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Abstract. We propose a trace-based symbolic method for analyzing
cache side channels of a program under a CPU-level optimization called
out-of-order execution (OOE). The method is predictive in that it takes
the in-order execution trace as input and then analyzes all possible out-
of-order executions of the same set of instructions to check if any of them
leaks sensitive information of the program. The method has two impor-
tant properties. The first one is accurately analyzing cache behaviors of
the program execution under OOE, which is largely overlooked by ex-
isting methods for side-channel verification. The second one is efficiently
analyzing the cache behaviors using an SMT solver based symbolic tech-
nique, to avoid explicitly enumerating a large number of out-of-order
executions. Our experimental evaluation on C programs that implement
cryptographic algorithms shows that the symbolic method is effective in
detecting OOE-related leaks and, at the same time, is significantly more
scalable than explicit enumeration.

Keywords: program analysis · out-of-order execution · side channel ·
SMT solver

1 Introduction

There has been growing interest in recent years in detecting side-channel leaks in
software using automated program analysis and verification techniques, due to
the increased awareness of the threat of real-world side-channel attacks [4,15,18].
These are side-channel attacks because they exploit dependencies between sensi-
tive information of the program and non-functional properties of the computing
platform, including cache-related timing variations caused by CPU-level opti-
mizations such as pipelining and branch prediction. While there are existing
methods for detecting these side channels based on static analysis [6,28,31] and
symbolic execution [3, 10–12, 29], they do not accurately model an important
CPU-level optimization called out-of-order execution (OOE).

Out-of-order execution is widely adopted by modern CPUs. It is possible for
a program to be free of side-channel leaks when instructions are executed in
the program order but have leaks when they are executed out of order. Here,
the program order refers to the order in which instructions appear in the pro-
gram. However, modeling out-of-order execution during program analysis is a
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Fig. 1. Spreca – symbolic predictive analysis for out-of-order execution.

challenging task due to the inherently large number of possible scenarios that
must be considered. Generally speaking, instructions within a fixed window (an
imaginary window used to model the effect of hardware features including the
reorder buffer, issue queue, and load-store queue) may be executed in any order
as long as it respects the semantics of the program. Thus, given N instructions,
the number of possible execution orders can be as large as O(N !). Since it is
practically intractable to examine these execution orders individually, existing
methods had to choose from the following two undesired outcomes: if they over-
approximate, they may report bogus leaks since some infeasible execution orders
will be included; but if they under-approximate, they may miss real leaks since
some feasible execution orders will be excluded.

To solve the aforementioned problem, we propose a trace-based symbolic pre-
dictive analysis to accurately and efficiently analyze the OOE related cache
behaviors. Here, accurately means that our method does not over- or under-
approximate the OOE behaviors but precisely encodes these behaviors as a set
of logical constraints; efficiently means that our method avoids enumerating the
out-of-order executions explicitly to avoid the exponential blowup; instead it
leverages an off-the-shelf SMT solver to conduct a symbolic analysis of the log-
ical constraints. Our method is predictive in that, given an in-order execution
trace of the program, it analyzes the cache behaviors of all out-of-order exe-
cutions of the instructions that appeared in the in-order execution, instead of
executing them.

Fig. 1 shows the overall flow of our method, named Spreca, which takes an
annotated C program as input; the annotation marks program inputs as either
public or private (secret). Internally, our method has three steps. In the first
step, it utilizes the LLVM compiler to parse the C program, compute the program
dependencies, and use the information to instrument the LLVM bit-code. The
instrumented program, at run time, can generate the in-order execution trace.
In the second step, our method encodes the set of all possible OOE related
cache behaviors as a set of logical constraints, to be solved by an off-the-shelf
SMT solver. In the third step, our method checks if there are secret-dependent
divergent cache behaviors, e.g., an out-of-order execution causing a cache hit for
one value of the secret variable but a cache miss for another value of the secret
variable.
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The main contribution of our work is symbolically modeling the OOE related
cache behaviors accurately and efficiently. We design the SMT encoding (to be
presented in Section 5) carefully to make it compact. For example, a straightfor-
ward encoding of all possible permutations of N instructions would lead to an
SMT formula of size O(N3), since any instruction may have any other instruc-
tion as its predecessor and, as a result, the update function must be encoded
for each predecessor’s cache state and the current cache state. Our method, in
contrast, avoids most of these update functions by leveraging the program de-
pendency relations recorded in the in-order execution trace to prune away the
infeasible permutations.

Our method differs significantly from the method of Guo et al. [10,11] based
on symbolic execution. While their method also uses symbolic analysis, they
only made the program input symbolic, whereas the out-of-order executions are
still enumerated explicitly (this is evident based on their use of a technique
designed for speeding up explicit enumeration, called partial order reduction).
In other words, for each out-of-order execution, they had to generate an SMT
formula to check if it has divergent cache behaviors; as a result, they did not
avoid the exponential blowup. In contrast, our method generates a single SMT
formula to encode all possible out-of-order executions associated with the in-
order execution. In addition to being more efficient, our single-formula based
encoding can be more easily adapted to model other CPU-level optimizations
by slightly modifying how dependencies are encoded as logical constraints.

We have implemented our method in a software tool by leveraging the open-
source LLVM compiler [17] and the Z3 SMT solver [19]. Specifically, we use
LLVM to parse the C program, compute the program dependencies, and instru-
ment the bit-code, to generate the in-order execution trace at run time. We use
Z3 to implement symbolic analysis of the out-of-order executions. We evaluated
our method on a set of C programs from OpenSSL that implement well-known
block ciphers and cryptographic hash functions. The experimental results show
that our method, by accurately modeling the OOE related cache behaviors, can
detect OOE-related side-channel leaks that otherwise would have been missed.
The results also show that our SMT solver-based symbolic analysis is signifi-
cantly more scalable than explicit enumeration.

