
Constraint Based Program Repair for Persistent Memory Bugs
Zunchen Huang

University of Southern California
Los Angeles, USA

Chao Wang
University of Southern California

Los Angeles, USA

ABSTRACT

We propose a constraint based method for repairing bugs associated
with the use of persistent memory (PM) in application software. Our
method takes a program execution trace and the violated property
as input and returns a suggested repair, which is a combination of
inserting new PM instructions and reordering these instructions to
eliminate the property violation. Compared with the state-of-the-
art approach, our method has three advantages. First, it can repair
both durability and crash consistency bugs whereas the state-of-the-
art approach can only repair the relatively-simple durability bugs.
Second, our method can discover new repair strategies instead of
relying on repair strategies hard-coded into the repair tool. Third,
our method uses a novel symbolic encoding to model PM seman-
tics, which allows our symbolic analysis to be more efficient than
the explicit enumeration of possible scenarios and thus explore a
large number of repairs quickly. We have evaluated our method on
benchmark programs from the well-known Intel PMDK library as
well as real applications such as Memcached, Recipe, and Redis. The
results show that our method can repair all of the 41 known bugs
in these benchmarks, while the state-of-the-art approach cannot
repair any of the crash consistency bugs.

ACM Reference Format:

Zunchen Huang and Chao Wang. 2024. Constraint Based Program Repair
for Persistent Memory Bugs. In 2024 IEEE/ACM 46th International Conference
on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3597503.3639204

1 INTRODUCTION

Persistent memory (PM) is a type of non-volatile random-access
memory with the capability of retaining data after the loss of elec-
trical power. It has become commercially viable in the past few
years. In modern computer architecture, PM may serve as the in-
termediate layer between volatile DRAM and non-volatile storage
such as solid-state disks or replace part of the DRAM-based main
memory. This will lead to a drastic reduction in latency and power
consumption of the computing systems, and an increase in robust-
ness against frequent and unpredictable power interruptions. This
is why PM is used in more and more applications as commercial
PM devices [20] come close to DRAM in terms of speed but with
a significantly larger capacity. However, software developers are
required to write PM related software code in order to unleash the
full power of these PM devices [44].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04
https://doi.org/10.1145/3597503.3639204

Target

Program

Trace

Generation

SMT Based

Symbolic Analysis

Property

Spec.

Suggested

Repair

yesAdding

Instructions

Reordering

Instructions

no

Validating

Repair

Figure 1: PMBugAssist: the proposed PM bug repair method.

Unfortunately, it is a challenging task to use PM instructions and
APIs correctly and efficiently. The reason is because, due to perfor-
mance concerns, PM instructions are often designed to have weaker
persistency/consistency models than volatile memory instructions.
Thus, what is considered as a correct behavior for volatile memory
may no longer be correct for persistent memory. Since the per-
sistency/consistency models are far from being intuitive, unless
developers have a deep understanding of both software and the PM
semantics associated with hardware, it will be difficult to use these
PM instructions and APIs correctly and efficiently.

Although a large number of program analysis techniques have
been developed to help detect PM bugs [6, 8–10, 14, 28, 31–33,
38, 42] or prove their absence [13, 27, 40], little has been done
on automated diagnosis and repair of PM bugs. In fact, the only
existing repair technique that we are aware of is the Hippocrates
tool developed by Neal et al. [37]. Unfortunately, Hippocrates only
repairs one type of relatively simple PM bugs called durability bugs;
these bugs are simple in that fixing them requires only the addition
of missing PM instructions. There are more complex PM bugs, often
called crash consistency bugs in the literature, that Hippocrates
cannot repair; fixing them requires some of the existing instructions
to be reordered. Furthermore, Hippocrates uses syntactic-level
pattern-matching, which means if a bug matches a known pattern,
the tool will be able to repair it by applying a pre-defined code
transformation. However, if the bug does not match any known
pattern hard-coded into the repair tool, the bug cannot be repaired.

To fill the gap, we propose a constraint based method for auto-
matically computing repairs for a broader class of PM bugs. Unlike
the syntactic-level pattern-matching based approach of Neal et
al. [37], our method relies on a semantical analysis of PM instruc-
tions to compute repairs. By symbolically encoding the PM-related
program behavior and the correctness property as a set of logi-
cal constraints, and then leveraging an off-the-shelf SMT solver to
solve these constraints, our method is able to search for novel repair
strategies in a large solution space. As a result, our method is able
to repair durability and crash consistency bugs of arbitrary form,
even if these bugs do not match any of the known syntactic-level
bug patterns hard-coded into Hippocrates.

https://doi.org/10.1145/3597503.3639204
https://doi.org/10.1145/3597503.3639204

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zunchen Huang and Chao Wang

Fig. 1 shows an overview of our method. The input consists of
the program and the violated PM property, and the output is the
suggested repair. Internally, our method first leverages a Valgrind
based software tool to instrument the program and generate the
execution trace. The traces generated at the end of this step may
be fed to any existing PM bug detection tool [18, 19, 22] to confirm
the property violation. To compute a repair, our method uses an
SMT solver to symbolically encode the solution space. As shown in
Fig. 1, it symbolically checks possible repairs in the solution space
to find a valid repair. In this context, a repair can be thought of as
a modification of the program through a combination of inserting
new PM instructions and reordering PM instructions. Our search
for a repair is an iterative process, involving multiple calls to the
SMT solver for both finding the repair candidate and validating it.
Only valid repairs are returned to the user.

At the center of our method is the SMT solver based symbolic
analysis for two reasons. First, symbolic analysis allows us to ex-
plore a large number of possible solutions quickly. Second, symbolic
analysis is able to model various types of PM instructions and prop-
erties not only accurately but also uniformly, meaning that during
symbolic encoding, everything boils down to a set of logical con-
straints. Since these constraints are expressed in a fragment of the
SMT-LIB format, i.e., linear integer arithmetic (LIA), they can be
solved efficiently using any off-the-shelf SMT solver.

We have implemented themethod in a tool named PMBugAssist.
During experimental evaluation, we focused on comparing our
method with Hippocrates [37]. This is because our focus is on
automated repair, for which Hippocrates represents the state of the
art. In contrast, prior work on detecting PM bugs [8, 27, 31, 33, 40]
and verifying their absence [13, 27, 40] is less relevant; instead, they
are complementary to our method.

Our benchmarks include programs from the well-known In-
tel PMDK library [21] as well as real applications such as Mem-
cached [4], Recipe [30] and Redis [3]. According to prior works
on PM bug detection, these benchmarks have 41 known bugs in
total, including 23 durability bugs and 18 crash consistency bugs.
Our experimental results show that the new method can repair all
of these 41 bugs, whereas Hippocrates cannot repair any of the
crash consistency bugs. We also evaluated the runtime performance
of the new method, and found that, for all benchmark programs, it
can finish the repair computation quickly.

To summarize, we make the following contributions:

• We propose the first constraint based method for repairing a
broader class of PM bugs. Compared with the state-of-the-art
approach, our method can repair PM bugs that do not match
any known bug pattern.
• We formalize PM bug repair as a special case of the syntax-
guided synthesis (SyGuS) [2] problem, through which we
discuss the soundness and decidability of our method.
• We implement and evaluate the method on a large number
of benchmark programs to demonstrate its advantages over
state-of-the-art (Hippocrates).

The remainder of this paper is structured as follows. In Section 2,
we review the technical background. In Section 3, we present the
top-level procedure of our method. This is followed by our SMT
solver based symbolic analysis in Section 4, our repair algorithm

Table 1: Persistency order of Px86 for instructions (𝐼𝑖 < 𝐼 𝑗).

Instruction Pair (𝐼𝑖 , 𝐼 𝑗)
Second Instr. 𝐼 𝑗

LOAD STORE RMW mfence sfence clflushopt clflush

Fi
rs
tI
ns
tr.

𝐼 𝑖

LOAD ✔ ✔ ✔ ✔ ✔ ✔ ✔

STORE ✘ ✔ ✔ ✔ ✔ CL ✔

RMW ✔ ✔ ✔ ✔ ✔ ✔ ✔

mfence ✔ ✔ ✔ ✔ ✔ ✔ ✔

sfence ✘ ✔ ✔ ✔ ✔ ✔ ✔

clflushopt ✘ ✘ ✔ ✔ ✔ ✘ CL

clflush ✘ ✔ ✔ ✔ ✔ CL ✔

in Section 5, and discussion of correctness and optimizations in
Section 6. We present the experimental results in Section 7 and
review related work in Section 8. Finally, we give our conclusions
in Section 9.

2 BACKGROUND

2.1 Persistent Memory (PM) Semantics

We focus on Intel’s persistent x86 (Px86)model as published by Raad
et al. [40]. In the standard x86 architecture, STORE instructions
executed by the CPU are sequentialized in a store buffer before tak-
ing effect in memory, while LOAD instructions are allowed to take
effect immediately. This allows a fast LOAD to take effect before a
slow STORE, provided that they have no control/data dependency,
while preserving the semantic equivalence of the program.

In the Px86 architecture, a persistent buffer is added after the
store buffer to further sequentialize the STORE instructions, before
the written values show up in persistent media. While the CPU still
preserves the sequential program behavior during normal (crash-
free) execution, when a program crashes due to power failure, the
order in which the written values show up in persistent media may
be significantly different. This may lead to PM bugs.

2.1.1 The Persistency Table. Table 1, which is taken from Raad et
al. [40], characterizes an important aspect of Px86 that is relevant to
our work: the order in which instructions take effect in persistent
memory. Given a pair of instructions, (𝐼𝑖 , 𝐼 𝑗), where 𝐼𝑖 is executed
before 𝐼 𝑗 by the CPU, the corresponding table entry shows whether
Px86 guarantees that 𝐼𝑖 persists before 𝐼 𝑗 using the symbols ✔ (yes)
and ✘ (no). The third symbol, CL, means that 𝐼𝑖 persists before
𝐼 𝑗 only when the two instructions access memory address blocks
mapped to the same cache line.

For example, (STORE x, LOAD y) may persist in reverse order
according to the ✘ symbol in Table 1 when the CPU chooses to
execute the fast LOAD y before the slow STORE x for performance
reasons. However, according to the table, (LOAD y, STORE x)
must persist in the same order as they appear in the program,
due to a possible control/data dependency. That is, since these
two instructions may come from either the code snippet if(y>0)
{x=1;} (with control dependency) or the code snippet {reg=y;
x=1;} (without dependency), to be safe, the CPU would have to
disallow the reordering based optimization.

2.1.2 PM-related Instructions. In this work, we are concerned with
the following PM-related instructions besides LOAD, STORE, and RMW
(read-modify-write) instructions.
• clflush, which stands for cache-line-flush, is a synchronous
operation of the CPU that results in flushing the cache line

Constraint Based Program Repair for Persistent Memory Bugs ICSE ’24, April 14–20, 2024, Lisbon, Portugal

associated with addr immediately. Since this legacy instruc-
tion is blocking and slow, it is rarely used.
• clflushopt, which stands for cache-line-flush-optimized, is
an asynchronous operation that may postpone flushing to a
convenient future time. It is fast, but the exact persistency
time is less predictable.
• mfence, which stands formemory-fence, is a memory barrier
for both STORE and LOAD instructions.
• sfence, which stands for store-fence, is a memory barrier for
STORE instructions only.
• Following Raad et al. [40], we treat clwb (cache-line-write-
back) the same as clflushopt since the two instructions are
semantically equivalent.

