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ABSTRACT

Software updates often introduce new bugs to existing code bases.
Prior regression testing tools focus mainly on test case selection
and prioritization whereas symbolic execution tools only handle
code changes in sequential software. In this paper, we propose the
first incremental symbolic execution method for concurrent soft-
ware to generate new tests by exploring only the executions affected
by code changes between two program versions. Specifically, we
develop an inter-thread and inter-procedural change-impact anal-
ysis to check if a statement is affected by the changes and then
leverage the information to choose executions that need to be re-
explored. We also check if execution summaries computed in the
previous program can be used to avoid redundant explorations in
the new program. We have implemented our method in an incre-
mental symbolic execution tool called Conc-iSE and evaluated it
on a large set of multithreaded C programs. Our experiments show
that the new method can significantly reduce the overall symbolic
execution time when compared with state-of-the-art symbolic exe-
cution tools such as KLEE.

CCS Concepts

eSoftware and its engineering — Software verification and vali-
dation; Software testing and debugging; Software evolution;

Keywords

Symbolic execution, Concurrency, Partial order reduction, Weakest
precondition

INTRODUCTION

As software evolves, updates made from the addition of new fea-
tures or patches may introduce new bugs. While some regression
testing tools can leverage code changes between two software ver-
sions to reduce the testing cost, they focus primarily on selection
and test case prioritization as opposed to the creation of new test
cases. In contrast, symbolic execution is a technique for automat-
ically generating new tests, and, more recently [30, 32, 46], has
been used in regression testing to reduce the overall cost for se-
quential software testing. Specifically, prior work uses a conserva-
tive static analysis to estimate the impact of the code changes and
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Figure 1: Summary-based incremental symbolic execution.

then leverage the information to avoid re-executing program paths
that are not affected by these code changes. However, these meth-
ods only handle code changes in sequential software. Furthermore,
they rely on an overly conservative analysis to estimate the change
impact, without making use of the more accurate information avail-
able from previous symbolic execution runs.

In this paper, we propose Conc-iSE: an incremental symbolic
execution method for concurrent programs. Figure 1 shows the
overall flow of our new method. We take old (P) and new (P’)
program versions, together with a set of execution summaries of
P, as input and iteratively explore new execution paths through P’.
As we will show, we use supplementary information from P (the
execution summaries) as well as code changes between P and P’
to perform the incremental analysis.

The standard and non-incremental symbolic execution procedure
is shown in the lower half of Figure 1, which starts from an ar-
bitrary initial test (in, sch) of P’ and repeatedly generates new
tests for P’. Here, in denotes the data input and sch denotes the
thread interleaving schedule. We assume P’ is a deterministic pro-
gram whose execution is completely decided by the pair (in, sch).
During symbolic execution, new states are generated to explore al-
ternate branches and alternate thread interleaving schedules. For
each new state, the symbolic execution engine generates a new pair
(in’, sch’) containing the data input and thread schedule to reach
the new state. In the non-incremental approach, no information
about previously explored executions in P and code changes made
to P’ are used to determine if a state is redundant: program execu-
tions equivalent to behavior in P are re-explored in P’.

Incremental symbolic execution, in contrast, considers two pro-
gram versions P and P’ while assuming P is a prior version that
has already been explored symbolically. The goal is to explore
only the new behavior in P’. Prior works on incremental sym-
bolic execution for sequential programs [30, 32, 46] used a forward
change-impact analysis, built on the idea of program slicing [43],
to determine if a statement in P’ was affected by a modification;
only affected portions of the code in P’ were explored again during



symbolic execution. Our first insight is that performing a change-
impact analysis using a conservative static analysis alone often re-
sults in the testing of redundant executions. This is because a con-
servative static analysis, such as program slicing, ignores the actual
values of variables in the program. As we will show in Section 2,
even if a statement is modified (from P to P’), it may be that paths
affected by this modification are equivalent to some paths in the pre-
vious version. To define a more accurate equivalence class of execu-
tion paths, we make use of the execution summaries from P while
testing P’, as opposed to performing only a conservative change-
impact analysis. At a high level, the execution summaries, defined
at each global control state, capture the set of all explored execu-
tions starting from s. The summaries are computed backwardly
using a weakest-precondition computation.

We also propose an inter-thread and inter-procedural change im-
pact analysis for handling both sequential and concurrent programs.
It consists of a forward analysis and a backward analysis. The for-
ward change-impact analysis computes the set of statements that
may be affected by code changes from P to P’; this is used to avoid
executing portions of P’ unaffected by statements that are changed
from P to P’. The backward change-impact analysis computes the
set of statements that may affect statements that are changed from
P to P’; this is used to determine if an execution summary from
the old version P can be carried over to the new version P’. In-
tuitively, in both cases, if a code modification in P’ only affects a
small number of statements, then much of P’ is the same as P.

The combination of execution summaries and change-impact an-
alysis, as well as their interaction with the baseline symbolic ex-
ecution procedure, is shown in Figure 1. Recall that prior incre-
mental symbolic execution techniques [30, 32, 46] only handled se-
quential programs, whereas Conc-iSE is the first incremental sym-
bolic execution algorithm capable of handling concurrent programs.
Specifically, when a new state in P’ is generated, we check both the
change-impact information and the execution summaries to see if
the state is in the unmodified section of the program, or if it is equiv-
alent to some previously explored execution in P. If either condi-
tion is true, then the new state is redundant and can be skipped.

Conc-iSE differs from the prior works on regression testing of
multithreaded programs [17, 49, 38]. In Jagannath et al. [17] and
Yu et al. [49], for example, the primary focus was on test case selec-
tion and test case prioritization, i.e., to detect certain concurrency
bugs quicker by heuristically selecting test cases and scheduling
them in certain orders, as opposed to generating new test cases.
In contrast, our method focuses on making symbolic execution in-
cremental, which will benefit test case generation. Our method
also differs from the work by Terragni et al. [38], which symbol-
ically analyzes the alternative interleavings of some concrete exe-
cutions based on the trace logs. Unlike our method, it does not
perform symbolic execution based test input generation to explore
both intra-thread program paths and inter-thread interleavings.

We have implemented our method in a software tool using LLVM [23]

and Cloud9 [5]. We used LLVM to implement our forward and
backward change-impact analysis algorithms, and used the KLEE
symbolic virtual machine in Cloud9 as the baseline to implement
our incremental symbolic execution algorithm. We also extended
KLEE to robustly handle POSIX thread routines and implement
the state-of-the-art dynamic partial-order reduction (DPOR) tech-
nique [9]. We evaluated Conc-iSE on a large set of multithreaded
C programs, including benchmarks from the Software Verification
Competition [37] and real-world applications that are open-source
implementations of non-blocking data structures [29]. In total, our
benchmarks contain 14 programs, with a total of 70 different ver-
sions and 34,926 lines of code. Empirically, we showed our method
can significantly reduce the overall testing time when compared
with state-of-the-art symbolic execution techniques.
To sum up, this paper makes the following contributions:
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x =15, y = 5;
/%% [Thread 1] * %/ /%% [Thread 1] *x/
1: a = x; 1: a = x;
2: y = 10; 2: y = 10;
3: 3:
/%% [Thread 2] * %/ /%% [Thread 2] *x/
4: x = 10; 4: x = 5; //modified
5: b =y; 5: b =y;
6: 6:

assert (a>=10);
assert (b>=5);

Figure 2: Example program: old (left) and new (right) versions.

