
WaSCR: A WebAssembly Instruction-Timing Side Channel
Repairer

Liyan Huang
∗

University of Southern

California

Los Angeles, CA, USA

liyanhua@usc.edu

Junzhou He
∗

University of Southern

California

Los Angeles, CA, USA

junzhouh@usc.edu

Chao Wang

University of Southern

California

Los Angeles, CA, USA

wang626@usc.edu

Weihang Wang

University of Southern

California

Los Angeles, CA, USA

weihangw@usc.edu

Abstract

WebAssembly (Wasm) is a platform-independent, low-level binary

language that enables near-native performance in web applications.

Given its growing importance in the web ecosystem, securing We-

bAssembly programs becomes increasingly important. A key secu-

rity concern with WebAssembly is the threat of instruction-timing

side-channel attacks, which exploit timing variations in branch in-

structions dependent on sensitive data, allowing attackers to infer

sensitive information through timing measurement.

In this paper, we introduceWaSCR, an automatedWebAssembly

instruction-timing Side-ChannelRepairer. WaSCR uses control and

data dependencies to trace the flow of sensitive data and prevent

its leakage. It employs rule-based code transformations to linearize

the program, eliminating branches dependent on sensitive data

and substituting them with constant-time selectors. Our evaluation

demonstrates that WaSCR effectively eliminates instruction-timing

side channels while maintaining program correctness, with efficient

repairs and moderate performance overhead.

CCS Concepts

• Security and privacy → Side-channel analysis and counter-

measures; Software security engineering.

Keywords

WebAssembly; Side-channel Attack; Program Repair

ACM Reference Format:

Liyan Huang, Junzhou He, Chao Wang, and Weihang Wang. 2025. WaSCR:

A WebAssembly Instruction-Timing Side Channel Repairer. In Proceedings

of the ACM Web Conference 2025 (WWW ’25), April 28–May 2, 2025, Sydney,

NSW, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3696410.3714693

1 Introduction

WebAssembly (Wasm) is a platform-independent, low-level binary

language designed to enable near-native performance in web ap-

plications [58]. It is widely supported by major browsers [33] and

increasingly popular in the web ecosystem [26]. Despite operating

within a sandboxed environment, which is generally considered

∗
Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.

WWW ’25, Sydney, NSW, Australia.

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1274-6/25/04

https://doi.org/10.1145/3696410.3714693

secure [58], WebAssembly remains vulnerable to side-channel at-

tacks [3, 27, 55, 56]. These attacks exploit a program’s non-functional

properties, such as execution time, cache access, or power consump-

tion, to infer sensitive information like passwords or encryption

keys [13, 16, 29, 35]. Research has shown that side-channel vul-

nerabilities can be exploited in WebAssembly programs [55], and

existing protections have proven inadequate [56].

One common form of side-channel attacks is the instruction-

timing attack, where an attacker deduces sensitive information

by measuring the execution time of instructions in conditional

branches. However, most WebAssembly side-channel research has

focused on other types of attacks, such as Spectre [32, 36, 53], port

contention [43], and cache attacks [14, 23], with limited work on

addressing instruction-timing side channels. Tools developed for

other languages, such as C/C++ and Java [12, 18, 34, 47, 48, 52, 59]

– including those based on LLVM – cannot be easily adaptable to

WebAssembly due to its limited source code availability [26], unique

language features, and the diversity of its runtimes, such as V8 [50]

and Wasmtime [4], which employ various compiler infrastructures.

Current solutions for mitigating instruction-timing side channels

in WebAssembly are limited to CT-Wasm [17, 54] and the work by

Tsoupidi et al. [51]. CT-Wasm extends WebAssembly’s semantics to

enforce constant-time programming [10], ensuring that program

execution time is independent of sensitive data by introducing a

“secret” data type and prohibiting its use in conditional branches.

However, since CT-Wasm is not part of the standard WebAssembly

specification, it is implemented as an extension to theWebAssembly

reference interpreter and V8 JavaScript engine. Similarly, Tsoupidi

et al. used Relational Symbolic Execution (RelSE) to detect constant-

time violations in WebAssembly, but their approach also requires

modifications to the WebAssembly reference interpreter.

While existing approaches [51, 54] provide some protection

against instruction-timing attacks in WebAssembly, they have sig-

nificant limitations. First, they require platform-specific extensions,

which limit their portability across platforms. Second, although

these tools can detect constant-time violations in WebAssembly

programs, fixing these violations still requires substantial manual

effort from developers, making the process labor-intensive and

error-prone. Consequently, there is an urgent need for robust, auto-

mated defenses to effectively detect and repair instruction-timing

side channels in WebAssembly.

However, repairing instruction-timing side channels in Web-

Assembly presents distinct challenges. First, WebAssembly’s unique

type system, stack-based architecture, and memory model make

existing defenses from other languages ineffective. Second, the ab-

sence of high-level data types and semantic metadata complicates

https://orcid.org/0009-0003-4929-1478
https://orcid.org/0009-0000-4088-1592
https://orcid.org/0009-0003-4684-3943
https://orcid.org/0000-0003-1175-4409
https://doi.org/10.1145/3696410.3714693
https://doi.org/10.1145/3696410.3714693
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3696410.3714693

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Liyan Huang, Junzhou He, Chao Wang, and Weihang Wang

Figure 1: Overview of WaSCR

the tracking of dependencies withinWebAssembly’s linear memory.

Third, WebAssembly’s diverse control structures and branching

mechanisms increase the complexity of accurately modeling and

transforming programs. Additionally, WebAssembly blocks can re-

turn values, adding another layer of intricacy that requires sophisti-

cated analysis to effectively monitor data flow and taint propagation

across different blocks. Finally, indirect calls — dynamic function

invocations based on a function table — further hinder analysis and

program transformation efforts.

To address these challenges, we introduce WaSCR, a static anal-

ysis tool designed to automatically detect and repair instruction-

timing side channels inWebAssembly programs. Figure 1 illustrates

WaSCR’s architecture. It takes a WebAssembly module, along with

a list of functions and user-annotated sensitive data, as input. It con-

structs a ProgramDependency Graph (PDG) [21] for theWebAssem-

bly module, on which it then performs taint analysis. This analysis

traces both data and control dependencies to identify branches

and code blocks affected by sensitive data, marking them as vul-

nerable. Upon identifying these vulnerabilities, WaSCR applies

predefined rule-based code transformations. This process linearizes

the vulnerable branches using constant-time selectors, ensuring the

WebAssembly module’s execution remains independent of sensitive

data. This approach effectively mitigates instruction-timing side

channel vulnerabilities at the WebAssembly language level without

platform-specific extensions.

We evaluate WaSCR on 20 WebAssembly modules across three

key dimensions. First, we demonstrate the effectiveness of WaSCR

in repairing instruction-timing side-channel vulnerabilities using

GEM5 [11, 31], a fine-grained CPU architecture simulator. Second,

we illustrate WaSCR’s efficiency of the repair process by measuring

the time required for leakage detection and code transformation.

Third, we evaluate the quality of the repaired programs by measur-

ing runtime overhead and code size increase. Our results confirm

that WaSCR effectively mitigates instruction-timing vulnerabilities,

faithfully preserves semantic correctness, and introduces moderate

overhead.

In summary, our work makes the following contributions:

• We introduce WaSCR, a static analysis tool that automati-

cally detects and repairs instruction-timing side channels in

WebAssembly without platform-specific extensions.

1 (module
2 (memory (export "memory") 1)
3 (func (export "add_and_store")
4 (param $p i32) (param $q i32) (local $a i32)
5 local.get $p
6 local.get $q
7 i32.add
8 local.set $a
9 i32.const 0 ;; memory address to store
10 local.get $a ;; value to store
11 i32.store offset=0))

(a) WebAssembly code module.wasm
1 const { instance } = await WebAssembly.