While the legacy instruction CLFLUSH is semantically equivalent to
CLFLUSHOPT followed by SFENCE orMFENCE or RMW according
to Intel’s user manual, in terms of performance, the fastest andmost-
frequently-used combination is CLFLUSHOPT followed by SFENCE.
Thus, we focus on this combination in this paper.

2.2 Persistent Memory (PM) Bugs

We are concerned with two common types of PM bugs, called
durability bugs and crash consistency bugs in the literature, which
can be generated by many existing PM bug detection tools such as
PMemCheck [19] and PMTest [33].

2.2.1 Durability Bugs. Here, durability means that a value writ-
ten by STORE eventually shows up in persistent media. However,
this is not automatically guaranteed. Fig. 2 shows an example code
snippet adapted from Intel’s website, where the value written to
header->counter may never show up in persistent media. This is
because the program does not force the CPU to flush the correspond-
ing cache line and, as a result, the written value (temporarily stored
in the volatile part of the CPU) may be lost permanently if a power
failure occurs while writer() is executed. After crash recovery,
reader() may not have access to the values written by writer(),
for example, due to the incorrect value of header->counter.

To make STORE instructions durable, __mm_clflushopt() and
__mm_sfence() must be used to force the CPU to flush the cache
line; these API calls correspond to CLFLUSHOPT and SFENCE. This
is how values written to the name and addr fields of records[i]
are made durable in Fig. 2 (Lines 12-14 and 20 for the THEN-branch,
and Lines 18 and 20 for the ELSE-branch).

Note that neither instruction in the CLFLUSHOPT+SFENCE com-
bination may be omitted; otherwise, durability is not guaranteed.

2.2.2 Crash Consistency Bugs. When a program crashes due to
power failure, it is possible that some (but not all) of the written val-
ues have been stored in persistent media. To prevent the persistent
media from entering an inconsistent state, the program must use
CLFLUSHOPT+SFENCE correctly, to force the STORE instructions
to take effect in a certain order. The persistency order, in general, is
determined by the reader() executed during crash recovery.

The reader() in Fig. 2 uses header->counter to decidewhether
to read records[i], and then uses the value of records[i].valid
to decidewhether to read records[i].name and records[i].addr.
Thus, the correct persistency order, which must be enforced by
writer(), is that both records[i].name and records[i].addr

1 // both 'header' and 'records' are mapped to the persistent memory
2 struct record_t { char name[64],addr[64]; char valid; } records[32];
3 struct header_t { uint32_t counter; uint8_t reserved[63]; } header;
4 ...
5 // writer() -- code executed before crash
6 for (int i=0; i<NUM_RECORDS; i++) {
7 header->counter++;
8 if (rand()%2==0) { //store a valid record
9 snprintf(records[i].name, 64, ...);
10 snprintf(records[i].addr, 64, ...);
11 records[i].valid = 1;
12 __mm_clflushopt(&records[i].valid);
13 __mm_clflushopt(records[i].name);
14 __mm_clflushopt(records[i].addr);
15 }
16 else {
17 records[i].valid = 0;
18 __mm_clflushopt(&records[i].valid);
19 }
20 __mm_sfence();
21 }
22 ...
23 // reader() -- code executed after crash
24 for (int i=0; i<header->counter; i++) {
25 if (records[i].valid==1) {
26 cout << "name =" << records[i].name << "\n";
27 cout << "addr =" << records[i].addr << "\n";
28 }
29 }

Figure 2: An example program with several PM bugs.

1 for (int i=0; i<NUM_RECORDS; i++) {
2 if (rand()%2==0) { //store a valid record
3 snprintf(records[i].name, 64, ...);
4 snprintf(records[i].addr, 64, ...);
5 __mm_clflushopt(records[i].name);
6 __mm_clflushopt(records[i].addr);
7 __mm_sfence();
8 records[i].valid = 1;
9 __mm_clflushopt(&records[i].valid);
10 }
11 else {
12 records[i].valid = 0;
13 __mm_clflushopt(&records[i].valid);
14 }
15 __mm_sfence();
16 header->counter++;
17 __mm_clflushopt(&header->counter);
18 __mm_sfence();
19 }

Figure 3: The repaired writer() in the example program.

persist before records[i].valid, and records[i].valid persists
before header->counter.

In existing bug detection tools, such as PMemCheck [19] and
PMTest [33], the durability and must-persist-before properties are
typically specified by the user and then checked for violations
automatically. Such tools would be able to detect property viola-
tions in Fig. 2. For header->counter, the written value is not made
durable at all using CLFLUSHOPT+SFENCE. As for records[i],
there is a property violation since the reader() may read value
1 for records[i].valid from persistent media, and then expect
records[i].name and records[i].addr to be available in persis-
tent media, but end up with uninitialized or partially initialized
values.

2.3 Detecting PM Bugs

Existing tools for detecting PM bugs (e.g., PMemCheck [19] and
PMTest [33]) are based on analyzing the execution traces. Fig. 4

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zunchen Huang and Chao Wang

// trace for executing the THEN-branch
Inst 𝐼1: STORE 0x4a3c000 //STORE records[i].name
Inst 𝐼2: STORE 0x4a3c080 //STORE records[i].valid
Inst 𝐼3: clflushopt 0x4a3c080 //clflushopt records[i].valid
Inst 𝐼4: clflushopt 0x4a3c000 //clflushopt records[i].name
Inst 𝐼5: sfence
assert(PTime(𝐼1) < PTime(𝐼2)) //crash-consistency bug

// trace for executing the ELSE-branch
Inst 𝐼1: STORE 0x4a3c0C0 //STORE header->counter
Inst 𝐼2: STORE 0x4a3c080 //STORE records[i].valid
Inst 𝐼3: clflushopt 0x4a3c080 //clflushopt records[i].valid
Inst 𝐼4: sfence
assert(PTime(𝐼1) < TMAX) //durability bug
assert(PTime(𝐼2) < PTime(𝐼1)) //crash-consistency bug

Figure 4: Execution traces of the program in Fig. 2, with

a durability bug in ELSE-branch (write to header->counter
may never show up in PM) and a crash consistency bug in

THEN-branch (write to records[i].name may not persist be-

fore write to records[i].valid).

shows two example traces for branches of the loop body in Fig. 2. For
simplicity, we only show the STORE, CLFLUSHOPT, and SFENCE
instructions relevant to the violated property assertions.

The first assertion violated by the ELSE-branch represents a dura-
bility property. Assume that all the STOREs in Fig. 2 are expected
to persist in PM media. For the STORE 𝐼1, its persistency time is
denoted PTime(𝐼1). Assuming that TMAX is the upper bound of the
persistency time (bounded by the number of executed instructions
in this program), we can express durability as PTime(𝐼1)<TMAX.
The assertion is violated because clflushopt 0x4a3c0C0 is not
used to force the CPU to flush the written value from cache to
persistent media.

The assertion violated by the THEN-branch captures a crash
consistency property. Here, the expectation is that the value written
by 𝐼1 always persists before the value written by 𝐼2, as shown in
PTime(𝐼1)<PTime(𝐼2). The assertion is violated because the CPU
allows two CLFLUSHOPT instructions to take effect in reverse
order, as shown by the ✘ symbol in Table 1.

Note that, even if we swap the execution order of the two instruc-
tions (𝐼3 and 𝐼4) in the program, the assertion will still be violated.
Fig. 5 illustrates the reason. Here, the solid edges represent the
execution order, while the dashed edges represent the persistency
order imposed by Px86. Since the dashed edges remain the same
(before and after swapping the execution order of 𝐼3 and 𝐼4), the
requirement that 𝐼1 always persists before 𝐼2 is still not satisfied.

2.4 Repairing PM Bugs

Hippocrates [37] is the only existing method for repairing PM
bugs, with two limitations. First, it only repairs the relatively simple
durability bugs, such as the one shown in the ELSE-branch of
Fig. 4, but not the more complex crash consistency bugs. Second,
it only repairs bugs that syntactically match the patterns hard-
coded into the repair tool. For bugs that do not have a syntactical
match, Hippocrates would not know how to repair them. For
example, if repairing a bug requires reordering some instructions,
then Hippocrates cannot do it.

In contrast, our method can repair both durability and crash
consistency bugs, and can repair bugs that do not syntacticallymatch

any of the known patterns hard-coded into Hippocrates. This is
because our method has the ability to analyze the semantics of the
PM instructions, and thus repair PM bugs through a combination
of inserting new PM instructions and reordering instructions. We
illustrate the technical challenges using examples in Fig. 6.

Fig. 6 shows two possible repairs of the bug in the THEN-branch
of Fig. 4. The first attempt, based solely on reordering the existing
instructions of the execution trace, is not a complete repair. The
reason is because, by moving 𝐼4 and 𝐼5 before 𝐼2 and 𝐼3, the new
version of the program guarantees that records[i].name persists
before records[i].valid. However, reordering also introduces a
new durability bug for 𝐼2: without a subsequent SFENCE instruction,
the value written by 𝐼2 is no longer guaranteed to show up in
persistent media, e.g., if the program crashes in the middle of the
execution due to power failure.

Fig. 6 highlights the fact that, sometimes, it is impossible to repair
a crash consistency bug solely by reordering instructions; we also
need to add new PM instructions. We shall explain in the remainder
of this paper how our method finds out that, by adding SFENCE in
𝐼6, we can completely repair the crash consistency bug.

To summarize, for the buggy writer() in Fig. 2, the repaired
version is shown in Fig. 3. Through a combination of inserting
new PM instructions and reordering instructions, the repaired ver-
sion in Fig. 3 guarantees both the durability of header->counter
and the crash consistency requirement that records[i].valid al-
ways persists before header->counter. Note that, to satisfy the sec-
ond requirement, we not only have to add CLFLUSHOPT+SFENCE
for header->counter, but also have to move header->counter++
(Line 7 in Fig. 2) after the IF-ELSE statement (Line 16 in Fig. 3).

3 OVERVIEW OF OUR METHOD

Our method takes an existing PM bug as input. Besides the PM bug,
which is an execution trace T that violates a property assertion
A, no other input or constraint needs to be provided by the user.
The PM bug may be produced by any existing bug detection tools
such as PMemCheck [19] and PMTest [33]. Specifically, the trace
T = {𝐼1, . . . , 𝐼𝑁 } is a sequence of instructions, each of which has
an instruction type specified in Table 1.

The assertionA may be of the form 𝑃𝑇 (𝐼𝑖) < 𝑇𝑀𝐴𝑋 (durability)
or 𝑃𝑇 (𝐼𝑖) < 𝑃𝑇 (𝐼 𝑗) (crash consistency) as shown in Fig. 4. Here,
𝑇𝑀𝐴𝑋 is the upper bound of the persistency time. Thus, if there
exists a way of satisfying 𝑃𝑇 (𝐼𝑖) ≥ 𝑇𝑀𝐴𝑋 , there exists a durability
violation where 𝐼𝑖 has not yet taken effect in persistent media at
the end of the execution.