To summarize, this paper makes the following contributions:

– We propose a trace-based symbolic predictive analysis for detecting OOE
related cache side-channel leaks.

– We rely on an off-the-shelf SMT solver to accurately and efficiently analyze
the out-of-order executions associated with an in-order execution trace.

– We demonstrate the effectiveness of our method on C programs from an
open-source library that implements well-known cryptographic algorithms.

The remainder of this paper is organized as follows. First, we motivate our
work using examples in Section 2. Then, we provide the technical background
in Section 3. Next, we present our method in Sections 4 and 5, followed by
the experimental results in Section 6. We review the related work in Section 7.
Finally, we give our conclusions in Section 8.
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2 Motivation

In this section, we use examples to illustrate the cache behaviors of the in-order
execution and an out-of-order execution. We also explain the high-level idea of
our trace-based symbolic analysis.

2.1 The Example Program

Fig. 2 shows the code snippet which, for ease of presentation, is written in
a mixture of C and simplified assembly language. Here, assume i ∈ {0, 1, 2}
is a secret variable and each array element A[i] occupies 4 bytes in memory.
Furthermore, while our method handles realistic cache size and configurations,
in this motivating example, we assume the cache has only one set, consisting of
3 cache lines, with each cache line holding only 4 bytes. We assume the cache
is fully associative, and uses the LRU (least recently used) replacement policy.
Under these assumptions, each array element A[i] occupies an entire cache line.

1 load A[0];

2 load A[1];

3 load A[2];

4 store A[i]; /* Can the secret value i affect the cache behavior? */

5 load B;

Fig. 2. An example program where the value of i is a secret.

2.2 The Execution Order

The order in which instructions are written in a program is called the program
order. During the in-order execution, instructions are executed according to their
program order. Without loss of generality, we assume that there are two types
of instructions: memory-related instructions such as Load and Store, and non-
memory-related instructions, such as ALU and branch instructions. As far as
this work is concerned, our focus is on memory-related instructions because
non-memory instructions do not affect cache behavior 1.

Fig. 3 compares the in-order execution on the left with a possible out-of-
order execution on the right. The out-of-order execution is a permutation of
instructions of the in-order execution that, at the same time, must respect the
semantics of the original program. In both of these two execution traces, each row
represents an instruction and its associated memory address. Note that while a
program may have if-else statements and thus multiple paths, an execution trace
corresponds to only one program path.

1 Non-memory instructions may impose ordering constraints over memory-related in-
structions. These constraints are computed by our method, and used to constrain
the analysis of out-of-order executions; details are in Section 4.
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1 In-order Out-of-order

2 I1: load 0x77ef5bd0 /*A[0]*/ || I1: load 0x77ef5bd0 /*A[0]*/

3 I2: load 0x77ef5bd4 /*A[1]*/ || I2: load 0x77ef5bd4 /*A[1]*/

4 I3: load 0x77ef5bd8 /*A[2]*/ || I3: load 0x77ef5bd8 /*A[2]*/

5 I4: store 0x77ef5bd0,... /*A[i]*/ || I5: load 0x77ef5bdc /*B */

6 I5: load 0x77ef5bdc /*B */ || I4: store 0x77ef5bd0,... /*A[i]*/

Fig. 3. Two execution orders of the example program in Fig. 2.

2.3 The Cache State

Given a program execution, regardless of whether it is the in-order execution
or one of the out-of-order executions, it is straightforward to compute changes
of the cache state at each step. The cache state of our running example can be
defined as a tuple S = 〈Age(A[0]), Age(A[1]), Age(A[2]), Age(B)〉, consisting
of the ages of cache lines associated with the four program variables. Since we
assume that the cache holds at most 3 variables (lines) at any moment if a
variable is inside the cache, its age must be 0, 1, or 2; and if it is evicted from
the cache, its age must be 3. Initially, the cache state is S0 = 〈−1,−1,−1,−1〉,
where -1 is a special symbol meaning it is not loaded into cache yet.

In-Order Cache Behavior As shown in Fig. 4 for the in-order execution, execut-
ing the first instruction load A[0] changes the cache state to SI1 = 〈0,−1,−1,−1〉
from S0, where SI1 is the cache state after executing I1. That is, variable A[0]
now occupies the youngest cache line. Similarly, after executing the first three
instructions, the cache state becomes SI3 = 〈2, 1, 0,−1〉, meaning that A[2] oc-
cupies the youngest cache line and A[0] occupies the oldest cache line. Thus,
executing the instruction store A[i] results in a cache hit regardless of whether
i = 0, 1, or 2. At this moment, the age of variable B remains -1 since it has not
yet been loaded to the cache.

1 In-order (for i==1) In-order (for i==0)

2 SI1
= 〈 0,-1,-1,-1〉 /*A[0] ColdMiss*/ || SI1

= 〈 0,-1,-1,-1〉 /*A[0] ColdMiss*/

3 SI2
= 〈 1, 0,-1,-1〉 /*A[1] ColdMiss*/ || SI2

= 〈 1, 0,-1,-1〉 /*A[1] ColdMiss*/

4 SI3
= 〈 2, 1, 0,-1〉 /*A[2] ColdMiss*/ || SI3

= 〈 2, 1, 0,-1〉 /*A[2] ColdMiss*/

5 SI4
= 〈 2, 0, 1,-1〉 /*A[i] Hit */ || SI4

= 〈 0, 2, 1,-1〉 /*A[i] Hit */

6 SI5
= 〈 3, 1, 2, 0〉 /*B ColdMiss*/ || SI5

= 〈 1, 3, 2, 0〉 /*B ColdMiss*/

Fig. 4. Cache behavior of the in-order execution does not depend on the secret value
i; that is, for all i = 0, 1, 2, accessing A[i] results in a cache hit.