Figure 3: Interleaved executions of old version: 71, ..., 7.

e We propose an incremental symbolic execution algorithm ca-
pable of handling code changes in both sequential and con-
current programs.

e We develop a new execution summary-based algorithm for
pruning away redundant paths and thread interleavings dur-
ing incremental symbolic execution.

e We implement our new method in a software tool and evalu-
ate it on a large set of benchmarks to demonstrate its effec-
tiveness at decreasing regression testing time.

2. MOTIVATING EXAMPLES

In this section, we illustrate the main ideas behind our new method.

2.1 Pruning with Change-Impact Analysis

Consider the example in Figure 2. The old program on the left-
hand side has two threads accessing the shared variables x and y.
They are initialized to 15 and 5, respectively. After executing both
threads, the two assertions are checked. The new program is shown
on the right-hand side; the only modification between the two pro-
grams is on Line 4, where x=10 is changed to x=5. First, note that
although the modification is in the second thread, due to the sharing
of variable x, Line 1 in the first thread is also affected. Such im-
pacted instructions cannot be identified by existing algorithms [30,
32, 46] since they were not designed for analyzing concurrent pro-
grams; our new change-impact analysis solves this problem.

Second, there are six possible executions of the old program, as
shown in the abstract state transition graphs in Figure 3. State-of-
the-art partial-order reduction (POR) techniques [11, 9, 20] can re-
duce the number of executions to four. Our method does even better
by reducing the number of executions to two. Specifically, in Fig-
ure 3 each node denotes a global control state, e.g., n1 = (1,4)
means Thread 1 is at Line 1 and Thread 2 is at Line 4, while
n2 = (2,4) means they are at Lines 2 and 4. After POR, only
four executions remain as shown in the left-hand-side execution
tree in Figure 4. The reason why 72 and 7 are skipped is because
they are equivalent to 71 and 75, respectively. That is, executing
the two independent instructions y = 10 and x = 10 in different
orders lead to the same result.



Figure 4: Executions explored by incremental symbolic execution in the old program (left) and the new program (right).

By leveraging the concurrent change-impact analysis, our method
can identify even more redundant executions than POR. Specifi-
cally, since the code change on Line 4 does not impact Line 2 or
Line 5 or assert(b>=5), we do not need to re-explore the different
execution orders of y = 10 and b = y. Because of this reason,
as shown in the right-hand-side tree in Figure 4, our method can
reduce the four executions to two (71 and 74).

In this work, we assume that assertions are embedded in the indi-
vidual threads. As such, the assertion conditions always refer to lo-
cal variables, or local copies of global variables, which is consistent
with the assumptions made in prior works on POR [11, 9, 20]. It
is worth pointing out that, in this example, the assertion conditions
are also important: if the assertion were assert(a>=b), then it is no
longer safe to skip 73 and 7s. Details of our new change-impact
analysis algorithm and its application to incremental symbolic exe-
cution are presented in Section 5.

2.2 Pruning with Execution Summary

In addition to leveraging the forward change-impact analysis, we
also propose an orthogonal pruning technique based on a backward
change-impact analysis. That is, instead of computing the set of
instructions that may be affected by the changed instructions, we
compute the set of instructions that may affect the changed instruc-
tions. Details of the backward change-impact analysis and its ap-
plication are presented in Section 6. Here, we briefly illustrate the
main ideas using an example.

Consider the two versions of a sequential program in Figure 5,
where the old version is on the left, and the new version is on the
right. The only modification is on Line 1; the condition is changed
from (z > 0) to (x > 0). From the forward change-impact analy-
sis described in Section 2.1, or for that matter, existing methods for
incremental symbolic execution [30, 32, 46], we know that all the
other lines in the new program are affected by the change. There-
fore, it seems that no redundant executions can be pruned away.

However, if we divide the initial program state into three subsets,
denoted (z > 0), (z = 0), and (z < 0), respectively, then it is
clear that only when (z = 0), the modified program behave differ-
ent from the original program. In the old version, such case was
handled by paths 73 and 74, but in the new version, it is handled by
paths m; and 7. Therefore, instead of re-exploring all four paths,
we only need to re-explore 71 and ma.

The question then is how to figure out, algorithmically, that paths
w3 and 74 are indeed redundant. Our solution in Conc-iSE is to
compute, for each global control state s, a summary of all the ex-
plored executions starting from s in the old program version. For
example, the summary at n4, with respect to assert(b#0), would
be PS[na] = (y > 0) A(z # 1) V (y < 0) A (x # 3). This
summary is created from the union of the weakest precondition of
(b # 0) along the two outgoing paths.
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1: 1if (x>0) 1: 1if (x>=0) //modified
2: a = x+2; 2: a = x+2;

3: else 3: else

4: a = x-2; 4: a = x-2;

5: if (y>0) 5: if (y>0)

6: b = a+l; 6: b = a+l;

7: else 7: else

8: b = a-1; 8: b = a-1;

9: assert (b!=0); 9: assert (b!=0);

2z < 0) (moved)

Figure 5: Although all instructions are impacted by the code
change on Line 1, not all four paths need to be re-explored.

Since the code changes on Line 1 does not affect the aforemen-
tioned weakest precondition computation, the summary can be car-
ried over to the new program. During the analysis of the new pro-
gram, we can stop an execution as soon as the path condition, de-
noted pcon[ny] = (z < 0), falls within the set PS[n4] of explored
executions. This early termination is safe because if pcon[na] A
—PS[n4] is unsatisfiable, re-exploring the executions starting from
n4 would not lead to any new error.

3. PRELIMINARIES

In this section, we establish the notation and review our baseline
symbolic execution algorithm for multithreaded programs.

3.1 Multithreaded Programs

We assume each program P consists of a finite set of threads,
{Ti1,...,Tn}, and a set SVar of shared variables. Each thread
T;, where 1 < 7 < m, has a set LVar; of local variables. In-
structions from different threads are executed in an interleaved fash-
ion. Each time an instruction st is executed, it produces an event
e = (tid, st,l,1"), where tid is the thread id, while [ and I’ are
the program locations before and after executing st. If there are
multiple execution instances of st, each instance is represented by
a different event.



A concrete state of the program P consists of the program loca-
tion [; of every thread T3, where 1 < i < m, and the values of all
variables in SVar and LVar;. In contrast, the abstract state, or the
so-called global control state (GCS) s = (l1,...,lm), consists of
the program locations only. In other words, each GCS represents
the set of all concrete states that share the same program locations
but have potentially different values of the program variables.

Let v; and cond; be the thread-local variables and conditions,
while vy and cond 4 be the shared (global) variables and conditions,
respectively. Depending on whether an event accesses shared vari-
ables, we classify it into one of the following categories:

e q-operation: a local assignment v; := ezp,;
e [-operation: a local branch assume(cond;);
e ~-operation: a global operation defined as either
— aglobal write vy := exp; or read v; := vg; or
— athread synchronization operation.
Given a program P, the set of all possible executions is captured
by a generalized interleaving graph (GIG) [12], where nodes are
global control states and edges are events. The root node corre-
sponds to the program’s initial state. Leaf nodes correspond to the
end of normal/faulty executions. Each internal node may have one
outgoing edge corresponding to an a-operation, k£ outgoing edges
corresponding to [3-operations, or k outgoing edges where k > 2
is the number of enabled y-operations from different threads.