Algorithm 1: Our method R ← PMBugAssist(T ,A)
1 while BugIsFound(T ,A) do
2 R ← ComputeRepair(T ,A)
3 if RepairIsValid(T ,R) then
4 return R as repair
5 end if

6 T ← AddInstructions(T ,A,R)
7 end while

Constraint Based Program Repair for Persistent Memory Bugs ICSE ’24, April 14–20, 2024, Lisbon, Portugal

STORE(0x4a3c080)

clflushopt(0x4a3c000) clflushopt(0x4a3c080)

sfence

STORE(0x4a3c000) Execution Order

Persistency Order

STORE(0x4a3c080)

clflushopt(0x4a3c000) clflushopt(0x4a3c080)

sfence

STORE(0x4a3c000)

Figure 5: Ordering constraints for THEN-branch: modifying the program by swapping the two clflushopt instructions will not

fix the crash consistency bug.

// trace for executing the THEN-branch
Inst 𝐼1: STORE 0x4a3c000 //STORE records[i].name
Inst 𝐼4: clflushopt 0x4a3c000 //clflushopt records[i].name
Inst 𝐼5: sfence //sfence
Inst 𝐼2: STORE 0x4a3c080 //STORE records[i].valid
Inst 𝐼3: clflushopt 0x4a3c080 //clflushopt records[i].valid
//This is an incomplete repair -- it introduces a new durability bug

Inst 𝐼6: sfence //fence
//This is a complete repair -- must also add this 'sfence'

Figure 6: Two repairs for the bug in THEN-branch of Fig. 4:

The first repair is incomplete since it adds a new durability
bug for 𝐼2; the second repair is complete because it removes

the new durability and original crash consistency bugs.

Algorithm 1 shows the top-level procedure. Since we only in-
voke the procedure on a buggy execution trace, the first call to
the subroutine BugIsFound(A,T) always returns 𝑡𝑟𝑢𝑒 . Next, we
use ComputeRepair(A,T) to compute a potential repair. It guar-
antees that, after applying the repair R to the given trace T , the
assertion violation no longer exists. However, this is not yet enough
to guarantee that R is a valid repair.

There are two possibilities. One possibility is that R indeed is
a valid repair: by permuting the instructions in T , R removes
all the bad executions and retains only the good executions. The
other possibility is that R is a vacuous repair in that, by creating
a contradiction between R and T , it artificially removes all valid
executions of the instructions in T . Since there is no longer any
valid execution, by definition, the SMT solver cannot detect any
violation (which must be a valid, and yet buggy, execution).

To find out whether the repair R is valid or vacuous, we use
the subroutine RepairIsValid(A,R) to check, after applying R
to T , whether any valid execution exists. If the answer is yes,
then R is a valid repair, and thus is returned to the user. Other-
wise, we use AddInstructions(A,T ,R) to add more SFENCE
and CLFLUSHOPT instructions to T , and try again.

There is a distinction between the normal program behavior and
PM-related behavior, only the latter of which can be affected by
CLFLUSHOPT/SFENCE instructions. Since our method only inserts
and reorders CLFLUSHOPT/SFENCE instructions, it will not change
the normal program behavior. As for the PM-related behavior, due to
the use of the verification subroutine BugIsFound(T ,A) in Line 1

of Algorithm 1, our method guarantees to eliminate the violation
of the property assertion A in the given trace T .

Our method explicitly considers the efficiency of the computed
repair by adding SFENCE and CLFLUSHOPT instructions iteratively
on a “need-to” basis. As soon as enough instructions are added, the
while-loop in Algorithm 1 will terminate. In this sense, it minimizes
the number of added instructions, but without using an “optimizing
solver” such as MAXSMT in DirectFix [35].

4 SYMBOLIC ANALYSIS OF THE PM BUG

In this section, we present our SMT based method for analyzing the
PM bug symbolically. It is the foundation of not only the subroutine
BugIsFound(T ,A) but also the subroutines ComputeRepair(T ,A)
and RepairIsValid(T ,R) in Algorithm 1.

4.1 The Satisfiability Problem

Given the trace T and the assertion A, whether there exists a
valid execution of the instructions in T that violates A can be
formulated as a satisfiability (SAT) problem. Toward this end, we
construct a logical formula Φ := Φ𝑝𝑟𝑜𝑔𝑟𝑎𝑚∧Φpersistency∧¬Φassertion,
where Φ𝑝𝑟𝑜𝑔𝑟𝑎𝑚 encodes the program order, Φpersistency encodes
the persistency order, and Φassertion encodes the assertion. Thus,
Φ is satisfiable if and only if there exists a valid execution of the
instructions in T that violates A.

We express Φ in a fragment of the SMT-LIB format that allows
only integer variables (such as 𝑥 and 𝑦) and Boolean compositions
of linear integer arithmetic (LIA) constraints of the form (𝑥 < 𝑦).
Thus, the satisfiability of Φ can be efficiently decided using any
off-the-shelf SMT solver.

Before presenting our method for constructing Φ, we define the
two sets of variables used to encode Φ as follows:

The 𝑃𝐶_𝐼𝑖 Variables. For each instruction 𝐼𝑖 ∈ T , where 𝑖 =

1, . . . , 𝑁 , we define a variable 𝑃𝐶_𝐼𝑖 whose value may be any integer
in the interval [0, 𝑁); it stands for the execution time, i.e., when the
instruction 𝐼𝑖 is executed by the CPU. Inside Φ, we will constrain
𝑃𝐶_𝐼𝑖 variables to allow only valid permutations of T .

The 𝑃𝑇_𝐼𝑖 Variables. For each instruction 𝐼𝑖 ∈ T of the STORE
type, we define a variable 𝑃𝑇_𝐼𝑖 whose value may be any integer in
the interval [0, 𝑁 + 1]; it stands for the persistency time of 𝐼𝑖 , i.e.,
when the value written by 𝐼𝑖 is actually stored in persistent media.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zunchen Huang and Chao Wang

Φ𝑝𝑐 :=
∧

1≤𝑖≤𝑁 (0 ≤ 𝑃𝐶_𝐼𝑖 < 𝑁) ∧∧1≤𝑖< 𝑗≤𝑁 (𝑃𝐶_𝐼𝑖 ≠ 𝑃𝐶_𝐼 𝑗)

Φ𝑠𝑜 :=
∧

𝐼𝑖 ∈𝑆𝑡𝑜𝑟𝑒𝑠 ∧ 𝐼 𝑗 ∈𝑆𝑡𝑜𝑟𝑒𝑠 ∧ 𝑖< 𝑗 (𝑃𝐶_𝐼𝑖 < 𝑃𝐶_𝐼 𝑗)

Φ𝑓 𝑠 :=
∧

𝐼 𝑗 ∈𝐹𝑙𝑢𝑠ℎ𝑒𝑠
∨

𝐼𝑖 ∈𝑆𝑡𝑜𝑟𝑒𝑠 ∧ 𝑆𝑎𝑚𝑒𝐶𝑎𝑐ℎ𝑒𝐿 (𝐼𝑖 ,𝐼 𝑗) (𝑃𝐶_𝐼𝑖 < 𝑃𝐶_𝐼 𝑗)

Φ𝑓 𝑜 :=
∧

𝐼𝑖 ∈𝐹𝑒𝑛𝑐𝑒𝑠 ∧ 𝐼 𝑗 ∈𝐹𝑒𝑛𝑐𝑒𝑠 ∧ 𝑖< 𝑗 (𝑃𝐶_𝐼𝑖 < 𝑃𝐶_𝐼 𝑗)

Φ𝑚𝑜 :=
∧

𝐼𝑖 ,𝐼 𝑗 ∈𝑆𝑡𝑜𝑟𝑒𝑠 ∧ 𝑆𝑎𝑚𝑒𝐶𝑎𝑐ℎ𝑒𝐿 (𝐼𝑖 ,𝐼 𝑗) ∧ 𝑖< 𝑗

∨
𝐼𝑘 ∈𝐹𝑙𝑢𝑠ℎ𝑒𝑠 ∧ 𝑆𝑎𝑚𝑒𝐶𝑎𝑐ℎ𝑒𝐿 (𝐼𝑘 ,𝐼𝑖)

(𝑃𝐶_𝐼𝑖 < 𝑃𝐶_𝐼𝑘 < 𝑃𝐶_𝐼 𝑗)
Φ𝑝𝑡𝑖 :=

∧
𝐼𝑖 ∈𝑆𝑡𝑜𝑟𝑒𝑠 (−1 ≤ 𝑃𝑇_𝐼𝑖 ≤ 𝑁 + 1)

Φ𝑝𝑡𝑠 :=
∧

𝐼𝑖 ∈𝑆𝑡𝑜𝑟𝑒𝑠 (𝑃𝐶_𝐼𝑖 ≤ 𝑃𝑇_𝐼𝑖)

Φ𝑓 𝑖 :=
∧

𝐼𝑖 ∈𝑆𝑡𝑜𝑟𝑒𝑠 ∧ 𝐼 𝑗 ∈𝐹𝑙𝑢𝑠ℎ𝑒𝑠 ∧ 𝑆𝑎𝑚𝑒𝐶𝑎𝑐ℎ𝑒𝐿 (𝐼𝑖 ,𝐼 𝑗) ∧ 𝐼𝑘 ∈𝐹𝑒𝑛𝑐𝑒𝑠
(𝑃𝐶_𝐼𝑖 < 𝑃𝐶_𝐼 𝑗 < 𝑃𝐶_𝐼𝑘) =⇒ (𝑃𝑇_𝐼𝑖 ≤ 𝑃𝐶_𝐼𝑘)

Φ𝑑𝑢 :=
∧

𝐼𝑖 ∈𝑆𝑡𝑜𝑟𝑒𝑠 (𝑃𝑇_𝐼𝑖 < 𝑁)

Φ𝑐𝑐 :=
∧

𝐼𝑖 ,𝐼 𝑗 ∈𝑆𝑡𝑜𝑟𝑒𝑠 ∧ 𝑎𝑠𝑠𝑒𝑟𝑡 (𝑃𝑇𝑖𝑚𝑒 (𝐼𝑖)<𝑃𝑇𝑖𝑚𝑒 (𝐼 𝑗)) (𝑃𝑇_𝐼𝑖 < 𝑃𝑇_𝐼 𝑗)

Figure 7: Our symbolic encoding of the subformulas in

Φprogram := Φ𝑝𝑐 ∧ Φ𝑠𝑜 ∧ Φ𝑓 𝑠 ∧ Φ𝑓 𝑜 ∧ Φ𝑚𝑜 , Φpersistency := Φ𝑝𝑡𝑖 ∧
Φ𝑝𝑡𝑠 ∧ Φ𝑓 𝑖 and Φassertion := Φ𝑑𝑢 ∧ Φ𝑐𝑐 .