Out-of-Order Cache Behavior There can be many out-of-order executions, or
permutations of instructions, corresponding to an in-order execution. While they
must preserve the semantics of the in-order execution, they do not have to pre-
serve its cache behavior. Thus, even if the in-order execution does not have
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divergent cache behaviors (with respect to a secret variable), one of the out-of-
order executions may have divergent cache behaviors. As shown in Fig. 5 for this
particular out-of-order execution that reorders store A[i] and load B, when
i 6= 0, accessing A[i] results in a cache hit, but when i = 0, it results in a cache
miss.

1 Out-of-order (for i==1) Out-of-order (for i==0)

2 SI1
’= 〈 0,-1,-1,-1〉 /*A[0] ColdMiss*/ || SI1

’= 〈 0,-1,-1,-1〉 /*A[0] ColdMiss*/

3 SI2
’= 〈 1, 0,-1,-1〉 /*A[1] ColdMiss*/ || SI2

’= 〈 1, 0,-1,-1〉 /*A[1] ColdMiss*/

4 SI3
’= 〈 2, 1, 0,-1〉 /*A[2] ColdMiss*/ || SI3

’= 〈 2, 1, 0,-1〉 /*A[2] ColdMiss*/

5 SI5
’= 〈 3, 2, 1, 0〉 /*B ColdMiss*/ || SI5

’= 〈 3, 2, 1, 0〉 /*B ColdMiss*/

6 SI4
’= 〈 3, 0, 2, 1〉 /*A[i] Hit */ || SI4

’= 〈 0, 3, 2, 1〉 /*A[i] Miss */

Fig. 5. Cache behavior of the out-of-order execution depends on the secret value i;
that is, accessing A[i] results in a cache hit when i 6= 0 but a cache miss when i = 0.

2.4 The Side-channel Leak

Whenever the cache behavior of an execution (regardless of whether it is the
in-order execution or an out-of-order execution) depends on the value of a secret
variable, it is called a side-channel leak. This is a security risk because, in modern
CPUs, a cache hit only takes 1-3 CPU cycles whereas a cache miss may take
up to a hundred CPU cycles. By observing the difference in the execution time
of a victim program, the attacker may be able to deduce a certain amount of
information about the secret.

In our running example, since store A[i] is dependent on the value of the
secret variable i, we need to check if executing store A[i] leads to divergent
cache behaviors. During the in-order execution, the answer is no, since it results
in a cache hit for all i = 0, 1, and 2. Thus, the in-order execution has no side-
channel leak. During one of the out-of-order executions, however, the answer is
yes, since it results in a cache hit for some value of i but a cache miss for some
other value of i. Thus, the out-of-order execution has a leak.

Generally speaking, there are two types of side-channel analysis techniques:
approximate and accurate. While over- or under-approximation may be fast,
it leads to poor results, i.e., reporting bogus leaks or missing real leaks. Thus,
we are only concerned with accurate analysis techniques. In this context, while
it is possible to examine each individual out-of-order execution, it will lead to
exponential blowup. Our method, in contrast, encodes the cache behaviors of all
out-of-order executions in a single logical formula. The formula is then solved
using an efficient, off-the-shelf SMT solver to avoid an exponential blowup.

3 Preliminaries

In this section, we present the technical background related to our analysis of
the out-of-order executions and divergent cache behaviors.
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Fig. 6. The instruction window and the different execution orders.

3.1 The Execution Model

Recall that modern CPUs may execute instructions of a program in any order as
long as the end result remains the same. The default order is the program order,
i.e., the order in which instructions appear in the program. For performance
reasons, however, the CPU does not always follow the program order, because
some instructions may be significantly slower than others and, instead of waiting
for the slower instructions to complete, the CPU may choose to execute some
subsequent instructions as long as the program semantics is preserved.

Instruction Window As shown in Fig. 6, we use an imaginary instruction window
to abstract the behavior of various hardware components inside the CPU for
supporting out-of-order execution. The size of this instruction window depends
on the CPU, including but not limited to the sizes of its reorder buffer, issue
queue, and load-store queue. For this work, however, there is no need to delve into
the hardware details. Instead, it suffices to assume that within this imaginary
window of N instructions, the CPU may choose any execution order as long as
the end result remains the same.

Data Hazards To make sure that the end result remains the same, only the out-
of-order executions that respect the data dependencies of the original program
are allowed. In the computer architecture literature, violations of such depen-
dencies are called hazards. Specifically, there are three types of hazards, named
RAW (read after write), WAR (write after read), and WAW (write after read),
respectively. It is worth noting that RAR (read after read) is not a hazard.

3.2 The Cache Model

Without loss of generality, we assume the cache has K cache lines in total and
each cache line has 64 bytes. The cache lines are further divided into M sets,
which means each set has (K/M) cache lines. The memory is also divided into
64-byte blocks, each of which is mapped to a unique set. Within the same set,
however, the 64-byte block may occupy any of the cache lines. Thus, within the
set, it is called fully associative; overall, the entire cache is called set associative.
In this context, a fully associative cache is a special case (K-way set associative),
while a direct mapped cache is another special case (1-way set associative).
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The Cache State The cache state is a tuple SI = 〈Age(v1), . . . , Age(vn)〉, where
each vi ∈ V ars (1 ≤ i ≤ n) is a variable in the program, and Age(vi) is the
age of the cache line associated with vi. V ars is the set of all variables. Here,
we use the subscript in SI to indicate that it is the cache state resulting from
executing the instruction I. Assume that K is the number of cache lines in a
set. The domain of Age(vi) is {0, 1, . . . ,K,−1}, where an age from 0 to K − 1
means the variable is inside the cache, while K means the variable is evicted
from cache and −1 means it has never been loaded into cache.