We make a distinction between thread-local operations and global
operations since they have different impacts during symbolic exe-
cution. Global operations (vy) directly affect the thread interleav-
ing order, while S-operations directly affect the path taken by each
thread. In contrast, a-operations do not directly affect the selection
of any program path or thread interleaving.

Without loss of generality, we assume all conditional expressions
use local variables or local copies of global variables [11]. The ex-
ecution of an i f (c) —else statement, for example, can be repre-
sented by assume(c) if we take the then-branch, and assume (—c)
if we take the else-branch. Properties of interest are represented by
assertions of the form assert (c),whichmeans i f (!c) abort.
Therefore, we can use the special event abort to denote faulty pro-
gram termination and halt to denote normal program termination.

3.2 Baseline Symbolic Execution

Following the majority of prior works on symbolic execution,
we assume that the program under test is terminating and thus each
execution has a finite length [3]. We also assume the program is
deterministic, i.e., the sequence of instructions will be completely
determined by (in, sch), where in is the data input and sch is
the thread schedule. Therefore, (in, sch) implicitly represents a
concrete execution of a program. In contrast, # = (x, sch) repre-
sents a symbolic execution where * is the symbolic data input and
sch = e1...en 1s an order of the executed events.

Algorithm 1 shows the baseline procedure for concurrent pro-
grams, which follows prior works such as [33, 5, 12]. Initially,
EXPLORE is invoked with the symbolic initial state so. Then, de-
pending on the type of the current state s, we either explore a thread-
local branch or schedule a context switch. A pivot point is a GIG
node with multiple outgoing edges. A node corresponding to (-
operation is called a branching pivot point (b-PP); a node corre-
sponding to y-operation is called an interleaving pivot point (i-PP).
Specifically, if s is an i-PP node, we recursively explore the next
event from each thread; if s is a b-PP node, we recursively explore
the next thread-local branch; and if s is a non-branching node, we
explore the unique next event. Upon reaching a leaf node the cur-
rent execution ends. At this point, the procedure pops the current
state s from the stack S before returning from EXPLORE(S).

During backtracking, we always stop at the last unexplored pivot
point (i-PP or b-PP) and try to flip a previous decision to compute a
new execution. By flipping a previous decision at an i-PP node, we
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get (in, sch’), where sch’ is a new thread schedule. By flipping a
previous decision at a b-PP node, we get (in', sch), where in’ is a
new data input. In both cases, the new execution will be the same
as the previous one up to the pivot point. After the pivot point,
however, it will be an uncontrolled execution.

Algorithm 1 Baseline Symbolic Execution.

Initially: Stack S = {so }; run EXPLORE(s( ) with the symbolic initial state sq.
1: EXPLORE(s)

2: S.push(s);

3:  if(sisani-PP node)

4: while (3¢ € (s.enabled \ s.done))
5: s' < NEXTSTATE(s, t);

6: EXPLORE(s");

7: s.done < s.done U {t};

8: else if (s is a b-PP node)

9: while (3¢ € (s.branch \ s.done))
10: s’ <= NEXTSTATE(s, t);

11: EXPLORE(s’);

12: s.done < s.done U {t};

13: else if (s is an internal node)

14: s’ < NEXTSTATE(s, t);

15: EXPLORE(s’);

16: else

17: /lend of execution — do nothing;

18: S.pop();

19:

20: NEXTSTATE(s, t)

21: let s = (pcon, M, enabled, branch, done);
22: if (¢ is halt)

23: s’ < normal_end_state;

24 else if ( ¢ is abort )

25: s’ < faulty_end_state;

26: else if (¢ is assignment v := exp )
27: s" < (pcon, M[v > exp]);

28: else if (¢ is assume(c) and M [pcon A c] is satisfiable )
29: s" < (pcon A ¢, M);

30: else

31: s’ <« infeasible_state;

32: return s’;

We assume that each symbolic program state s € S is a tuple
(pcon, M, enabled, branch, done), where pcon is the path con-
dition from sg to s, M is the memory map, enabled is the set of
~-events when s is an i-PP node, branch is the set of S-events when
s is a b-PP node, and done is the set of explored (3 or ) events.

The initial state so is (true, Minit, . . .), where true means the
state is always reachable, and My is the initial memory map.
Each instruction () is executed by NEXTSTATE(s,t) as follows:

e If ¢ is halt, the current execution ends without error.

If ¢ is abort, we have detected an error.

If ¢ is an assignment v:=exp, we update the memory map M
by changing the content of v to ezp.

If ¢ is assume(c), we set the path condition to (pcon A c).

4. THE INCREMENTAL SYMBOLIC EXE-
CUTION ALGORITHM

Our incremental procedure, shown in Algorithm 2, has two sig-
nificant differences from the baseline procedure in Algorithm 1.
For brevity, we only highlight the parts that are different.

First, the input has changed. Instead of taking one program as in-
put, we take both the old and the new programs (P and P’). Prior
to our symbolic execution of the new program P’, we compute the
forward impacted set ISq,q and the backward impacted set |Spwq-
In addition, we transfer the table PS of execution summaries com-
puted in P to the new program P’. For each state s, the set of
explored executions starting from s is denoted PS[s].

Second, we add Lines 27-29 and 32-34 inside NEXTSTATE. They
leverage ISswd, I1Sbwd, and PS[s] to decide, at each symbolic execu-

. t . . .
tion step (s — s’), if all executions starting at the next state s’



are redundant. Specifically, if ¢.inst & |Sqq, the current branching
statement is not in the impacted set. Since which branch to execute
at s is immaterial, if one of the branches has previously been ex-
plored, we can force an early termination of the current execution.

Similarly, if t.inst & ISpwd, the weakest precondition computa-
tion, upon which the execution summary is computed, would not
be affected by the code changes. Therefore, we can carry the sum-
mary PS[s] from P to P'. If the current path condition pcon, in
the modified program, is subsumed by PS[s] then continuing the
execution from s would lead to no new errors. In such case, we can
force an early termination of the current execution.

Algorithm 2 Incremental Symbolic Execution.

ISfwd <— COMPUTEFORWARDIMPACTEDSET(P, P’);
ISpwd < COMPUTEBACKWARDIMPACTEDSET(P, P');
PS[s] < the summary at s computed in previous program P;

ZOZIN.EXTSTATE(S, t)
21: let s = (pcon, M, enabled, branch, done);

22: if (¢ is halt)

23: s’ < normal_end_state;

24: else if ( t is abort )

25: s’ < faulty_end_state;

26: else if (¢ is assignment v := exp)

27: if (t.inst ¢ ISpwa and pcon =—> PS[s])

28: s’ < early_termination_state;

29: else

30: s' < (pcon, M[v — exp]);

31: else if ( t is assume(c) and M [pcon A c] is satisfiable )
32: if (t.inst & IS .4 and another branch has been explored )
33: s’ < early_termination_state;

34: else

35: s’ < (pcon A c, M);

36: else

37: s’ <« infeasible_state;

38: return s’;

Example. For the program in Figure 5, the code changes on Line 1
would only invalidate the summary PS[nq]. Therefore, although
we cannot force an early termination at ni, we can leverage the
summary at other nodes to prune away redundant executions. In
particular, when the execution reaches either no or n4, we can ter-
minate the execution immediately. This is because both pcon[na] A
—PS[n2] and pcon[ns] A =PS[n4] are unsatisfiable. Specifically,

PS[na] = (y > 0) A (x # —3) V (y < 0) A ( # —1)
PSna] = (y > 0) A (z £ 1)V (y < 0) A (x # 3)

Furthermore, pcon[nz2] = (z > 0), and pcon[ns] = (x < 0).
Therefore, we can check pcon[nz] A =PS[n2] as follows:

S@2OALSOVE=-A(>0VE=-D)

We can also check pcon[na] A —=PS[n4] as follows:

=@@<OAN (<0 VE=1)A((y>0)V(z
= false

3))

The above checks indicate that no new errors can be detected by
continuing from n2 and n4. Therefore, we terminate the symbolic
execution immediately without exploring the remaining paths.