↩→ instantiateStreaming(fetch('module.wasm'));
2 instance.exports.add_and_store (20);
3 const memory = new Uint32Array(instance.exports.

↩→ memory.buffer);
4 console.log(memory [0]);

(b) JavaScript glue code

Figure 2: Example of Wasm and its JS glue code

• WaSCR uses taint tracking and rule-based code transforma-

tion to identify and linearize sensitive conditional branches

in WebAssembly, mitigating timing vulnerabilities.

• We evaluate WaSCR on 20 WebAssembly modules, demon-

strating its effectiveness in mitigating instruction-timing

side channels while ensuring efficiency and quality.

2 Background and Motivation

This section provides an introduction of WebAssembly, explains

how instruction-timing side-channel attacks work, and outlines the

use of constant-time selectors to mitigate such vulnerabilities.

2.1 WebAssembly

WebAssembly is a low-level, platform-independent binary language

that executes in a sandboxed environment [58]. It can be compiled

from high-level languages such as C/C++, Rust, and Go [24]. Its

ability to deliver near-native performance has made it increasingly

popular, particularly in web applications where it runs alongside

JavaScript. Figure 2 illustrates a WebAssembly module along with

its JavaScript glue code. Specifically, the WebAssembly function

add_and_store (Figure 2a) adds the two parameters, stores the

result in a local variable $a, and writes the value of $a to mem-

ory address 0. The JavaScript glue code (Figure 2b) initializes the
WebAssembly module, invokes the add_and_store function, and
prints the addition result.

WebAssembly distinguishes itself from other programming lan-

guages with several key features:

WaSCR : A WebAssembly Instruction-Timing Side Channel Repairer WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.

1 (func $check_password
2 (param $passwd_ptr i32) (param $guessed_seq_ptr i32) (result i32)
3 (local $ret_val i32)
4 ...
5 loop $loop
6 ... ;; load the characters from the 2 strings
7 local.get $pwd_i
8 local.get $guess_i
9 i32.eq
10 local.set $cond
11 block $cmp
12 local.get $cond
13 br_if $cmp ;; continue $loop if $pwd_i == $guess_i
14 i32.const -1
15 return ;; return -1 if $pwd_i != $guess_i
16 end
17 ... ;; continue $loop
18 end
19 i32.const 0
20 return) ;; return 0 if all characters match

Figure 3: Example of instruction-timing side channels

Strict Type System. Unlike high-level languages that support a

wide range of data types and automatic type inference, WebAssem-

bly enforces a strict type system with only four numeric data types

(i32, i64, f32, and f64). These types must be explicitly defined,

making it resemble low-level machine code.

Stack-based Virtual Machine. WebAssembly operates on a stack

machine for instruction execution, instead of using registers or

memory for computation, as seen in most high-level languages. As

shown in Figure 2a, values are pushed to the stack using local.get,
consumed by i32.add, and the result is pushed back onto the stack.
Linear Memory. It uses linear memory, a continuous memory

region that both WebAssembly code and host environments (e.g.,

JavaScript) can access directly. This differs from high-level lan-

guages that abstract memory through automated mechanisms like

garbage collection. Although native assembly also interacts directly

with memory, WebAssembly’s memory model is more constrained,

adding an extra security layer through sandboxing.

These distinctive features make analyzing WebAssembly funda-

mentally different from high-level languages and native assembly

code. While WebAsssembly is designed with security in mind, side-

channel vulnerabilities remain a significant concern and require

specialized analysis and targeted mitigation techniques.

2.2 Instruction-Timing Side Channels

Figure 3 shows a WebAssembly function that compares a password

with a guessed input sequence, potentially exposing sensitive pass-

word information through instruction-timing side channels. The

function’s parameters represent the starting memory addresses

of the password and the guessed sequence. To highlight the core

logic responsible for the side-channel leak, we present a simplified

version of the code.

In this example, the function $check_password iteratively loads
and compares each character of the password and the guessed se-

quence, storing the result of each comparison in the variable $cond.
Depending on this comparison result, the function jumps to differ-

ent branches within the $cmp block. If the two characters match,

the function breaks out of the $cmp block and continues the loop

iteration. If the loop completes without a mismatch, the function

returns with value 0. If a mismatch occurs, the loop terminates early,

returning the function with value -1. It is important to note that in

WebAssembly, when br_if targets blocks, it breaks to the end of

the block when the condition is true. In contrast, when targeting

1 block $blk
2 local.get $sens_data
3 br_if $blk
4 local.get $stack_ptr
5 i32.const -1
6 i32.store offset=12
7 end

(a) Sensitive-data-dependent flow

1 local.get $stack_ptr
2 i32.load offset=12
3 local.set $prev
4 ;; select prev or new:
5 local.get $stack_ptr
6 local.get $prev
7 i32.const -1
8 local.get $sens_data
9 select ;; ct-selector
10 i32.store offset=12

(b) Linearized version

(c) Contro flow of Figure 4a (d) Control flow of Figure 4b

Figure 4: Example of branch linearization

loops, br_if branches to the beginning of the loop under the true

condition.

This branching behavior leads to varying execution times based

on where the mismatch occurs, creating a timing discrepancy. Con-

sequently, an attacker can infer the correct password by carefully

measuring execution times across different input sequences.

2.3 Repair with Constant-Time Selectors

To mitigate instruction-timing side channels, one widely-use ap-

proach is linearizing program branches using constant-time selec-

tors [12, 47, 48, 52, 59]. A constant-time selector is a technique used

in programming to ensure that an action takes the same amount of

time regardless of input conditions. Its purpose is to prevent attack-

ers from inferring sensitive information (e.g., cryptographic keys or

passwords) bymeasuring program execution time. InWebAssembly,

the select instruction acts as a constant-time selector when exe-

cuted on runtime engines such as V8 [50] and Wasmtime [4]. These

engines implement select using the CMOVcc conditional move in-

structions in x86-64 architecture. In contrast, branch instructions

such as JZ in x86-64 can be affected by CPU features like speculative

execution and branch misprediction, making them ineffective at

eliminating timing variations. Similarly, directly using if/elseWe-

bAssembly instructions cannot guarantee constant-time behavior,

even if both branches are equalized. Instead, CMOVcc instructions
provide a reliable constant-time alternative for conditional selection,

a characteristic that has been validated by existing research [12, 59].

Figure 10 in the appendix shows how the select instruction is

implemented in WebAssembly and its corresponding x86-64 ma-

chine code, compiled with Node.js version 20.13. The constant-time

selector allows us to linearize sensitive-data-dependent branches,

thereby mitigating potential instruction-timing side channels.

Figure 4 illustrates how branches can be linearized using constant-

time selectors. Initially (Figure 4a), the execution flow is sensitive to

the value of $sens_data, as seen in the conditional branching (line

3). If $sens_data is true, the program breaks out of the block early,

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Liyan Huang, Junzhou He, Chao Wang, and Weihang Wang

skipping further actions. If false, the program continues to execute

sequentially, updating a memory buffer with the value -1. Figure 4c
illustrates this conditional branching with red and green arrows,

highlighting the varying execution paths that can lead to timing

differences. In the linearized version (Figure 4b), these sensitive-

data-dependent branches are replaced by constant-time selectors,

ensuring that the execution time remains the same regardless of

input values, thereby eliminating timing side channels. Specifically,

lines 6 to 9 in Figure 4b show the constant-time selector control-

ling the memory update. If $sens_data is false, the memory buffer

is updated with -1. If true, the original value in memory remains

unchanged. Figure 4d shows the revised control flow where the

program now consistently follows a single path. This approach

ensures that the program’s behavior mimics the original logic but

without the timing discrepancies that would expose sensitive data

through side channels.

In Section 4, We will discuss our detailed methodology for repair-

ing instruction-timing side channels in WebAssembly programs.

