Using Statically Computed Invariants inside the
Predicate Abstraction and Refinement Loop

Himanshu Jaih?, Franjo Ivaiic!, Aarti Gupta, llya Shlyakhtet, and Chao Wanlg

1 NEC Laboratories America, 4 Independence Way, Suite 200, Princeton, NJ 08540
2 Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

Abstract. Predicate abstraction is a powerful technique for extracting finite-state
models from often complex source code. This paper reports on the usage of stat-
ically computed invariants inside the predicate abstraction and refinement loop.
The main idea is t@electively strengtheftonjoin) the concrete transition rela-

tion at a given program location by efficiently computed invariants that hold at
that program location. We experimentally demonstrate the usefulness of transi-
tion relation strengthening in the predicate abstraction and refinement loop. We
use invariants of the form:x+y < c wherec is a constant ang,y are program
variables. These invariants can be discovered efficiently at each program location
using the octagon abstract domain. We observe that the abstract models produced
by predicate abstraction of strengthened transition relation are more precise lead-
ing to fewer spurious counterexamples, thus, decreasing the total number of ab-
straction refinement iterations. Furthermore, the length of relevant fragments of
spurious traces needing refinement shortens. This leads to an addition of fewer
predicates for refinement. We found a consistent reduction in the total number of
predicates, maximum number of predicates tracked at a given program location,
and the overall verification time.

1 Introduction

Predicate abstraction [13] is a powerful technique for extracting finite-state models from
often complex source code. It abstracts data by keeping track of certain predicates on
the data. Each predicate is represented by a Boolean variable in the abstract program,
while the original data variables are eliminated. In most predicate abstraction and re-
finement based tools [4, 14, 6, 17], spurious behavior in the abstract model is removed
by adding new predicates or making the relationships between existing predicates more
precise. Thus, even the information that can be discovered efficiently using other ab-
stract domains (e.g., numerical abstract domains [10, 22]) is learned only through mul-
tiple refinement iterations in the form of new predicates.

A large number of predicates poses a problem as both the predicate abstraction
computation and the model checking of the abstraction are exponential in the number
of predicates. In the SLAM [4] toolkit, this problem is handled by generating coarse
abstractions using techniques suctCastesian approximatioand themaximum cube
length approximationThese techniques limit the number of predicates in each theorem
prover query. The refinement of the abstraction is carried out by adding new predicates.

If no new predicates are found, the spurious behavior is due to inexact predicate re-
lationships. Such spurious behavior is removed by making the relationships between
existing predicates more precise.

The BLAST toolkit [14] introduced the notion dézy abstractionwhere the ab-
straction refinement is completely demand-driven to remove spurious behaviors. When
refining an infeasible (spurious) sequence of program statements, BLAST adds new
predicates only to basic blocks occurring in the infeasible trace [15]. We refer to this
aslocalization of predicateswWhile BLAST makes use of interpolation, localization
of predicates can also be carried out using weakest pre-conditions [17]. On average the
number of predicates tracked at each program location is small and thus, the localization
of predicates enables predicate abstraction to scale to larger programs.

The techniques described above employ over-approximations of the most precise
abstract models to ensure scalability of the individual steps in abstraction refinement.
However, over-approximations introduce more spurious counterexamples resulting in
an increase in the number of refinement iterations. Even though the refinement process
is completely automatic, a large number of refinement iterations can make the entire
predicate abstraction and refinement loop inefficient, and often intractable.

This paper makes the following contributions:

e Our mainidea is tatrengthertheconcrete transition relatioat a given program lo-
cationl using invariants that hold &t In standard predicate abstraction approaches
(not using invariants) each program location is abstracted in isolation, that is, no
relationships are assumed between the variables read at that location. Strengthening
of the concrete transition relation using invariants provides additional relationships
between the variables read at a program location. Thus, the abstract model produced
using the strengthened transition relation can be more precise leading to fewer spu-
rious counterexamples as compared to standard approaches.

o We show the efficacy of the above idea by incorporating an abstract domain, namely
the octagon abstract domaif21, 22], into the predicate abstraction and refinement
loop. Octagonal invariants are invariants of the fatix+y < c, wherex andy are
numerical program variables amdis a numerical constant. These invariants can
be computed efficiently by the octagon abstract domain. The octagon abstract do-
main has been used within A8 [11], and was shown instrumental in reducing
the number of false alarms when detecting runtime errors in critical embedded soft-
ware [22]. The following ideas are needed to make strengthening using octagonal
invariants beneficial in practice.

e Invariant GenerationTracking octagonal relationships between a large number of
program variables is expensive. In A=y the set of program variablescisistered
into various sets of related variables knownoasagon packsThe octagonal re-
lationships between all octagon pack variables are computed separately for each
octagon pack. The size of each octagon pack is kept small, so that the computation
of octagonal relationships between the variables of an octagon pack does not be-
come a bottleneck. We describe a new clustering strategy which attempts to create
octagon packs containing program variables which may likely appear in predicates
and their weakest pre-conditions through abstraction refinement.

e Invariant SelectionAfter invariant generation there can be many octagonal rela-
tionships that hold at each program location. Using all invariants that hold at pro-
gram location to strengthen the transition relation at program locatiomay not
be beneficial. This is because providing too many additional relationships in form
of invariants can potentially increase the burden on the decision procedure used for
abstraction computation and simulation of abstract counterexamples. We describe
a heuristic forselectingthe invariants that are used for strengthening the transition
relation at a given program location.