In the remainder of this paper, we will present our algorithms for
conducting the forward and backward change-impact analysis, as
well as the redundancy pruning based on execution summaries.

S. CHANGE-IMPACT ANALYSIS

The first important component of our incremental analysis is the
detection and characterization of code changes, called the change-
impact analysis (CIA) [24]. The identification of code changes re-
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quires comparison of two program versions by matching their rep-
resentations, often in the form of flow graphs [31], tree representa-
tions [47], or locations in source files.

5.1 Computing the Impacted Sets

Our new change-impact analysis for concurrent programs takes
two program versions P and P’ as input and returns two impacted
sets. One impacted set is 1Ssyd, the forwardly impacted set, while
the other impacted set is ISpwd, the backwardly impacted set.

We follow Person et al. [30] to define three types of code changes:
deleted, added, and modified. Our computation of the two impacted
sets consists of several steps.

Algorithm 3 Forward and Backward Change-impact Analysis.

Agy + Diff (P, P');
Apap < Map (P, P, A gig);

1: COMPUTEFORWARDIMPACTEDSET(P, P’)

2: Alfyg {}, Mlgyg < { }; Dlgyg { };

3: for each (inst € Ay )

4: if (inst is added )

5: Algug < AlgygU FwdDependencyAnalysis(P’, inst);
6: else if ( n st is modified )

7. Mlgyg < MlgqU FwdDependencyAnalysis(P’, inst);
8: else if (inst is deleted )

9: impacted < FwdDependencyAnalysis(P, inst);

10: for each ( st € impacted )

11: st’ < QueryMap (Amap st);

12: Dlfwd < DlgyqU FwdDependencyAnalysis(P’, st’);
13: return Alg,q U Mlgyg U Dlgygs

14: CoMPUTEBACKWARDIMPACTEDSET(P, P’)

15: Alpwd < { }; Mlpwa = { }; Dlowa < { };

16: for each (inst € Ay )

17: if (inst is added )

18: Alpwg < Alp,gU BwdDependencyAnalysis(P’, inst);
19: else if ( inst is modified )

20: Mlpwg 4 MlpwgU BwdDependencyAnalysis(P’, inst);
21: else if ( inst is deleted )

22: impacted <— BwdDependencyAnalysis(P, inst);

23: for each ( st € impacted)

24: st’ < QueryMap (Amap, st);

25: Dlpwd < DlpwgU BwdDependencyAnalysis(P’, st’);
26: return Dlp,g U Mlpy,g U Dlpwg:

First, we compare P and P’ using a lightweight diff tool that
computes the set A gz of changed instructions (added, deleted, or
modified). Since the remaining instructions exist in both programs,
we construct a map A,,qp that maps every unchanged instruction
inst € P to its counterpart inst’ € P’.

Second, for each added instruction, denoted inst,qq € Adgigr, We
perform a forward control- and data-dependency analysis in P’ to
identify all instructions depending on inst,qq (Line 5). Details of
this analysis are presented in the next subsection. We also perform
a backward control- and data-dependency analysis in P’ to identify
all instructions that inst.qq depends on (Line 18). We denote the
set of instructions as A, represented separately as Algyg and Alpwd.

Third, for each modified instruction, denoted inst,moq € Adig,
we perform a forward control- and data-dependency analysis in P’
to identify the instructions depending on inst,,.qs (Line 7). We
also perform a backward control- and data-dependency analysis to
identify all instructions that inst,,,¢ depends on (Line 20). We
denote the set of instructions as M.

Fourth, for each deleted instruction inst ge; € Agigr, we perform
the forward control- and data-dependency analysis to compute the
set of instructions depending on instqe; (Line 9). We also perform
the backward control- and data-dependency analysis to compute
the set of instructions that inst4.; depends on (Line 22). For each
instruction in this set, which is in program P, we retrieve its coun-
terpart in P’ by querying the A,,,qp; the results form a new set D1.

Finally, the union of AI, M1, and DI forms the complete set of
impacted instructions, denoted ISsyg and ISpwd, respectively.



/%% [Thread 1] *x/ /%% [Thread 2] *x/

1: x += 2; 8: z++;

2: z =x + 1; 9: x -= 2;

3: y=x-1; 10: if (x==0)

4: if (z>0) 11: y += 1; //modified
5: z = 0; 12: else

6: else 13: z++;

7: z—; 14: assert(y != 2);

Figure 6: Example for our new change-impact analysis.

Algorithm 3 shows the actual pseudocode formalizing the above
descriptions. For ease of comprehension, we have divided the com-
putation of 1S4 and ISpwg into two separate routines. These rou-
tines, in turn, rely on two subroutines (described in Section 5.2)
to perform the inter-thread and inter-procedural control- and data-
dependency analysis.

Example. Figure 6 shows a program P that, starting with z =
y = z = 0, may violate the assertion on Line 14 by executing
Lines 1-3 and then 9-11. To fix the violation, we plan to change
Line 11 from y+=1 to y+=2 to obtain the new program P’. Dur-
ing the change-impact analysis, Agp = {11}, and Apep = {1-1,
2-2, ..., 14-14}. Since the type of change is modified, we only need
to compute M. Specifically, from the forward analysis, we ob-
tain Mlgg = {11, 14}, which means the modification may affect
Lines 11 and 14. From the backward analysis, we obtain Mlpwq =
{1, 3,9, 10, 11}, which means they may affect the statement on
Line 11. This is because Line 11 is control-dependent on Line 10
due to variable z, and data-dependent on Lines 3 and 11 due to
variable y. Line 10, in turn, is data-dependent on Lines 1 and 9.

5.2 Computing the Dependency Relations

The dependency relations are computed by an inter-thread and
inter-procedural static analysis. We follow [8, 15] to compute the
control-dependencies using post-dominance, and data-dependencies
by the transitive closure of use-def chains. Our main contributions,
however, are reasoning about these dependencies in the concurrent
setting (which also works on sequential programs), and adapting
them to the forward/backward change-impact analysis.

We say that a statement s is control-dependent on s; if the com-
putation of s; determines whether s3 is executed. For example, in
if (c) x++; the statement x++ is control-dependent on if (c)
(specifically, on the value of the predicate c). On the other hand,
s4 is data-dependent on sz if the computation of sz influences the
computation of s4. For example, in a=x;b=a+y; the statement
b=a+y is data-dependent on the statement a=x since the value of
a determines the value of b.

