Monotonic Partial Order Reduction: An Optimal
Symbolic Partial Order Reduction Technique

Vineet Kahlon, Chao Wang and Aarti Gupta

NEC Laboratories America
4 Independence Way, Princeton, NJ 08540, USA

Abstract. We present a new technique callgbnotonic Partial Order Reduc-
tion (MPOR)that effectively combines dynamic partial order reductiéth sym-
bolic state space exploration for model checking conctigefiware. Our tech-
nigue hinges on a new characterization of partial orderse@foy computations
of a concurrent program in terms gtiasi-monotonic sequences$ thread-ids.
This characterization, which is of independent interest, loe used both for ex-
plicit or symbolic model checking. For symbolic model chiegk MPOR works
by adding constraints to allow automatic pruning of redumdiaterleavings in a
SAT/SMT solver based search by restricting the interlegviexplored to the set
of quasi-monotonic sequences. Quasi-monotonicity gtieesnboth soundness
(all necessary interleavings are explored) and optimétityredundant interleav-
ing is explored) and is, to the best of our knowledge, the dmigwn optimal
symbolic POR technique.

1 Introduction

Verification of concurrent programs is a hard problem. A kegson for this is the be-
havioral complexity resulting from the large number of mgavings of transitions of
different threads. In explicit-state model checking, duwdrder reduction (POR) tech-
niques [6, 14, 16] have, therefore, been developed to expleiequivalence of inter-
leavings of independent transitions in order to reducedhech space. Since computing
the precise dependency relation between transitions mag Ibard as the verification
problem itself, existing POR methods often use a consewvatatically computed ap-
proximation. Dynamic [5] and Cartesian [9] partial ordeduetion obviate the need
to apply static analysia priori by detecting collisions (data dependencies) on-the-fly.
These methods can, in general, achieve better reductiotoduere accurate collision
detection. However, applying these POR methods (which designed for explicit
state space search) to symbolic model checking is a noattask.

A major strength of symbolic state space exploration metf@flis thatproperty
dependenanddata dependergearch space reduction is automatically exploited inside
modern SAT or SMT (Satisfiability Modulo Theory) solverstdhgh the addition of
conflict clauses and non-chronological backtracking [8yjmbolic methods are often
more efficient in reasoning about variables with large damaiHowever, combining
classic POR methods (e.qg., those based on persisten#hetsth symbolic algorithms
has proven to be difficult [1, 12, 8, 3, 10]. The difficulty assfrom the fact that sym-
bolic methods implicitly manipulate larggeets of stategas opposed to manipulating

states individually. Capturing and exploiting transisahat are dynamically indepen-
dent with respect to set of stategs much harder than for individual states.

Consider the example program from [17] shown in Fig. 1 cosgatiof two concur-
rent threads accessing a global ar@dy. It is hard to determine statically whether tran-
sitionst 4, tp in threadT’ are dependent with,, t3 in T>. Similarly, without knowing
the points-to locations gf andg, we cannot decide wheth&r andt., are dependent or
not. This renders POR methods relying on a static computafioonflicts non-optimal.
Indeed, wheri # j holds in some executiong,,tp andt,,tz become indepen-
dent, meaning that the two sequenc¢gstp;ta;tg;tc;ty; andta;tg;taste;to;ty;
are equivalent. However, none of the existing symbolicipbarder reduction meth-
ods [1, 12, 8, 3, 10] takes advantage of such information. Agnexplicit-state POR
methods, dynamic partial order reduction [5] and Cartepamntial order reduction [9]
are able to achieve some reduction by detecting conflictherfly; in any individual
states, the values of and; (as well asp andg) are fully determined, allowing us to
detect conflicts accurately. However, it is not clear how iteatly apply these tech-
niques to symbolic model checking, where conflict detedsgrerformed with respect
to a set of states. Missing out on these kind of partial-ordductions can be costly
since the symbolic model checker needs to exhaustivelgls@among the reduced set
of execution sequences.

T1 T2
i =foo() ; j=bar();
A ;ii] =10; @ .'e;.[j] =50;
B a[i] = a[i]+20; B alj] = a[j]+100;
C *p=all; v *g=ali;

Fig.1.t,tp are independent with,, ts wheni # Fig. 2. The lattice of interleavings
Ji tc is independent with, when(i # j) A (p # q).

Recently, a new technique called Peephole Partial Ordeu®iet (PPOR) [17]
has been proposed that allows partial order reduction toegrated with symbolic
state space exploration techniques. The key idea behindRR®®@ place constraints
on which processes can be scheduled to execute in the nestéps starting at each
global state. If in a global state, transitiohsandtr’ such thattid(tr) < tid(tr'),
wheretid denotes thread-id, are enabled and independentiii@annot execute im-
mediately beforér. It was shown that PPOR is optimal for programs with two tdeea
but non-optimal for programs with more than two. The reasdhat in order to achieve
optimality for programs with more than two threads, we migbed to track depen-

dency chains involving many processes. These chains, webigld be spread out over
an entire computation, are hard to capture via local sclireglabnstraints.