4.2 Using Φprogram to Encode Execution Order

Let Φprogram := Φ𝑝𝑐 ∧Φ𝑠𝑜 ∧Φ𝑓 𝑜 ∧Φ𝑓 𝑠 ∧Φ𝑚𝑜 be a set of constraints
on 𝑃𝐶_𝐼𝑖 variables such that, for every satisfying assignment to
Φprogram, the values of 𝑃𝐶_𝐼𝑖 variables correspond to a valid per-
mutation of T .

4.2.1 Subformula Φ𝑝𝑐 . This program-counter (pc) constraint re-
stricts each 𝑃𝐶_𝐼𝑖 to [0, 𝑁) to model the time when 𝐼𝑖 is executed.
The execution time starts from 0 and is bounded by 𝑁 , the total
number of instructions in T . We also require each 𝑃𝐶_𝐼𝑖 variable
to have a unique value. The definition of Φ𝑝𝑐 is presented in Fig. 7.

4.2.2 Subformula Φ𝑠𝑜 . This store-order (so) constraint requires the
STORE instructions in T to execute in the same order as they
appear in the trace. This is because Px86 has a single store-buffer for
all STORE instructions; thus, reordering of two STORE instructions
(𝐼𝑖 , 𝐼 𝑗) is not allowed, as shown by ✔ in Table 1. The definition of
Φ𝑠𝑜 is also presented in Fig. 7.

While computing the repair, we may choose to relax Φ𝑠𝑜 in
certain cases, to allow some of the STORE instructions to reorder.
This is because some PM bugs cannot be repaired unless some
STORE instructions are allowed to reorder in the program. We
discussed an example at the end of Section 2, and we will discuss
details of this relaxation in Section 6.

4.2.3 Subformula Φ𝑓 𝑠 . This flush-store (fs) constraint requires that,
for each CLFLUSHOPT (𝐼 𝑗), its execution time must be after at least
one of the STORE (𝐼𝑖) that it can flush. This requires that 𝐼𝑖 and 𝐼 𝑗
are mapped to the same cache line, i.e., 𝑆𝑎𝑚𝑒𝐶𝑎𝑐ℎ𝑒𝐿(𝐼𝑖 , 𝐼 𝑗) holds.

4.2.4 Subformula Φ𝑓 𝑜 . This fence-order (fo) constraint requires
multiple SFENCE instructions to be executed in the same order as
they appear in the trace.

4.2.5 Subformula Φ𝑚𝑜 . This memory overwrite (mo) constraint
says that two STORE instructions (𝐼𝑖 , 𝐼 𝑗) cannot write the same

1 //Program order constraints:
2 (0 ≤ 𝑃𝐶_𝐼1 ≤ 5) ∧ (0 ≤ 𝑃𝐶_𝐼2 ≤ 5) ∧ (0 ≤ 𝑃𝐶_𝐼3 ≤ 5) ∧ (0 ≤ 𝑃𝐶_𝐼4 ≤ 5)∧
3 (0 ≤ 𝑃𝐶_𝐼5 ≤ 5) ∧ (0 ≤ 𝑃𝐶_𝐼6 ≤ 5)∧
4 (𝑃𝐶_𝐼1 ≠ 𝑃𝐶_𝐼2) ∧ (𝑃𝐶_𝐼1 ≠ 𝑃𝐶_𝐼3) ∧ (𝑃𝐶_𝐼1 ≠ 𝑃𝐶_𝐼4) ∧ (𝑃𝐶_𝐼1 ≠ 𝑃𝐶_𝐼5)∧
5 (𝑃𝐶_𝐼1 ≠ 𝑃𝐶_𝐼6) ∧ (𝑃𝐶_𝐼2 ≠ 𝑃𝐶_𝐼3) ∧ (𝑃𝐶_𝐼2 ≠ 𝑃𝐶_𝐼4) ∧ (𝑃𝐶_𝐼2 ≠ 𝑃𝐶_𝐼5)∧
6 (𝑃𝐶_𝐼2 ≠ 𝑃𝐶_𝐼6) ∧ (𝑃𝐶_𝐼3 ≠ 𝑃𝐶_𝐼4) ∧ (𝑃𝐶_𝐼3 ≠ 𝑃𝐶_𝐼5) ∧ (𝑃𝐶_𝐼3 ≠ 𝑃𝐶_𝐼6)∧
7 (𝑃𝐶_𝐼4 ≠ 𝑃𝐶_𝐼5) ∧ (𝑃𝐶_𝐼4 ≠ 𝑃𝐶_𝐼6) ∧ (𝑃𝐶_𝐼5 ≠ 𝑃𝐶_𝐼6)∧
8 (𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼2) ∧ (𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼4) ∧ (𝑃𝐶_𝐼2 < 𝑃𝐶_𝐼3) ∧ (𝑃𝐶_𝐼5 < 𝑃𝐶_𝐼6)
9 //Persistency time constraints:
10 (−1 ≤ 𝑃𝑇 _𝐼1 ≤ 7) ∧ (−1 ≤ 𝑃𝑇 _𝐼2 ≤ 7) ∧ (𝑃𝐶_𝐼1 ≤ 𝑃𝑇 _𝐼1) ∧ (𝑃𝐶_𝐼2 ≤ 𝑃𝑇 _𝐼2)∧
11 (𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼4 < 𝑃𝐶_𝐼5 =⇒ 𝑃𝑇 _𝐼1 ≤ 𝑃𝐶_𝐼5)∧
12 (𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼4 < 𝑃𝐶_𝐼6 =⇒ 𝑃𝑇 _𝐼1 ≤ 𝑃𝐶_𝐼6)∧
13 (𝑃𝐶_𝐼2 < 𝑃𝐶_𝐼3 < 𝑃𝐶_𝐼5 =⇒ 𝑃𝑇 _𝐼2 ≤ 𝑃𝐶_𝐼5)∧
14 (𝑃𝐶_𝐼2 < 𝑃𝐶_𝐼3 < 𝑃𝐶_𝐼6 =⇒ 𝑃𝑇 _𝐼2 ≤ 𝑃𝐶_𝐼6)
15 //Assertion violation constraints:
16 ¬((𝑃𝑇 _𝐼1 < 6) ∧ (𝑃𝑇 _𝐼2 < 6) ∧ (𝑃𝑇 _𝐼1 < 𝑃𝑇 _𝐼2))

Figure 8: Encoding for the THEN-branch of Fig. 6 with both

durability and crash consistency assertions.

address without a CLFLUSHOPT (𝐼𝑘) inserted in between, to avoid
memory overwrite. Memory overwrites must be avoided because,
by definition, it violates the durability property.

4.3 Using Φpersistency to Encode Persistency Order

Let Φpersistency := Φ𝑝𝑡𝑖 ∧Φ𝑝𝑡𝑠 ∧Φ𝑓 𝑖 be a set of constraints on 𝑃𝑇_𝐼𝑖
variables such that, for every satisfying assignment to Φpersistency ,
the values of the 𝑃𝑇_𝐼𝑖 variables correspond to a valid persistency
order of instructions in T . These subformulas are defined in Fig. 7.

4.3.1 Subformula Φ𝑝𝑡𝑖 . This persistency time initialization (pti)
constraint requires that, for each STORE instruction 𝐼𝑖 ∈ 𝑆𝑡𝑜𝑟𝑒𝑠 ,
the value of 𝑃𝑇_𝐼𝑖 is in the interval [−1, 𝑁 +1]. Besides [0, 𝑁), here,
−1 means 𝐼𝑖 has not been executed, 𝑁 means 𝐼𝑖 has been flushed
but not yet fenced, and 𝑁 + 1 means 𝐼𝑖 has not even been flushed
yet at the end of the execution.

4.3.2 Subformula Φ𝑝𝑡𝑠 . This persistency time store (pts) requires
the persistency time of each 𝐼𝑖 ∈ 𝑆𝑡𝑜𝑟𝑒𝑠 to be no earlier than the
execution time of 𝐼𝑖 , i.e., the value of 𝑃𝐶_𝐼𝑖 .

4.3.3 Subformula Φ𝑓 𝑖 . This fence interval (fi) constraint requires
that, for each 𝐼𝑖 ∈ 𝑆𝑡𝑜𝑟𝑒𝑠 , matching 𝐼 𝑗 ∈ 𝐹𝑙𝑢𝑠ℎ𝑒𝑠 , and 𝐼𝑘 ∈ 𝐹𝑒𝑛𝑐𝑒𝑠 ,
the persistency time of 𝐼𝑖 is no later than the execution time of 𝐼𝑘 .

4.4 Using Φassertion to Encode the Assertion

LetΦassertion := Φ𝑑𝑢∧Φ𝑐𝑐 , whereΦ𝑑𝑢 represents the set of durability
conditions andΦ𝑐𝑐 represents the set of crash consistency conditions.
Both of them are defined in Fig. 7.

Recall that for each 𝐼𝑖 ∈ 𝑆𝑡𝑜𝑟𝑒𝑠 , the value written by 𝐼𝑖 is ex-
pected to be stored in persistent media at the end of the execution
(𝑇𝑀𝐴𝑋 = 𝑁). Thus, if (𝑃𝑇_𝐼𝑖 ≥ 𝑁) is satisfiable, there exists a
durability bug. Similarly, given two instructions 𝐼𝑖 , 𝐼 𝑗 ∈ 𝑆𝑡𝑜𝑟𝑒𝑠 , if
𝐼𝑖 is expected to always persist before 𝐼 𝑗 , then the satisfiability of
(𝑃𝑇_𝐼𝑖 ≥ 𝑃𝑇_𝐼 𝑗) means there exists a crash consistency bug.

4.5 An Example for Our Encoding Method

Fig. 8 shows the constraints in Φ constructed by our method for
the THEN-branch of Fig. 6, after the new SFENCE instruction 𝐼6
has been added to the end of the trace.

Constraint Based Program Repair for Persistent Memory Bugs ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Algorithm 2: R ← ComputeRepair(T ,A)
1 Φ← Φprogram ∧ Φpersistency ∧ ¬Φassertion
2 R ← 𝑡𝑟𝑢𝑒

3 while 𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑎𝑏𝑙𝑒 (Φ ∧ R) do
4 𝜓𝑠𝑎𝑡 ← ExtractSatConstraint(Φ ∧ R)
5 R ← R ∧ ¬𝜓𝑠𝑎𝑡
6 end while

7 return R

Specifically, Lines 2-7 encode Φ𝑝𝑐 , which requires each 𝑃𝐶_𝐼𝑖 to
have a unique value in [0, 5]. Here, 𝑁 = 6 is the total number of
instructions in the extended execution trace T .

Line 8 encodes the program order. In particular, 𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼2
encodes Φ𝑠𝑜 , which requires the two STORE instructions to ex-
ecute in order. 𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼4 and 𝑃𝐶_𝐼2 < 𝑃𝐶_𝐼3 encode Φ𝑓 𝑠 ,
which requires each CLFLUSHOPT to execute after a correspond-
ing STORE. 𝑃𝐶_𝐼5 < 𝑃𝐶_𝐼6 encodes Φ𝑓 𝑜 , which requires the two
SFENCE instructions to execute in the same order as in the trace.

