG are linear in the
number of independent transactions, and the number of context-switch edges (|CE|) is
quadratic in the number of independent transactions. The TSG (in Figure 2(b)) has 7
nodes and 13 edges (= 5 transaction edges + 8 context-switch edges).

If we do not use MAT analysis, a naive way of defining an independent transac-
tion would be a sequence of transitions such that only the last transition has a global
access. This is the kind of graph representation used by mostof the prior work in the
literature [15–19]. In the sequel, we refer to a TSG obtainedwithout MAT analysis as
a CCFG. Such a graph would have 13 nodes, and 41 edges (=11 transaction edges + 30
context-switch edges).
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6b

JbJa
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tb1
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tb 4
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tb 4

(a) (b) (c)

Fig. 2. (a) CCFG with independent transactions (b) TSG (c) Traversal on TSG

Range Propagation on TSGAlthough TSG may have cycles (as shown in Figure 2(b)),
the sequential consistency requirement does not permit such cycles in any feasible path.
A key observation is that any feasible path will have a sequence of transactions of
length at most|TE|. As per the interleaving semantics, any schedule can not have two
or more consecutive context switches. Thus, a feasible pathwill have at most|TE|
context switches. For example, pathJa · 2b · 1a · 5a involves two consecutive context
switches, and therefore, can be ignored for range propagation. Clearly, one does not
require a fixed point computation for range propagation, butrather a bounded number
of iterations of sizeO(|TE|).

Let D[i] denote a set of TSG nodes reachable at BFS depthi from an initial set of
nodes. Starting from each node inD[i], we compute range along one transaction edge
or along one context switch edge together with its subsequent transaction edge. We
show such a traversal on TSG in Figure 2(c), where dashed and solid edges correspond
to context switch and transaction edges, respectively. Thenodes inD[i] are shown in
dotted rectangles. As a transaction edge is associated withat most one context switch
edge, a range propagation would requireO(|V | · |TE|) updates per iteration.

3.2 MAT Analysis
We now discuss the essence of MAT analysis used to obtain TSG.Consider a pair
(tam1 , tbm1), shown as the shaded rectanglem1 in Figure 3(a), wheretam1 ≡ Lock(L)a·
R(Z)a · · ·W (Y )a andtbm1 ≡ R(Y )b are transactions of threadsMa andMb, respec-
tively. For the ease of readability, we use an event to imply the corresponding generator
transition.
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Fig. 3. MATs mi shown as rectangles, obtained using (a)GenMAT (b) GenMAT’

From the control state pair(1a, 1b), the pair(Ja, 2b) can be reached by one of
the two representative interleavingstam1 · tbm1 andtbm1 · tam1 . Such a transaction
pair (tam1 , tbm1) is atomic pair-wiseas one avoids interleaving themin-between, and
hence, referred asMutually Atomic Transaction, MAT for short [26]. Note that in a
MAT only the last transitions pair is dependent. Other MATsm2 · · ·m7 are similar. A
MAT is formally defined as:

Definition 2 (Mutual Atomic Transactions (MAT), Ganai 09). We say two transac-
tionstri andtrj of threadsMi andMj , respectively, are mutually atomic iff except for
the last pair, all other transitions pairs in the corresponding transactions are indepen-
dent. Formally, a Mutually Atomic Transactions (MAT) is a pair of transactions, i.e.,
(tri, trj), i 6= j iff ∀k 1 ≤ k ≤ |tri|, ∀h 1 ≤ h ≤ |trj |, (tri[k], trj [h]) 6∈ D (k 6=
|tri| and h 6= |trj |), andtri[|tri|], trj [|trj |]) ∈ D.

The basic idea of MAT-based partial order reduction [26] is to restrict context
switching only between the two transactions of a MAT. A context switch can only occur
from the ending of a transaction to the beginning of the othertransaction in the same
MAT. Such a restriction reduces the set of necessary thread interleavings to explore.
For a given MATα = (fi · · · li, fj · · · lj), we define a setTP (α) of possible context
switches as ordered pairs, i.e.,TP (α) = {(end(li), begin(fj)), (end(lj), begin(fi))}.
Note that there are exactly two context switches for any given MAT.

Let TP denote a set of possible context switches. For a given CTP, wesayTP is
adequateiff for each feasible thread schedule of the CTP there is an equivalent sched-
ule that can be obtained by choosing context switching only between the pairs inTP .
Given a setMAT of MATs, we defineTP (MAT ) =

⋃
α∈MAT TP (α). A setMAT

is calledadequateiff TP (MAT ) is adequate. For a given CCFG, one can use an algo-
rithm GenMAT [26] to obtain an adequate set ofMAT that allows only representative
thread schedules, as claimed in the following theorem.



Theorem 1 (Ganai, 2009).GenMAT generates a set of MATs that captures all (i.e.,
adequate) and only (i.e., optimal) representative thread schedules. Further, its running
cost isO(n2 · k2), wheren is number of threads, andk is the maximum number of
shared accesses in a thread.
The GenMAT algorithm on the running example proceeds as follows. It starts with
the pair (1a, 1b), and identifies two MAT candidates:(1a · · ·Ja, 1b · 2b) and (1a ·
2a, 1b · · ·6b). By giving Mb higher priority overMa, it selects the former MAT (i.e.,
m1) uniquely. Note that the choice ofMb over Ma is arbitrary but is fixed through
the MAT computation, which is required for the optimality result. After selecting MAT
m1, it inserts in a queueQ, three control state pairs(1a, 2b), (Ja, 2b), (Ja, 1b) cor-
responding to thebegin and theend pairs of the transactions inm1. These corre-
spond to the three corners of the rectanglem1. In the next step, it pops out the pair
(1a, 2b) ∈ Q, selects MATm2 using the same priority rule, and inserts three more pairs
(1a, 3b), (5a, 2b), (5a, 3b) in Q. Note that if there is no transition from a control state
such asJa, no MAT is generated from(Ja, 2b). The algorithm terminates when all the
pairs in the queue (denoted as• in Figure 3(a)) are processed. Note that the order of
pair insertion can be arbitrary, but the same pair is never inserted more than once.