We present a new technique calldnotonic Partial Order Reduction (MPOR)at
exploits a new characterization of partial orders defineddsgputations of a given con-
current program in terms afuasi-monotonic sequencesthread-ids. This characteri-
zation, which is of independent interest, can be used bo#alicit or symbolic model
checking. In this paper, we show that restricting the ief@rings explored to the set of
guasi-monotonic sequences guarantees both soundnessdadisary interleavings are
explored) and optimality (no redundant interleaving islergd). This is accomplished
by proving that for each computation there exists a quasiatanic sequence that is
Mazurkiewicz equivaledt[13] to it, and that no two quasi-monotonic sequences can
be Mazurkiewicz equivalent. The key intuition behind quasinotonicity is that if all
transitions enabled at a global state are independent tkemeed to explore just one
interleaving. We choose this interleaving to be the one iitlvtransitions are executed
in increasing (monotonic) order of their thread-ids. Ifwewer, some of the transitions
enabled at a global state are dependent than we need to @xptknieavings that may
violate thisnatural monotonic order. In that case, we allow an out-of-ordercaken,
viz., a transition:r with larger thread-id than that of transitiorf to execute before’
only if there exists alependency chaifrom ¢r to ¢/, i.e., a sequence of transitions
from tr to tr’ wherein adjacent transitions are pairwise dependent. Semhences are
called quasi-monotonic.

Note that although our monotonic POR method has the sameagadhssic POR
methods [6, 14, 16, 5, 9], it does not correspond directlyrny existing method. In
particular, it is not a symbolic implementation of any of ¢heexplicit-state methods.
Importantly, our method is optimal for programs with araitty many threads, which,
to the best of our knowledge, is not guaranteed by any of tistieg symbolic POR
techniques [1, 12, 8, 3, 10, 17]. Finally, the proposed eimgpdcheme is well suited
for symbolic search using SAT/SMT solvers.

To summarize, our main contributions are: (1) the notion wdsi-monotonic se-
quences, which isolates a unique representative for eatihlgader resulting from the
computations of the given program; (2) a new partial ordduction that adds con-
straints to ensure quasi-monotonicity, along with a synedformulation; and (3) the
guarantee of removal of all redundant interleavings fogpams with an arbitrary num-
ber of threads.

2 Classical Partial Order Reduction

We start by reviewing standard notions from classical phdrder reduction (POR)
[11, 7]. LetT; (1 < i < N) be a thread with the sétans; of transitions. Letrans =
Uf\;l trans; be the set of all transitions. L&} be the set of local variables of thredgd
andVy;0pq the set of global variables of the given concurrent progfeont, € trans;,
we denote the thread-id, i.¢, by tid(¢,), and denote the enabling conditiondy;, . If

Y Intuitively, two computations: and y are said to be Mazurkiewicz equivalentifcan be
obtained fromy by repeatedly permuting adjacent pairs of independensitians, and vice
versa.

t1 is a transition ifl; from control locationgoc; to locy and is guarded byond, then
eny, is defined agpc; = locy) A cond. Herepe; € V; is a special variable representing
the thread program counter. L&tbe the set of global states of the given program. A
states € S is a valuation of all local and global variables. For two esat s’ € S,

s % s’ denotes a state transition by applying ands " ¢ denotes a sequence of
state transitions.

2.1 Independence Relation

Partial-order reduction exploits the fact that computagiof concurrent programs are
partial orders on operations of threads on communicatigectd Thus instead of ex-
ploring all interleavings that realize these partial osdésuffices to explore just a few
(ideally just one for each partial order). Interleavingsathare equivalent, i.e., realize
the same partial order, are characterized using the nofian cmmdependence relation
over the transitions of threads constituting the given corent program.

Definition 1 (Independence Relation [11, 7])R C transxtransis anindependence
relation iff for each(tq, t2) € R the following two properties hold for all € S:

1. ift; is enabled ins ands 5 s’, thents is enabled ins iff ¢, is enabled ins’; and

2. ifty,t, are enabled irs, there is a unique stat€ such thats 1t o ands 2% .