We assume that the cache uses the LRU (least recently used) replacement
policy. Given a cache state SI and an instruction I ′, the new cache state SI′

is computed by the Update(SI , I
′) function. Assuming that v ∈ V ars is the

variable used by the instruction I ′, u1 ∈ V ars is another variable whose age was
younger than v in SI , and u2 ∈ V ars is yet another variable whose age was older
than v in SI , we compute the new cache state SI′ = 〈Age′(v1), . . . , Age′(vn)〉 as
follows:

– Age′(v) = 0;
– Age′(u1) = Age(u1) + 1;
– Age′(u2) = Age(u2).

That is, the most recently used variable (v) occupies the youngest cache line,
any variable (u1) whose age was younger than v in SI increases its age by 1, and
any variable (u2) whose age was older than v in SI keeps its age unchanged.

3.3 The Side-channel Leak Condition

Whenever there is a dependency between the secret and some divergent cache
behaviors of an execution, there is a side-channel leak. Thus, there are two re-
quirements. First, there must be divergent cache behaviors, i.e., memory-related
instruction causing a cache miss for some input value but a cache hit for some
other input value. Second, the input value causing divergent cache behaviors
must be a secret, e.g., a password, security token, or cryptographic key.

Thus, the side-channel leak condition can be defined as follows:

∃ E, I, v1, v2 . CacheStatus(E, I, v1) 6= CacheStatus(E, I, v2)

Here, E denotes an execution, and I ∈ E is an instruction in E; v1 and v2 are two
values of a secret variable vs ∈ V ars; and CacheStatus(E, I, vs) is a function
that returns the cache status (hit or miss) when instruction I is executed in E
using vs.

4 Analyzing the In-Order Execution

In this section, we present our method for generating, and then analyzing the
in-order execution trace. There are two tasks. The first one is to compute the
dependencies of memory-related instructions. The second one is to compute the
default cache states. Both the dependencies and the default cache states will be
used during our symbolic analysis of the out-of-order executions.
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4.1 Computing the Dependencies

There are two types of dependencies associated with the in-order execution of a
program: explicit dependencies and implicit dependencies.

Explicit Dependencies Explicit dependencies refer to data conflicts that can be
directly observed during the execution, by looking at the actual addresses of
memory blocks used by the instructions at run time. Consider the in-order ex-
ecution example in Fig. 3 (left). Since both instructions I4 and I1 access the
memory block at the address 0x77ef5bd0, and at least one of them is a store

operation, these two instructions have an explicit dependency; that is, they can-
not be reordered during out-of-order.

1 load r1 A[0] /*LD A[0]*/

2 mul r1 5 /* */

3 add r2 r1 /* */

4 mov r3 r2 /* */

5 ...

6 store A[1] r2 /*ST A[1]*/

Fig. 7. Example implicit dependency that cannot be observed in the execution trace.

Implicit Dependencies Implicit dependencies, on the other hand, refer to data
conflicts that cannot be directly observed during the in-order execution. Fig. 7
shows an example. The code snippet shows that store A[1] is dependent on
load A[0], through the def-use chain of (register) variables r1-r3. Since non-
memory instructions (mul, add, mov in this example) do not show up in the
logged execution trace, their constraints on the memory instructions would have
been lost if we do not compute and record them explicitly into the execution
trace.

In our method, we compute the implicit dependencies by statically analyzing
the LLVM bit-code of the program before instrumenting the bit-code to add
self-logging capabilities. Then, we execute the instrumented code to obtain the
trace. As a result, the implicit dependencies will be captured in the execution
trace as a special relation (DEPsta). Static program analysis has a global view
of the program and thus is well suited for computing the implicit dependencies.
Inside LLVM, the bit-code is represented in a Single Static Assignment (SSA)
format, meaning each variable is defined only once, which makes it possible to
efficiently compute the implicit dependencies [20].

In addition to the implicit dependencies (DEPsta) computed by static anal-
ysis, we also compute the explicit dependencies (DEPdyn) based on the actual
addresses appeared in the execution trace: for each memory address, instruc-
tions that use the address are checked to see if they have data hazards (RAW,
WAR, or WAW). For instructions that have data hazards, their relative execu-
tion order during in-order execution cannot be violated; otherwise, the original
program semantics may be changed.
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Given both the statically computed DEPsta and the dynamically computed
DEPdyn, we compute their transitive closure to obtain DEP = (DEPsta ∪
DEPdyn)∗, which represents the complete set of dependency constraints that
must be respected at all time, to ensure that the out-of-order executions exam-
ined by our symbolic analysis are feasible.

The fact that static analysis is conservative in nature will not affect the
correctness of our subsequent symbolic analysis. Since not all memory-addressing
instructions can be statically resolved, as shown by the example instruction
store A[i] in Fig. 2, static analysis may soundly over-approximate the possible
dependencies of memory-related instructions. This is not a problem because it
guarantees that, as long as two instructions are marked as independent, it is
always safe to reorder these instructions during out-of-order execution. This is
crucial for ensuring that leaks detected by our method are feasible.

4.2 Computing the Default Cache States

Given the in-order execution trace, we perform an in-order simulation to compute
the default cache states, which will be used during our symbolic analysis of the
out-of-order executions.

We regard the in-order execution trace as a sequence of instructions Tino =
{I1, . . . , In}. The type of each instruction may be Load, Store, Symbolic Load,
or Symbolic Store. Each Load/Store instruction is associated with an actual
memory address. Each Symbolic Load/Store instruction is associated with a
range of addresses that it may use.