For the running example, a setMAT ab = {m1, · · ·m7} of seven MATs is gen-
erated. Each MAT is shown as a rectangle in Figure 3(a). The total number of context
switches allowed by the set, i.e.,TP (MAT ab) is 12. The highlighted interleaving
(shown in Figure 1(b)) is equivalent to the representative interleavingtbm1 · tam1 · tbm3

(Figure 3(a)). One can verify (the optimality) that this is the only representative sched-
ule (of this equivalence class) permissible by the setTP (MAT ab).

Reduction of MAT We say a MAT isfeasibleif the corresponding transitions do not
disable each other; otherwise it isinfeasible. For example, as shown in Figure 3(a),
MAT m2 = (tam2 , tbm2) is infeasible, as the interleavingtbm2 · tam2 is infeasible due
to locking semantics, although the other interleavingtam2 · tbm2 is feasible.

The GenMAT algorithm does not generate infeasible MATs when both the inter-
leavings are infeasible. Such case arises when control state pairs such as(2a, 3b) are
simultaneously unreachable. However, it generates an infeasible MAT if such pairs
are simultaneously reachable with only one interleaving ofthe MAT (while the other
one is infeasible). For example, it generates MATm2 as (5a, 3b) is reachable with
only interleavingLock(L)a · · ·Unlock(L)a ·Lock(L)b while the other oneLock(L)b ·
Lock(L)a · · ·Unlock(L)a is infeasible. Such infeasible MAT may result in generation
of other MATs, such asm5 which may be redundant, andm4 which may be infeasible.
Although the interleaving space captured byMAT ab is still adequate and optimal, the
set apparently may not be “minimal” as some interleavings may be infeasible.

To address the minimality, we modifyGenMAT such that only feasible MATs are
chosen as MAT candidates. We refer to the modified algorithm asGenMAT’. We use ad-
ditional static information such as lockset analysis [1] toobtain a reduced setMAT ′

ab

and later show (Theorem 2) that such reduction do not excludeany feasible interleav-
ing. The basic modification is as follows: stating from the pair (begin(fi), begin(fj)),
if a MAT (fi · · · li, fj · · · lj) is infeasible, then we select a MAT(fi · · · l′i, fj · · · l

′
j) that

is a feasible, whereend(li) ≺po end(l′i) or end(lj) ≺po end(l′j) or both.
With this modified step,GenMAT’ produces a setMAT ′

ab = {m1, m
′
2, m3, m6, m7}

of five MATs, as shown in Figure 3b. Note that infeasible MATsm2 andm4 are replaced
with MAT m′

2. MAT m5 is not generated asm2 is no longer a MAT, and therefore, con-
trol state pair(5a, 3b) is no longer inQ.



The basic intuition as to whym5 is redundant is as follows: Form5, we have
TP (m5) = {(Ja, 2b), (5a, Jb)}. The context switching pair(Ja, 2b) is infeasible, as
the interleaving allowed bym5, i.e.,R(Y )b ·Lock(L)b ·Lock(L)a ·W (Y )a ·R(X)a · · ·
is an infeasible interleaving. The other context switchingpair (5a, Jb) is included
in eitherTP (m3) or TP (m7), wherem3, m7 are feasible MATs (Figure 3(b)). The
proof thatTP (MAT ′

ab) allows the same set of feasible interleavings as allowed by
TP (MAT ab), is given in Section 4.

Independent TransactionsGiven a set of MATs, we obtain a set of independent trans-
actions of a threadMi, denoted asATi, by splitting the pair-wise atomic transactions
of the threadMi as needed into multiple transactions such that a context switching (un-
der MAT-based reduction) can occur either to the beginning or from the end of such
transactions.

For the running example, the sets of independent transactions corresponding to
MAT ′

ab areATa = {1a · · · 5a, 5a · Ja} andATb = {1b · 2b, 2b · · ·6b, 6b · Jb}. These
are shown in Figure 2(a) as shaded rectangles, and are shown as outlines of the lattice
in Figure 3(b). The size of set of independent transaction determines the size of TSGs.

If we usedMAT ab, we would have obtainedATa = {1a·2a, 2a · · ·5a, 5a·Ja} and
ATb = {1b · 2b, 2b · 3b, 3b · · ·6b, 6b · Jb}, as shown outlining the lattice in Figure 3(a).
A TSG constructed usingMAT ab (not shown) would have 8 nodes and 17 edges (= 7
transaction edges + 10 context-switch edges). Note, out of the 12 context-switches, one
can remove(3b, 1a) and(2a, 3b) as they are simultaneously unreachable.

4 Our Approach: TSG-based Interval Analysis
We now present our approach formally. We first discuss MAT reduction step. Then we
describe the construction of TSGs in Section 4.1, followed by interval analysis on TSG
in Section 4.2. For comparison, we introduce a notion of interval metric in Section 4.3.

Given a CTP with threadsM1 · · ·Mn, and a dependency relationD, we useGenMAT [26]
to generateMAT ij for each pair of threadsMi andMj , i 6= j, and obtainMAT =⋃
i6=j MAT ij . Note thatD may not include the conflicting pairs that are unreachable.

We now define the feasibility of MAT to improve the MAT analysis.

Definition 3 (Feasible MAT). A MATm = (tri, trj) is feasible such that both repre-
sentative (non-equivalent) interleavings, i.e.,tri·trj andtrj ·tri, are feasible; otherwise
it is infeasible. In other words, in a feasible MAT, the corresponding transitions do not
disable each other.

We modifyGenMAT such that only feasible MATs are chosen as MAT candidates. We
denote the modified algorithm asGenMAT’. The modified step is as follows: starting
from the pair(fi, fj), if a pair(li, lj) ∈ D is found that yields an infeasible MAT, then

– we select another pair(l′i, l
′
j) ∈ D such that(li, lj) < (l′i, l

′
j) and(fi · · · l

′
i, fj · · · l

′
j)

is a feasible MAT, and
– there is no pair(l′′i , l

′′
j ) ∈ D such that(li, lj) < (l′′i , l

′′
j ) < (l′i, l

′
j) and(fi · · · l

′′
i , fj · · · l

′′
j )

is a feasible MAT.
where< is the reachable-before relation defined before. Interested readers may refer to
the complete algorithm in Appendix A (also available at [28]).