In other words, independent transitions can neither disabt enable each other, and
enabled independent transitions commute. As pointed o{f]inthis definition has
been mainly of semantic use, since it is not practical to ktike above two proper-
ties for all states to determine which transitions are imthglent. Instead, traditional
collision detection, i.e., identification of dependennsiions, often uses conservative
but easy-to-check sufficient conditions. These checksghvare typically carried out
statically, over-approximate the collisions leading t@lexation of more interleavings
than are necessary. Consider, for example, the transitjof]g] = e; andtq:a[j] = es.
Wheni # j, t; andt, are independent. However since it is hard to determinecatbti
whethera[i] andalj] refer to the same array element,and¢, are considered (stati-
cally) dependent irrespective of the values ahd;. This results in the exploration of
more interleavings than are necessary. Such techniquéiseaefore not guaranteed to
be optimal.

In the conditionaldependence relation [11, 7], which is a refinement of the alepe
dence relation, two transitions are defined as independémtespect to a statee S
(as opposed to for all statease S). This extension is geared towards explicit-state
model checking, in which persistent sets are computed fiivicual states. A persis-
tent set at state is a subset of the enabled transitions that need to be exiiliane s.

A transition is added to the persistent set if it may conflidhva future operation of

another thread. The main difficulty in persistent set corapan lies in detecting future
collisions with enough precision due to which these cladsfinitions of independence
are not well suited for symbolic search.

3 Optimal Partial Order Reduction

We formulate a new characterization of partial order reidndn terms of quasi mono-
tonic sequences that is easy to incorporate in both exjlztsymbolic methods for
state space search. To motivate our technique, we conssitapée concurrent program
P comprised of three thread§, 7> and73 shown in figure 3. Suppose that, to start
with P is in the global statéc, ¢, ¢3) with threadT; at locatione; (for simplicity, we
show only the control locations and not the values of thealdeis in each global state).
Our goal is to add constraints on-the-fly during model chegkhat restrict the set of

10O A () { Ts() {
ci: sh = 1; co: sh = Sh’; cs: sh’ = 2:

} } }
Fig. 3. An Example Program

interleavings explored in a way such that all necessarylegeings are explored and
no two interleavings explored are Mazurkiewicz equivalést ¢; denote the program
statement at location; of threadT;, respectively. In the global state= (c¢1, co, ¢3),

we see that transitions andt, are dependent as atgandts. However,t; andts are
independent with each other. Singeandt, are dependent with each other, we need to
explore interleavings wherein is executed beforg, and vice versa.

For convenience, given transitionsndt¢’ executed along a computatianof the
given program, we writé <, ¢’ to denote that is executed befor€ alongx. Note that
the same thread statement (say within a program loop) maydmeited multiple times
along a computation. Each execution is considered a différansition. Then, using
the new notation, we can rephrase the scheduling constrantosed by dependent
transitions as follows: sincg andts are dependent transitions, we need to explore
interleavings along which, < ¢, and those along whicly < t;. Similarly, we need
to explore interleavings along whi¢h < ¢3, and vice versa. However, sineeandts
are independent we need to avoid exploring both relativerards of these transitions
wherever possible.

Let the thread-id of transitiotr executed by thread;, denoted bytid(tr), bei.

In general, one would expect that for independent tramsitio and ¢’ we need not
explore interleavings along whichr < ¢’ as well as those along whidh' < tr
and it suffices to pick one relative order, say,< tr’, wheretid(tr) < tid(tr'), i.e.,
force pairwise independent transitions to execute in emirgy order of their thread-
ids. However, going back to our example, we see that theitiatysof * <’, might
result in ordering constraints on the independent trasti; andts that force us to
explore both relative orderings of the two transitions.ded, the ordering constraints
t3 < ty andts < tp imply thatts < ¢;. On the other hand, the constraints< ¢
andt, < t3 imply that¢; < 3. Looking at the constraintg < ¢ andty < 1 from
another perspective, we see thamneeds to be executed befarebecause there is a
sequence of transitions frotgp to ¢; (in this cases, to, t1) wherein adjacent transitions
are pairwise dependent. Thus given a pair of independemsitianstr and¢r’ such

thattid(tr) < tid(tr'), a modification to the previous strategy would be to explore a
interleaving whereirir’ < ¢r only if there is a sequence of transitions frem to tr
wherein adjacent transitions are pairwise dependentfaiee independent transitions
to execute in increasing order of their thread-ids as lonthase are no dependency
constraints arising from the transitivity of* that force anout-of-orderexecution.

This strategy, however, might lead to unsatisfiable scliegldonstraints. To see
that we consider a new example program with a global state, c3, ¢4), where for
eachi, local transitiont; of T; is enabled. Suppose thigtaret, dependent only with
each other, as are andts. Consider the set of interleavings satisfyihg< ¢; and
ts3 < t2. Using the facts that (§id(t1) < tid(t3), and (ii) there cannot be a sequence of
transitions leading frony to ¢; wherein adjacent transitions are pairwise dependent, by
the above strategy we would exectitdeforets leading to the interleaving, ¢1, ts, t2.
However, since, andt, are independent, and there is no sequence of transitioms fro
t4 to to wherein adjacent transitions are pairwise dependentust be executed before
t4. This rules out the above interleaving. Using a similar o@asg, one can show that
the above strategy will, in fact, rule out all interleavingberety, < t; andts <
to. Essentially, this happens because thread-ids of prez@ssggoups of dependent
transitions have opposing orders. In our case, the groups andts, t3 of mutually
dependent transitions are such thal(t,) < tid(t2) buttid(ts) > tid(ts).