Line 10 encodes Φ𝑝𝑡𝑖 and Φ𝑝𝑡𝑠 , where Φ𝑝𝑡𝑖 requires each 𝑃𝑇_𝐼𝑖
to have a value in [−1, 7], and Φ𝑝𝑡𝑠 requires each 𝑃𝑇_𝐼𝑖 to be no
earlier than the corresponding 𝑃𝐶_𝐼𝑖 .

Lines 11-14 encodeΦ𝑓 𝑖 . In particular, 𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼4 < 𝑃𝐶_𝐼5 =⇒
𝑃𝑇_𝐼1 ≤ 𝑃𝐶_𝐼5means that, whenever the STORE andCLFLUSHOPT
instructions for 0𝑥4𝑎3𝑐000 execute before the SFENCE instruction
𝐼5, the persistency time for 0𝑥4𝑎3𝑐000 is guaranteed to be no later
than the execution time of 𝐼5.

Finally, Line 16 encodes the conditions under which assertion
may be violated.

Since the set of constraints (Φ) in Fig. 8 is satisfiable, an SMT
solver may return a solution corresponding to the permutation
T ′ = 𝐼1, 𝐼4, 𝐼2, 𝐼3, 𝐼5, 𝐼6. This is a valid permutation of T because,
according to theCL symbol in Table 1, CLFLUSHOPT (𝐼4) is allowed
to reorder before 𝐼2 and 𝐼3. However, it violates the crash consistency
property because 𝐼2 may persist before 𝐼1. In the next section, we
present our method for repairing this violation.

5 COMPUTING THE REPAIR

Algorithm 2 shows our method for computing a repair R when
the formula Φ is satisfiable. Our method first uses the subroutine
ComputeRepair(T ,A) to compute a candidate R, and then uses
the subroutine RepairIsValid(T ,R) to check if R is a valid repair.

5.1 Subroutine ComputeRepair(T ,A)
The repairR is represented by a conjunction of blocking constraints,
each of which, denoted ¬𝜓𝑠𝑎𝑡 , removes a subset of permutations of
T allowed by Φ. Recall that Φ allows only valid and yet buggy per-
mutations. Thus, we want to compute a set of blocking constraints
that remove all valid and yet buggy permutations.

In Algorithm 2, R is initialized to 𝑡𝑟𝑢𝑒 , which represents an
empty repair. Then, as long as Φ ∧ R remains satisfiable (Line 3),
we compute a constraint𝜓𝑠𝑎𝑡 from the satisfying assignment (𝑠𝑜𝑙)
to the formula Φ ∧ R. Here,𝜓𝑠𝑎𝑡 is a conjunction of happens-before
constraints, (𝑃𝐶_𝐼𝑖 < 𝑃𝐶_𝐼 𝑗), extracted from the antecedents of

Algorithm 3: RepairIsValid(T ,R)
1 Ψ← Φprogram ∧ Φpersistency
2 if 𝑆𝑎𝑡𝑖𝑠 𝑓 𝑖𝑎𝑏𝑙𝑒 (Ψ ∧ R) then
3 return 𝑡𝑟𝑢𝑒

4 else

5 return 𝑓 𝑎𝑙𝑠𝑒

6 end if

the subformula Φ𝑓 𝑖 such that all these happens-before constraints
are satisfied by the assignment (𝑠𝑜𝑙).

Since𝜓𝑠𝑎𝑡 captures a set of valid-and-yet-buggy permutations
of T , by adding ¬𝜓𝑠𝑎𝑡 to R, we remove them (Line 5). Inside the
while-loop of Algorithm 2, we keep adding ¬𝜓𝑠𝑎𝑡 until Φ ∧ R is no
longer satisfiable.

Within each call to ExtractSatConstraint(Φ ∧ R), we com-
pute a minimal set of constraints to be included in 𝜓𝑠𝑎𝑡 based on
the satisfying assignment (𝑠𝑜𝑙) returned by the SMT solver. This is
accomplished using the greedy algorithm as follows:

First, we extract the concrete values of the 𝑃𝐶_𝐼𝑖 variables from
the assignment (𝑠𝑜𝑙), and use these concrete values to decide, for
each (𝑃𝐶_𝐼𝑖 < 𝑃𝐶_𝐼 𝑗) constraint in the antecedents ofΦ𝑓 𝑖 , whether
the constraint is satisfied. All the satisfied (𝑃𝐶_𝐼𝑖 < 𝑃𝐶_𝐼 𝑗) con-
straints are added to𝜓𝑠𝑎𝑡 . Thus, the negation of𝜓𝑠𝑎𝑡 will eliminate
permutations associated with the assignment (𝑠𝑜𝑙).

Before adding ¬𝜓𝑠𝑎𝑡 to R, we remove the obviously-redundant
constraints from 𝜓𝑠𝑎𝑡 . These are constraints that are implied by
other constraints in𝜓𝑠𝑎𝑡 . For example, if𝜓𝑠𝑎𝑡 contains both (𝑃𝐶_𝐼1 <

𝑃𝐶_𝐼2) and (𝑃𝐶_𝐼2 < 𝑃𝐶_𝐼3), then we remove (𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼3)
from𝜓𝑠𝑎𝑡 since it is redundant.

5.2 Subroutine RepairIsValid(T ,R)
Algorithm 3 shows our method for validating the repair candidate
R in two steps. First, we define a new formula Ψ := Φprogram ∧
Φpersistency to capture the set of valid permutations of T . Note that
Ψ is a subformula of Φ because Φ := Ψ∧¬Φassertion. Next, we check
if the combined formula (Ψ ∧ R) is satisfiable; we say that R is a
valid repair only if (Ψ ∧ R) is satisfiable.

Fig. 9 illustrates why we check the validity of the repair in this
way. Here, formulas ¬Φassertion and Ψ can be thought of as filters of
permutations of the trace T : red ones are buggy and black ones are
non-buggy. In this sense, Ψ retains only the valid permutations of
T , and the repair candidate R filters out the valid-and-yet-buggy
permutations. If R retains at least some non-buggy permutation
(black arrow), we say that R is a valid repair. But if R does not
retain any non-buggy permutation at all, it is a vacuous repair.

The existence of some (valid and non-buggy) permutationsmeans
that the constraints imposed by R is realizable.

5.3 An Example for Our Repair Method

We use the example in Fig. 8 to illustrate the repair computation
and validation process. Fig. 10 shows the corresponding steps.

First, recall that the constraints (Φ) shown in Fig. 8 are satisfiable.
From the first solution to Φ returned by the SMT solver, our method
identifies the happens-before constraints in the antecedents of the

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zunchen Huang and Chao Wang

𝛹 ˄¬𝛷assertion

all

permutations

valid

permutations

valid-and-buggy

permutations

(a) before repair

𝛹 ˄𝓡 ˄¬𝛷assertion

all

permutations

valid

permutations

valid-and-non-buggy

permutations

valid-and-buggy

permutations

(b) after repair

Figure 9: Formulas act as “filters” of the trace permutations,

including buggy (red) and non-buggy (black) permutations.

//First iteration -- Satisfiable
From solution T′ = 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, we extract 𝜓𝑠𝑎𝑡 as follows:
(𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼4 < 𝑃𝐶_𝐼5) ∧ (𝑃𝐶_𝐼2 < 𝑃𝐶_𝐼3 < 𝑃𝐶_𝐼5)∧
(𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼4 < 𝑃𝐶_𝐼6) ∧ (𝑃𝐶_𝐼2 < 𝑃𝐶_𝐼3 < 𝑃𝐶_𝐼6)

//Second iteration -- Satisfiable
From solutionT′ = 𝐼5, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼6, we extract 𝜓𝑠𝑎𝑡 as follows:
(𝑃𝐶_𝐼5 < 𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼4) ∧ (𝑃𝐶_𝐼5 < 𝑃𝐶_𝐼2 < 𝑃𝐶_𝐼3)∧
(𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼4 < 𝑃𝐶_𝐼6) ∧ (𝑃𝐶_𝐼2 < 𝑃𝐶_𝐼3 < 𝑃𝐶_𝐼6)

//Third iteration -- Unsatisfiable
Return R as a potential repair

//Validation -- Satisfiable
Found a valid permutation of T by solving (Ψ ∧ R)

Inst 𝐼1: STORE 0x4a3c000
Inst 𝐼4: clflushopt 0x4a3c000
Inst 𝐼5: sfence
Inst 𝐼2: STORE 0x4a3c080
Inst 𝐼3: clflushopt 0x4a3c080
Inst 𝐼6: sfence

Figure 10: Illustrating the repair computation and validation.

fence interval (fi) subformula Φ𝑓 𝑖 . This corresponds to Line 4 of
Algorithm 2. While there are four antecedents in Φ𝑓 𝑖 as shown in
Fig. 8, only two of them end up in𝜓𝑠𝑎𝑡 , as shown in Fig. 10.

By adding ¬𝜓𝑠𝑎𝑡 to R, our method removes the buggy permuta-
tion where instructions 𝐼1 and 𝐼2, together with their CLFLUSHOPT
instructions, execute before the first SFENCE instruction in 𝐼5.

Next, we check if Φ ∧ R is satisfiable (Line 3 of Algorithm 2).
Since the answer is yes, from the second solution to Φ returned by
the SMT solver, our method computes another𝜓𝑠𝑎𝑡 and then uses
¬𝜓𝑠𝑎𝑡 to remove the buggy permutation where instructions 𝐼1 and
𝐼2, together with their CLFLUSHOPT instructions, are moved in
between instructions 𝐼5 and 𝐼6.

At this moment, the only remaining permutation is as follows: 𝐼1
and its CLFLUSHOPT are before 𝐼5, while 𝐼2 and its CLFLUSHOPT
are between 𝐼5 and 𝐼6. Since this permutation does not violate the
assertion, our method exists the while-loop in Algorithm 2 and
returns R as a potential repair.

Finally, our method uses Algorithm 3 to validate the repair by
checking the satisfiability of Ψ ∧ R. Since Ψ ∧ R is satisfiable, the

SMT solver returns a solution that corresponds to the permutation
T ′ = 𝐼1, 𝐼4, 𝐼5, 𝐼2, 𝐼3, 𝐼6.

This permutation of T shows exactly how to reorder instructions
in the extended execution trace to avoid the assertion violation.
Thus, by mapping the reordered instructions from T back to the
original program, we obtain the repaired software code shown in
the THEN-branch of Fig. 3.

6 CORRECTNESS AND OPTIMIZATIONS

In this section, we first discuss the correctness of our repair method
by treating it as a special case of the well-known syntax-guided
synthesis (SyGuS) problem [2]. Then, we discuss two optimizations.

6.1 Relating to SyGuS

Our repair problem can be viewed as deciding the existence of a
relation R such that Ψ(𝑥,𝑦) ∧ R(𝑥) =⇒ Ψassertion (𝑦) must be
valid (for all 𝑥 and 𝑦) and, at the same time, Ψ(𝑥,𝑦) ∧ R(𝑥) must
be satisfiable (for some 𝑥 and 𝑦). Here, 𝑥 denotes the set of 𝑃𝐶_𝐼𝑖
variables and 𝑦 denotes the set of 𝑃𝑇_𝐼𝑖 variables.