LetMAT andMAT ′ be the set of MATs obtained usingGenMAT andGenMAT’,
respectively. We state the following MAT reduction theorem:

Theorem 2 (MAT reduction).MAT ′ is adequate, andTP (MAT ′) ⊆ TP (MAT ).

The proof is provided in Appendix B (also available at [28]).



4.1 Transaction Sequence Graph
To build a TSG, we first identify independent transactions ofeach thread, i.e., those
transactions that are atomic with respect to all schedules allowed by the set of MATs,
as discussed in the following. Here we useMAT to denote the set of MATs obtained.

Identifying Independent Transactions Given a setMAT =
⋃
i6=j ∈{1,··· ,n} MAT ij ,

we identify independent transactions, denoted asATi as follows:

– We first define a set of transactionsMAT i of threadMi:

MAT i = {tri|m = (tri, trj) ∈ MAT ij i 6= j ∈ {1, · · · , n}}

In other words,MAT i comprises all transactions of threadMi that are pairwise
atomic with some other transactions.

– Given two transactionstr, tr′ ∈ MAT i, we saybegin(tr) ≺po begin(tr′) if
tr[1] ≺po tr′[1]. Using the setMAT i, we obtain a partial order set of control
statesSi, referred astransaction boundaryset, that is defined over≺po as follows:

Si ≡ {begin(tri,1), begin(tri,2), · · · , begin(tri,m), end(tri,m)}

wheretri,k ∈ MAT i, andtri,m denote the last transaction of the threadMi. Note
that due to conditional branching the order may not be total.

– Using the setSi, we obtain a set of transactionsATi of threadMi as follows:

ATi = {t · · · t′ | c
t···t′

−→ c′ wherec ≺po c′ and c, c′ ∈ Si andt, · · · , t′ ∈ Ti and
there is noc′′ ∈ Si such thatc ≺po c′′ ≺po c′}

Recall thatTi is the set of transitions inMi.

Proposition 1. Each transactiontr ∈ ATi for i ∈ {1, · · · , n} is an independent trans-
action and is maximal, i.e., can not be made larger without itbeing an independent
transaction. Further, for each transitiont ∈ Ti, there existstr ∈ ATi such thatt ∈ tr.

Constructing TSG Given a set of context-switching pairsTP (MAT ), a set of inde-
pendent transactions

⋃
iATi, and a set of transaction boundaries

⋃
i Si, we construct a

transaction sequence graph, a digraphG(V, E) as follows:

– V = ∪iVi is the set of nodes, whereVi denotes a set of thread local control states
corresponding to the setSi,

– E = TE
⋃

CE is the set of edges, where
• TE is the set oftransaction edgescorresponding to the independent transac-

tions i.e.,TE = {(begin(tr), end(tr)) | tr ∈
⋃
iATi}

• CE is the set ofcontext switch edgescorrespondingTP (MAT ) i.e.,CE =
{(ci, cj) | (ci, cj) ∈ TP (MAT )}

A TSG G(V, E = (CE ∪ TE)), as constructed, has|V | = O(Σi|ATi|), |TE| =
(Σi|ATi|), and|CE| = (Σi6=j |ATi| · |ATj |), wherei, j ∈ {1, · · · , n}, andn is number
of threads. In the worst case, however,|V | = O(n · k), |TE| = O(n · k), and|CE| =
O(n2 · k2) wherek is the maximum number of shared accesses in any thread.

Proposition 2. TSG as constructed captures all and only the representativeinterleav-
ing (of a given CTP), each corresponding to a total ordered sequence of independent
transactions where the order is defined by the directed edgesof TSG.



4.2 Range Propagation on TSG

Range propagation uses data and control structure of a program to derive range informa-
tion. In this work, we consider intervals for simplicity, although other abstract domains
are equally applicable. For each program variablev, we define an interval〈lcv, u

c
v〉,

wherelcv, l
c
v are integer-valued lower and upper bounds forv at a control locationc.

One can define, for example, the lower bound(L)/upper bound (U ) of an expression
exp = exp1 + exp2 at a control locationc asL(exp, c) = L(exp1, c)+L(exp2, c) and
U(exp, c) = U(exp1, c) + U(exp2, c), respectively (more details in [29]).

We say an interval〈lcv, u
c
v〉 is adequateif value of v at locationc, denoted as

val(v, c) is bounded in all program executions, i.e.,lcv ≤ val(v, c) ≤ ucv. As there are
potentially many feasible paths, range propagation is typically carried out iteratively
along bounded paths, where the adequacy is achieved conservatively. However, such
bounded path analysis can still be useful in eliminating paths that do not satisfy sequen-
tial consistency requirements. As shown in Figure 2(c), a sequence5a · 2b · 6b · 1a does
not follow program order, and therefore, paths with such a sequence can be eliminated.

At an iteration stepi of range propagation, letrc,p[i] denote the range information
(i.e., a set of intervals) at nodec along a feasible pathp, and is defined as:

rc,p[i] = {〈lc,pv [i], uc,pv [i]〉| interval forv computed at nodec along pathp at stepi}

One can mergerc,p[i] andrc,p
′

[i] conservatively as follows:

rc,p[i]⊔ rc,p
′

[i] = {〈lc,pv [i], uc,pv [i]〉 ⊔ 〈lc,p
′

v [i], uc,p
′

v [i]〉| interval forv computed at node
c along pathsp, p′ at stepi}

where the interval merge operator(⊔) is defined as:〈l, u〉⊔〈l′, u′〉 = 〈min(l, l′), max(u, u′)〉.
Let rc[i] denote the range information at nodec at stepi, i.e.,

rc[i] = {〈lcv[i], u
c
v[i]〉 | interval forv computed at nodec at iteration stepi}.

Let FP denote a set of feasible paths starting from nodesD[i] of lengthB ≥ 1, where
B is a lookaheadparameter that controls the trade off between precision andupdate
cost. Givenrc,p[i] with p ∈ FP , we obtain the range information at stepi asrc[i] =

⊔p∈FP rc,p[i] and cumulative range information at stepi asRc[i] = ⊔j=ij=0r
c[j].