Further related work:The idea of using statically computed invariants during abstrac-
tion has been mentioned before [5, 23, 9]. Both Bensalem et al. [5] addeal. [23]
note that using invariants during abstraction can produce abstract model with fewer
transitions and less reachable states. However, in [5, 9] the invariants to be used during
abstraction need to be supplied by the user. An invariant generation technique is pro-
posed in [23] which produces quantified invariants at each program location. However,
the tradeoffs involved in efficiently using the computed invariants in the abstraction
refinement loop are not discussed.

Constraints of the formtx+y < c arise frequently in software verification. Seshia
et al. [24] observe that most of the linear arithmetic constraints arising in software ver-
ification have the fornx—y < c. Ball et al. [3] report that most of the queries that arise
during the refinement process of SLAM are of the fotm+y < c. However, to the
best of our knowledge none of the predicate abstraction refinement tools [4, 14, 6, 17]
use (octagonal) invariants during verification. Fischer et al. [12] describe a technique for
obtaining a path sensitive version of any data flow analysis by using predicated lattices.
Instead, we use transition relation strengthening as a means of incorporating informa-
tion from other data flow analysis into the predicate abstraction refinement loop.

2 Motivating example

We use the counterexample guided abstraction and refinement loop [19, 7, 4] to check
safety properties (such as unreachability of error labels) in C programs. Consider the
C program shown in Fig. 1(a) with variablggy/,z considered as integers. Assume that
the statements not shown do not affect the variaklgz. Predicate abstraction of the
C program with respect to an empty set of predicates is shown in Fig. 1(b). Observe
that the control flow in both the abstract model and the C program is the same. Since
the initial set of predicates is empty we cannot track the value of the conditions at
program locations 1 and 10 in the abstract model precisely. Thus, the conditions at
program locations 1 and 10 in the C program are replaced by non-deterministic choice
(represented as * in the figure) in the abstract model. All assignments in the C program
are replaced bgkip statements in the abstract model. A skip statement at a program
locationl in the abstract model means that the statement at program lotatidime C
program has no effect on the predicates being tracked in the abstract modeRRIGR
label in the C program is preserved in the abstract model.

Model checking of the abstraction in Fig. 1(b) producesbstract counterexam-
ple which goes through all program locations starting from 1 toERROIR Since the
abstract counterexample may or may not correspond to a real bug in the C program, itis
checked if there is &asiblesequence of statements in the original C program leading

PC PC PC
1 if (x > y) { 1 if (%) { 1: assume (X > y);
2: y =y + 1 2: skip; 22y =y + 1;
5: z =y, 5: skip; 5.z =y,
10: if (x < 2) 10: if (¥ 10: assume (x < z);
11: ERROR:; 11: ERROR:;
12: } 12: }
(@) (b) (c)

PC Invariants PC
1: 1 if (%) {
2. x>y 2: skip;

x>y-1
5. x>y-1 5: skip;

x>y-1, z=y, x>z-1
10: x>y-1, z=y, x>z-1 10: if (b) [(PC=10) — —b]
11: 11: ERROR:;
12: 12: }

(d)

(e)

Fig. 1.PCstands for program counter. (a) C program. (b) Abstraction of C program with respect to
an empty set of predicates. (c) Infeasible program trace corresponding to abstract counterexample
in (b). (d) The computed invariants at every program location. (e) Refined abstraction with the
use of invariants. This abstract model has no path t&EfRRORabel.

to the ERRORabel and having the same control flow as the abstract counterexample.
The feasibility check is carried out using a decision procedure. For the abstract coun-
terexample produced by model checking the abstraction in Fig. 1(b), the corresponding
sequence of statements in the C program is shown in Fig. 1(c)Ja3$ene statement
shows which branch of thé statement was taken in the abstract counterexample.

Consider the program trace shown in Fig. 1(c). The relationshipy holds at the
program location 2 (beforg=y+1 is executed). Variablg is incremented at program
location 2, thusx > y— 1 holds after program location 2 (aftgry+1). Variablezis
assignedy at location 5, sox > z— 1 holds after program location 5. Singgy,z are
integers, we have > z after program location 5. The relationship- z contradicts with
theassume statement at location 1@ & 2). Thus, the trace in Fig. 1(c) is an infeasible
trace. In order to eliminate the infeasible trace shown in Fig. 1(c) the refined abstract
model needs to track the value of the conditiot z at program location 10 precisely,
as it guards thERRORabel. This is done by introducing new predicates in most tools.