3 Threat Model

Our threat model focuses on instruction-timing side-channel vul-

nerabilities in WebAssembly caused by branches that depend on

sensitive data, such as secret passwords or cryptographic keys.

Other types of side-channel attacks, including cache leaks, Spectre

attacks, power side-channel leaks, and other microarchitectural

vulnerabilities, are beyond the scope of this work. Additionally,

we limit our scope to leaks originating within WebAssembly mod-

ules and assume no side-channel vulnerabilities exist in the host

environment. The attacker is presumed capable of executing the

WebAssembly program repeatedly to gather timing data using var-

ious timing strategies in different granularities – ranging from

JavaScript APIs like performance.now() to CPU cycle-accurate

timers such as rdtscp – to infer sensitive information, though they

cannot directly access the program’s variables or memory.

4 Design of WaSCR

Figure 1 illustrates WaSCR’s architecture. It takes a WebAssem-

bly module in WebAssembly Text Format (WAT), along with user-

annotated sensitive data and a list of function names, as inputs.

WaSCR consists of two main components: Leakage Detection and

Rule-based Code Transformation. First, it uses WABT [57], an open-

source WebAssembly binary toolkit, to parse the WAT module

and construct a Program Dependency Graph (PDG). Through a

sound static taint analysis, WaSCR traces data and control depen-

dencies to identify blocks with conditional branches that depend

on sensitive data, which may cause instruction-timing side-channel

leaks. In this context, “block” refers to WebAssembly structures

such as block, if, and loop instructions containing conditional

branches. Next, WaSCR repairs these vulnerable branches by ap-

plying rule-based code transformations, employing constant-time

selectors on the Abstract Syntax Tree (AST) of the WebAssembly

module to eliminate timing discrepancies. The modified AST is

subsequently converted back to WAT format, completing the repair

process. WaSCR’s workflow operates at theWebAssembly language

level, repairing instruction-timing side channels without requiring

platform-specific extensions.

1 (global $__stack_pointer (mut i32) (i32.const 65536))
2 (func $mem_example (param $key i32)
3 (local $addr1 i32) (local $addr2 i32)
4 local.get $addr1
5 local.get $key
6 i32.store offset=0 ;; store key to memory
7 ...
8 local.get $addr2
9 i32.load offset=0) ;; load data, probably get the key

Figure 5: Challenge in handling memory access operations

4.1 Leakage Detection

WaSCR detects instruction-timing side-channel vulnerabilities by

identifying conditional branches dependent on sensitive data and

their associated blocks. This begins by constructing a PDG for the

WebAssembly module, followed by taint analysis on the graph.

Program Dependency Graph. The PDG for a given WebAssem-

bly module consists of four key components: Abstract Syntax Tree

(AST), Control Flow Graph (CFG), Control Dependency Graph

(CDG), and Data Dependency Graph (DDG). By leveraging control

and data dependencies, we propagate sensitive annotations across

the PDG, tainting all nodes that handle sensitive data. This process

identifies sensitive branches and blocks that can be exploited as

side channels, indicating where repairs are needed.

Sound Static Analysis. Once PDG is built and sensitive data is

annotated, WaSCR propagates these sensitive annotations through

the data and control dependency edges to identify all sensitive

branches and their corresponding blocks needing repair.

Algorithm 1 in the appendix outlines the taint analysis process,

which identifies all sensitive branches and blocks that require repair.

For a given WebAssembly module, we begin by initializing a stack

with a list of sensitive variables. This stack is maintained to manage

nodes during propagation. We traverse the neighboring nodes of

the top node on the stack, following data and control dependency

edges. If a node has not been visited, it is pushed onto the stack

for further propagation. When encountering conditional branch

instructions, such as if and br_if, we mark their associated blocks

for repair.

A key challenge arises during propagation when handling mem-

ory access operations (e.g., i32.store and i32.load), which can

create implicit data dependencies through WebAssembly’s linear

memory. For example, in Figure 5, the sensitive key stored in linear

memory via i32.store (line 6) can later be retrieved by i32.load
(line 9) if the memory address variables ($addr1 and $addr2) re-
solve to the same value at runtime, even though there are no direct

data or control dependencies between these instructions.

Despite prior efforts on points-to analysis in other languages

[7, 9, 39, 49], applying these techniques to WebAssembly is chal-

lenging due to the loss of symbol information during compilation

to WebAssembly, where high-level data structures (e.g., arrays,

pointers) are translated into WebAssembly’s unique memory ac-

cess patterns without original type or size details [28]. Instead of

traditional pointers, WebAssembly uses an offset-based memory

access system, where memory operations can access any valid ad-

dress within linear memory at runtime. In some of our dataset

samples, memory addresses are calculated using offsets added to

the global variable $__stack_pointer, which often leads to over-

estimation. These factors make points-to analysis more complex in

WebAssembly.

WaSCR : A WebAssembly Instruction-Timing Side Channel Repairer WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.

1 local.get $cond1
2 if $I0
3 ...
4 block $B0
5 local.get $cond2
6 br_if $B0
7 local.get $update
8 local.set $val
9 end
10 end

(a) Original code

1 local.get $update
2 local.get $val
3 local.get $cond1
4 local.get $cond2
5 i32.eqz
6 i32.and
7 select
8 local.set $val

(b) Transformed code

Figure 6: Example of nested branches using condition list

To address this, WaSCR adopts a conservative approach. By

default, implicit data dependencies between memory store and

load instructions are matched based on their address variables and

offsets. This approach serves as the baseline configuration in our

experiments. Additionally, we offer an option for users to treat

all memory access operations within traced sensitive functions as

sensitive. When taint propagation enters a new function, WaSCR

automatically adds all memory load instructions within that func-

tion to the tracing stack.

4.2 Rule-based Code Transformation

After identifying sensitive nodes and their associated blocks,WaSCR

implements a rule-based code transformation tomitigate instruction-

timing side channels. This transformation has two main goals: (1) to

eliminate all conditional branches within marked sensitive blocks,

and (2) to ensure that program semantics remain correct after lin-

earization.

The removal of conditional branches is straightforward, which

involves eliminating all branch instructions and any related sensi-

tive block structures. However, as this step alone would break the

original program’s semantics, additional code transformations are

required to ensure the correctness of execution.

Basic Transformation Rules.Most WebAssembly instructions do

not require modificationwhen conditional branches are removed, as

they only affect the program implicitly through the WebAssembly

virtual stack machine (e.g., i32.add). Our main focus is ensuring

memory and variable states are maintained to preserve program

correctness. Thus, our transformations specifically target memory

store and variable set operations. Table 3 in the appendix outlines

the basic transformation rules (excluding instructions with similar

logic, such as local.tee and i64.store). For each store and set
instruction within a conditional branch, the execution is governed

by the associated condition. To maintain correct semantics, we

use the WebAssembly constant-time select instruction to choose

between the updated and original values based on the condition.

Nested Branches. In nested conditional branches, instructions can

be influenced by multiple conditions. To address this complexity,

we generate a condition list for each instruction. This list acts as

a synthetic condition that provides a generalized representation

of the execution context. As shown in Figure 6a, all instructions

within the inner block $B0 are governed by both the br_if and

outer if conditions. For if blocks, we store their condition values

and add them to the condition list for all enclosed instructions.

For br_if, we append the inverse of the branch condition to the

condition list for all subsequent instructions in the breaking block,

as those instructions will be skipped if the condition evaluates to

1 block $B1
2 loop $L2
3 ;; loop bound condition:
4 local.get $loop_cond
5 br_if $B1
6 ;; extra break condition:
7 local.get $cond1
8 br_if $B1
9 ...
10 end
11 end

(a) Original code

1 block $B1
2 loop $L2
3 local.get $loop_iter
4 global.get $est_bound
5 i32.lt_s
6 local.get $loop_cond
7 local.get $cond1
8 i32.or
9 i32.eqz
10 i32.or
11 br_if $L2
12 end
13 local.get $loop_iter
14 global.get $est_bound
15 call $select_larger
16 global.set $est_bound
17 end

(b) Transformed code

Check iteration within the estimated

bound.