We present a self-explanatory flow of our forward range propagation procedure,
referred asRPT, for a given TSGG = (V, E) in Figure 4(a). As observed in Section 3.1,
in any representative feasible path, a transaction edge is associated with at most one
context switch edge. Thus, the length of such a path is at most2·|TE|. At every iteration
of range propagation, we compute the range along a sequence of |B| transaction edges
interleaved with at most|B| context switch edges. Such a range propagation requires
⌈|TE|/B⌉ iterations. The cost of range propagation at each iterationis O(|V | · |TE|B).
After RPT terminates, we obtain the final cumulative range information Rc[i] at each
nodec, denoted asRc.

Proposition 3. Given a TSGG = (V, E = (TE ∪ CE)) that captures all feasible
paths of a CTP, the procedureRPT generates adequate range informationRc for each
nodec ∈ V , and the cost of propagation isO(|V | · |TE|B+1).

We show a run ofRPT in Figure 4(b) on the TSG shown in Figure 2(b). At each
iteration stepi, we show the range computedrc[i] (for each global variable) at the con-
trol states1a, 5a, Ja, 1b, 2b, 6b, Jb. Since there are 5TE edges in the TSG, we require



5 iterations withB = 1. The cells with〈−,−〉 correspond to no range propagation to
those nodes. The cells inbold at stepi correspond to nodes inD[i]. The final intervals
at each nodec, i.e., Rc, is equal to the data-union of the range values atc computed
at each iterationi = 1 · · · 5. We show the corresponding cumulative intervals obtained
for the CCFG after11 iterations (as it has11 TE edges). Note that using TSG,RPT
not only obtains more refined intervals, but also requires fewer iterations. Also observe
that the assertionY ≤ 5 (line 7, Figure 1(a)) holds atJb with the final intervals forY
obtained using TSG, while it does not hold atJb when obtained using CCFG.

Input: G(V,E=(TE ∪ CE))
D[0] = set of source nodes
rc[0] = set of initial range information at

each source node c
i = 0 // initialize iteration step.
B = look ahead parameter, B ≥ 1

Enumerate paths P with k transaction
edges where k=min(B, (|TE|) mod B)

starting from nodes c ∈ D[i]

FP={p∈P | p≡c0…cm satisfies 
sequential consistency}

Merge range information obtained
along different paths: rc[i] = ��p rc,p[i], and 

Cumulate: Rc[i] = ��0≤j≤i rc[j]

|TE| ≤ i∗B
?

Output:
Ranges
∀c Rc

i++

Y

N

Fwd range propagation and 
obtain rc,p[i] along each path p ∈ FP

where c is a node in the path. 

Obtain nodes for next iteration,
D[i+1] = {cm | p∈FP, p≡c0…cm}

Rangesrc[i] at each stepi=0..5 on TSG with B=1
i V 1a 5a Ja 1b 2b 6b Jb

X 〈0,2〉 〈−,−〉 〈−,−〉 〈0,2〉 〈−,−〉 〈−,−〉 〈−,−〉
0 Y 〈0,2〉 〈−,−〉 〈−,−〉 〈0,2〉 〈−,−〉 〈−,−〉 〈−,−〉

Z 〈0,2〉 〈−,−〉 〈−,−〉 〈0,2〉 〈−,−〉 〈−,−〉 〈−,−〉
X 〈0, 2〉 〈1,3〉 〈−,−〉 〈0, 2〉 〈0,2〉 〈−,−〉 〈−,−〉

1 Y 〈0, 2〉 〈0,2〉 〈−,−〉 〈0, 2〉 〈0,2〉 〈−,−〉 〈−,−〉
Z 〈0, 2〉 〈0,2〉 〈−,−〉 〈0, 2〉 〈0,2〉 〈−,−〉 〈−,−〉
X 〈0, 2〉 〈1,3〉 〈1,3〉 〈0, 2〉 〈0, 3〉 〈0, 3〉 〈−,−〉

2 Y 〈0, 2〉 〈0,2〉 〈0,2〉 〈0, 2〉 〈0, 2〉 〈0, 2〉 〈−,−〉
Z 〈0, 2〉 〈0,2〉 〈0,2〉 〈0, 2〉 〈0, 2〉 〈−1, 2〉 〈−,−〉
X 〈0, 3〉 〈0,3〉 〈1,3〉 〈0, 3〉 〈0,3〉 〈0, 3〉 〈0,2〉

3 Y 〈0, 2〉 〈0,2〉 〈0,2〉 〈0, 2〉 〈0,2〉 〈0, 2〉 〈0,5〉
Z 〈−1, 2〉 〈−1,2〉 〈0,2〉 〈0, 2〉 〈0,2〉 〈−1, 2〉 〈−1,2〉
X 〈0, 3〉 〈0,3〉 〈0,3〉 〈0, 3〉 〈0,3〉 〈0, 3〉 〈0,3〉

4 Y 〈0, 5〉 〈0,5〉 〈−1,2〉 〈0, 2〉 〈0,2〉 〈0, 2〉 〈0,5〉
Z 〈−1, 2〉 〈−1,2〉 〈−1,2〉 〈0, 2〉 〈−1,2〉 〈−1, 2〉 〈−1,2〉
X 〈0, 3〉 〈0,3〉 〈0,3〉 〈0, 3〉 〈0,3〉 〈0, 3〉 〈0,3〉

5 Y 〈0, 5〉 〈0,5〉 〈−1,2〉 〈−1, 2〉 〈−1,5〉 〈−1, 5〉 〈0,5〉
Z 〈−1, 2〉 〈−1,2〉 〈−1,2〉 〈−1, 2〉 〈−1,2〉 〈−1, 2〉 〈−1,2〉
X 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉

Rc Y 〈0, 5〉 〈0, 5〉 〈−1, 2〉 〈−1, 2〉 〈−1, 5〉 〈−1, 5〉 〈0, 5〉
Z 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉

Final ranges on CCFG (Figure 1(c)) with B=1 ati=11
X 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉 〈0, 3〉

Rc Y 〈−1, 7〉 〈−1, 7〉 〈−1, 2〉 〈−1, 7〉 〈−1, 7〉 〈−1, 7〉 〈0, 7〉
Z 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉 〈−1, 2〉

Notes: Cells with ranges inbold correspond to nodes inD[i].
〈−,−〉 corresponds to unreachable node at depthi

(a) (b)

Fig. 4. (a)RPT: Range Propagation on TSG (b) A run ofRPT on TSG (Figure 2) and CCFG

4.3 Interval Metric
Given the final intervals〈lcv, u

c
v〉 ∈ Rc, we use the total number of bits needed (the

fewer the better) to encode each interval, as a metric to compare effectiveness of interval
analysis on CCFG and TSGs. We refer to that asinterval metric. It has two components:
local (denoted asRBl) and global (denoted asRBg) corresponding to the total range
bits of local and global variables, respectively.