To be conservative, our baseline dependency analysis is flow-
insensitive, which has the advantage of being scalable and con-
sidering all ordering of statements. Since any statement from any
thread can effectively execute at any time, this over-approximates
the actual scheduling constraints, thereby ensuring the soundness
of our analysis for multithreaded programs. However, using a flow-
insensitive analysis, while sound, may result in false dependencies
across threads. Consider the program in Figure 7: thread one reads
the value of x and then creates thread two which writes to x. In a
flow-insensitive analysis, the read in thread one is data-dependent
on the write in thread two. But, the write can never be visible to
thread one, since thread two does not exist until after the read.

To capture this situation, we augment our baseline dependency
analysis with a happen-before relation. We say that a statement s1
happens before a statement sz if on all program executions s1 exe-
cutes before s2, e.g., the statement create (thread2) happens
before x 5. Toward this end, we refine the data-dependency
analysis as follows: if s; happens-before s> then s; must not be
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int x = 0;

void threadl () {
int tl = x;
create (thread2);

}

void thread2 () {
x = 5;

}

IR I NV IR SOV S EE

Figure 7: Example for false data-dependencies across threads.

data-dependent on s2. This approach is comparable to recent works
on using happens-before to refine data race detection [28, 27]. It is
sound because the happens-before relation ensures there does not
exist a program path from s to si, and thus s; cannot witness
the effect of s2. Currently, we deduce happens-before constraints
statically from the thread creation sites.

In the implementation, we adopt the Datalog-based declarative
program analysis framework [44, 22, 2]: We first build CTRLDEP
and DATADEP relations, where (a,b) € DATADEP means the vari-
able a is data-dependent on b. We traverse the control flow graph to
generate the set of input items for these relations. We use the struc-
ture of each individual instruction to determine the control- and
data-dependency relations associated with it. For brevity, we show
only how we handle the binary operation » = op vy v2, Where 7, v1,
and v2 are variables and op is an operator. In this case, the input
items to DATADEP are (r,v1) and (7, v2).

Similarly, we provide input items to the happens-before (HB)
relation from thread creation sites. Within a thread, we determine
the HB relation using dominance and reachability on the control-
flow graph. Specifically, if s1 dominates s2 and s is not reachable
from s2, then s; happens-before so. Dominance ensures that all
paths to s> contain s;; reachability ensures that there is no path
from s2 to s;. All in all, they ensure s; always occurs before s2.

We compute the transitive closure of CTRLDEP and DATADEP
relations while using the happens-before relation to filter the false
dependencies. Finally, the forward (resp. backward) dependency
analysis on some statement s is the forward closure from s of the
combination of the control- and data-dependency relations.

6. SUMMARY-BASED REDUNDANT PATH
PRUNING

The second important component of our incremental analysis is
pruning of redundant executions. In this section, we explain how
to compute execution summaries in P and use them in the new
program P’. First, during the symbolic execution of P, we summa-
rize all the explored executions in a table, denoted PS, where each
entry PS[s] stores a logical formula that represents all explored ex-
ecutions (suffixes) starting from s. Then, during the symbolic exe-
cution of P’, we leverage our backward change-impact analysis to
decide if these summaries can be carried over to P’.

6.1 Computing Execution Summaries

We construct the summary PS[s], at each state s, based on the
weakest precondition (WP) computation [6]. The WP is defined
with respect to a predicate ¢ and an execution 7. It can be regarded
as a form of Craig’s interpolant [26, 16, 4], to explain why the
execution cannot reach bad states. When an explored execution
ends at an assert(c) statement, we compute the WP of c along this
execution; otherwise, we compute the WP of true.

DEFINITION 1. The weakest precondition of the predicate ¢
with respect to a sequence of instructions is defined as follows:

e Foranassignment t: v:=exp, WP(t,¢) = ¢[exp/v], which
is the substitution of v by exp in ¢;



1: int AltPress:=0; Meter:=2
procedure UPDATE(int PedalPos, int

Table 1: Execution summaries computed for P in Conc-iSE.

Entry Summary

PS[ni19 true

PS[nis true

PS[ni17 ((PedalCmd==3)APS[ns])V((PedalCmd #3)APS[n9])
= true

PS[an] true

PS[ni5]  ((PedalCmd==2)APS[n7])V((PedalCmd #2)APS[n7]))
=true

PS[ni3 = PS[n;5][2/ Meter] = true

PS[ni2 (BSwitch==1)APS[n5])V(BSwitch #1)APS[n;5]) = true

PS[n11 = PS[n;5][1/ Meter] = true

PS[n10 (BSwitch==0)APS[n;;])V(BSwitch #0)APS[n;2]) = true

PS[nsg] = PS[ny][(PedalCmd + 1)/ PedalCmd)] = true

PS[ng] = PS[ng][PedalPos/PedalCmd)] = true

PS[ns] = PS[ng][(PedalCmd + 2)/ PedalCmd)] = true

PS[n4] ((PedalPos==1)APS[n;])V((PedalPos #1)APS[ng]) = true

PS[ns] = PS[ng][(PedalCmd + 1) / PedalCmd)] = true

PS[n2] ((PedalPos <0)APS[ns])V((PedalPos>0)APS[n,]) = true

no: modified
BSwitch, int PedalCmd)
2: if PedalPos<=0 then //(modified) true Jfalse
3: PedalCmd += 1 15 PedalCmd += 1) (na: PedalPos == 1)
4: else if PedelPos == 1 then frue_— Jalse \
3: PedalCmd +=2 (ns: PedalCimd += 2) (s PedalCind = PedalPos)
6: else PedalCmd = PedalPos \
7
8: PedalCmd = PedalCmd + 1
0:
%?: if BSwitch == 0 then e Talse
. Meter = 1 n11: Meter = 1) (nag: BSwitch == 1
12: elseif BSwitch == 1 then ( ) hLe e )
%22 Meter =2 /alw
15: if PedalCmd == 2 then
16: AltPress =0 " Jalse
17: else if PedalCmd == 3 then (nas: AltPress = 0) (naz: PedalCmd == 3)
18: AltPress = 1/4 Truc—"___\ Jalse
%9: else AltPress == 1/2 (nas: Altpress = 1/4) (nao: AliPress = 112)
o

Figure 8: The WBS example taken from DiSE [30].

e For a branching statement t : assume (c) , WP(t,¢) =
¢ A c; and

e For a sequence of instructions, denoted t1;ta, WP (t1;t2, $)=
WP(t1, WP(t2, ®)).

Following Guo et al. [12], we compute the execution summary
by merging the WPs at the pivot points as follows.

e The weakest precondition at a branching pivot point (b-PP) s,

with outgoing edges to s', ..., s* and conditions c1, . .. , ck,
is defined as follows:
wpls) = \/ (es Awpls']),
1<i<k

where each wp|s'] is the weakest precondition at state s°.
e The weakest precondition at an interleaving pivot point (i-PP)
s, with outgoing edges to s', ..., s", is defined as follows:

wpls] = /\ wpls'] .

1<i<k

This is an underapproximation since the precise merging would
require an enumeration of all possible interleavings, which is
too costly for the summary-based pruning. Nevertheless, in
practice, this underapproximated summary often suffices for
eliminating redundant executions.

Finally, the execution summary PS[s] at node s is computed as
the union of the weakest preconditions along all explored execu-
tions starting from s.