Using the technique described in [15, 17] the infeasible trace shown in Fig. 1(c)
can be removed by tracking exactly one predicate at each program location from 1 to
10. The technique of [17] will track the following relationships in the abstract model:

X <y+1is false at program location 2 (befoyey+1), x < y is false from location

3till 5, x < zis false from location 6 to location 10. Note that even though three new
predicatesX < z,x < y,x < y+ 1) are introduced only the value of one predicate needs to

be tracked at each program location. The drawback of these techniques is that predicate

relationships need to be tracked for the entire infeasible trace, even at the program
locations (3,4,6,7,8,9) not directly involved in the infeasibility of the program trace.

Next we show how the use of efficiently computable invariants (suobctego-
nal invariantg can improve the above techniques. The two variable invariants that hold
at various program locations of the program in Fig. 1(a) are shown as annotations in
Fig. 1(d). For example, at the program location 10 the relationskipsy — 1,x >
z— 1,y = z hold. The invariants shown can be written as conjunctions of octagonal
invariants and can be computed using the octagon abstract domain [21, 22]. For exam-
ple,x >y—1 can be written as-x+y < 2, andy = z is equivalent to a conjunction
of two octagonal invariantg —z < 0 and—y+z < 0. The advantages of using the
invariants in the predicate abstraction and refinement loop are given below.

e Reduction in the length of infeasible trace fragments needing refineenus
consider the use of invariants during the detection of infeasible traces. Consider
the program trace in Fig. 1(c). Without the use of invariants the trace is infeasible
due to statements at location 1, 2, 5, 10. The refinement procedure generates new
predicates by looking at all four statements. However, with the aid of invariants the
statement at location 10 is itself infeasible because the invatiarz— 1 holds at
location 10 (see Fig. 1(d)). Thus, the refinement procedure only needs to look at a
fragment of the trace consisting of only the statement at program location 10.

e Reduction in the number of predicates needed for refinenwgitittout the use of
invariants, the refinement schemes of [15, 17] track the value of at least one pred-
icate at each program location from 1 to 10. Using invariants the refinement pro-
cedure only looks at program location 10 (PC=10) and the invariants that hold at
that location. The conditior < z of the assume statement at location 10 of the
infeasible trace is introduced as a predicate and its value is tracked only at PC=10
in the refined abstract model shown in Fig. 1(e). The Boolean varatdpresents
the predicatex < zin the abstract model. The constraisi holds at PC=10 as the
invariantx > z— 1 holds at PC=10 in C program. With the aid of the constraint
(PC = 10) — —bthe abstract model of Fig. 1(e) has no path toERRORabel.

Octagon abstract domain alone is precise enough to showRRORabel is unreach-

able in Fig. 1(a). However, this is not always the case. If the condition at PC=10 in
Fig. 1(a) is Z < z+y (not in octagonal form), then the octagon abstract domain cannot
show thatERRORabel is unreachable. Predicate abstraction and refinement loop can
still use the octagonal invariants and show the unreachabiliBRIRORabel using the
abstract model shown in Fig. 1(e), withrepresenting the predicat& 2 z+.

One reason to combine invariants with predicate abstraction, especially in the con-
text of weakest pre-condition based refinement as in [6, 17], is the problem of handling
loops efficiently. Often, these techniques model multiple loop unwindings through the
use of several related predicates that correspond to different loop unwindings. Instead,
certain classes of loop invariants can be computed efficiently [11], and their usage inside
the abstraction refinement loop can lead to quicker convergence in presence of loops.

Example: In the C code below we wish to verify thesert statement. The use
of the loop invariank =y in the abstraction refinement loop can eliminate the need of
numerous predicates of the forn= 200y = 200,...,x = 0,y = 0 which arise when

using the weakest pre-condition based refinement. The invariagtcan be discovered
using the octagon abstract domain.

1. int x = 200, y = 200;

2. while (x !=0) {x=x-1y=y-1 }

3. assert (y==0);

In the above example, interpolant based refinement [15] may or may not succeed
in finding x =y as a predicate, due to its dependence on a proof of unsatisfiability of
the infeasible trace. This problem is addressed in [18] where a specialized split prover
is used to restrict the language of interpolants to avoid divergence and provide a (rela-
tively) complete method for finding predicates. However, the impact of such restrictions
and practical efficiency of a split solver on large examples are not addressed.

3 Transition Relation Strengthening

We operate on a control flow graph of the given program, after various pre-processing
steps performed by the Fe®T tool [16]. Let b denote a basic block in the control
flow graph. It can contain multiple assignments oramsume statement describing
which branch of a condition is taken. L&(V,V’) denote the transition relation of
basic blockb, whereV,V’ denote the state of program variables before and after ex-
ecutingb, respectively. Aninvariant I, at basic bloclkb is a Boolean formula ovey.
Invariantl, evaluates to true whenever the program counter isimatany execution of

the program. Suppose we have pre-computed a particular set of invariants at each basic
block. LetCly(V) denote the conjunction of various invariants that hold at basic block
b. The idea otransition relation strengthenings to useCl,(V) A Tp(V,V’) instead of
Th(V,V’) when analyzindy. We refer toClp(V) A Typ(V, V') as thestrengthened tran-
sition relationat basic blockh and denote it by (V,V’). Invariants ovel’ are not
needed for strengthening the transition relatiot af they are implied b§T,(V,V').