Starting with an initial cache state S0, we compute the sequence of cache
states Tcache = {S0, SI1 . . . , SIn} using the update function defined in Sec-
tion 3.2. While the update function in Section 3.2 uses the LRU replacement
policy, other cache replacement policies can also be implemented easily.

The result of in-order simulation will be given to our symbolic analysis, to
examine the set of all possible out-of-order executions. Here, an out-of-order
execution, denoted Tooe = {I ′1, ..., I ′n}, is a permutation of instructions of the
in-order execution. That is, for all 1 ≤ i ≤ n and instruction Ii ∈ Tino, there
exists 1 ≤ j ≤ n, i 6= j such that I ′j ∈ Tooe and I ′j = Ii, and vice versa.

5 Analyzing the Out-of-Order Executions

In this section, we present our method for symbolically analyzing the out-of-order
executions.

5.1 Symbolic Encoding

Our method uses a single logical formula (Φ) to encode the behaviors of all out-
of-order executions of instructions within a sliding window of size N , together
with the condition under which an out-of-order execution has secret-dependent,
divergent cache behaviors. It guarantees that Φ is satisfiable if and only if there
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exists such a side-channel leak in the sliding window of size N . Thus, when
setting the value of N , there is a trade-off between coverage and scalability.

Before explaining how Φ is constructed from the in-order execution trace,
however, we need to define the notations used in the symbolic encoding.

– Sliding Window: We focus on a sliding window of N instructions appeared
in the in-order execution trace. Within this window, instructions may be
executed in any order as long as they respect the DEP relation; outside of
this window, instructions are executed in-order.

– Program Counter: We use (N + 1) variables PC I0, PC I1, . . . , PC IN
to represent the time when we execute the N instructions I1, . . . , IN . The
special variable PC I0 represents the start time, and each PC Ii (where
1 ≤ i ≤ N) represents the time immediately after Ii is executed.

– Age of Address after Executing an Instruction: We use Age addrk Ii
to represent the cache line age of a memory block at addrk after we execute
instruction Ii. Thus, for all memory addresses addr1, . . . , addrM , we have
integer variables Age addr1 Ii, . . . , Age addrM Ii for all 0 ≤ i ≤ N .

With these notations, we define the formula Φ as a conjunction of the following
subformulas:

Φ = Φpc ∧ Φcs ∧ Φics ∧ Φrep ∧ Φdep ∧ Φdivc

where Φpc is the program counter constraint, Φcs is the cache state constraint,
Φics is the initial cache state constraint, Φrep is the cache replacement con-
straint, Φdep is the dependency constraint, and Φdivc is the divergence condition
constraint.

Program Counter Constraint (Φpc) To get a total order of the N instruc-
tions, we require that, for all 0 ≤ i ≤ N , the value of PC Ii is unique; further-
more, we require 0 ≤ PC Ii ≤ N . Thus, the constraint is defined as

Φpc =
∧

0≤i≤N

(0 ≤ PC Ii ≤ N) ∧
∧

0≤i,j≤N and i 6=j

(PC Ii 6= PC Ij)

Cache State Constraint (Φcs) Let MAX be the cache’s associativity, or the
maximal number of cache lines that can be mapped to a memory address. After
executing an instruction Ii, if 0 ≤ Age addrk Ii < MAX, it means the memory
block at addrk is inside the cache; but if Age addrk Ii = MAX, it means the
memory block is evicted out of the cache 2. Thus, the constraint is defined as

Φcs =
∧

0≤i≤N and 0≤k≤M

(−1 ≤ Age addrk Ii ≤MAX)

2 Age addrk Ii = −1 means it has never been loaded to the cache yet.
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Initial Cache State Constraint (Φics) Before the first instruction is exe-
cuted, the cache must be set to a proper initial state. In other words, variables
Age addr1 I0, . . . , Age addrM I0 must be initialized based on the default cache
states computed by in-order simulation (Section 4.2). Thus, the constraint is
defined as

Φics =
∧

0≤k≤M

(Age addrk I0 = init age addrk)

Replacement Constraint (Φrep) Assuming that instruction Ij is immedi-
ately before Ii during an out-of-order execution, we define the cache line ages
after executing Ii based on their ages after executing the predecessor instruc-
tion Ij . Let addrk be the address used by Ii, addrk1 be any address whose age
was younger than that of addrk immediately before executing Ii, and addrk2 be
any address whose age was older than that of addrk. According to the update
function defined in Section 3.2, we set Age addrk Ii to 0, set Age addrk1 Ii to
(Age addrk1 Ij + 1), and set Age addrk2 Ii to Age addrk2 Ij . Let the relation
UpdateRel(Ii, Ij) be the conjunction of the constraints defined above.

If a symbolic address (secret-dependent) is used by Ii, we encode it into the
update relation as follows: for each concrete address that may be instantiated
from the symbolic address, we construct an update relation UpdateRel() under
the assumption that it may be the actual address used by Ii.

Overall, the cache replacement constraint is defined as

Φrep =
∧

0≤i,j≤N and i 6=j

(PC Ii = PC Ij + 1) =⇒ UpdateRel(Ii, Ij)

Dependency Constraint (Φdep) To ensure that out-of-order executions are
feasible, we enforce the relative order of any two instructions if they have de-
pendencies according to the DEP relation. Thus, the constraint is defined as

Φdep =
∧

0≤i,j≤N and i 6=j and DEP (Ii,Ij)

(PC Ii < PC Ij)

That is, if Ij depends on Ii, Ii must be executed before Ij .