Consider the WBS example in Figure 8, whose control flow graph
is shown on the right-hand side. The baseline symbolic execution
procedure needs to explore all 21 paths. Following the method de-
scribed above, the execution summaries computed for the program
P can be found in Table 1. For example, the summary for node
ni7, denoted PS[n17], is the union of (PedalCmd==3)APS[ns])
and (PedalCmd #3)APS[nig)).

Prior to using the summary table computed in P in the new pro-
gram P’, we need to check if recent code changes have invalidated
some of these summaries. If the answer is no, we can safely reuse
them to prune away redundant executions in P’. For example, in
Figure 5, since we changed only Line 1, i.e., from if (x>0) to if
(x>=0), the weakest precondition computation is not affected at all
other nodes except for n1. In other words, we can reuse the previ-
ously computed summaries at these nodes.
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Table 2: Comparing the paths explored by DiSE and Conc-iSE.
T Explored by DiSE Explored by Conc-iSE

1 {n2,n3,ns,n10,n11,N15,N16} partial (up to n3)
2 {n2,n3,Mn8,Mn10,Nn11,N15,N17, N18} skipped
3 {n2,mn3,ms,Mn10,Nn11,N15,N17, N19} skipped
4 {n2,n4,n5,n8,Mn10,Mn11,N15,N16} partial (up to n4)
5  {n2,n4,m5,n8,n10,n11,N15, 17, N1s}  skipped
6  {n2,n4,n5,n8,n10,n11,Nn15,N17,n19}  skipped
7 {n2,n4,n6,n8,M10,N11,N15,N16} skipped

6.2 Pruning with Execution Summaries

Our method for leveraging the summaries to prune away redun-
dant executions has been shown on Lines 27-29 in Algorithm 2.
Here, pcon represents the set of forwardly reachable states, while
—PS|[s] represents the set of states that may lead to some previously
unexplored errors. If the intersection is empty, however, there is no
need to continue the current execution beyond s. In the actual im-
plementation, the validity of (pcon = PS][s]) is decided by
checking the satisfiability of its negation, (pcon A —=PS[s]), which
can be solved efficiently by an SMT solver.

To demonstrate the advantages of our method, we show how it
works on the WBS example from DiSE [30]. Since DiSE works
only for sequential programs, the WBS example in Figure 8 is a
sequential program and our method assumes it has a single thread.
In WBS, the only code change is on Line 2, from (PedalPos == 0)
to (PedalPos <= 0). The red rounded rectangles represent the im-
pacted CFG nodes in P’, while the white rounded rectangles repre-
sent nodes that are not impacted by the change. The baseline sym-
bolic execution procedure needs to explore all 21 paths whereas
DiSE only needs to explore 7 paths (Table 2), due to the reduction
based on its forward impact analysis. That is, the nodes 110, 111,
n12 and n13 are not affected by the code change at n».

However, there is still redundancy among the 7 paths explored
by DiSE. As shown in the third column of Table 2, certain common
subpaths are explored repeatedly. For example, {ns, n10, 711, n1s,
n16} 1s an already-explored subpath in 71 but it is re-explored in
74 and 77, also, {n10, n11, N5, N17, N1} is an already-explored
subpath in 72 but it is re-explored in 75, and {ni0, 711, N15, N17,
n19} is an already-explored subpath in 73 but it is re-explored in
. In contrast, our new method can reduce the seven executions
further down to 2 executions (Column 3 in Table 2).

Specifically, during the symbolic execution of P, we incremen-
tally compute the summaries at ni7, n1s, n1o, 14, N2, and Table 1
shows the summary table of P in terms of these locations.

Then, in the symbolic execution of the new program P’, we
first apply the forward change-impact analysis for the modification
in Line 2, and then apply our backward change-impact analysis,



which indicates that the summary is invalid only at node n2 (imme-
diately before Line 2); for all other nodes, we can safely reuse the
summaries since these nodes are not in the backward slice of na.

By checking the validity of pcon[s] = PS][s] for all nodes
except for ny during the execution, we can reduce the seven runs
further down to two partial runs. More specifically, the execution
on P’ starts by visiting n>. As the summary at no is invalid (since
it is in the backward impacted-set), the execution continues explor-
ing without checking the summary. Consider that the frue branch
of mo is first selected; execution proceeds until reaching the next as-
signment statement at n3. Noticing that the summary at ngz is still
valid and (pcon[nz] A =PS[ns]) = (PedalPos<0)A—true = false,
the execution stops here, generates the first partial run {n2, ns},
and backtracks to ns.

Next, the false branch of n is selected and the execution runs un-
til the following branch statement at 4. As (pcon[ns] A ~PS[n4])
= (PedalPos>0)\—true = false, the execution also stops, generates
the second partial run {n2, n4}, then backtracks to n2. Since both
outgoing edges of no are explored and n2 is the entry of the pro-
gram, the whole execution on P’ terminates.

Therefore, the two runs in P’ explored by our method are 71 ={n2,
ng} and w4 ={n2, na}, shown in Column 3 of Table 2.

7. EXPERIMENTS

We have implemented the proposed method in a software tool
named Conc-iSE, which builds upon LLVM [23] and Cloud9 [5].
Cloud9 relies on the KLEE symbolic virtual machine [3] as back-
end. We extended Cloud9 to robustly handle POSIX threads; the
original implementation only coarsely considered different thread
interleavings at blocking operations. In contrast, our symbolic ex-
ecution procedure schedules threads at a finer granularity (e.g., the
shared memory accesses) and ensures that all interleavings are sys-
tematically explored. Furthermore, we implemented the dynamic
partial-order reduction (DPOR) algorithm [9], which Cloud9 does
not originally support. In addition, we have implemented our for-
ward and backward change impact analysis to provide guidance
to our incremental symbolic execution algorithm. We also imple-
mented a flow-insensitive pointer analysis for multi-threaded pro-
grams. Our dependency analysis is constraint-based and directly
works on the LLVM bit-code. We use the Z3’s uZ [14] fix-point
solver to compute the fix-point of the Datalog constraints.

To share the summary information between program versions,
we deployed the Memcached Distributed Cache as an external per-
sistent storage for the execution summaries. The summaries are
computed and encoded in KLEE KQuery formula format during the
symbolic execution. After the execution of the original program P,
they are serialized as binary character sequences for Memcached
storage. Before running the new program P’, they are loaded into
main memory and mapped to the corresponding global control lo-
cations. Based on the results of our backward change-impact analy-
sis, we implemented a summary renewal mechanism to check if the
summary of a location has been invalidated by recent code changes,
and reset it to false in that situation.

7.1 Subjects and Methodology

We have conducted experiments on two sets of benchmarks. The
first set consists of multi-threaded C programs randomly chosen
from the Software Verification Competition benchmark [37] and
benchmarks from [7]. The second set consists of three real-world
applications, each with five different versions: they are lock-free
data structure implementations (nbds-list, nbds-skiplist and nbds-
hashtable) from [29]. Each of these benchmark programs has be-
tween 50 to 2,500 lines of code, with a total of 14 applications, 70
different versions, and 34,926 lines of code. Each benchmark pro-
gram is first compiled to LLVM bit-code by Clang, before given to
the symbolic execution engine.
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Figure 9: Conc-iSE (+SCIA) versus the Baseline algorithm.

For C programs from [37, 7, 20], since there are no different
versions available online, we manually made three types of mutants
to the programs, acting as modified, deleted and added statements.
For the real-world applications from [29], we studied the evolution
history from the code repository, and used real updates committed
by their developers as the changes to those programs.