The strengthened transition relati6i, (V,V’) can be used inside the predicate abstrac-
tion and refinement loop by usingk(V,V’) in place of T,(V,V’). We describe this
process in more detail below.

Predicate abstraction computatiorin predicate abstraction, the variables of the con-
crete program are replaced by Boolean variables that correspond to a predicate on
the variables in the concrete program. These predicates are functions that map a con-
crete statd/ € Sinto a Boolean value, whet®@denotes the set of program states. Let
P={m,..., Tk} be the set of predicates over the program variables. When applying all
predicates to a specific concrete state, one obtains a vector of Boolean values, which
represents an abstract stife We denote this function by (V). It maps each concrete
state into an abstract state and is calleclstraction function

The predicate abstraction of a basic bldxis carried out using existential abstrac-
tion, i.e., the abstract model can make a transition from an abstractVétaenN’ iff
there is a transition frorv to V' after executing basic blodkandV is abstracted to
W andV’ is abstracted t&V'. We denote the abstract transition relation obtained by
predicate abstraction of basic bloekvith respect to predicates I?nas'fb(W,W’).

To:={(W,W)[IV,V €S: (a(V)=W) A To(V,V) A(a(V) =W} (1)

Note that the above equation computes the abstractibmvith respect to predicates in

P in isolation The term isolation means that no relationships are assumed between the
variables inv during abstraction. However, certain relationships may hold between the
variables inv when the program execution reachesn current predicate abstraction
tools, such relationships will be discovered on-demand through multiple refinement
iterations, in the form of new predicate relationships in the abstract model. Many of
these relationships can however be computed efficiently in the form of invariants. The
aim of strengthening is to provide such relationships in the concrete program itself,
rather than discovering them in form of predicate relationships in the abstract model.
Let SA'E)(W7W/) denote the abstract transition relation obtained by using the strength-
ened transition relation for basic blotk that is, replacindl,(V,V’) by S|(V,V’) in
Equation 1. The following claim states that predicate abstraction using the strengthened
transition relation fob can be more precise than predicate abstractidnimisolation.

Claim. Vb : SH(W,W') C To(W,W)

The above claim follows from the definition of strengthened transition relation and
Equation 1. Consider a concrete programiJsing the strengthened transition relation
for each basic block i€ during verification does not add any new behavior€tor
remove any existing behaviors frdn This is because strengthening provides invariants
which are implicit inC. Let C denote the predicate abstraction®bbtained by using
SH(W, W) for every basic block in C. The following claim then states the soundness
of predicate abstraction obtained using the strengthened transition relation.

Claim. Abstraction soundnes€:is a conservative over-approximation@f

Simulation of program tracesif the property is violated in the abstract model, we
obtain an abstract counterexample from the model checker. In order to check if an ab-
stract counterexample corresponds to a concrete counterexangmeylationstep is
performed. By ensuring that the control flow in the concrete program is preserved in
the abstract model, an abstract counterexample can be mapped back to a s&équence
of basic blockds, ..., by in the concrete program, whebe is the entry block andby
contains theERRORabel in the given program. Lé&f,Vi,1 denote the state of pro-
gram variables before and after executing the basic bipctespectively. We sayr

is feasibleiff there is a real execution of the concrete program which follows the same
sequence of basic blocks @s. The simulation step checks the feasibility Df by
checking the satisfiability of the following equation:

Sin(Tr) = Tbl(Vl,VZ) /\sz(Vz,V3) VAN Tbk(Vk,VkJrl) (2)

Claim. The traceTr is feasible iffSim(Tr) is satisfiable.

Let ST siniTr) denote the simulation equation when the strengthened transition relation
is used.

STsinfTr) := ST, (V1,V2) AST,(Va,Va) A ... A ST, (Vi V1) ©)

The following claim states that using the strengthened transition relation for simulation
of abstract counterexamples is sound. That i$yifs a real counterexample (feasible),
thenST sin{Tr) is satisfiable, and iT r is infeasible, thelST sinTr) is unsatisfiable.

Claim. Simulation soundnes3r is feasible iff ST sin{Tr) is satisfiable.

LetTr be an infeasible trace when no invariants are used, ihénalso infeasible when

the strengthened transition relation is used (above claim). However, with strengthening
it is possible that a sub-sequenice of Tr is itself infeasible. In this case the refinement
can be done by looking at onlyr’ and the invariants that hold alofig’. In Section 2

we presented an example where the length of infeasible trace is reduced from 10 to 1
by using the strengthened transition relation. This in turn allows refinement with fewer
predicates per program location.

4 Invariants for Transition Relation Strengthening

The octagon abstract domain [21, 22] allows the representation and manipulation of
tagonal invariantswhich have the formtx+y < ¢, wherex, y are numerical variables

andc is a numerical constant. The octagon abstract domain allows the representation
of octagonal relationships betwearprogram variables wittO(n?) memory cost. In

order to compute octagonal relationships variabistractoperators (transfer functions)

are needed. The octagon abstract domain provides all the required operators with worst
caseO(n%) time cost. We selected octagonal invariants for transition relation strength-
ening because they can be computed efficiently and are expressive enough to capture
many commonly occurring variable relationships [24, 3] and simple loop invariants, im-
portant for checking standard properties such as array bounds violation [21]. However,
strengthening can also be carried out using other more expressive classes of invariants.
Issues involved in the generation and usage of octagonal invariants are discussed below.