Check original break conditions.

Update the estimated bound.

Figure 7: Example of loop transformation

true. For example, in Figure 6a, the local.set $val instruction is

controlled by both the if condition ($cond1) and br_if condition

($cond2). Consequently, in the transformed program (Figure 6b),

local.set $val will execute only if $cond1 is true and $cond2 is

false, based on the condition list derived from these two conditions.

A special case is the br instruction. We convert all br instructions

to br_if instructions with true conditions for consistency.

Loop Iterations. A key challenge in constant-time program repair

is managing loop iterations when the loop upper bound is deemed

sensitive. To ensure execution time remains independent of sensi-

tive data, it is crucial to establish a fixed loop upper bound. Existing

approaches either statistically estimate upper bounds [48, 59] or dy-

namically manage iteration numbers in Just-in-Time environments

[52], both with limitations: the former lacks flexibility, while the

latter is incompatible with our language-level design. Given these

constraints, we propose using Large Language Models (LLMs) to

analyze the loop and estimate a preliminary upper bound, followed

by static code transformation to adaptively adjust this upper bound

during loop execution.

While WebAssembly loops share similarities with those in other

languages, they exhibit unique behaviors. As shown in Figure 11 in

the appendix, a single break statement in C may translate to multi-

ple br_if instructions in WebAssembly. These br_if instructions

collectively serve to exit the same loop, which complicates static

analyses to identify the loop’s iteration bound exit condition. To

address this issue, our approach replaces all breaking points and en-

forces adherence to our custom upper bound for the WebAssembly

loop.

To determine loop upper bound and enhance the soundness of

the static analysis for loop handling, we utilize LLMs. Specifically,

we input the loop body into ChatGPT [38], prompting it to identify

loop iteration conditions and estimate an upper bound. We then

remove all br and br_if instructions from the loop block, incorpo-

rating them into the condition lists of enclosed instructions within

the loop. Finally, we append the iteration process to the end of the

loop structure, adhering to the estimated upper bound.

However, this initial estimate may be overly conservative, allow-

ing the loop to exceed the estimated maximum. To address this,

we implement an adaptive bound update mechanism. We store the

estimated upper bound in a global variable, which is dynamically

updated if the actual number of loop iterations exceeds the current

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Liyan Huang, Junzhou He, Chao Wang, and Weihang Wang

1 (func $Callee (param $p i32)
2 ...)
3 (func $Caller (param

↩→ $key_cond i32)
4 (local $l i32)
5 local.get $key_cond
6 if $I0
7 local.get $l
8 call $Callee
9 end)

(a) Function condition - Before

1 (func $Callee (param $p i32)
2 global.get $global_cond
3 ...)
4 (func $Caller (param

↩→ $key_cond i32)
5 (local $l i32)
6 global.get $global_cond
7 local.get $key_cond
8 i32.and
9 global.set $global_cond
10 local.get $l
11 call $Callee)

(b) Function condition - After

Figure 8: Example of function calls in sensitive branches

estimate. This global variable persists across multiple executions of

the same WebAssembly module, enabling incremental refinement

of the upper bound with each run. This iterative process facilitates

convergence toward a more accurate upper bound.

Figure 7 illustrates the transformation process. Initially, the

br_if instructions (Figure 7a) are removed, with their conditions

stored in local variables. During each iteration, the value of $loop-
_iter is incremented and compared against the estimated upper

bound. The loop terminates only if either $cond1 or $loop_cond
is satisfied, and the iteration count exceeds the estimated upper

bound (lines 3 to 11, Figure 7b). To ensure correct exit conditions,

these conditions are evaluated as true only upon the first execution

where they are met. Subsequent executions will not alter their value

once the exit decision is made. Finally, the estimated upper bound

is updated by comparing it to the actual number of loop iterations,

using the larger value (lines 13 to 16, Figure 7b).

Function Calls in Sensitive Branches. In cases where function

calls occur within sensitive branches, we must ensure these func-

tions are properly linearized. For each function, we use a global

variable to manage its execution status. Figure 8 illustrates this

approach. Since WebAssembly operates in a single-threaded, se-

quential environment, the caller can set this global variable to either

true or false before invoking a function, indicating whether the

function would be called in the original branch. Next, all memory

store instructions within the callee function are governed by this

condition, in addition to any original constraints. Local variable

set instructions within the callee are not considered, as they only

affect the callee function and do not impact the outer program.

Function/Block Return Values. In WebAssembly, block instruc-

tions (such as if blocks) can terminate with return values, similar

to functions. To ensure consistent timing behavior, we enforce a

single exit point per block or function by eliminating all alternative

exit paths. To preserve return value semantics during transforma-

tion, we temporarily store the return value and use the select
instruction at the end of each block or function to determine and

return the correct value, preserving the original behavior.

Indirect Function Calls and Break Tables.WebAssembly’s in-

direct function calls are based on runtime indexes, allowing the

selection of the appropriate function at runtime. To ensure accurate

static analysis and facilitate code transformation, all indirect func-

tion calls are converted into direct calls accompanied by multiple

conditional branches, each corresponding to a potential function

that matches the signature. Similarly, break tables are transformed

into multiple br_if instructions.

4.3 Correctness Analysis

We claim that our methodology ensures the correctness of repairing

instruction-timing side channels in terms of both leakage detection

and code transformation.

Soundness of Leakage Detection. Our side-channel detection

employs a sound taint analysis approach. We ensure that taint prop-

agation comprehensively covers all possible nodes that are either

control- or data-dependent on sensitive information. Although this

process may over-approximate, it guarantees that no branches de-

pendent on sensitive data are overlooked. Therefore, this thorough

coverage effectively ensures no instruction-timing side channels

remain after the subsequent code transformation phase. As a vali-

dation, we manually inspected all programs after applying WaSCR

to our dataset (described in Section 5.1) to verify that no branch

structures depended on sensitive data.

Correctness of Code Transformation. Our code transformation

preserves the semantic equivalence of the original program through

a meticulously designed linearization process. This process ensures

that variable set and memory store instructions in the repaired pro-

grams take effect only when all associated conditions are satisfied,

thereby guaranteeing that the memory and variable states remain

consistent with those of the original programs. To further verify the

transformation correctness, we tested each program in our dataset

with 100,000 randomly generated inputs, confirming that both re-

turn values and linear memory states remained identical between

the original and the transformed WebAssembly programs.

5 Evaluation

In this section, we evaluate WaSCR’s ability to repair instruction-

timing side-channel leaks inWebAssemblymodules. Our evaluation

is guided by three key research questions that focus on effectiveness,

efficiency, and quality of the repaired programs:

• RQ1 (Effectiveness of WaSCR): How effectively does

WaSCR repair instruction-timing side channels inWebAssem-

bly modules?

• RQ2 (Efficiency of the Repair Process): How quickly does

WaSCR complete the repair process?

• RQ3 (Quality of the Repaired Programs): What is the

quality of the repaired programs in terms of execution time

and code size?

5.1 Experiment Setup

We conduct our experiments on the GEM5 simulator, which allows

us to customize CPU components to isolate cache miss interfer-

ence, ensuring evaluation accuracy and fairness. To execute the

WebAssembly modules, we use WasmEdge [2] as the runtime en-

vironment within GEM5, employing the WasmEdge C API to load

and interact with WebAssembly modules, while compiling the C

host program to x86 binary for GEM5 simulation. This setup en-

ables precise measurement of CPU cycles specifically for the tested

WebAssembly functions, yielding deterministic results.