∃R . (∀𝑥,𝑦. Ψ(𝑥,𝑦) ∧ R(𝑥) =⇒ Φassertion (𝑦)) ∧
(∃𝑥,𝑦. Ψ(𝑥,𝑦) ∧ R(𝑥))

This is the well-known SyGuS problem [2].
In our method, since the validity of 𝐴 ∧ 𝐵 =⇒ 𝐶 is equivalent

to the unsatisfiability of the negated formula𝐴∧𝐵∧¬𝐶 , we rewrite
the problem as follows:

∃R . ¬(∃𝑥,𝑦. Ψ(𝑥,𝑦) ∧ R(𝑥) ∧ ¬Φassertion (𝑦)) ∧
(∃𝑥,𝑦. Ψ(𝑥,𝑦) ∧ R(𝑥))

This allows use to use off-the-shelf SMT solvers to decide the two
satisfiability subproblems. The first one says that Ψ∧R∧¬Φassertion
must be unsatisfiable, and the second one says that Ψ ∧ R must be
satisfiable. They are the foundations of our method for computing
and validating the repair in Algorithms 2 and 3.

The link to SyGuS allows us to understand the complexity of the
repair problem. Since quantification is applied to the relation R,
the problem is expressed as a formula in second-order logic, which
is known to be undecidable in general. That is why practical solu-
tions to the SyGuS problem tend to be sound (and yet incomplete)
solutions. In our repair method, we adopt the same approach.

Our Method Is Guaranteed to Be Sound with Respect to the Given
Trace. That is, the repair R computed by our method is guaranteed
to be correct. This is because, by definition, R is able to make
Ψ ∧ R ∧ ¬Φassertion unsatisfiable, as shown in Algorithm 2. At
the same time, it is able to make Ψ ∧ R satisfiable, as shown in
Algorithm 3. Thus, R can always eliminate the failed assertion.

Our method is not necessarily complete, meaning that even if
there exists a valid repair, in theory, our method may not find it.
We do not attempt to make the method complete for efficiency
reasons, even if this may be achieved by restricting the search to a
decidable solution subspace. Instead, we will demonstrate through
experimental evaluation (Section 7) that, in practice, our repair
method can always find a valid repair.

Constraint Based Program Repair for Persistent Memory Bugs ICSE ’24, April 14–20, 2024, Lisbon, Portugal

6.2 Adding New Instructions to T
So far, our analysis assumes that the set of instructions in the
execution trace T is fixed. Sometimes, however, the PM bug cannot
be fixed merely by permuting T ; in addition, new CLFLUSHOPT
and SFENCE instructions must be added. This is the reason why
there is a while-loop in Algorithm 1 and whenever the PM bug
cannot be repaired using instructions in given execution traceT , we
use AddInstructions (Line 6 in Algorithm 1) to add instructions
to T , and try again.

Which instructions to add first depends on the violated assertion.
If the violated assertion is 𝑃𝑇_𝐼𝑖 < 𝑃𝑇_𝐼 𝑗 , our strategy is to add a
CLFLUSHOPT instruction whose address is the same as the address
of 𝐼𝑖 or 𝐼 𝑗 . If the violated assertion is 𝑃𝑇_𝐼𝑖 < 𝑁 (a durability bug),
our strategy is to add a CLFLUSHOPT instruction first and then
check if a valid repair exists; if the violation still exists, we add an
SFENCE instruction and check again.

Fig. 6 shows an example. Prior to adding the instruction 𝐼6, the
last violated assertion represents the durability of the value written
by 𝐼2. Thus, we add an SFENCE instruction. The reason why there
is no need to add the CLFLUSHOPT instruction for 𝐼2 is because
such an instruction already exists in the given execution trace.

6.3 Relaxing the Subformula Φ𝑠𝑜

So far, our analysis assumes that STORE instructions in the given
trace T are executed in the same order as they appear in the pro-
gram. This is codified in the subformula Φ𝑠𝑜 . However, enforcing
Φ𝑠𝑜 may prevent some bugs from being repaired.

An example has been shown in the ELSE-branch of Fig. 4. In
addition to the durability property (𝑃𝑇_𝐼1 < 𝑁), the user also
wants to satisfy the crash consistency property (𝑃𝑇_𝐼2 < 𝑃𝑇_𝐼1).
However, since the must-persist-before constraint (𝑃𝑇_𝐼2 < 𝑃𝑇_𝐼1)
contradicts with the happens-before constraint (𝑃𝐶_𝐼1 < 𝑃𝐶_𝐼2) in
Φ𝑠𝑜 , it is impossible to repair the bug. If we assume that Φassertion
correctly expresses the intended behavior, then we must relax the
happens-before constraints in Φ𝑠𝑜 .

In our repair method, the solution is to enforce the subformula
Φ𝑠𝑜 first. However, if this does not lead to a valid repair, we relax it.
Toward this end, we first check ifΦ𝑠𝑜 contains a constraint (𝑃𝐶_𝐼𝑖 <
𝑃𝐶_𝐼 𝑗) that contradicts the transitive closure of the must-persist-
before constraints imposed by the crash consistency requirement
Φ𝑐𝑐 . If the answer is yes, then we remove the conflicting constraint
from Φ𝑠𝑜 , and try again.

To summarize, whenever the must-persist-before constraints in
Φassertion contradict with the happens-before constraints in Φ𝑠𝑜 , we
assume that Φassertion is the intended behavior, and relax Φ𝑠𝑜 .

7 EXPERIMENTS

We implemented our method by using Z3 [7] to conduct the sym-
bolic analysis described in Algorithms 1, 2 and 3. Our method takes
an execution trace and a failed assertion as input and returns the
repair as output. The known-to-be-buggy execution traces are gen-
erated using PMemCheck [19], although many other existing PM
bug detection tools [18, 19, 22] can also be used to generate traces.

Table 2: Statistics of the benchmark programs.

Name LoC Description PM Bug Type

obj_constructor 186 Object constructor test [37] durability
obj_first_next 314 POBJ_FIRST macro test [37] durability
obj_mem 68 pmemobj copy, move and set tests [37] durability
obj_memops 654 basic memory operations tests [37] durability
obj_toid 83 TOID macros test [37] durability
pmem_memcpy 174 memcpy test [37] durability
pmem_memmove 223 memmove test [37] durability
pmem_memset-1 103 memset from libpmemset [37] durability
pmem_memset-2 103 memset from libpmemset [37] durability
pmemspoil 1,324 pmempool spoil test [37] durability
rpmemd_db 653 pool set database [37] durability
Recipe (2 bugs) 39,581 convert DRAM index to PM index [30] durability
Memcached (10 bugs) 23,032 key/value cache store in distributed sys [4] durability
pmreorder_1 141 pmreorder script test [21] crash consistency
pmreorder_2 141 pmreorder script test [21] crash consistency
pmreorder_3 141 pmreorder script test [21] crash consistency
pmreorder_4 141 pmreorder script test [21] crash consistency
pmreorder_5 141 pmreorder script test [21] crash consistency
pmreorder_6 141 pmreorder script test [21] crash consistency
pmreorder_7 141 pmreorder script test [21] crash consistency
pmreorder_8 141 pmreorder script test [21] crash consistency
pmreorder_stack_1 123 functional test of pmreorder stack [21] crash consistency
pmreorder_stack_2 123 functional test of pmreorder stack [21] crash consistency
pmreorder_flushes_1 155 store reordering with flushes test [21] crash consistency
pmreorder_flushes_2 155 store reordering with flushes test [21] crash consistency
Redis (2 bugs) 75,249 distributed, in-memory key–value database [3] crash consistency
Memcached (4 bugs) 23,032 key/value cache store in distributed sys [4] crash consistency

7.1 Benchmarks

Table 2 shows the benchmark statistics, including the name, the
number of lines of C code (LoC), a short description, and the known
PM bug type. These benchmark programs fall into two sets. The
first set consists of programs with durability bugs. The first ten
programs come from the Intel PMDK library. The last two programs
are real applications: Memcached [4] is a high-performance object
caching system, and Recipe [30] is a set of durable concurrent data
structures for fast indexing. The durability bugs in these programs
have been confirmed by prior work [37]. The second set consists
of programs with crash consistency bugs. The first twelve are unit-
testing programs for durable data structures implemented in the
Intel PMDK library. These unit tests are created by Intel developers
to illustrate various scenarios under which crash consistency bugs
occur. The last two program are two real applications, including
Memcached as well as Redis [3], which is a distributed key-value
database. All of these crash consistency bugs have been confirmed
by the developers.

7.2 Experimental Set-up

Since the only prior work on repairing PMbugs is Hippocrates [37],
we focus on comparing our tool, PMBugAssist, with Hippocrates
on all benchmark programs. Our experiments were designed to
answer the following research questions.

• RQ 1: Is PMBugAssist more effective than Hippocrates in
repairing the PM bugs?
• RQ 2: Is PMBugAssist efficient enough for computing re-
pairs for the benchmark programs?
• RQ 3: Does PMBugAssist correctly compute repairs for the
benchmark programs?

The experiments were conducted on a computer with AMD Ryzen
5 5600X CPU and 32GB memory, running Ubuntu 20.04.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zunchen Huang and Chao Wang

Table 3: Results of the experimental evaluation.

Name Trace PMBugAssist (our method) Hippocrates
Length time(s) # inst. inst. repaired repaired # inst. time(s)

added reorder added
obj_constructor 445,254 0.1 1+1 0 ✔ ✔ 1+1 1.4
obj_first_next 559,572 0.3 2+0 0 ✔ ✔ 2+0 6.7
obj_mem 566,129 18.4 11+0 0 ✔ ✔ 210+0 47.1
obj_memops 565,899 0.3 2+0 0 ✔ ✔ 2+0 20.9
obj_toid 419,186 0.1 3+0 0 ✔ ✔ 3+0 1.6
pmem_memcpy 17,008 0.3 4+0 0 ✔ ✔ 4+0 5.8
pmem_memmove 624 0.1 2+0 0 ✔ ✔ 2+0 1.0
pmem_memset-1 194 183.52 1+1 0 ✔ ✔ 1+2 2.6
pmem_memset-2 4,440 0.1 1+0 0 ✔ ✔ 1+0 1.1
pmemspoil 36 0.1 0+1 0 ✔ ✘ 0+1 0.9
rpmemd_db 8,993 0.1 1+1 0 ✔ ✔ 1+0 0.8
Recipe (2 bugs) 500,415 4.5 3+1 0 ✔ ✔ 3+1 0.3
Memcached (10 bugs) 200,939 1,790.2 9+1 0 ✔ ✔ 10+6 0.3
pmreorder_1 8 0.1 1+1 1 ✔ ✘ N/A N/A
pmreorder_2 8 0.1 1+1 2 ✔ ✘ N/A N/A
pmreorder_3 10 7.9 2+2 4 ✔ ✘ N/A N/A
pmreorder_4 10 7.9 2+2 4 ✔ ✘ N/A N/A
pmreorder_5 8 4.8 2+2 1 ✔ ✘ N/A N/A
pmreorder_6 8 22.9 2+2 4 ✔ ✘ N/A N/A
pmreorder_7 10 22.1 2+2 4 ✔ ✘ N/A N/A
pmreorder_8 12 3559.12 3+3 5 ✔ ✘ N/A N/A
pmreorder_stack_1 26 0.3 0+0 1 ✔ ✘ N/A N/A
pmreorder_stack_2 26 0.6 0+0 2 ✔ ✘ N/A N/A
pmreorder_flushes_1 35 3857.8 0+0 5 ✔ ✘ N/A N/A
pmreorder_flushes_2 35 539.0 0+0 6 ✔ ✘ N/A N/A
Redis_1 10,577 0.2 2+2 3 ✔ ✘ N/A N/A
Redis_2 10,577 0.2 2+2 3 ✔ ✘ N/A N/A
Memcached_1 63,133 0.1 2+2 1 ✔ ✘ N/A N/A
Memcached_2 63,133 0.1 2+2 1 ✔ ✘ N/A N/A
Memcached_3 63,133 0.1 2+2 1 ✔ ✘ N/A N/A
Memcached_4 63,133 0.1 2+2 1 ✔ ✘ N/A N/A