4.1 Octagon Packing for Invariant Generation

Computing octagonal relationships betwearariables ha®©(n?) memory cost per pro-

gram location and(n®) time cost per transfer function. This can become prohibitive
whennis large. In Astée [11] the set of program variables is clustered into various sets

of related variables, known astagon packsThe octagonal relationships are computed
separately for each octagon pack. The size of each octagon pack is kept small so that the
computation of octagonal relationships between the variables in an octagon pack is fast.
Octagon packing trades off accuracy of generated invariants for speed, and thus, choos-
ing a right packing strategy is important for the generated invariants to be useful. We
have experimented (Section 5.2) with the following octagon packing techniques.

e Basic block based packingVe implemented the octagon packing technique used
in Astrée as described in [22] (Chapter 8). An octagon pack is associated with each
basic block of the control flow graph. All the variables occurring in a basic block
(excluding non-linear terms) are made a part of the octagon pack associated with the
basic block. If the basic block is a part ofxdnile , or if-then-else structure,
then the variables appearing in the condition of wWidle or if-then-else
structure are made a part of the octagon pack.

e Control flow based packingVe propose a new packing technique that associates an
octagon pack with each condition in the control flow graph. aeitc) denote the
octagon pack corresponding to a conditmat program locatiot. All numerical
variables occurring irc are made a part afct(c). Then a backward traversal of

the control flow graph is done starting froamWhenever any variable iact(c) is
updated through an assignment, the variables appearing in the assigned expression
are added tmct(c). Thus, the variables ioct(c) affect the value of conditio

either directly or indirectly.

In the above packing techniques a user specified bound can be used to control the
size of an octagon pack.

4.2 Invariant Selection for Strengthening

For each octagon pack the octagonal relationships between the variables appearing in
it are tracked at every basic block. This can result in a large number of octagonal in-
variants at every basic block. Since the invariant generation is independent of the spe-
cific property we are trying to check many of the generated invariants may not help
when checking a given property. Using all the invariants that hold at a basic block for
strengthening can make the predicate abstraction computation and simulation of coun-
terexamples more expensive as compared to not using the invariants. Therefore, we
apply a heuristic to filter out invariants that are not deemed important.

Let | be an octagonal invariant that holds at the entry to a basic bbodlet
neededb, E) denote the set of variables whose values need to be tracked at basic block
b for checking the reachability of a given error laliel We computeneededb, E) at
each basic block by performing a syntactic cone-of-influence computation starting
from E. We use the following heuristic for selecting the invariants:

InvSelect:Usel to strengthen the basic blotkonly if all variables appearing ihare
present imeededb, E).

5 Experimental Results

We have implemented these techniques in NEC'sd+1S[16] verification tool. F-

SoFfT allows checking the C code for user specified (assert statements) or standard
properties (array bound violations, NULL pointer dereferences, use of uninitialized
variables). Details about the software modelling in 8F$ can be found in [16]. We

used a BGHzdual-processor Linux machine with 4GB of memory for experiments.
Before the abstraction refinement loop starts, we pre-compute the octagonal relation-
ships using the octagon abstract domain library [2]. We use a SAT solver for computing
the predicate abstraction [20, 8] and simulation of counterexamples. We report results
on TCAS and internal benchmarks. TCAS (Traffic Alert and Collision Avoidance Sys-
tem) is an aircraft conflict detection and resolution system. We used an ANSI-C version
of a TCAS component available from Georgia Tech. Even though the preprocessed pro-
gram has only 224 reachable basic blocks, the number of predicates needed to verify
the properties is non-trivial for both Fe&T and BLAST [1]. We checked 10 different
safety properties of the TCAS system using predicate abstraction. None of these proper-
ties can be verified by using the octagonal invariants alone. We also analyzed 45 internal
industrial benchmarkSW-1, ..., SW-45 for standard property violations. Some

of these benchmarks have more than 1000 reachable basic blocks.

5.1 Use of Octagonal Invariants during Predicate Abstraction and Refinement

Table 1 presents a comparison between three different implementations of the pred-
icate abstraction and refinement loop. The "Default” column uses the localization of

Bench Default Strengthen BLAST

-mark |Time Abs MC SR Preds|Cex| | |Time Abs MC SR Preds|Cex| | |Time| Preds| |
tcasla | 87 19 40 2893/31| 11 (38| 51 15 12 24 65/21|7.4|28| 102|81/24| 35
tcaslb | 386 49 266 71137/56 20 |54/ 333 58 177 98126/49 16 |50 278 |108/36 69
tcas2a | 87 18 41 3094/36(11.338| 48 15 11 22 57/18|7.1|26| 112|97/29| 38
tcas2b | 95 20 41 34 99/34(13.1/39 100 26 27 4778/27|11.637| 177|106/31 52
tcas3a | 164 25 96 43113/4813.4400 131 27 51 53 89/31|11.436| 217 |130/37 57
tcas3b | 56 11 26 1982/27/9.9(28 69 18 19 3264/21|8.9(28 92 | 99/26| 33
tcasd4a | 334 51 199 84122/4514.740] 167 33 70 64 97/33| 13 |40 515(158/48104
tcas4b | 130 27 54 4988/28(11.232 90 25 24 41 77/22|10.632| 303 |127/364 47
tcasba |113 26 40 4796/28(10.332 27 9 6 12/46/12|6.6|17| 100|87/21| 29
tcasbb | 149 29 69 5198/29(10.430| 87 23 27 37 75/22|9.2|25| 139|102/27 39