7.2 Experimental Results

Table 3 summarizes the experimental results of our evaluation.
The program name, version, lines of code, number of changes, per-
centage of code impacted, and the number of threads for each pro-
gram are shown in Columns 1-6. Columns 7-14 compare the ex-
perimental performance of four different methods in terms of the
number of explored executions (runs) and the time in seconds.

Baseline denotes the baseline symbolic execution procedure in
Algorithm 1, +DPOR denotes baseline symbolic execution aug-
mented with dynamic partial order reduction, +CIA denotes a vari-
ant of Conc-iSE, which augments baseline symbolic execution with
DPOR and pruning based on the forward change, but without the
backward summary-based pruning. Finally, +SCIA denotes the full-
blown implementation of Conc-iSE, which augments +CIA with
the backward summary-based pruning. In all methods, the static
analysis time and summary computation time (if applicable) are in-
cluded in the total execution time. We used a maximum time of 30
minutes (1,800 seconds) for all experiments.

In the remainder of this section, we present the results in more
detail to answer the following research questions:

1. How effective is our Incremental Symbolic Execution algo-
rithm?

2. How does it compare to state-of-the-art POR techniques?

3. How effective is the backward summary-based pruning?

First, we compare the performance of Baseline and +SCIA with
the two scatter plots in Figure 9. The x-axis denotes the execution
time (or number of runs) of the baseline symbolic execution, while
the y-axis denotes the execution time (or number of runs) of our
new method (+SCIA). In the scatter plots, each dot represents a
benchmark program, and the dots below the diagonal lines are the
winning cases of our new method. From Figure 9, we see that our
new method can significantly reduce the number of runs explored
by symbolic execution as well as the total execution time. In many
cases, our new method can finish the execution in seconds while
the baseline algorithm does not stop after 30 minutes.

Second, we compare the performance of +DPOR and +SCIA
with the two scatter plots in Figure 10. Our goal is to show how
much performance improvement was achieved by our new method
over +DPOR alone. Similarly, dots below the diagonal lines are
the winning cases of our new method (+SCIA). Again, our new
method brings significant performance improvement compared to
+DPOR. However, there are some test cases where +SCIA spent
slightly longer time, despite that it has the same or a smaller num-
ber of runs. This is due to the overhead of static analysis, summary
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Table 3: Comparing the two variants of Conc-iSE (+CIA and +SCIA) with baseline symbolic execution.

| Existing Methods | Conc-iSE (new) |
| Bascline +DPOR | +CIA +SCIA |
Name Version  LOC  #Changes Impacted (%) Threads | # Runs Time (s) #Runs Time(s) | #Runs Time(s) #Runs Time (s) |
vl 65 1 0.0 924 16.6 48 0.8 1 0.3 1 0.3
v2 66 2 10.6 — >1800 142 2.0 142 22 22 0.9
fibbench [37] v3 67 2 13.6 2 - >1800 628 12.1 628 12.0 34 24
v4 67 2 17.9 — >1800 3943 160.3 3943 161.4 39 2.5
v5 68 3 2.9 — >1800 1420 30.3 10 0.4 7 0.3
vl 68 1 8.8 749 14.2 106 1.8 106 1.7 38 0.9
v2 69 1 10.1 5838 370.1 208 35 208 34 81 1.6
account [37] v3 70 3 14.3 3 1773 50.5 168 2.8 168 2.7 55 1.2
v4 70 1 6.6 1773 47.8 168 2.7 14 0.5 11 0.4
v5 71 2 6.6 13407 1642.4 325 53 11 04 9 0.3
vl 58 1 10.3 156 2.4 12 0.4 12 0.4 9 0.3
v2 59 2 11.9 1399 36.1 43 0.8 43 0.8 18 0.5
lazyO1 [37] v3 61 4 11.5 3 8313 624.1 71 1.2 71 1.2 18 0.5
v4 62 2 1.6 8313 625.3 71 1.1 2 0.3 2 0.1
v5 61 4 13.1 — >1800 211 3.1 179 2.5 26 0.6
vl 85 1 224 - >1800 729 29.6 729 30.5 33 20.3
v2 85 1 16.5 — >1800 81 25 5 04 5 0.4
indexer [37] v3 86 2 233 2 — >1800 90 2.5 90 2.6 30 52
v4 87 2 23 - >1800 90 2.5 1 0.3 1 0.3
v5 88 2 22.7 — >1800 1314 412 1314 43.7 563 539
vl 59 1 5.1 191 2.7 36 0.7 1 0.2 1 0.3
v2 60 3 13.3 105 1.6 10 0.4 4 0.3 4 0.3
readreadwrite [37] v3 63 3 12.7 3 728 13.7 34 0.7 34 0.8 20 0.5
v4 63 1 12.7 728 14.0 34 0.7 9 0.3 8 0.3
v5 67 5 19.1 5444 175.1 101 1.6 22 0.6 18 0.5
vl 65 2 9.2 88 14 37 0.7 37 0.7 12 0.4
v2 67 1 9.0 296 4.3 117 1.7 46 0.8 15 04
stateful01 [37] v3 68 2 10.3 2 3267 120.8 675 11.4 327 4.8 22 0.5
v4 68 1 16.2 3267 119.6 675 10.1 675 9.9 71 1.0
v5 68 1 16.2 3267 121.3 675 8.9 675 8.9 42 0.7
vl 94 1 6.4 1190 17.8 38 0.7 34 0.6 30 0.5
v2 92 2 6.5 222 2.7 15 0.5 11 0.4 9 1.2
reorder [37] v3 94 2 7.4 2 2903 72.1 61 12 38 0.7 28 0.5
v4 96 2 74 4698 176.1 125 1.9 125 1.9 32 0.7
v5 97 3 72 9557 273.1 68 1.2 53 0.9 39 0.8
vl 141 1 2.8 4862 286.8 101 1.6 7 0.3 7 0.3
v2 142 1 5.6 5878 298.4 148 22 148 2.4 79 1.3
twostage3 [37] v3 141 2 5.7 3 2636 97.8 101 1.6 60 1.1 27 0.6
v4 141 1 7.1 2636 96.0 69 1.4 37 0.8 29 0.6
v5 141 1 5.1 2568 94.7 188 32 123 23 38 0.7
vl 73 1 20.5 — >1800 12473 171.3 2 0.3 2 0.3
v2 74 2 274 — >1800 13434 197.6 150 2.2 67 14
szymanski [7] v3 73 1 20.5 2 — >1800 10180 136.7 73 1.3 61 1.1
v4 73 1 26.7 - >1800 14365 207.7 591 8.9 79 22
v5 73 1 20.0 - >1800 - >1800 73 1.3 61 1.2
vl 128 2 25.8 - >1800 2112 31.7 1739 25.1 287 8.7
v2 130 2 22.1 — >1800 2292 34.6 1133 16.4 223 6.4
bluetooth [7] v3 130 1 22.3 2 - >1800 2324 353 1154 16.5 276 53
v4 131 5 38.2 — >1800 2617 40.6 2617 41.5 532 13.8
v5 133 3 39.1 — >1800 2437 38.5 2437 36.1 417 11.9
vl 115 1 26.9 52 0.9 52 0.9 52 0.9 32 0.8
v2 116 2 15.5 1077 19.7 277 4.1 277 4.1 68 33
circularbuf [7] v3 116 1 6.9 2 3794 171.8 770 14.3 126 1.9 21 0.5
v4 118 2 15.3 3794 173.1 2916 105.6 462 74 46 1.5
v5 117 1 28.2 - >1800 924 17.8 924 18.1 102 33
vl 1168 5 9.2 - >1800 1724 4339 501 2233 422 136.1
v2 1624 3 1.9 — >1800 898 117.3 10 141.6 10 141.6
nbds-list [29] v3 1626 4 52 2 - >1800 4660 701.6 503 102.9 503 103.2
v4 1887 5 3.5 - >1800 6007 698.9 35 90.7 14 80.4
v5 1885 3 5.0 - >1800 1304 160.7 198 73.2 175 53.1
vl 1734 2 10.3 - >1800 — >1800 1874 263.6 1266 202.7
v2 2095 2 3.0 — >1800 4645 228.0 284 61.6 180 56.5
nbds-skiplist [29] v3 2095 2 32 2 - >1800 — >1800 299 61.9 223 59.9
v4 2100 3 0.4 - >1800 7508 266.3 5 48.3 5 48.2
v5 2101 1 2.5 — >1800 — >1800 550 65.6 417 56.3
vl 2234 1 0.3 — >1800 4818 218.6 9 170.1 9 169.5
v2 2322 2 8.6 — >1800 — >1800 2686 650.8 2686 632.6
nbds-hashtable [29] v3 2375 2 73 2 - >1800 — >1800 1684 440.5 1453 416.1
v4 2418 2 2.7 — >1800 9474 730.8 612 258.8 431 190.3
v5 2422 2 4.6 - >1800 17556 1396.2 849 337.1 763 303.5
Total 34,926 | 70,585 17,149 ‘ 3,478 2,816 |
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Figure 10: Conc-iSE (+SCIA) versus Baseline (+DPOR).