The local componentRBl is computed as follows:

RBl = Σ
t∈

⋃
i
Ti

Σv∈assgnl(t) log2(u
end(t)
v − l

end(t)
v )

whereassgnl(t) denotes a set of local variables assigned (or updated) in transitiont.
For computing the global componentRBg, we need to account for context switch-

ing that can occur between global updates. Hence, we add a synchronization compo-
nent, denoted asRBsync

g , in the following:

RBg = Σ
t∈

⋃
i
Ti

Σv∈assgng(t) log2(u
end(t)
v − l

end(t)
v ) + RBsync

g

whereassgng(t) denotes a set of global variables assigned in transitiont, andRBsync
g

is the synchronization component corresponding to a globalstate before an independent
transaction begins, and is computed as follows:



RBsync
g = Σ

tr∈
⋃

i
ATi

Σv∈V log2(u
begin(tr)
v − l

begin(tr)
v )

wherev ∈ V is a global variable, andtr is an independent transaction.
For the running example, the interval metrics obtained are as follows: CCFG:RBl =

8, RBg = 95; TSG usingMAT ab: RBl = 6, RBg = 57; TSG usingMAT ′
ab:

RBl = 6, RBg = 43.

5 Experiments
In our experiments, we use several multi-threaded benchmarks of varied complexity
with respect to the number of shared variable accesses. There are 4 sets of bench-
marks that are grouped as follows: simple to complex concurrent programs [26] (cp),
our Linux/Pthreads/C implementation [12] of atomicity violations reported in apache
server [30] (atom), bank benchmarks [31] (bank), and indexer benchmarks [9] (index).
Each set has concurrent trace programs (CTP) generated [25]from the runs of the cor-
responding concurrent programs. These benchmarks are publicly available at [32]. We
used constant propagation algorithm [16] to preprocess these benchmarks in order to
expose the benefits of our approach.

Our experiments were conducted on a linux workstation with a3.4GHz CPU and
2GB of RAM, and a time limit of20 minutes. From these benchmarks, we first ob-
tainedCCFG. Then we obtainedTSG andTSG’ after conducting MAT analysis on the
CCFGs, usingGenMAT andGenMAT’, respectively, as described in Section 4.1. For
all three graphs, we removed context switch edges between node pairs that are found
unreachable using lockset analysis [1].

Comparison ofRPT onCCFG, TSG, andTSG’ are shown in Table 1 using looka-
head parameterB = 1. The characteristics of the corresponding CTPs are shown in
Columns 2-6, the results ofRPT on CCFG, TSG andTSG’ are shown in Columns 7-
11, and Columns 12-17, and Columns 18-23, respectively. Columns 2-6 describe the
following: the number of threads (n), the number of local variables (#L), the number
of global variables (#G), the number of global accesses (#A), and the number of total
transitions (#T), respectively. Columns 7-11 describe thefollowing: the number of con-
text switch edges (#CE), the number of transaction edges (#TE) (same as the number of
iterations ofRPT), the time taken (t, in sec), the number of local bitsRBl, and number
of global bitsRBg, respectively. Columns 12-17 and 18-23 describe similarlyfor TSG
andTSG’ including the number of MATs obtained (#M). In case ofCCFG, we obtained
a transaction by combining sequence of transitions such that only the last transition has
exactly one global access. The time reported includes MAT analysis (if performed) and
run time ofRPT.

As we notice,RPT on TSG andTSG’ (exceptindex4) completes in less than
a minute, and is an order of magnitude faster compared to thaton CCFG. Also, the
interval metric (RBl, RBg) for TSG andTSG’ are significantly lower compared to
CCFG. Further, betweenTSG’ andTSG, the former generates tighter intervals.

Using the adequate intervals obtained, we also checked for unreachability of control
states. We found that using bothTSG andTSG’, we were able to show a few control
states (shown in brackets) unreachable in the following examples:bank2 (1),bank3
(1),index1 (64), andindex2 (32). However, we could not show a single unreachable
control state usingCCFG in these benchmarks.

Next we evaluate the reduction in the efforts of a heavy-weight trace-based symbolic
analysis toolCONTESSA [13] usingRPT results. For each benchmark, we selected a
reachability property corresponding to a reachability of athread control state. Using



Table 1.Comparison ofRPT on CCFG, TSG and TSG’.

Ex Characteristics CCFG TSG TSG’
n #L #G #A #T #C #TE t (s) RBl RBg #M #C #TE t (s) RBl RBg #M #C #TE t (s) RBl RBg

cp1 3 4 3 41 28 90 24 < 1 6 131 18 22 13 < 1 6 82 9 14 9 < 1 6 50
cp2 3 4 3 185 108 1562 88 < 1 22 531 330 342 45 < 1 22 354 121 222 25 < 1 22 178
cp3 3 4 3 905 508 35802 408 13 102 2531 7650 7702 205 2 102 1714 2601 5102 105 1 102 818