Table 1. Comparison between three implementations of predicate abstraction and refinement
loop. 1) Default: uses the localization of predicates [17]. 2) Strengthen: Uses the strengthened
transition relation in the same framework as [17]. 3) BLAST: Results of running BLAST with
Craig interpolation options. All times are reported in seconds. "Abs”, "MC”, "SR” sub-columns
give the abstraction computation, model checking, simulation and refinement time, respectively.
"Preds” gives the total number and the maximum number of predicates tracked at any program
location. "I” sub-column gives the number of abstraction refinement iterations.

predicates as described in [17]. This means that instead of maintaining a global set
of predicates, localized predicates relevant to various basic blocks of the program are
discovered by weakest pre-condition propagation along infeasible program traces.

The "Strengthen” column uses the same framework as the "Default” technique.
However, it uses the strengthened transition relation for each basic block in the abstrac-
tion refinement loop. The strengthening is carried out using the octagonal invariants,
which are pre-computed using the octagon abstract domain. We use control flow based
packing for invariant generation and InvSelect heuristic for invariant selection (Sec-
tion 4). Generation of octagonal invariants took five seconds fof @&Sbenchmark.

The "BLAST” column presents the results of running the BLAST [1] software model
checker with the Craig interpolation [15] optioosaig2 andpredH7 .

The "Time” sub-column presents the total time taken by the abstraction and refine-
ment loop when checking a given property. For the "Default” and "Strengthen” tech-
nigues the breakup of total time ("Time”) is presented in the "Abs”, "MC”, and "SR”
sub-columns. The "Abs” sub-column gives the total time spent in computing the pred-
icate abstraction, the "MC” sub-column is the total time spent in model checking the
abstracted program, the "SR” sub-column is the total time spent on the simulation of
abstract counterexamples and refinement. The "Preds” sub-column provides two num-
bers separated by a slash: 1) Total number of predicates present in the last iteration of
abstraction refinement loop. 2) Maximum number of predicates tracked at a given pro-
gram location. The "Cex” sub-column provides the average length of infeasible traces
that were given to the refinement procedure for generating new predicates. The "I”
sub-column gives the total number of abstraction refinement iterations.

Reduction in the number of predicatg3bserve that the strengthened transition rela-
tion ("Strengthen” column) allows checking the given properties with fewer predicates
(first number in "Preds” column) on 9 out of 10 properties. Since all the three imple-
mentations use localization of predicates, the size of the abstract models produced can

Benchmar Default Strengthen
Time Abs MC SR|Preds | [Time Abs MC SRPredsl|
SW-1 29.1 8.3 2.3 18.%3/1714) 9.3 2.9 0.5 5.916/4|6
SW-2 42.4 10.5 3.5 28/563/1714/ 9.1 2.8 0.5 5.816/4|6
5
3

SW-3 19 0.8 0.3 0.816/145| 3.0 0.8 0.3 1.216/14
SW-4 109.4 94 4.8 10.68/2211 6.3 2.6 0.0 3.711/4

Table 2.Results on some industrial examples. Refer Table 1 for the meaning of various columns.

be exponential in the maximum number of predicates tracked at any program location.
This is the second number in "Preds” column and it is smallest for the "Strengthen”
column on 9 out of 10 properties as compared to both "Default” and "BLAST". As a
result, the total time spent on model checking the abstractions ("MC” sub-column) is
smaller by 55% on average when using the strengthened transition relation as compared
to the "Default” technique.

Reduction in the length of infeasible tracéhe "Cex” column shows the average
length of infeasible traces that were given to the refinement procedure. This number
is consistently smaller when using the strengthened transition relation as compared to
the "Default” technique. When refining an infeasible trace consisting of basic blocks
by,...,bk, new predicates are discovered at each basic bpbk the refinement pro-
cedure [15, 17]. Smaller infeasible traces were refined in the "Strengthen” case leading
to fewer predicates as compared to the "Default” case.

Impact on running time:The significant reduction in the model checking time, enables
"Strengthen” to outperform other techniques ("Default” and "BLAST") in terms of total
time ("Time") on a majority of properties.

Results onSW-* benchmarksWe checked these benchmarks for standard property
violations using "Default” and "Strengthen” techniques. Since the standard property
checks are added automatically through control flow graph modification comparison
with BLAST was not possible. The results on so8W-* benchmarks is summarized

in Table 2. The meaning of the various columns in Table 2 is same as in Table 1. We
observed an average reduction in the total number of abstraction refinement iterations
(by 54%), maximum number of predicates tracked at a program location (by 58%),
overall runtime (by 69%) as compared to "Default”.