Our evaluation dataset consists of 20 samples in total. We col-

lected 12 samples from previous studies on instruction-timing at-

tacks, including Wu et al. [59], Soares et al. [47], Disselkoen et

al. [20], and Borrello et al. [12], which assess side-channel elimi-

nation. These sources, originally written in C/C++, were compiled

WaSCR : A WebAssembly Instruction-Timing Side Channel Repairer WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.

to WebAssembly using Emscripten [1], the most widely used We-

bAssembly compiler [44]. Additionally, we selected 8 real-world

WebAssemly modules collected by Romano et al. [45] and Hilbig

et al. [26]. To adapt the samples for testing with WasmEdge, we

made minor modifications to export core functionalities of these

WebAssembly modules (e.g., encryption) to the host environment,

preserving key functionalities while facilitating evaluation.

Table 1: GEM5 simulation results of WaSCR

Program

Before Fixing After Fixing

Input 1 Input 2 |Delta| Input 1 Input 2 |Delta|

des [46] 12362766 14227470 1864704 20034520 20034520 0

loki91 [46] 24024119 23540603 483516 130371440 130371440 0

3way [46] 1684764 1718896 34132 2429415 2429415 0

twofish [30] 21018532 20944796 73736 32466778 32466778 0

tls-rempad-luk13 [19] 585945 95405 490540 846894 846894 0

findmax [40] 2593284 1926951 666333 3910999 3910999 0

binsearch [40] 76556 86159 9603 107105 107105 0

histogram [40] 5400615 5572615 172000 9679317 9679317 0

rsort [40] 2457558 3970219 1512661 23719489 23719489 0

hash-one [47] 863457 594401 269056 1672259 1672259 0

plain-many [47] 420241 43313709 42893468 286627044 286627044 0

check_password [20] 167113 81354 85759 446449 446449 0

xsalsa20_xor [45] 13194536 121603 13072933 17642213 17642213 0

process [45] 77706 78298 592 187394 187394 0

thinning_zs [26] 708776 102373 606403 1726690 1726690 0

hyphenate [26] 146883 79964 66919 517213 517213 0

rotate [26] 211958 280070 68112 16987167 16987167 0

sha256_bench [26] 210639 207399 3240 1036356 1036356 0

test [26] 163786 160720 3066 820504 820504 0

sha1_bench [26] 238139 235292 2847 2397430 2397430 0

5.2 RQ1: Effectiveness of WaSCR

To evaluate the effectiveness of WaSCR, we manually analyzed the

C/C++ source code and created two distinct inputs for each We-

bAssembly function, designed to trigger different execution paths

and resulting in varying execution times. For the real-world We-

bAssembly samples, randomly chosen inputs were utilized. For

each sample, we measured the CPU cycles of the WebAssembly

function executed within GEM5, both before and after applying

WaSCR, using the designed inputs. To isolate the influence of adap-

tive loop management and runtime environment, we warm up the

tested WebAssembly functions in advance with both inputs. This

pre-execution phase establishes consistent loop bounds, ensuring

reliable CPU cycle measurement.

Table 1 presents the results, showing that without WaSCR, the

CPU cycles for each sample vary between the two designed inputs,

indicating vulnerability to instruction-timing side-channel attacks.

In contrast, after applying WaSCR, such timing variances are elimi-

nated, thereby mitigating potential leaks from timing attacks.

RQ1 Takeaway:WaSCR effectively repairs instruction-timing side

channels, enhancing WebAssembly security against such leaks.

5.3 RQ2: Efficiency of the Repair Process

We measured the time WaSCR took to repair each WebAssembly

module, encompassing both leakage detection and code transfor-

mation phases. The results, averaged over ten repair executions,

are presented in Figure 9. Our findings show that WaSCR typically

completes repairs within a few seconds, demonstrating efficiency

for practical use.

de
s

hi
st

og
ra

m
xs

al
sa

20
_x

or

te
st

fin
dm

ax

pr
oc

es
s

rs
or

t

pl
ai

n-
m

an
y

ha
sh

-o
ne

tw
of

ish
sh

a2
56

_b
en

ch

th
in

ni
ng

_z
s

3w
ay

lo
ki

91

tls
-re

m
pa

d-
lu

k1
3

hy
ph

en
at

e
sh

a1
_b

en
ch

ro
ta

te
ch

ec
kp

as
s_

wo
rd

bi
ns

ea
rc

h

10 3

10 2

10 1

100

Re
pa

ir
Ti

m
e

(L
og

 S
ca

le
 in

 S
ec

on
ds

)

0.085

0.011

0.051
0.037

0.004

2.487

0.042

0.0160.018

1.320

0.489

0.020

0.0880.068

0.0270.026

0.158

0.049

0.0040.005

Figure 9: Program repair time of WaSCR

RQ2 Takeaway:WaSCR efficiently repairs the selected samples,

completing all tasks within a few seconds, thereby demonstrating

its practicality.

5.4 RQ3: Quality of the Repaired Programs

WaSCR introduces overhead due to code transformation, which

linearizes sensitive branches and manages loop bounds. We mea-

sured its overhead in terms of runtime performance and code size

increase to assess the quality of repaired programs.

Runtime overhead. To illustrate the runtime overhead introduced

by WaSCR, we calculated the ratio of the CPU cycles for each

WebAssembly module after applying WaSCR to the larger CPU

cycle count of the two inputs before fixing, as shown in Table 2.

The results indicate that WaSCR can introduce runtime overhead

through code transformation. We consider the overhead of most

samples to be acceptable, as branch linearization requires executing

additional paths not present in the original implementations. In

contrast, for some real-world WebAssembly modules, we mark

all elements as sensitive to reduce manual effort and demonstrate

the robustness of our approach without knowing each function’s

purpose. This forces all branches to be transformed and linearized,

resulting in higher overhead. For example, in the rotate sample, we

manually confirmed that it performs image rotation. Linearization

forces the program to handle all possible sizes and angles, leading

to an overhead increase of approximately 60×.

Code size increase.We compared the lines of code for each We-

bAssembly module before and after applying WaSCR, calculating

the ratio as presented in Table 2. The code size increase generally

aligns with the runtime overhead, which we also deem acceptable.

RQ3 Takeaway: WaSCR generally produces repaired programs of

good quality on most samples, balancing enhanced protection with

moderate performance and code size overhead.

6 Related Works

Instruction-timing Side-Channel Attacks and Mitigation. Nu-

merous studies have focused on detecting and mitigating timing

side-channel attacks. Geimer et al. [22] provide a comprehensive

survey of timing side-channel detectors. Many of these tools em-

ploy static verification methods, such as static taint analysis [15,

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Liyan Huang, Junzhou He, Chao Wang, and Weihang Wang

Table 2: Code size increase and runtime overhead

Program

Code Size
Runtime

OverheadLoC - Origin LoC - Repaired Overhead

des 1637 2510 1.41x 1.53x

loki91 1710 3508 5.43x 2.05x

3way 2345 3395 1.41x 1.45x

twofish 13765 22866 1.54x 1.66x

tls-rempad-luk13 195 504 1.44x 2.58x

findmax 205 348 1.51x 1.70x

binsearch 74 190 1.24x 2.57x

histogram 285 485 1.79x 1.70x

rsort 876 2320 5.97x 2.64x

hash-one 378 733 1.94x 1.94x

plain-many 322 1330 6.61x 4.13x

check_password 216 661 2.67x 3.06x

xsalsa20_xor 1211 2042 1.68x 1.33x

process 9172 10905 1.18x 2.39x

thinning_zs 346 787 2.27x 2.43x

hyphenate 529 997 1.88x 3.52x

rotate 748 5354 7.13x 60.6x

sha256_bench 4169 12930 3.10x 4.92x

test 1101 3978 2.67x 5.01x

sha1_bench 2165 11003 5.08x 10.06x

20, 47, 59], symbolic execution [19, 20], and other static meth-

ods [5, 6, 8, 42], to identify potential side channels in programs.

Another direction involves dynamic detection using techniques like

fuzzing [25, 37], statistical testing [41], etc. These approaches have

demonstrated effectiveness in side channel verification.