7.3 Results for Answering RQ 1

First, we present the experimental results that answer RQ 1. They
are shown in the last two columns of Table 3. Here, the first two
columns show the benchmark name and the length of the original
execution trace T . The last two columns show the effectiveness of
the two repair methods: PMBugAssist with Hippocrates. Here,
the symbol ✔ means that the method can repair the bug, whereas
the symbol ✘ means that the method cannot repair the bug. For
each suggested repair generated, we manually inspect and compare
it with the developers’ fix and verify their correctness.

The first twelve rows of Table 3 are benchmark programs with 23
confirmed durability bugs. The last fourteen rows are benchmark
programs with 18 confirmed crash consistency bugs. The results in
Table 3 shows that PMBugAssist was able to repair all of the 41
bugs, while Hippocrates was able to repair 22 of the 23 durability
bugs and none of the 18 crash consistency bugs.

We also show, in Table 3, the CLFLUSHOPT+SFENCE instruc-
tions added and the time taken by the two methods. Overall, our
method added either the same number of instructions or fewer
instructions. For obj_mem, our method used significantly fewer
CLFLUSHOPT instructions than Hippocrates (11+0 versus 210+0)
because multiple STORE operations share the same cache line. For
Memcached, our method used fewer instructions (9+1 versus 10+6)
because SFENCE may be shared by multiple STORE operations. For
pmemspoil, our manual inspection shows that Hippocrates’s repair
is actually incorrect—at least one CLFLUSHOPT must be added.

While our method takes more time since it conducts the addi-
tional semantic analysis of the modified program, this is needed to
discover new repair strategies; in contrast, Hippocrates only ap-
plies the predefined repair strategy for durability bugs bug cannot
repair crash consistency bugs. For pmem_memset-1, our method had

a longer running time because the erroneous STORE residing in a
loop showed up in the trace many times and thus slowed down our
symbolic analysis. Overall, the time taken by our method is reason-
able when compared to the alternative of relying on programmers
to manually repair the bugs.

7.4 Results for Answering RQ 2

Now, we present the experimental results that answer RQ 2. There
are two parts. The first part is shown in Column 2 of Table 2, which
reports the program size. It shows that PMBugAssist is able to
handle programs with reasonably large code sizes. For example,
both Memcached and Recipe have more than 20K lines of C code.
The second part is shown in Column 2 of Table 3, which reports
the length of the execution trace. It shows that PMBugAssist is
able to handle reasonably long execution traces.

Note that neither code size nor trace length is a reliability in-
dicator of how hard the repair problem is. For example, although
the majority of durability bugs have traces with more than 100K
instructions, the repair problems are often simple, because each
(𝑃𝑇_𝐼𝑖 < 𝑁) constraint involves only one STORE instruction 𝐼𝑖 ,
and many instructions in the trace are unrelated and thus may be ig-
nored during the analysis. In contrast, while the crash consistency
bugs have shorter traces, they have more complex interactions
between the 𝑃𝐶_𝐼𝑖 and 𝑃𝑇_𝐼𝑖 variables and, as a result, have signif-
icantly larger search spaces.

For example, even with 10 to 30 instructions in the trace T ,
the total number of possible repairs in the solution space can be
astronomically large (10! to 30!). This means that it is impossible
for developers to enumerate the possible repairs manually. This is
also the reason why SMT based symbolic analysis is needed.

Column 3 of Table 3 shows that our SMT based symbolic anal-
ysis is efficient in computing repairs. Except for obj_memops, all
durability bugs were repaired in a few seconds. This is the case
even for applications such as Memcached and Recipe, for which
our repair method finished within 10 seconds. For obj_memops, it
took 15 minutes because the program has a very large number of
PM accesses and thus requires many SMT solver calls. For crash
consistency bugs, our method finished within seconds except for
pmreorder_8, pmreorder_flushes_1 and pmreorder_flushes_2. For pm-
reorder_8, our method took longer because it went through more
iterations in the while-loop, while adding 6 new PM instructions to
the original execution trace (shown in Column 4) and reordering 4
instructions in the extended execution trace. For the last two bench-
marks, pmreorder_flushes_1 and pmreorder_flushes_2, the reason is
because there are more relevant instructions in the traces and more
of these instructions need to be reordered to repair the bugs.

Ourmethod alsominimizes the number of SFENCE/CLFLUSHOPT
instructions added (Section 3). For durability bugs, the results are
as efficient as the repairs generated by Hippocrates. For crash
consistency bugs (which cannot be handled by Hippocrates), the
efficiency of our repairs is shown in Column 4 of Table 3.

7.5 Results for Answering RQ 3

To answer RQ 3, we inspected the repairs computed by our method
to see if they are also correct for other traces. Recall that, since
each repair is computed from a single trace, in theory, there is no

Constraint Based Program Repair for Persistent Memory Bugs ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 4: The type of code block that our repair belongs to.

Bug Type Number of Bugs Sequential Branch In Scope Branch Out of Scope
Durability 23 20 (86%) 3 (14%) 0 (0%)
Crash Consistency 18 16 (89%) 2 (11%) 0 (0%)

guarantee that the repair is correct also for other traces. However,
our results show that for all the benchmarks in Table 3, our repairs
are correct also for other traces.

The reason is that our repair almost always resides in a local
code block, such that the code block (basic block) is either executed
in its entirety by a trace, or not executed at all by the trace. An
example would be the THEN-branch (or the ELSE-branch) of an
If-statement. It is extremely rare for the STORE instructions and
the corresponding CLFLUSHOPT and SFENCE instructions to be
separated into different code blocks. As a result, a trace executes
either all or none of the instructions involved in our repair.

Table 4 shows how often this easy-to-check sufficient condition
is satisfied in practice. Here, a repair is called Sequential when all
instructions fall into a straight-line code block, called Branch In
Scope when all instructions fall into a branch of an If-statement,
and called Branch Out of Scope when some are in a branch but
others are outside of the branch. For Sequential and Branch In Scope,
correctness of the repair is guaranteed for all traces.

Table 4 shows that, for durability, 20 of the 23 repairs (86%)
are Sequential and only 3 (14%) are Branch In Scope. For crash
consistency, 16 of the 18 repairs (89%) are Sequential and only 2
(11%) are Branch In Scope. Whether a repair is Sequential or Branch
In Scope can be checked automatically using static program analysis.

8 RELATEDWORK

Aswe have mentioned earlier, Hippocrates [37] is the only existing
PM bug repair tool, but is limited to repairing durability bugs. Our
method, in contrast, can also repair crash consistency bugs.

Our work is complementary to existing, trace based PM bug
detectors [6, 9, 10, 12–14, 31, 42]. This includes, for example, PMem-
Check [19] and Persistence Inspector[18], which are trace based
PM bug detection tools from Intel, Pmreorder [22], which is an
extension of the Intel tools for explicitly generating trace permuta-
tions, Yat [28], which is a framework based on hypervisor for test-
ing persistency bugs on POSIX-compliant file system (PMFS [41]),
and Chipmunk [29], which is a framework for testing PM file sys-
tems for crash-consistency bugs.

PMTest [33] is a tool that leverages user specified checking rules
to compute the persistency time interval of STORE instructions, to
decide if there are persistency violations. XFDetector [32] is a tool
that automatically injects failures into the program and then replays
the execution traces before and after failure, to detect cross-failure
bugs. PMDebugger [8] is a also tool that leverages user-specified
constraints to detect PM bugs. In addition, there are techniques for
verifying the absence of PM bugs [27, 40].

At a high level, our repair method is also related to techniques
for repairing other software bugs. They include ExtractFix [11],
which is a constraint-based semantic repair approach that leverages
an execution trace and a crash-free constraint as input to generate
candidate patches that satisfy the constraint, BugAssist [23, 24],

which repairs assertion failures in a sequential program, and Con-
cBugAssist [26], which repairs failures in a multi-threaded pro-
gram. Other similar repair techniques include SemiFix [39], Di-
rectFix [35], and the method proposed by Malik et al. [34] for
repairing data structures. There are also techniques for synthe-
sizing and optimizing fences and synchronization primitives for
concurrent programs [1, 5, 25, 36]. However, none of these existing
techniques can repair PM bugs.

Our SMT solver based symbolic analysis is related to techniques
used by existing tools for traced-based analysis to detect concur-
rency bugs such as data races and atomicity violations [16, 43, 45–
47], as well as symbolic analysis techniques for detecting informa-
tion leaks through side channels [15, 17]. However, these techniques
were designed exclusively for programs that use volatile memory,
and thus cannot be used to detect or repair PM bugs.

9 CONCLUSIONS

We have presented a method for automatically repairing both dura-
bility and crash consistency bugs in application software that lever-
ages byte-addressable persistent memory. Our method relies on a
novel SMT based symbolic analysis to first identify the valid and yet
buggy executions allowed by the program, and then remove these
executions through iterative addition of blocking constraints. Due
to the efficiency of the symbolic analysis over explicit enumeration,
our method is able to explore possible repairs in a large solution
space quickly. Our experiments on a diverse set of benchmark pro-
grams show that the proposedmethod is significantlymore effective
in repairing PM bugs than the state-of-the-art approach.

ACKNOWLEDGMENTS

This work was partially funded by the U.S. National Science Foun-
dation grants CNS-1702824 and CCF-2220345.

REFERENCES

[1] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2017. Don’t Sit
on the Fence: A Static Analysis Approach to Automatic Fence Insertion. ACM
Trans. Program. Lang. Syst. 39, 2 (2017), 6:1–6:38.

[2] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013.
1–8.

[3] Brad Fitzpatrick et al. 2021. https://github.com/pmem/pmem-redis
[4] Brad Fitzpatrick et al. 2022. https://www.memcached.org
[5] Pavol Cerný, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and

Thorsten Tarrach. 2013. Efficient Synthesis for Concurrency by Semantics-
Preserving Transformations. In Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings (Lec-
ture Notes in Computer Science, Vol. 8044). Springer, 951–967.