5.2 Generation of Invariants

We describe results for the two different octagon packing techniques discussed in Sec-
tion 4.1. For both basic block based packing and control flow based packing we limit
the size of each octagon pack to 10. That is no more variables are added to an octagon
pack once its size exceeds 10. Table 3 presents the comparison between the block based
packing and control flow based packing and their impact on the invariant generation.
Only the results for som8W-* benchmarks are reported in this table.

The "BB” column gives the total number of basic blocks in the benchmark, the
"Prop” column gives the total number of safety properties (reachability of labeled er-
ror statements, or automatically generated standard property monitors) in a benchmark.
The "Block” column presents the results for the basic block based packing and the
"Control flow” column presents results for the control flow based packing. The sub-
column "Time” gives the total time required to compute the invariants for the octagon

Bench BB |Pro Block Control flow

-mark Time| PackStatsDong Numlinv |Time|PackStatDone Numinv
tcas |224| 10 | 18s| 72/10/4.9 0 | 11196/5121| 5s | 49/5/2.7| 0O 3992/3456
SW-5(1587 295|190 252/8/4.1] 76 | 83478/38654 87s|180/6/1.5 90 | 35042/23431
SW-6 {1986 592|2645256/10/4.4 111 | 72972/509731325203/6/1.5 131 | 58801/48612
SW-7 (2440 542|5765 472/9/4.2| 82 |167738/87738705310/9/1.5 82 [(105184/6613D
SW-8(1472 402|2375226/10/4.2 64 |115254/9054/159s | 132/8/2| 64 | 98514/83096

Table 3. Comparison octagon packing techniques and their impact on invariant generation.

packs generated using a given packing technique. The "PackStats” column presents
three numbers separated by a slash (/): total number of distinct octagon packs, maxi-
mum number of variables in an octagon pack, and average number of variables in an
octagon pack. The "Done” column shows the number of safety properties ("Prop” col-
umn) that can be proved by using the octagon invariants only. The "NumiInv” column
presents two numbers separated by a slash (/): total number of invariants generated, and
the total number of non-redundant invariants as computed by the octagon library [2].
Discussion of octagon packing resulhe control flow based packing produces con-
sistently less humber of octagon packs as compared to the basic block based packing.
This is expected as the number of octagon packs is proportional to the number of basic
blocks in basic block based packing, and proportional to the number of conditions in
the program in control flow based packing. The maximum and the average number of
variables tracked in an octagon pack is smaller in the control flow based packing tech-
nigue. Thus, the time taken to compute invariants using the control flow based packing
is smaller (by 2.& on average) as compared to the basic block based packing.

In order to compare the quality of invariants generated using the two packing tech-
niques we did two experiments: First, we looked at the number of safety properties
shown correct by the use of octagonal invariants themselves. This number is shown in
the "Done” column. We observed that the number of safety properties proved correct by
basic block based packing was always a subset of or the same as those proved correct
using control flow based packing.

Second, we used the generated invariants inside the predicate abstraction and re-
finement loop by transition relation strengthening. We found the addition of octagonal
invariants generated (using either packing technique) to enable checking a given prop-
erty with fewer predicates, as compared to not using the invariants. However, the ad-
dition of invariants generated using basic block based packing increased the predicate
abstraction computation and refinement times significantly causing an overall increase
in runtimes, as compared to not using invariants. For the TCAS benchmark, an average
of 8.6 invariants were added to each basic block when using the basic block based pack-
ing, as compared to an average of 1.9 invariants when using control flow based packing.
As fewer invariants are added to each basic block with control flow based packing, the
increase in abstraction computation and refinement times is much less as compared to
using the basic block based packing. Overall, addition of invariants generated using
control flow based packing reduces the runtime as compared to not using the invariants
as discussed in Table 1.

Why control flow based packing is useful: many tools the generation of new
predicates for abstraction refinement is done by computing the weakest pre-conditions

Benc Default InvSelect

-mark| Tot |[Max|Avg| Tot |[Max|Avg
tcas |3456| 24 |15.4 441 | 12 |1.9
SW-5|23431 43| 18 | 2825| 14 | 2.2
SW-6 (48612 34 |20.7 3307| 8 |1.4
SW-7(6613Q 58 |23.4 5068| 14 | 1.8
SW-8|83096 73 |56.514844 31 |10.1

Table 4. Application of InvSelect heuristic for selecting the invariants used for strengthening.

of the conditions present in the control flow graph. Suppose the weakest pre-condition
of a conditionc for a certain number of steps results in predicaigs. ., pn. Let pvars
denote the set of variables appearing in the predigaes., p, and conditionc. Let

vars(c) denote the octagon pack corresponding to conditiomnthe control flow based
packing. If the size ofiarg(c) is not restricted, then it is the case thtarsC vars(c).