Divergent Cache Constraint (Φdivc) Let V ars be a symbolic (secret) vari-
able whose values include v1, v2, . . . and let Ii be a symbolic instruction whose
actual addresses include addrv1 , addrv2 , . . . Here, the value v1 corresponds to
addrv1 and the value v2 corresponds to addrv2 . If accessing the memory block
at addrv1 leads to a cache hit and accessing addrv2 leads to a cache miss (or
vice versa), the target instruction Ii has divergent cache behaviors. Thus, the
constraint is defined as

Φdivc =
∨
∀v1,v2

(0 ≤ Age addrv1
Ii < MAX) ∧ (Age addrv2 Ii ≥MAX)
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Conjoining all of the subformulas defined above, we can construct the entire
formula Φ which is satisfiable (SAT) if and only if there is a side-channel leak
during one of the out-of-order executions.

5.2 The Overall Algorithm

The overall algorithm for predictive cache analysis is shown in Algorithm 1,
which takes the in-order execution trace Tino = {I1, . . . , In}, the in-order cache
state trace Tcache = {S0, . . . , Sn}, and the sliding window size N as input. In-
ternally, it uses a sliding window of N instructions, Twindow, to generate the
SMT formula Φ. For this window, Sinit is the initial cache state as computed
by in-order simulation, and Itarget is the target instruction. The formula Φ is
satisfiable if and only if an out-of-order execution of the instructions within the
window leads to divergent cache behaviors at the instruction Itarget.

Algorithm 1 SymbolicCheck(Tino, Tcache, N) for predictive cache analysis.

1: for pos← 1 to (n−N) do
2: first = (pos−N > 0) ? (pos−N) : 1
3: Twindow = Tino[first, pos]
4: Itarget = Tino[pos]
5: Sinit = Tcache[first− 1]
6: Φ = BuildFormula( Twindow, Itarget, Sinit )
7: if ( SAT (Φ) == true ) print LEAK FOUND

Running Example We use the example code snippet in Fig. 2 to illustrate the
symbolic encoding presented in this section. For this example, the in-order ex-
ecution trace generated by our method is shown in the top half of Fig. 8. Note
that A is marked as symbolic since A[i] is affected by the unknown variable i.
The logical constraints are shown in the bottom half. Assume that the target
instruction is I4, meaning that we want to construct a formula Φ to check if I4
has divergent cache behaviors.

The program counter and cache state constraints are shown in Lines 10-
12; recall that each program counter variable must have a unique value. The
dependency constraints are shown in Line 13. Then, in Line 14, we show the two
symbolic variables used to check divergent cache behaviors; their values are in
the range of the symbolic store in Line 5.

The update function for Instruction I4 starts from Line 15. If v1==0x77ef5bd0,
which means 0x77ef5bd0 is used, the age after executing I4 is set to 0. The de-
pendency relations indicate that I5 is allowed to execute before I4. From Line
16 to 18, we show an example update age constraints with program counter con-
straint and the condition which Age 0x77ef5bd4 I4 would increase by 1 from its
predecessor I5 according to Section 5.1. Similarly, we encode other predecessors
of I4 for the update function in Line 19. Finally, we encode the divergent cache
constraint in Line 20.
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1 In-Order Execution Trace

2 I1: load 0x77ef5bd0 /*A[0]*/ Dependency relations:

3 I2: load 0x77ef5bd4 /*A[1]*/ |

4 I3: load 0x77ef5bd8 /*A[2]*/ V

5 I4: symbolic store 0x77ef5bd0, 0x77ef5bd4, 0x77ef5bd8 /*A[i]*/ <I1,I4> <I2,I4> <I3,I4>

6 I5: load 0x77ef5bdc /*B */

7 Initialize Ages: Age_0x77ef5bd0_init == 0, Age_0x77ef5bd4_init == 0

8 Age_0x77ef5bd8_init == 0, Age_0x77ef5bdc_init == 0

9 PC Constraints: 1 ≤ PC_I1:5 ≤5, PC_I0 == 0, distinct(PC_Ii)

10 Age Constraints: -1 ≤ Age_0x77ef5bd0_Ii ≤ 3, -1 ≤ Age_0x77ef5bd4_Ii ≤ 3

11 -1 ≤ Age_0x77ef5bd8_Ii ≤ 3, -1 ≤ Age_0x77ef5bdc_Ii ≤ 3

12 DEP Constraints: PC_I1 < PC_I4, PC_I2 < PC_I4, PC_I3 < PC_I4, PC_I0 < PC_I1:5
13 Symbolic Var: v1/v2 ∈ {0x77ef5bd0, 0x77ef5bd4, 0x77ef5bd8}, v1 6= v2
14 Update Function: v1 == 0x77ef5bd0 =⇒ Age_0x77ef5bd0_I4 == 0

15 - I4.Pred is I5: (PC_I5 + 1 == PC_I4 ∧ Age_0x77ef5bd4_I5 > Age_0x77ef5bd0_I5
16 ∧ Age_0x77ef5bd0_I5 6= -1 ∧ Age_0x77ef5bd4_I5 6= -1)

17 =⇒ Age_0x77ef5bd4_I4 = Age_0x77ef5bd4_I5 + 1; ......

18 - I4.Pred is I1, I2, I3: ......

19 DivC Constraint: Age_v1_I4 ≥ 3 ∧ Age_v2_I4 < 3 ∧ Age_v2_I4 6= -1

Fig. 8. An example encoding where the register variable i holds a secret value .

5.3 Optimizations of the Symbolic Encoding

Without optimization, the size of the formula Φ may be as large as O(N2M)
in the worst case, where N is the number of instructions in the sliding window
and M is the number of memory addresses used inside the window. In practice,
however, many of the logical constraints can be skipped. Here, we propose two
optimization techniques.