Linearizing sensitive branches through program transformation

is an effective method to eliminate instruction-timing side channels.

Wu et al. [59] applied static detection and constant-time selectors to

mitigate these leaks in C/C++ programs. As follow-upworks, Soares

et al. [48] extended this approach with additional bound checks

for memory safety, while Borrello et al. [12] utilized an adaptive

just-in-time strategy to handle loop iterations, which we follow in

our study. Under the Just-in-Time (JIT) environment, Cleemput et

al. [52] proposed a dynamic approach to repair the leaking code.

While these approaches effectively eliminate timing side chan-

nels in their respective contexts, they do not target WebAssembly-

specific side channels, which is the focus of our research. Moreover,

the dynamic side channel repair approach proposed by Cleemput

et al. [52] requires extensive profiling and runtime compiler modi-

fications, limiting its portability across platforms compared to our

static approach.

Side-Channel Attacks in WebAssembly. Despite incorporating

several security mechanisms, WebAssembly remains susceptible

to side-channel attacks [3, 27, 55, 56], particular instruction-timing

attacks, which continue to be a significant concern within the We-

bAssembly community. Current research mainly focuses on stati-

cally verifying the constant-time property of WebAssembly mod-

ules. For instance, Watt et al. [54] proposed CT-Wasm, an extension

of WebAssembly’s types and semantics to verify the constant-time

property concerning sensitive data. Tsoupidi et al. [51] employed

a Relational Symbolic Execution (RelSE) based approach to dis-

cover constant-time violations in WebAssembly modules. However,

these works require modifications to WebAssembly runtimes or

interpreters and do not provide automatic fixing for addressing po-

tential side channels. While other studies have explored protections

against microarchitecture side channels, such as cache attacks [14]

and speculative execution leaks [36, 53], they do not provide a

safeguard regarding instruction-timing side channels.

In contrast, our approach provides a platform-independent ap-

proach for automatic detection and repair of instruction-timing

side channels, effectively filling this gap in existing research.

7 Discussion

In this section, we discuss our current limitations and future direc-

tions to improve our work.

Imported Function Calls.WebAssembly modules can import and

execute external functions (e.g., JavaScript APIs), which may be

invoked within sensitive code branches. One potential solution

is to expand the trace path into these imported functions and in-

troduce an additional parameter to indicate whether the functions

should execute, allowing for behavior adjustments. However, imple-

menting this approach would require modifications to the runtime

environment, which is beyond the scope of our current work. We

have identified this as an area for future improvement.

Multidimensional Side Channels. Our work exclusively focuses

on WebAssembly instruction-timing side channels, while other

types of side-channel attacks, such as microarchitecture attacks,

are beyond our scope. This is because WebAssembly abstracts away

hardware details [24] and relies on runtimes to translateWebAssem-

bly into machine code, limiting the fine-grained control required

to address microarchitectural attacks at the language level. Addi-

tionally, the current WebAssembly specification does not mandate

the select instruction to be translated into constant-time machine

code (e.g., CMOV on x86 or ARM), thus WebAssembly runtimes could

implement this translation differently. Although our code inspec-

tions and GEM5 simulations confirm that today’s WebAssembly

runtimes typically provide this guarantee, ensuring this property

consistently would require collaboration with the WebAssembly

standardization committee to incorporate a constant-time require-

ment into the official specification. We consider this a potential

work for future research.

8 Conclusion

In this paper, we introduce WaSCR, an automated WebAssembly

instruction-timing side channel repairer. WaSCR employs static

code transformation to protect WebAssembly from timing side-

channel vulnerabilities. Through carefully designed leakage de-

tection and transformation rules, we achieve full linearization of

control flows, providing a robust and compatible approach that sup-

ports variousWebAssembly runtimes. We demonstrate that WaSCR

effectively mitigates instruction-timing side channels, achieving

moderate repair time and high repair quality.

Acknowledgments

We thank the anonymous reviewers for their constructive feedback.

This research was supported in part by the National Science Foun-

dation under grants 2409005, 2321444, and 2220345. Any opinions,

findings, and conclusions in this paper are those of the authors only

and do not necessarily reflect the views of our sponsors.

WaSCR : A WebAssembly Instruction-Timing Side Channel Repairer WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.

References

[1] [n. d.]. Emscripten: a complete open source LLVM-based compiler toolchain for

WebAssembly. https://emscripten.org

[2] 2024. WasmEdge Runtime. https://github.com/WasmEdge/WasmEdge. Accessed:

2024-10-07.

[3] Adservio. 2024. Memory Safety in WebAssembly. https://www.adservio.fr/post/

memory-safety-in-webassembly. Accessed: August 31, 2024.

[4] Bytecode Alliance. 2024. Wasmtime - A fast and secure runtime forWebAssembly.

https://github.com/bytecodealliance/wasmtime. Accessed: 2024-09-30.

[5] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and

Michael Emmi. 2016. Verifying Constant-Time Implementations. In 25th USENIX

Security Symposium (USENIX Security 16). USENIX Association, Austin, TX, 53–

70. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/almeida

[6] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent

Laporte, and Swarn Priya. 2022. Enforcing Fine-grained Constant-time Policies. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications

Security (Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery,

New York, NY, USA, 83–96. doi:10.1145/3548606.3560689

[7] Lars Ole Andersen. 1994. Program analysis and specialization for the C program-

ming language. (1994).

[8] J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Bárbara Vieira. 2013.

Formal verification of side-channel countermeasures using self-composition.

Science of Computer Programming 78, 7 (2013), 796–812. doi:10.1016/j.scico.2011.

10.008 Special section on Formal Methods for Industrial Critical Systems (FMICS

2009 + FMICS 2010) & Special section on Object-Oriented Programming and

Systems (OOPS 2009), a special track at the 24th ACM Symposium on Applied

Computing.

[9] George Balatsouras and Yannis Smaragdakis. 2016. Structure-Sensitive Points-

To Analysis for C and C++. In Sensors Applications Symposium. https://api.

semanticscholar.org/CorpusID:16346939

[10] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie.

2014. System-level Non-interference for Constant-time Cryptography. In Pro-

ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security (Scottsdale, Arizona, USA) (CCS ’14). Association for Computing Ma-

chinery, New York, NY, USA, 1267–1279. doi:10.1145/2660267.2660283

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit.

News 39, 2 (Aug. 2011), 1–7. doi:10.1145/2024716.2024718

[12] Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida.

2021. Constantine: Automatic Side-Channel Resistance Using Efficient Control

and Data Flow Linearization. In Proceedings of the 2021 ACM SIGSAC Conference

on Computer and Communications Security (CCS ’21). ACM. doi:10.1145/3460120.

3484583

[13] David Brumley and Dan Boneh. 2003. Remote Timing Attacks Are Practical.

In 12th USENIX Security Symposium (USENIX Security 03). USENIX Association,

Washington, D.C. https://www.usenix.org/conference/12th-usenix-security-

symposium/remote-timing-attacks-are-practical

[14] Javier Cabrera Arteaga, Orestis Floros, Oscar Vera Perez, Benoit Baudry, and

Martin Monperrus. 2021. CROW: Code Diversification for WebAssembly. In

Proceedings 2021 Workshop on Measurements, Attacks, and Defenses for the Web

(MADWeb 2021). Internet Society. doi:10.14722/madweb.2021.23004

[15] Luwei Cai, Fu Song, and Taolue Chen. 2024. Towards Efficient Verification

of Constant-Time Cryptographic Implementations. arXiv:2402.13506 [cs.CR]

https://arxiv.org/abs/2402.13506

[16] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. 2010. Side-Channel

Leaks in Web Applications: A Reality Today, a Challenge Tomorrow. In 2010 IEEE

Symposium on Security and Privacy. 191–206. doi:10.1109/SP.2010.20

[17] WebAssembly Community. 2023. Constant-Time Proposal Overview. https:

//github.com/WebAssembly/constant-time/blob/main/proposals/constant-

time/Overview.md Accessed: 2024-08-15.