1 s e 1 s 1 s 1 e 1 s
108 = = ~ 108 = E
) E R E g
S L s 8° | O | i
2 102 %2 2 d
= . — = |
¥ 107 E ". L) g — 10% E =
~ = ) ol 7 = =
@ = { & ) & ¢ 2z = .
g [ 3. o® o i g [ ° -
& o0l = = 10l o |
E E F e s E
F 1 I o0’ . 1
L
100 & T O I A T O A 1 | 100 il O AR AR
100 10t 102 103 100 10t 102 103

Runs (+CIA) Time (s) (+CIA)

Figure 11: Conc-iSE variants: (+CIA) versus (+SCIA).

computation, as well as the pruning, which makes the total exe-
cution slower than +DPOR. But, overall, the run time of +SCIA
versus +DPOR is 83% smaller.

Finally, we compare the two Conc-iSE variants (+CIA and +SCIA)
in Figure 11. These scatter plots show the effect of execution sum-
maries during an incremental analysis. Similar to the previous
cases, sometimes the summary-based pruning technique is not able
to provide a significant reduction, thereby causing the runtime to be
slightly higher; this usually occurs when the backward impact anal-
ysis causes many summaries to be removed. Nonetheless, for most
test cases, it is able to have a significant reduction in the number of
runs, which in turn leads to a significant reduction in time.

Discussion.Fundamentally, an incremental analysis is only applica-
ble when the code modification affects a subset of the entire pro-
gram: if the entire program is modified then the incremental anal-
ysis degenerates to the non-incremental one. Therefore, our tech-
nique is suitable in a software development environment where the
correctness of frequent but small code changes is checked before
they are committed to the central repository. In our experiments,
the code modifications from the nbds application are all developer-
made modifications. Furthermore, in these real-world applications,
code modifications typically affected around 0.3% to 10.3% of the
entire program. Such code changes are small enough to allow Conc-
iSE to be effective, although it remains an open question whether
they reflect the majority of the software development scenarios in
practice. Another interesting problem is when to schedule tests,
e.g., as in Herzig et al. [13], which is an orthogonal but closely
related problem.

8. RELATED WORK

Change-impact analysis [45] has been widely applied in software
testing and verification. The existing incremental symbolic execu-
tion tool, DiSE [30], uses an intra-procedural static change-impact
analysis and then leverages it to reduce the cost of symbolic exe-
cution. The extension of DiSE, named iDiSE [32], improves it in
two ways: by making the change-impact analysis inter-procedural,
and by using dynamic calling-context information to increase accu-
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racy. Yang et al. [46] extend DiSE to a property-guided symbolic-
execution procedure for checking assertions in evolving programs.

Change-impact analysis has been used in the context of program
verification as well. For example, Backes et al. [1] use a change-
impact analysis to improve the functional equivalence checking in
regression verification. Specifically, the change-impact is used to
focus on the equivalence checking of affected portions of the code.
Similarly, SymDiff [21] focuses on proving assertions in the con-
text of regression verification.

However, none of these previous techniques were designed for
concurrent programs: they all target sequential software. Their ex-
tension to concurrent programs remains non-trivial due to the in-
herent difficulties in analyzing thread interferences. Our new tech-
nique, in contrast, is the first incremental symbolic execution for
concurrent programs.

SimRT [49] is a regression-testing tool for multithreaded pro-
grams targeting data-races. It compares the two program versions
syntactically to identify a set of affected variables, and then con-
struct a list of potential data races to test. During the testing phase,
SimRT prioritizes the selection of existing test cases and visiting
the most program points of the affected variables to speed up data-
race detection. CAPP [17] uses a change-impact analysis to prior-
itize scheduler preemptions at impacted code points to detect con-
currency bugs. However, CAPP only manipulates the prioritized
thread scheduling rules with fixed data inputs.

Furthermore, SimRT and CAPP focus on test selection and pri-
oritization as opposed to generating new tests. In contrast, our
method uses symbolic execution to generate new tests.

RECONTEST [38] is a regression testing technique to select new
thread interleavings that are more likely to trigger concurrency bugs
caused by recent code changes. Specifically, it computes the af-
fected code statements by comparing dynamic execution traces on
the two program versions. Then, at each program point of the im-
pacted set, it identifies problematic memory access patterns [39,
36] and use them to compute alternative interleavings, e.g., by re-
ordering these concurrent memory accesses. While RECONTEST
has the capability of exploring new thread schedules, it relies on
user-provided data inputs. In contrast, we use symbolic execution
to generate new data inputs as well as new thread schedules.

We build upon prior works on constructing weakest-precondi-
tion and similar interpolation-based execution summaries during
symbolic execution [26, 16, 4, 48, 12]. There is also a large body
of work on symbolic analysis of concurrent software using SMT
solvers [42, 40, 41, 19, 34, 18, 35, 10, 25]. However, these prior
works target a single program version. In contrast, we leverage
the summary computed in the previous program version to prune
redundant executions in the new program version.

9. CONCLUSION

We have presented Conc-iSE, an incremental symbolic execu-
tion algorithm for concurrent programs. Our new change-impact
analysis is both inter-thread and inter-procedural, capable of more
accurately identifying instructions affected from code changes be-
tween two closely related program versions. We also showed how
summaries computed from the previous program can be used to
prune away redundant runs during symbolic execution of the new
program. We implemented our method and evaluated it on a large
set of multithreaded programs. Our experiments show that the new
method can significantly reduce the runtime cost when compared
with the state-of-the-art symbolic execution techniques.
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