Skipping the Infeasible Cache Update Relations While constructing the con-
straints that update the cache states of the instructions, the default approach
is to assume that, for any instruction Ii, any other instruction Ij in the same
window may be executed immediately before Ii. This means it must construct
N2 update relations. However, due to the dependencies among instructions cap-
tured by the DEP relation, there may be many instruction pairs (Ij , Ii) such
that Ij is not allowed to execute before Ii. By leveraging the information, we
can skip many of these update relations.

Skipping the Unnecessary Φdivc Constraints In many cases, by checking the
initial cache state with respect to the sliding window of N instructions, we may
be able to know that divergent cache behaviors are impossible during any of the
out-of-order executions. In other words, Φdivc is guaranteed to be unsatisfiable
(UNSAT). Thus, we can avoid generating Φ. Toward this end, we check for the
following two conditions, each of which is sufficient for Φdivc to be UNSAT:

– All ages are too young : Inside the initial cache state (with respect to the
window), if all cache line ages are less than (MAX −M), where M is the
number of unique addresses used in this window, we skip checking any of the
instructions in this window for divergent cache behaviors. This is because
the cache is large enough that, regardless of the execution order, none of the
cache lines will be evicted.
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Table 1. Statistics of the benchmark programs and the execution traces.

Name Description SLOC Logged execution trace
Length # Store # Load # Addr #Cache-line

AES Advanced Encryption Standard 2,077 32,069 8,753 23,316 3,126 139

DES Archetypal block cipher 1,090 10,162 3,994 6,168 946 148

SEED Symmetric key block cipher 720 20,820 6,999 13,821 2,044 130

Camellia Symmetric key block cipher 555 14,595 5,487 9,108 1,63 130

Chacha20 Pseudorandom function based stream cipher 263 15,739 3,668 12,071 687 134

IDEA International Data Encryption Algorithm 288 2,920 884 2,036 318 140

ARIA Symmetric key block cipher 1,265 15,672 5,237 10,435 1,642 128

SM4 Symmetric key block cipher 301 11,362 3,410 7,952 1,412 131

MD5 MD5 message-digest algorithm 312 3,134 878 2,256 361 156

Blake2 Hash based on ChaCha stream cipher 512 4,832 1,363 3,469 309 163

SHA256 Secure Hash Algorithm standard 825 5,900 1,302 4,598 435 164

Whirlpool Hash designed after Square block cipher 1,100 6,941 1,915 5,026 1,257 172

– The age of addr accessed by the target instruction is too young : Inside the
initial cache state, if the age of addr is less than (MAX − M), we skip
checking this particular target instruction for divergent cache behaviors. This
is because, regardless of the value of the secret variable, this particular cache
line will never be evicted out of the cache.

6 Experiments

We have implemented our method in a tool named Spreca, which builds upon
the LLVM compiler [17] and the Z3 SMT solver [19]. Specifically, it uses LLVM to
implement the static analysis component, which takes a C program as input and
computes the dependencies of memory-related instructions before instrument-
ing the LLVM bit-code; the instrumented bit-code, after compilation, is used
to generate the execution trace at run time. We use Z3 to implement our sym-
bolic analysis component, which takes the logged execution trace as input and
generates SMT formulas of the cache states for leakage detection. Overall, our
implementation includes 3.6K lines of C++ code inside LLVM for trace genera-
tion, SMT encoding and leakage detection, as well as 0.5K lines of Python/Bash
script code for processing the trace files and automation. The archive is available
at: https://doi.org/10.5281/zenodo.6117196.

6.1 Benchmarks

The benchmarks used to evaluate our tool are a set of C programs from OpenSSL

1.1.1k that implement well-known block-ciphers such as AES and DES and
cryptographic hashing functions such as SHA256 and Whirlpool. The statistics
of these benchmark programs are shown in Table 1, including the name of the
program, a short description, the number of lines of C code, and statistics of the
logged execution trace, which serves as input of our symbolic analysis method.
For each execution trace, we show the trace length, the number of Store (ST)
operations, the number of Load (LD) operations, the number of distinct memory
locations touched by the execution, and the number of corresponding cache lines.

Our experiments were designed to answer the following questions:
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Table 2. Results of our symbolic predictive analysis method for 8K fully associative
cache, with LRU replacement policy, and window size set to 10.

Name Trace length SMT solver calls made Leaking sites Analysis time (s)
total instances SAT instances UNSAT instances

AES 32,069 0 0 0 0 246.0

DES 10,162 1 0 1 0 620.4

SEED 20,820 593 14 579 5 4,922.1

Camellia 14,595 366 15 351 6 2,475.1

Chacha20 15,739 0 0 0 0 4.9

IDEA 2,920 0 0 0 0 1.0

ARIA 15,672 1,060 0 1,060 0 8,760.2

SM4 11,362 27 0 27 0 788.1

MD5 3,134 0 0 0 0 1.2

Blake2 4,832 0 0 0 0 1.8

SHA256 5,900 0 0 0 0 2.4

Whirlpool 6,941 0 0 0 0 2.8

– Is our method effective in detecting OOE-related cache side-channel leaks?
– Is our method, based on symbolic analysis, more scalable than explicit anal-

ysis?

Toward this end, for each benchmark program, we applied our symbolic analysis
method to check if it can find OOE-related cache side-channel leaks, i.e., leaks
that otherwise would not show up unless out-of-order execution is considered.
To evaluate the scalability of our method, we also compared it with a baseline
explicit analysis method. Due to space limit, we omit the detailed algorithm
of the explicit analysis method, which systematically enumerates the same set
of out-of-order executions of instructions considered by our symbolic analysis
method. Thus, both our symbolic method and the explicit method examine
the same type of secret-dependent divergent cache behaviors, but they differ in
efficiency and scalability.