atom1 3 1 2 27 25 44 16 < 1 29 493 11 14 11 < 1 29 300 6 9 8 < 1 29 200
atom2 3 2 3 37 31 68 20 < 1 30 647 14 19 13 < 1 30 389 8 12 9 < 1 30 245
atom3 3 2 11 412 243 4748 153 < 1 61 10.5K 1321 1350 91 < 1 61 6945 478 865 48 < 1 61 3605
atom4 3 3 13 435 251 5336 160 1 32 12.4K 1344 1342 95 < 1 32 7933 508 899 50 < 1 32 4115
bank1 9 59 16 383 286 12.6K 180 10 855 22.8K 178 278 75 < 1 808 10.6K 178 278 75 < 1 808 10.6K
bank2 9 67 25 540 369 25.1K 231 63 818 35.9K 440 559 155 1 771 25.1K 277 409 115 < 1 771 19K
bank3 9 67 26 599 386 24.8K 240 38 834 38.3K 384 454 147 < 1 786 24.7K 212 320 99 1 786 16.6K
index1 9 11 24 229 168 7224 98 2 52 7653 6 12 12 < 1 32 452 6 12 12 < 1 32 452
index2 19 21 54 514 363 40.1K 213 51 154 43.5K 351 513 106 1 132 11.6K 225 366 64 1 132 6613
index3 31 33 184 21251490 627K 821 TO NA NA 2573 3386 496 40 883 399K 1399 2024 265 22 883 121K
index4 33 35 246 39142793 1.98M 1490 TO NA NA 29.6K 31.4K 922 822 1814 1M 10.8K 11.9K 479 275 1814 307K
Notes: n: num. of threads, #L: num. of local vars, #G: num. of global vars, #A: num. of global accesses, #T: num. of transitions,

#CE: num. of context switch edges, #TE: num. of transaction edges (=num. of iterations), t(s): time in sec (TO: t> 1200s),
#M: num. of MATs,RBl: num. of local bits,RBg : num. of global bits,B = 1 for the experiments

the tool, we then generated Satisfiability Modulo Theory (SMT) formula such that the
formula is satisfiable if and only if the control state is reachable. We then compared the
solving time of two such SMT formula, one encoded using the bit-widths of variables
as obtained usingRPT (denoted asφR), and other encoded using integer bit-width of
32 (denoted asφ32). We used SMT solver Yices-1.0.28 [33]. For each benchmark, we
present the time taken by the SMT solver to solve the propertyin Table 2 for a time
limit of 1500s.

Column 1 lists the benchmarks. Column 2 show whether the property is satisfiable
(S) or unsatiable (U). Columns 3–4, 5–6, 7–8 present the timetaken by the solver onφ32

andφR onCCFG, TSG, andTSG’, respectively. We observe that the intervals obtained
usingRPT reduces the efforts of the symbolic analysis by 1-2 orders ofmagnitude.

Table 2.Time Taken (in sec) by Symbolic Analysis [13] on CCFG, TSG andTSG’.

Ex S/ CCFG TSG TSG’
U? φ32 φR φ32 φR φ32 φR

cp1 S < 1 < 1 < 1 < 1 < 1 < 1
cp2 S 4 < 1 3 < 1 1 < 1
cp3 S TO 432 366 10 34 5

atom1 S < 1 < 1 < 1 < 1 < 1 < 1
atom2 S < 1 < 1 < 1 < 1 < 1 < 1
atom3 S 6 3 15 6 3 1
atom4 S 35 44 15 4 4 2
bank1 U 6 6 1 < 1 1 < 1
bank2 U 16 15 2 1 2 1
bank3 U 16 15 2 1 2 1
index1 U 4 4 1 < 1 1 < 1
index2 U 40 41 2 1 2 1
index3 U TO TO 30 23 24 15
index4 U TO TO TO TO TO 252
Notes: S/U: Satisfiable/Unsatisfiable instance

φ32: using 32-bit for each variable
φR: using bit-width obtained usingRPT
TO: Time out (time taken> 1500s)



6 Conclusion, Related and Future Work
We presented an interval analysis for CTPs using the new notion of TSGs, which is
often more precise and space/time efficient than using the standard CCFGs. We use a
MAT analysis to obtain independent transactions and to minimize the size of the TSGs.
We also propose a non-trivial improvement to the MAT analysis to further simplify
the TSGs. Our work is related to the prior work on static analysis for concurrent pro-
grams such as [15-19], although such analysis were directlyapplied to the CCFG of
a whole program. Our notion of TSG is also different from the transaction graph (TG)
[20] and the task interaction concurrency graph (TICG) [14]that have been used in con-
current data flow analysis. Such graphs, i.e, TG and TICG, represent a product graph
where nodes correspond to the global control states and edges correspond to thread
transitions—such graphs are often significantly bigger in size than TSGs.

Although we have applied our TSG approach only to CTPs, we plan to generalize
it for concurrent programs with loops. Such generalizationwould involve extending the
MAT analysis to handle loops (e.g. by considering the loop back-edges during MAT
generation) and introducing abstract domains to handle theinterleaving of interacting
loops (e.g. by considering independent transactions in a loop). We leave that as a future
work.
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***The appendix should not be considered as a part of the
submission.***

A Appendix: MAT Generation Algorithm

We present the algorithmGenMAT’ (Algorithm 1), where we useOLD/NEW pred-
icate to show the difference between previous [26] and our proposed improvements,
respectively.

Given a CTP with threadsM1 · · ·Mn, and a dependency relationD, we useGenMAT’
to generateMAT ij for each pair of threadsMi andMj , i 6= j, and obtainMAT =⋃
i6=j MAT ij . Note thatD may not include the conflicting pairs that are unreachable.

For the ease of explanation, we assume there is no conditional branching in each
thread. (For threads with conditional branching, please refer [28].) We also assume that
each shared variable has at least one conflicting accesses ineach pair of threads. (Such
an assumption can be easily met by adding a dummy shared writeaccess at the end of
each thread without affecting the cost of MAT analysis. Notethat such an assumption is
needed for the adequacy and optimality for validity of Theorem 1 for a multi-threaded
system).

With abuse of notation, we use transitiont to also indicatebegin(t), the control state
of the thread where the transitiont begins. Further, we use+t to denote the transition
immediately aftert in program order, i.e.,begin(+t) = end(t).