Thus, the octagon packs computed using control flow based packing tend to cluster
those variables for which relationships will be discovered later (through refinement) as
new predicates and their weakest pre-conditions. Eagerly computing the relationships
for such clusters and using them in the predicate abstraction and refinement loop, thus,
attempts to get most benefit out of the efficiently computable invariants.

5.3 Invariant Selection for Strengthening

After invariant generation there can be many octagonal invariants that hold at each
program location. As argued in Section 4.2, using all invariants that hold at program
location| to strengthen the transition relationlatnay not be beneficial. We apply a
heuristic to filter out invariants that are not deemed important for checking a given
property. The impact of the invariant selection heuristic InvSelect (Section 4.2) on the
number of invariants that get selected for strengthening is summarized in Table 4. The
"Default” column shows the statistics before InvSelect selection heuristic is applied.
The "InvSelect” column gives the statistics after InvSelect selection heuristic is applied.
The sub-column "Tot” gives the total number of invariants that get selected, the "Max”
sub-column gives the maximum number of invariants selected at a basic block, and the
"Avg” sub-column gives the average number of invariants selected at a basic block.

The invariant selection heuristic InvSelect (Section 4.2) helps in reducing the num-
ber of invariants that get selected at each basic block for transition relation strengthen-
ing. For theTCASbenchmark, application of the InvSelect heuristic reduces the average
number of invariants available for strengthening a given basic block from 15.4 to 1.9.
After invariant generation we always apply InvSelect selection heuristic to filter out
invariants that are not deemed important.

6 Conclusion

In this paper we presented how efficiently computable invariants can be used to im-
prove the counterexample-guided abstraction refinement flow such as used in software
verification tools using predicate abstraction. The invariants at program lodadi@n
selectivelyadded to the concrete transition relation &b obtain astrengthenedran-

sition relation at. Using a strengthened transition relation in the predicate abstraction
and refinement loop can lead to the creation of more precise abstract models leading to
fewer and shorter infeasible traces. This can allow checking a given property with fewer

predicates. More importantly, this technique can help in checking properties where us-
ing the standard predicate abstraction and refinement loop alone will take too long to
converge (for example, properties depending on loop invariants). In our experiments
we found a consistent reduction in the total number of predicates, maximum number of
predicates tracked at a given program location, and the overall verification time.

References

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.

1. BLAST tool, http://embedded.eecs.berkeley.edu/blast/.
2.
3. T. Ball, B. Cook, S.K. Lahiri, and L. Zhang. Zapato: Automatic theorem proving for predi-

Octagon abstract domain library, http://www.di.ens.friine/oct/.

cate abstraction refinement. Gomputer-Aided Verification (CAVpages 457-461, 2004.

. T.Balland S. K. Rajamani. Automatically validating temporal safety properties of interfaces.

In SPIN pages 103-122, 2001.

. S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite state systems

compositionally and automatically. DAV, pages 319-331, 1998.

. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software com-

ponents in C. INCSE pages 385-395, 2003.

. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and Veith H. Counterexample-guided abstraction

refinement. INCAV, pages 154-169. Springer-Verlag, 2000.

. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of ANSI-C pro-

grams using SATFormal Methods in System Desigtb:105-127, Sep—Nov 2004.

. M. Colon and T. E. Uribe. Generating finite-state abstractions of reactive systems using

decision procedures. IBAV, pages 293-304, 1998.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpointsPl@PL, pages 238-252, 1977.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. &iD. Monniaux, and X. Rival. The
Astreg analyzer. IEESOP pages 21-30, 2005.

J. Fischer, R. Jhala, and R. Majumdar. Joining dataflow with predicat€SHER005.

S. Graf and H. Sai. Construction of abstract state graphs with PVSCAY, 1997.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstractioByrposium on
Principles of Programming Languaggsages 58—70, 2002.

T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from proofs. In
POPL, pages 232-244, 2004.

F. lvartic, |. Shlyakhter, A. Gupta, Malay K. Ganai, V. Kahlon, C. Wang, and Z. Yang.
Model checking C programs usimgsorT. In ICCD. IEEE, 2005.

H. Jain, F. lvaiic, A. Gupta, and M.K. Ganai. Localization and register sharing for predicate
abstraction. ITACAS pages 397—-412, 2005.

R. Jhala and K. L. McMillan. A practical and complete approach to predicate refinement. In
TACAS volume 3920, pages 459-473. Springer, 2006.

R.P. Kurshan. Computer-aided verification of coordinating processes: the automata-
theoretic approachPrinceton University Press, 1994.

S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approach to predicate abstraction. In
W. A. Hunt and F. Somenzi, editor€AV, number 2725 in LNCS, pages 141-153, 2003.

A. Miné. The octagon abstract domain.A8T 2001 in WCRE 20QIEEE, pages 310-319.
IEEE CS Press, October 2001. http://www.di.enssfinine/publi/article-mine-ast01.pdf.

A. Miné. Weakly Relational Numerical Abstract Domair®hD thesis, December 2004.

H. Sddi. Modular and incremental analysis of concurrent software systensSE11999.

S. A. Seshia and R. E. Bryant. Deciding quantifier-free presburger formulas using parame-
terized solution bounds. InlCS pages 100-109, 2004.