6.2 Leakage Detection Results

Table 2 shows the results of our symbolic analysis method. These results were
obtained using the following parameters: the cache has a total of 8K bytes,
divided into 128 cache lines, with 64 bytes per cache line. The cache is fully
associative, with the LRU replacement policy. The OOE window size is set to
10, meaning the number of Load/Store instructions that will be executed out
of order is bounded to 10. Recall that inside the reorder buffer, there can be
many non-memory instructions (e.g., arithmetic operations); thus, setting the
window size to 10 is a reasonable choice. In this table, Columns 1-2 show the
program name and the trace length. Columns 3-5 show the number of SMT solver
calls, the number of satisfiable (SAT) instances, and the number of unsatisfiable
(UNSAT) instances. Column 6 shows the number of leaking sites detected by
our method and Column 7 shows the total analysis time in seconds.

Note that the number of SMT solver calls may be smaller than the number
of instructions in the trace and, in many cases, is 0 because of the optimizations
implemented during our symbolic encoding: for any instruction, if our simple
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Fig. 9. Comparison of the analysis time: symbolic method versus explicit method.

checks reveal that no OOE-related divergent cache behavior is possible, we skip
the more time-consuming SMT solver call. Also note that the number of leaking
sites in Column 6, which are locations in the original C program, may be smaller
than the number of UNSAT instances in Column 4; this is because multiple
UNSAT results may be mapped to the same source code location.

To confirm that the leaking sites reported in Table 2 are indeed feasible
(5 for SEED and 6 for Camellia), we manually inspected the source code and
the LLVM bit-code of both SEED and Camellia. Our manual inspection shows
that the reordered sequences provided by the SMT solver are indeed feasible as
we check them against the source code. We also find that the divergent cache
behaviors are real in that the two concrete values computed for each symbolic
(sensitive) variable can indeed lead to a cache hit in one case but a cache miss
in the other case.

6.3 Scalability Results

To evaluate the scalability of our symbolic analysis method, we compared its
analysis time to that of the baseline explicit enumeration method. This experi-
ment was conducted on SEED, with the OOE window size set to 2, 4, 6, 8 and
10, respectively. This is because the computational complexity of the problem
increases exponentially as the OOE window size increases. The results are shown
in Fig. 9, where the x-axis is the OOE window size and the y-axis is the analysis
time in seconds. The blue line represents our symbolic method while the red line
represents the explicit method.

The results in Fig. 9 show that, while our symbolic method has a higher
fixed cost (associated with generating SMT formulas, calling the Z3 solver, and
interpreting the results), and thus is slower than the explicit method when the
OOE window size is smaller, it becomes significantly more efficient when the
window size is larger. The figure also show that, as expected, the explicit method
has an exponential blowup – its analysis time is actually worse than exponential
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(factorial in the window size) – whereas the scalability of our symbolic method
is significantly better.

7 Related Work

As we have mentioned earlier, the most closely related work is that of Guo et
al. [10, 11] which relies on KLEE to detect cache side channels. However, their
method only treats program input as symbolic, while still explicitly enumerating
the out-of-order executions. Unlike their method, we analyze the set of all pos-
sible out-of-order executions symbolically by encoding them in a single logical
formula to avoid the exponential blowup. In this sense, our method is the only
predictive analysis method that can symbolically analyze the cache behaviors of
out-of-order executions.

Besides our method and the method of Guo et al. [10, 11], there are many
other techniques for analyzing cache side channels. Some of them use symbolic
execution as well, e.g., to detect concurrency-related leaks [12] as well as leaks in
sequential programs [3, 21, 29, 32]. Others use static analysis techniques includ-
ing those based on abstract interpretation [6, 28, 30, 31]. In addition to leakage
detection, there are techniques for leakage quantification [1, 2, 5, 7, 16] as well.
However, none of these prior works considers out-of-order execution.

Beyond side-channel leakage detection and leakage quantification, cache anal-
ysis has been used in other applications such as estimating the worst-case ex-
ecution time (WCET) of real-time software [9, 13, 25]. Beyond cache analysis,
the idea of trace-based predictive analysis has been applied to multithreaded
programs to detect concurrency bugs [8, 14, 22–24, 26, 27]. However, a crucial
difference is that while concurrency bugs are violations of functional proper-
ties of a program, our method for side-channel analysis focuses exclusively on
non-functional properties.

8 Conclusions

We have presented a symbolic method for analyzing the cache behaviors of out-
of-order executions associated with an in-order execution trace. The method
uses static analysis to compute dependencies before instrumenting the program
to generate the in-order execution trace. Then, it uses an SMT solver based
symbolic analysis to analyze the cache behaviors of all out-of-order executions.
Our experiments on cryptographic software code show that the symbolic anal-
ysis method is effective in detecting OOE-related cache side-channel leaks and
is significantly more scalable than explicit analysis. For future work, we plan
to extend our method to detect side-channel leaks caused by other CPU-level
optimizations.
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16. Köpf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-
channels. In: Madhusudan, P., Seshia, S.A. (eds.) Computer Aided Verification
- 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings. Lecture Notes in Computer Science, vol. 7358, pp. 564–580 (2012)

17. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis and transformation. In: International Symposium on Code Generation and
Optimization. pp. 75–88. San Jose, CA, USA (2004)

18. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,
Mangard, S., Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: Reading
kernel memory from user space. In: Enck, W., Felt, A.P. (eds.) 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-
17, 2018. pp. 973–990 (2018)

19. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340 (2008)

20. Novillo, D.: Memory SSA - a unified approach for sparsely representing memory
operations (2007)

21. Pasareanu, C.S., Phan, Q., Malacaria, P.: Multi-run side-channel analysis using
symbolic execution and Max-SMT. In: IEEE 29th Computer Security Foundations
Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. pp. 387–400
(2016)
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