We discuss the inner loop (lines 15–18) to generateMAT ij for a thread pairMi

andMj, i 6= j. Let (⊢i,⊢j) and(⊣i,⊣j) denote the start and end control pair locations,
respectively, of the threadsMi andMj. We first initialize a queueQ with control state
pair (⊢i,⊢j) representing the beginning of the threads, respectively. For a previously
unchosen pair(fi, fj) in the Q, we can obtain a MATm = (tri = fi · · · li, trj =
fj · · · lj). There can be other MAT-candidatesm′ = (tr′i = fi · · · l

′
i, tr

′
j = fj · · · l

′
j)

such thatl′i ≺po li or l′j ≺po lj but not both, as that would invalidatem as a candidate.
LetMc denote a set of such choices as obtained using the methodOLD [26]. Using our
proposed methodNEW, we will restrict our choices to feasible MAT candidates only.

The algorithm selectsm ∈ Mc uniquely by assigning thread priorities and using the
following selection rule. If a threadMj is given higher priority overMi, the algorithm
prefersm = (tri = fi · · · li, trj = fj · · · lj) overm′ = (tr′i = fi · · · l

′
i, tr

′
j = fi · · · l

′
j)

if lj ≺po l′j , i.e., |trj | < |tr′j |. The choice ofMj overMi is arbitrary but fixed through
the MAT computation, which is required for the optimality result. We presented MAT
selection (lines 10–11) in a declarative style for better understanding. However, algo-
rithm finds the unique MAT using the selection rule, without constructing the setMc.

We addm to the setMAT ij . If (+li 6=⊣i) and(+lj 6=⊣j), we updateQ with three
pairs, i.e.,(+li, +lj), (+li, fj), (fi, +li); otherwise, we insert selectively as shown in
the algorithm (lines 14—16). The algorithm terminates whenall the pairs in the queue
are processed. Note that the order of pair insertion can be arbitrary, but the same pair is
never inserted more than once.

A run ofGenMAT: We present a run ofGenMAT (OLD ) in Figure 5(a) for the running
example. We gaveM2 higher priority overM1. The table columns provide each itera-
tion step (#I), the pairp ∈ Q\Q′ selected, the chosenMAT ab, and the new pairs added
in Q\Q′ (shown in bold). It starts with the pair(1a, 1b), and identifies two MAT candi-
dates:(1a · · ·Ja, 1b · 2b) and(1a · 2a, 1b · · ·6b). Note that the pair(1a · 2a, 1b · · ·3b)



is not a MAT candidate as the pair(2a, 3b) is an unreachable pair. By givingMb higher
priority overMa, it selects a MAT uniquely from the MAT candidates. The choice of
Mb overMa is arbitrary but fixed through the MAT computation, which is required for
the optimality result. After selecting MATm1, it inserts in a queueQ, three control
state pairs(1a, 2b), (Ja, 2b), (Ja, 1b) corresponding to thebeginand theendpairs of
the transactions inm1. These correspond to the three corners of the rectanglem1. In
the next step, it pops out the pair(1a, 2b) ∈ Q, selects MATm2 using the same priority
rule, and inserts three more pairs(1a, 3b), (5a, 2b), (5a, 3b) in Q. Note that if there is
no transition from a control state such asJa, no MAT is generated from(Ja, 2b). Also,
if a pair such as(2a, 2b) is unreachable, no MAT is generated from it. One may not
insert such pair in the first place. The algorithm terminateswhen all the pairs in the
queue (denoted as• in Figure 3(a)) are processed.

Note that the order of pair insertion can be arbitrary, but the same pair is never
inserted more than once. For the running example, a setMAT ab = {m1, · · ·m7} of
seven MATs is generated. Each MAT is shown as a rectangle in Figure 3(a). The total
number of context switches allowed by the set, i.e.,TP (MAT ab) is 12.

A run ofGenMAT’: We present a run ofGenMAT’ (NEW) in Figure 5(b) for the
same running example. The table columns have similar description. In the second itera-
tion, starting from the pair(1a, 2b), the infeasible MAT(1a · · · 5a, 2b · · ·3b) is ignored
as the interleaving2a · · · 3b · 1a · · · 5a is infeasible. As(1a, 3b) is no longer inQ, m4

is not generated (which is infeasible). Similarly, as(5a, 3b) is no longer inQ, m5 is
not generated (which is feasible). There are5 MATs m1, m

′
2, m3, m6, m7 generated,

shown as rectangles in Figure3(b). The total number of context switching allowed by
the set is8.

Algorithm 1 GenMAT’: Obtain a set of MATs
1: input: Thread Models:M1 · · ·Mn; Dependency RelationD
2: output: MAT
3: for all pairs of thread (Mi,Mj) do
4: MAT ij := ∅; Q := {(⊢i,⊢j)}; Q′ := ∅ {Initialize Queue};
5: while Q\Q′ 6= ∅ do
6: Select(fi, fj) ∈ Q\Q′

7: Q := Q\{(fi, fj)}; Q′ := Q′ ∪ {(fi, fj)}
8: if OLD MAT-candidates set,Mc = { m |m is MAT from (fi, fj)} [26]
9: if NEW MAT-candidates set,Mc = {m |m is feasible MAT from(fi, fj)}

10: Select a MATm = (tri = fi · · · li, tri = fj · · · lj) ∈ Mc such that
11: ∀m′ = (tr′i, tr

′

j) ∈ Mc, m
′ 6= m |trj | < |tr′j |, (i.e.,Mj has higher priority).