[6] Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding. 2022. Efficiently
detecting concurrency bugs in persistent memory programs. In ASPLOS ’22:
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, 28 February 2022 - 4
March 2022. ACM, 873–887.

[7] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient
SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4963).
Springer, 337–340.

[8] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. 2021. Fast, flexible, and comprehen-
sive bug detection for persistent memory programs. In ASPLOS ’21: 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Virtual Event, USA, April 19-23, 2021. ACM, 503–516.

https://github.com/pmem/pmem-redis
https://www.memcached.org

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zunchen Huang and Chao Wang

[9] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad Ismail, Sunny
Wadkar, Dongyoon Lee, and Changwoo Min. 2021. Witcher: Systematic Crash
Consistency Testing for Non-Volatile Memory Key-Value Stores. In SOSP ’21:
ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event /
Koblenz, Germany, October 26-29, 2021. ACM, 100–115.

[10] Xinwei Fu, Dongyoon Lee, and Changwoo Min. 2022. DURINN: Adversarial
Memory and Thread Interleaving for Detecting Durable Linearizability Bugs. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI
22). Carlsbad, CA, 195–211.

[11] Xiang Gao, Bo Wang, Gregory J. Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roy-
choudhury. 2021. Beyond Tests: Program Vulnerability Repair via Crash Con-
straint Extraction. ACM Trans. Softw. Eng. Methodol. 30, 2 (2021), 14:1–14:27.

[12] Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu, and Brian Demsky.
2022. Checking robustness to weak persistency models. In PLDI ’22: 43rd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation, San Diego, CA, USA, June 13 - 17, 2022. ACM, 490–505.

[13] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2021. Jaaru: efficiently
model checking persistent memory programs. In ASPLOS ’21: 26th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, Virtual Event, USA, April 19-23, 2021. ACM, 415–428.

[14] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2022. Yashme: detecting
persistency races. In ASPLOS ’22: 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 28 February 2022 - 4 March 2022. ACM, 830–845.

[15] Shengjian Guo, MengWu, and ChaoWang. 2018. Adversarial symbolic execution
for detecting concurrency-related cache timing leaks. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018. ACM, 377–388.

[16] Jeff Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: recording local ex-
ecutions to reproduce concurrency failures. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013. ACM, 141–152.

[17] Zunchen Huang and Chao Wang. 2022. Symbolic Predictive Cache Analysis
for Out-of-Order Execution. In Fundamental Approaches to Software Engineering
- 25th International Conference, FASE 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13241). Springer,
163–183.

[18] Intel. 2022. Discover Persistent Memory Programming Errors with Pmem-
check. https://www.intel.com/content/www/us/en/developer/articles/technical/
discover-persistent-memory-programming-errors-with-pmemcheck.html

[19] Intel. 2022. How to detect persistent memory programming errors using
Intel Inspector. https://www.intel.com/content/www/us/en/developer/
articles/technical/detect-persistent-memory-programming-errors-with-intel-
inspector-persistence-inspector.html

[20] Intel. 2022. Intel Optane Memory. https://www.intel.com/content/www/us/en/
products/docs/memory-storage/optane-persistent-memory/overview.html

[21] Intel. 2022. Persistent Memory Development Kit (PMDK). https://https://pmem.
io/pmdk/

[22] Intel. 2022. pmreorder - performs a persistent consistency check using a
store reordering mechanism. https://pmem.io/pmdk/manpages/linux/master/
pmreorder/pmreorder.1/

[23] Manu Jose and Rupak Majumdar. 2011. Bug-Assist: Assisting Fault Localization in
ANSI-C Programs. In Computer Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. 504–509.

[24] Manu Jose and Rupak Majumdar. 2011. Cause clue clauses: error localization
using maximum satisfiability. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011. 437–446.

[25] Vineet Kahlon and Chao Wang. 2012. Lock Removal for Concurrent Trace
Programs. In Computer Aided Verification - 24th International Conference, CAV
2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings (Lecture Notes in Computer
Science, Vol. 7358). Springer, 227–242.

[26] Sepideh Khoshnood, Markus Kusano, and Chao Wang. 2015. ConcBugAssist:
constraint solving for diagnosis and repair of concurrency bugs. In Proceedings
of the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015,
Baltimore, MD, USA, July 12-17, 2015. ACM, 165–176.

[27] Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis. 2021.
PerSeVerE: persistency semantics for verification under ext4. Proc. ACM Program.
Lang. 5, POPL (2021), 1–29.

[28] Philip Lantz, Dulloor Subramanya Rao, Sanjay Kumar, Rajesh Sankaran, and Jeff
Jackson. 2014. Yat: A Validation Framework for Persistent Memory Software.
In 2014 USENIX Annual Technical Conference, USENIX ATC ’14, Philadelphia, PA,
USA, June 19-20, 2014. 433–438.

[29] Hayley LeBlanc, Shankara Pailoor, Om Saran K. R. E, Isil Dillig, James Bornholt,
and Vijay Chidambaram. 2023. Chipmunk: Investigating Crash-Consistency
in Persistent-Memory File Systems. In Proceedings of the Eighteenth European

Conference on Computer Systems, EuroSys 2023, Rome, Italy, May 8-12, 2023. 718–
733.

[30] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. 2019. Recipe: converting concurrent DRAM indexes to persistent-
memory indexes. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019. ACM, 462–477.

[31] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Manabi Khan. 2021. PM-
Fuzz: test case generation for persistent memory programs. In ASPLOS ’21: 26th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Virtual Event, USA, April 19-23, 2021. ACM, 487–
502.

[32] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas F. Wenisch, Aasheesh
Kolli, and Samira Manabi Khan. 2020. Cross-Failure Bug Detection in Persistent
Memory Programs. In ASPLOS ’20: Architectural Support for Programming Lan-
guages and Operating Systems, Lausanne, Switzerland, March 16-20, 2020. ACM,
1187–1202.

[33] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Manabi Khan.
2019. PMTest: A Fast and Flexible Testing Framework for Persistent Memory
Programs. In Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS
2019, Providence, RI, USA, April 13-17, 2019. ACM, 411–425.

[34] Muhammad Zubair Malik, Khalid Ghori, Bassem Elkarablieh, and Sarfraz Khur-
shid. 2009. A Case for Automated Debugging Using Data Structure Repair. In ASE
2009, 24th IEEE/ACM International Conference on Automated Software Engineering,
Auckland, New Zealand, November 16-20, 2009. IEEE Computer Society, 620–624.

[35] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Look-
ing for Simple Program Repairs. In 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1. IEEE
Computer Society, 448–458.

[36] Yuri Meshman, Noam Rinetzky, and Eran Yahav. 2015. Pattern-based Synthesis
of Synchronization for the C++ Memory Model. In Formal Methods in Computer-
Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30, 2015. IEEE,
120–127.

[37] Ian Neal, Andrew Quinn, and Baris Kasikci. 2021. Hippocrates: healing persistent
memory bugs without doing any harm. In ASPLOS ’21: 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Virtual Event, USA, April 19-23, 2021. ACM, 401–414.

[38] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Simon Peter,
and Baris Kasikci. 2020. AGAMOTTO: How Persistent is your Persistent Memory
Application?. In 14th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX Association,
1047–1064.

[39] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: program repair via semantic analysis. In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013. IEEE Computer Society, 772–781.

[40] Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2020. Persistent Owicki-Gries
reasoning: a program logic for reasoning about persistent programs on Intel-x86.
Proc. ACM Program. Lang. 4, OOPSLA (2020), 151:1–151:28.

[41] Dulloor Subramanya Rao, Sanjay Kumar, Anil S. Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System software for
persistent memory. In Ninth Eurosys Conference 2014, EuroSys 2014, Amsterdam,
The Netherlands, April 13-16, 2014. ACM, 15:1–15:15.

[42] Benjamin Reidys and Jian Huang. 2022. Understanding and detecting deep
memory persistency bugs in NVM programs with DeepMC. In PPoPP ’22: 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
Seoul, Republic of Korea, April 2 - 6, 2022. ACM, 322–336.

[43] Mahmoud Said, Chao Wang, Zijiang Yang, and Karem A. Sakallah. 2011. Gener-
ating Data Race Witnesses by an SMT-Based Analysis. In NASA Formal Methods
- Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011.
Proceedings (Lecture Notes in Computer Science, Vol. 6617). Springer, 313–327.

[44] Steve Scargall. 2020. Programming Persistent Memory A Comprehensive Guide for
Developers. Apress, Berkeley, CA.

[45] Arnab Sinha, Sharad Malik, Chao Wang, and Aarti Gupta. 2011. Predictive
analysis for detecting serializability violations through Trace Segmentation. In
9th IEEE/ACM International Conference on FormalMethods andModels for Codesign,
MEMOCODE 2011, Cambridge, UK, 11-13 July, 2011. IEEE, 99–108.

[46] Chao Wang, Sudipta Kundu, Malay K. Ganai, and Aarti Gupta. 2009. Symbolic
Predictive Analysis for Concurrent Programs. In FM 2009: Formal Methods, Second
World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings
(Lecture Notes in Computer Science, Vol. 5850). Springer, 256–272.

[47] Chao Wang, Rhishikesh Limaye, Malay K. Ganai, and Aarti Gupta. 2010. Trace-
Based Symbolic Analysis for Atomicity Violations. In Tools and Algorithms for
the Construction and Analysis of Systems, 16th International Conference, TACAS
2010, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings (Lecture
Notes in Computer Science, Vol. 6015). Springer, 328–342.

https://www.intel.com/content/www/us/en/developer/articles/technical/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://www.intel.com/content/www/us/en/developer/articles/technical/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://www.intel.com/content/www/us/en/developer/articles/technical/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://www.intel.com/content/www/us/en/developer/articles/technical/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://www.intel.com/content/www/us/en/developer/articles/technical/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://https://pmem.io/pmdk/
https://https://pmem.io/pmdk/
https://pmem.io/pmdk/manpages/linux/master/pmreorder/pmreorder.1/
https://pmem.io/pmdk/manpages/linux/master/pmreorder/pmreorder.1/

	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Memory (PM) Semantics
	2.2 Persistent Memory (PM) Bugs
	2.3 Detecting PM Bugs
	2.4 Repairing PM Bugs

	3 Overview of Our Method
	4 Symbolic Analysis of the PM Bug
	4.1 The Satisfiability Problem
	4.2 Using program to Encode Execution Order
	4.3 Using persistency to Encode Persistency Order
	4.4 Using assertion to Encode the Assertion
	4.5 An Example for Our Encoding Method

	5 Computing the Repair
	5.1 Subroutine ComputeRepair(T,A)
	5.2 Subroutine RepairIsValid(T,R)
	5.3 An Example for Our Repair Method

	6 Correctness and Optimizations
	6.1 Relating to SyGuS
	6.2 Adding New Instructions to T
	6.3 Relaxing the Subformula so

	7 Experiments
	7.1 Benchmarks
	7.2 Experimental Set-up
	7.3 Results for Answering RQ 1
	7.4 Results for Answering RQ 2
	7.5 Results for Answering RQ 3

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