[18] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.

2009. Practical Mitigations for Timing-Based Side-Channel Attacks on Modern

x86 Processors. In 2009 30th IEEE Symposium on Security and Privacy. 45–60.

doi:10.1109/SP.2009.19

[19] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2023. Binsec/Rel: Sym-

bolic binary analyzer for security with applications to constant-Time and

secret-erasure. ACM Transactions on Privacy and Security 26, 2 (2023), 11:1–

42. doi:10.1145/3563037

[20] Craig Disselkoen, Sunjay Cauligi, Dean Tullsen, and Deian Stefan. 2020. Finding

and eliminating timing side-channels in crypto code with pitchfork. In TECH-

CON.

[21] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The program

dependence graph and its use in optimization. ACM Trans. Program. Lang. Syst.

9, 3 (jul 1987), 319–349. doi:10.1145/24039.24041

[22] Antoine Geimer, Mathéo Vergnolle, Frédéric Recoules, Lesly-Ann Daniel,

Sébastien Bardin, and Clémentine Maurice. 2023. A Systematic Evaluation of

Automated Tools for Side-Channel Vulnerabilities Detection in Cryptographic

Libraries. arXiv:2310.08153 [cs.CR] https://arxiv.org/abs/2310.08153

[23] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. 2018. Drive-By

Key-Extraction Cache Attacks from Portable Code. In Applied Cryptography and

Network Security: 16th International Conference, ACNS 2018, Leuven, Belgium, July

2-4, 2018, Proceedings (Leuven, Belgium). Springer-Verlag, Berlin, Heidelberg,

83–102. doi:10.1007/978-3-319-93387-0_5

[24] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,

Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the

web up to speed with WebAssembly. SIGPLAN Not. 52, 6 (jun 2017), 185–200.

doi:10.1145/3140587.3062363

[25] Shaobo He, Michael Emmi, and Gabriela Ciocarlie. 2019. ct-fuzz: Fuzzing for

Timing Leaks. arXiv:1904.07280 [cs.SE] https://arxiv.org/abs/1904.07280

[26] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study of

Real-WorldWebAssembly Binaries: Security, Languages, Use Cases. In Proceedings

of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for

Computing Machinery, New York, NY, USA, 2696–2708. doi:10.1145/3442381.

3450138

[27] Minseo Kim, Hyerean Jang, and Youngjoo Shin. 2022. Avengers, Assemble! Survey

of WebAssembly Security Solutions. In 2022 IEEE 15th International Conference

on Cloud Computing (CLOUD). 543–553. doi:10.1109/CLOUD55607.2022.00077

[28] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything old is

new again: binary security of webassembly. In Proceedings of the 29th USENIX

Conference on Security Symposium (SEC’20). USENIX Association, USA, Article

13, 18 pages.

[29] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,

and Ruby B. Lee. 2016. CATalyst: Defeating last-level cache side channel attacks

in cloud computing. In 2016 IEEE International Symposium on High Performance

Computer Architecture (HPCA). 406–418. doi:10.1109/HPCA.2016.7446082

[30] Jack Lloyd and the Botan contributors. 2023. Botan: Crypto and TLS for Modern

C++. https://github.com/randombit/botan. Accessed: October 6, 2023.

[31] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico

Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,

Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues

Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Di-

estelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-

Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas

Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,

Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza

Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias

Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Kr-

ishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto,

Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris,

Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,

Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D.

Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish,

Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian

Weis, David A. Wood, Hongil Yoon, and Éder F. Zulian. 2020. The gem5 Simulator:

Version 20.0+. arXiv:2007.03152 [cs.AR] https://arxiv.org/abs/2007.03152

[32] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative Execution

Using Return Stack Buffers. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security (Toronto, Canada) (CCS ’18). Association

for Computing Machinery, New York, NY, USA, 2109–2122. doi:10.1145/3243734.

3243761

[33] JudyMcConnell. 2019. WebAssembly support now shipping in all major browsers.

https://blog.mozilla.org/blog/2017/11/13/webassembly-inbrowsers/. Accessed:

2024-08-27.

[34] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. 2005. The

Program Counter Security Model: Automatic Detection and Removal of Control-

Flow Side Channel Attacks. USENIX Association, Baltimore, MD.

[35] Keaton Mowery, Sriram Keelveedhi, and Hovav Shacham. 2012. Are AES x86

cache timing attacks still feasible?. In Proceedings of the 2012 ACM Workshop on

Cloud Computing Security Workshop (Raleigh, North Carolina, USA) (CCSW ’12).

Association for Computing Machinery, New York, NY, USA, 19–24. doi:10.1145/

2381913.2381917

[36] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan John-

son, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean

Tullsen, and Deian Stefan. 2021. Swivel: HardeningWebAssembly against Spectre.

arXiv:2102.12730 [cs.CR]

[37] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. 2019. DifFuzz: Differ-

ential Fuzzing for Side-Channel Analysis. In 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE). 176–187. doi:10.1109/ICSE.2019.00034

[38] OpenAI. 2021. ChatGPT: OpenAI’s Conversational AI. https://openai.com/

chatgpt Accessed: 2024-02-27.

[39] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. 2007. Efficient field-sensitive

pointer analysis of C. ACM Trans. Program. Lang. Syst. 30, 1 (nov 2007), 4–es.

https://emscripten.org
https://github.com/WasmEdge/WasmEdge
https://www.adservio.fr/post/memory-safety-in-webassembly
https://www.adservio.fr/post/memory-safety-in-webassembly
https://github.com/bytecodealliance/wasmtime
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1145/3548606.3560689
https://doi.org/10.1016/j.scico.2011.10.008
https://doi.org/10.1016/j.scico.2011.10.008
https://api.semanticscholar.org/CorpusID:16346939
https://api.semanticscholar.org/CorpusID:16346939
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3460120.3484583
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://doi.org/10.14722/madweb.2021.23004
https://arxiv.org/abs/2402.13506
https://arxiv.org/abs/2402.13506
https://doi.org/10.1109/SP.2010.20
https://github.com/WebAssembly/constant-time/blob/main/proposals/constant-time/Overview.md
https://github.com/WebAssembly/constant-time/blob/main/proposals/constant-time/Overview.md
https://github.com/WebAssembly/constant-time/blob/main/proposals/constant-time/Overview.md
https://doi.org/10.1109/SP.2009.19
https://doi.org/10.1145/3563037
https://doi.org/10.1145/24039.24041
https://arxiv.org/abs/2310.08153
https://arxiv.org/abs/2310.08153
https://doi.org/10.1007/978-3-319-93387-0_5
https://doi.org/10.1145/3140587.3062363
https://arxiv.org/abs/1904.07280
https://arxiv.org/abs/1904.07280
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1109/CLOUD55607.2022.00077
https://doi.org/10.1109/HPCA.2016.7446082
https://github.com/randombit/botan
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3243734.3243761
https://blog.mozilla.org/blog/2017/11/13/webassembly-inbrowsers/
https://doi.org/10.1145/2381913.2381917
https://doi.org/10.1145/2381913.2381917
https://arxiv.org/abs/2102.12730
https://doi.org/10.1109/ICSE.2019.00034
https://openai.com/chatgpt
https://openai.com/chatgpt

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Liyan Huang, Junzhou He, Chao Wang, and Weihang Wang

doi:10.1145/1290520.1290524

[40] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital

Side-Channels through Obfuscated Execution. In 24th USENIX Security Sym-

posium (USENIX Security 15). USENIX Association, Washington, D.C., 431–

446. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/

presentation/rane

[41] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. 2016. Dude, is my code

constant time? Cryptology ePrint Archive, Paper 2016/1123. https://eprint.iacr.

org/2016/1123 https://eprint.iacr.org/2016/1123.