12: MAT ij := MAT ij ∪ {m}
13: if (+li =⊣i ∧ + lj =⊣j) then continue;
14: elseif(+li =⊣i) then q := {(fi, +lj)};
15: elseif(+lj =⊣j) then q := {(+li, fj)};
16: elseq := {(+li, +lj), (+li, fj), (fi, +lj)};
17: Q := Q ∪ q;
18: end while
19: MAT := MAT ∪MAT ij

20: end for
21: return MAT



#i p∈∈∈∈Q\Q’ ����	 Q\Q’

(1a,1b)

1 (1a,1b) m1:(1a
Ja,1b
2b) (1a,2b)

2 (1a,2b) m2:(1a
5a,2b
3b) (5a,2b)(1a,3b)(5a,3b)

4 (5a,2b) m3:(5a
Ja,2b
Jb)

3 (1a,3b) m4:(1a
2a,3b
6b) (1a,6b)(2a,6b)

5 (5a,3b) m5:(5a
Ja,3b
Jb)

6 (1a,6b) m6:(1a
Ja,6b
Jb)

7 (2a,6b) m7:(2a
Ja,6b
Jb)

#I p∈∈∈∈Q\Q’ ����	 Q\Q’

(1a,1b)

1 (1a,1b) m1:(1a
Ja,1b
2b) (1a,2b)

2 (1a,2b) m2’:(1a
5a,2b
6b) (5a,2b)(1a,6b) 
(5a,6b)

3 (5a,2b) m3:(5a
Ja,2b
Jb)

4 (1a,6b) m6:(1a
Ja,6b
Jb)

5 (5a,6b) m7:(5a
Ja,6b
Jb)

Fig. 5. (a) Run of (a)GenMAT and (b)GenMAT’ on example in Figure 1

B Appendix: MAT Reduction Theorem

Let MAT andMAT ′ be the set of MATs obtained usingGenMAT andGenMAT’,
respectively.

Theorem 1 (MAT reduction) MAT ′ is adequate, andTP (MAT ′) ⊆ TP (MAT ).

Proof. Consider a pair of threadsMa andMb such that the chosen priority ofMa is
higher thanMb. Let (a1, b1) be a pair picked at line 6, and the corresponding MAT
selected byGenMAT bem1 = (ta1, tb1). GenMAT algorithm then inserts pairs(a2, b1),
(a1, b2), and(a2, b2) in the worklistQ, shown as• in Figure 6(a). Assume thattb1

disablesta1, i.e.,tb1 ·ta1 is an infeasible interleaving, and rest are feasible interleaving.
Thus,m1 is an infeasible MAT. Continuing the run ofGenMAT, we have the following
MAT

– m2 = (ta1, tb2 · tb3) from the pair(a1, b2),
– m3 = (ta2, tb1 · tb2) from the pair(a2, b1),
– m4 = (ta2, tb2) from the pair(a2, b2).

Note, sincetb1 disablesta1, there exists sometb2 · tb3 that enablesta1, such that
its last transition have a conflicting access with that ofta1. (If not, one observe that any
interleaving of the formtb1 · · · tbj · ta1 is infeasible. In that case we will not havem2).
Also, sinceMa is prioritized higher, we have the MATm3 with |tb2| ≥ 0. The context
switching allowed by MATsm1 · · ·m4 are

TP ({m1, m2, m3, m4}) =
{(b2, a1), (a2, b1), (a2, b2)(b4, a1)(a3, b1)(b3, a2)(a3, b2)}.

Now we consider the corresponding run ofGenMAT’ from (a1, b1) where only
feasible MATs are generated. Such a run would produce MATs

– m′
1 = (ta1, tb1 · tb2 · tb3) from the pair(a1, b2),

– m3 = (ta2, tb1 · tb2) from the pair(a2, b1).

The context switching allowed by MATsm′
1, m3 are



(a1,b1)

(a1,b2)

(a1,b3)
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(a3,b2)
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Fig. 6.MATs generated using (a) GenMAT and (b) GenMAT’

TP ({m′
1, m3}) = {(a2, b1)(b4, a1), (a3, b1)(b3, a2)}.

In the rest of the proof discussion, we consider the interesting case where|tb2| > 0. (A
similar proof discussion can be easily made for the other case |tb2| = 0.) All the inter-
leavingI1-I11 (including the infeasible ones), as allowed by MATm1, m2, m3, m4, are
shown as follows:

I1 : · · · ta1 · ta2 · · ·
I2 : · · · tb1 · tb2 · tb3 · · ·
I3 : · · · ta1 · ta2 · tb1 · tb2 · · · allowed by{m3}
I4 : · · · ta1 · tb1 · tb2 · ta2 · · · allowed by{m1, m3}
I5 : · · · ta1 · tb1 · tb2 · tb3 · · · allowed by{m1}
I6 : · · · tb1 · tb2 · tb3 · ta1 · · · allowed by{m2}
I7 : · · · tb1 · ta1 · ta2 · · · (infeasible) allowed by{m1}
I8 : · · · tb1 · ta1 · ta2 · tb2 · · · (infeasible) allowed by{m1, m4}
I9 : · · · tb1 · ta1 · ta2 · · · (infeasible) allowed by{m1}
I10 : · · · tb1 · ta1 · tb2 · · · (infeasible) allowed by{m1, m2}
I11 : · · · tb1 · ta1 · tb2 · ta2 · · · (infeasible) allowed by{m1, m2, m4}

One can verify that all but infeasible interleavings, i.e.,I1-I6, are also captured by
m′

2 andm3.
All the pairs that are inserted inQ are shown using• in the Figures 6(a)-(b). After

the MATs{m1, m2, m3, m4} are selected (byGenMAT), the following pairs inQ that
are yet to be processed are

Q\Q′ = {(a3, b1), (a3, b2), (a3, b3), (a2, b3), (a2, b4)(a1, b4)}

Similarly, after the MATs{m′
1, m3} are selected (byGenMAT’), the following pairs in

Q that are yet to be processed are

Q\Q′ = {(a3, b1), (a3, b3), (a2, b3), (a2, b4)(a1, b4)}.

Note that MAT from(a3, b2), as selected inGenMAT, allows exclusively an interleaving
· · · tb1 · ta1 · ta2 · · · ; however such an interleaving is infeasible. For the remaining pairs
we apply our argument inductively to show that from a controlstate pair, one can obtain



a set of MATs from bothGenMAT andGenMAT’ respectively, that allow the same set
of feasible interleaving. These arguments show the adequacy of our claim.

Further,GenMAT’ inserts in the worklist a set of pairs that is a subset of pairs
inserted byGenMAT. The claimTP (MAT ′) ⊆ TP (MAT ) trivially holds as the
worklist set is smaller withGenMAT’ as compared toGenMAT. Thus, the interleav-
ing space captured byMAT ′ is not increased. AsMAT captures only representative
schedules as per Theorem 1, clearly,MAT ′ captures only representative schedules.2.