[42] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha. 2016.

Sparse representation of implicit flowswith applications to side-channel detection.

In Proceedings of the 25th International Conference on Compiler Construction

(Barcelona, Spain) (CC 2016). Association for Computing Machinery, New York,

NY, USA, 110–120. doi:10.1145/2892208.2892230

[43] Thomas Rokicki, Clémentine Maurice, Marina Botvinnik, and Yossi Oren. 2022.

Port Contention Goes Portable: Port Contention Side Channels in Web Browsers.

In Proceedings of the 2022 ACM on Asia Conference on Computer and Communi-

cations Security (Nagasaki, Japan) (ASIA CCS ’22). Association for Computing

Machinery, New York, NY, USA, 1182–1194. doi:10.1145/3488932.3517411

[44] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2022. An empiri-

cal study of bugs in webassembly compilers. In Proceedings of the 36th IEEE/ACM

International Conference on Automated Software Engineering (Melbourne, Aus-

tralia) (ASE ’21). IEEE Press, 42–54. doi:10.1109/ASE51524.2021.9678776

[45] Alan Romano and Weihang Wang. 2023. Automated WebAssembly Function

Purpose IdentificationWith Semantics-Aware Analysis. In Proceedings of the ACM

Web Conference 2023 (Austin, TX, USA) (WWW ’23). Association for Computing

Machinery, New York, NY, USA, 2885–2894. doi:10.1145/3543507.3583235

[46] Bruce Schneier. 2007. Applied cryptography: protocols, algorithms, and source code

in C. john wiley & sons.

[47] Luigi Soares, Michael Canesche, and Fernando Magno Quintão Pereira. 2023.

Side-channel Elimination via Partial Control-flow Linearization. ACM Trans.

Program. Lang. Syst. 45, 2, Article 13 (jun 2023), 43 pages. doi:10.1145/3594736

[48] Luigi Soares and Fernando Magno Quintãn Pereira. 2021. Memory-Safe Elimina-

tion of Side Channels. In 2021 IEEE/ACM International Symposium on Code Gen-

eration and Optimization (CGO). 200–210. doi:10.1109/CGO51591.2021.9370305

[49] Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings

of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (St. Petersburg Beach, Florida, USA) (POPL ’96). Association for Com-

puting Machinery, New York, NY, USA, 32–41. doi:10.1145/237721.237727

[50] The Chromium Project. 2024. V8 JavaScript Engine. https://v8.dev. Accessed:

2024-08-19.

[51] RodotheaMyrsini Tsoupidi, Musard Balliu, and Benoit Baudry. 2021. Vivienne: Re-

lational Verification of Cryptographic Implementations in WebAssembly. In 2021

IEEE Secure Development Conference (SecDev). 94–102. doi:10.1109/SecDev51306.

2021.00029

[52] Jeroen Van Cleemput, Bjorn De Sutter, and Koen De Bosschere. 2020. Adaptive

Compiler Strategies for Mitigating Timing Side Channel Attacks. IEEE Transac-

tions on Dependable and Secure Computing 17, 1 (2020), 35–49. doi:10.1109/TDSC.

2017.2729549

[53] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,

Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan. 2021. Automat-

ically eliminating speculative leaks from cryptographic code with blade. Proc.

ACM Program. Lang. 5, POPL, Article 49 (jan 2021), 30 pages. doi:10.1145/3434330

[54] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Ste-

fan. 2019. CT-wasm: type-driven secure cryptography for the web ecosystem.

Proceedings of the ACM on Programming Languages 3, POPL (Jan. 2019), 1–29.

doi:10.1145/3290390

[55] WebAssembly Community. [n. d.]. Security Considerations for WebAssembly.

https://webassembly.org/docs/security/.

[56] WebAssembly Community. 2022. Discussion on WASI-Crypto’s API design.

https://github.com/WebAssembly/wasi-crypto/issues/21. Accessed: 2023-09-25.

[57] WebAssembly Community. 2024. WABT: The WebAssembly Binary Toolkit.

https://github.com/WebAssembly/wabt. Accessed: 2024-03-28.

[58] WebAssembly Community Group. 2024. WebAssembly Specification. https:

//webassembly.github.io/spec/core/intro/introduction.html. Accessed: 2024-08-

31.

[59] MengWu, Shengjian Guo, Patrick Schaumont, and ChaoWang. 2018. Eliminating

timing side-channel leaks using program repair. In Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,

Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY,

USA, 15–26. doi:10.1145/3213846.3213851

Appendix

1 i32.const 11
2 i32.const 7
3 local.get $p
4 ;; select 7 if $p is false,

↩→ otherwise select 11
5 select

(a) select in WebAssembly

1 movl rcx,0x7
2 movl rdx,0xb
3 # test the condition:
4 testl rax,rax
5 # conditional move:
6 cmovzl rdx,rcx

(b) select in x86-64 code

Figure 10: Example of the WebAssembly select instruction

Algorithm 1: Sound Static Taint Analysis

Input: sensitive node list S, conservative option op
let stack = S
while stack is not empty do

let s = stack.top()
stack.pop()
if op is true and s represents a newly traced function F then

push all memory load instructions in F to stack
end

forall s’ is data/control dependent on s do

if s’ was pushed into stack then

continue

end

stack.push(s’)
if s’ is a conditional branch instruction then

mark the corresponding block as requiring program repair

end

end

end

Table 3: Basic store & set transformation rules

Operations Original Instructions Repaired Version

Variable set

local.get $cond
if

...
local.set $p

end

local.set $temp
local.get $p
local.get $temp
local.get $cond
select
local.set $p

Memory store

local.get $cond
if

...
local.get $addr
local.get $val
i32.store

end

local.get $addr
i32.load
local.set $prev_val
local.get $addr
local.get $prev_val
local.get $val
select
i32.store

1 block $B1
2 loop $L2
3 local.get $loop_cond
4 br_if $B1
5 local.get $break_cond
6 br_if $B1
7 ...
8 end
9 end

(a) Loop in WebAssembly

1 for(int i=0; i<L; i++){
2 if (break_cond) {
3 break;
4 }
5 }

(b) Loop in C

Figure 11: Loop structure in WebAssembly v.s. C

https://doi.org/10.1145/1290520.1290524
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://eprint.iacr.org/2016/1123
https://eprint.iacr.org/2016/1123
https://eprint.iacr.org/2016/1123
https://doi.org/10.1145/2892208.2892230
https://doi.org/10.1145/3488932.3517411
https://doi.org/10.1109/ASE51524.2021.9678776
https://doi.org/10.1145/3543507.3583235
https://doi.org/10.1145/3594736
https://doi.org/10.1109/CGO51591.2021.9370305
https://doi.org/10.1145/237721.237727
https://v8.dev
https://doi.org/10.1109/SecDev51306.2021.00029
https://doi.org/10.1109/SecDev51306.2021.00029
https://doi.org/10.1109/TDSC.2017.2729549
https://doi.org/10.1109/TDSC.2017.2729549
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3290390
https://webassembly.org/docs/security/
https://github.com/WebAssembly/wasi-crypto/issues/21
https://github.com/WebAssembly/wabt
https://webassembly.github.io/spec/core/intro/introduction.html
https://webassembly.github.io/spec/core/intro/introduction.html
https://doi.org/10.1145/3213846.3213851

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 WebAssembly
	2.2 Instruction-Timing Side Channels
	2.3 Repair with Constant-Time Selectors

	3 Threat Model
	4 Design of WaSCR
	4.1 Leakage Detection
	4.2 Rule-based Code Transformation
	4.3 Correctness Analysis

	5 Evaluation
	5.1 Experiment Setup
	5.2 RQ1: Effectiveness of WaSCR
	5.3 RQ2: Efficiency of the Repair Process
	5.4 RQ3: Quality of the Repaired Programs

	6 Related Works
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