Our strategy to handle the above problem, is to start schmgtiie transitions in
increasing order of their thread-ids while taking into aatithe scheduling constraints
imposed by the dependencies. Thus in the above examplepseippat we want to
explore interleavings satisfying < ¢; and¢s < t2. Then we start by first trying to
schedule ;. However, since, < t;, we have to schedulg beforet;. Moreover, since
there are no scheduling restrictions (even via trangijiah ¢, andts, vis-a-vist; and
ts, and sinceid(te) > tid(t1) andtid(ts) > tid(t1), we schedule both, andt; to
execute aftet;. Thus we constrain all interleavings satisfyig < t; andtz < to
to start with the sequencg, t;. Next we try to schedule the transition with the lowest
thread-id that has not yet been scheduled, ie.However, sincés; < t2, we must
schedules first and thert, resulting in the unique interleavirtgt,tsts.

In general, for independent transitionandt’, wheretid(t) < tid(t'), we allowt’
to be executed beforeonly if there is a sequence of transitiohsty, ..., tx, wherein
to = t’, each pair of adjacent transitions is dependent, and either ¢t or tid(t;) <
tid(t). This leads to the key concept otlapendency chain

Definition 2 (Dependency Chain)Lett andt’ be transitions executed along a compu-
tationz such that <, ¢’. A dependency chain alongstarting att is a (sub-)sequence
of transitionstr;,, ..., tr;, executed along, where (a)y < i1 < ... < i, (b) for each

J € [0..k — 1], tr;, is dependent wittr;,, , and (c) there does not exist a transition
executed along betweertr;; andtr;,, , thatis dependent wittr; .

We uset =, ¢’ to denote the fact that there is a dependency chain fraomt’ along
x. Then our strategy can be re-phrased as follow: for indepeitdansitiong and¢’,
wheretid(t) < tid(t'), we allowt’ to be executed beforeonly if either (i)t' =, ¢, or
(ii) there exists transition’, wheretid(t”) < tid(t), t' <, t" <, tandt’ =, t". This
leads to the notion of guasi-monotonic sequence

Definition 3 (Quasi-Monotonic Computation) A computationr is said to be quasi-
monotonic if and only if for each pair of transitioms and¢r’ such thattr’ <, tr we
havetid(tr’') > tid(tr) only if either (i)tr’ =, tr, or (ii) there exists a transitionr”
such thatid(tr”) < tid(tr), tr' =, tr" andtr’ <, tr"” <, tr.

MPOR Strategy. Restrict the interleavings explored to the set of all quasirotonic
computations.

We now show the following:
Soundness i.e., all necessary interleavings are explored.
Optimality . i.e., no two interleavings explored are Mazurkiewicz gglént.

For soundness, we show the following result.

Theorem 1. (Soundness)or each computation there exists a quasi-monotonic in-
terleaving that is Mazurkiewicz equivalent#to

Proof. The proof is by induction on the lengihof 7. For the base case, i.e.,= 1,
the pathr comprises only of one state and is therefore trivially qumashotonic.

For the induction step, we assume that the result holds f@agths of length less
than or equal té. Consider a path of lengthk+ 1. Write = asm = p.tr, wherep is the
prefix of of lengthk andtr is the last transition executed alongBy the induction
hypothesis, these exists a quasi-monotonic pathat is Mazurkiewicz equivalent to
p. Setn’ = p'.tr. Letn’ = try...tr,,_1tr. Note that we have representedin terms of
the sequence of transitions executed along it as opposkd &idtes occurring along it.
Thus herer; represents thg + 1)st transition executed alond. Lettr’ = ¢r; be the
last transition executed along such thatid(¢r’) < tid(tr). DefineTy. = {tr; |l €
[7+1,k—1]and tr; =, tr} andT,. = {tr; |l € [j + 1,k — 1] andtr; & Ty.}.

Let p” = trg...trj.v.tr.¢, wherev is the sequence of all transitionsTh, listed in
the relative order in which they were executed alahdgSimilarly, let¢ be the sequence
of transitions ofl’,.. listed in the relative order in which they were executed gloh We
claim thatp” is Mazurkiewicz equivalent te’. Indeed, the effect of our transformation
on 7’ is to migrate the execution of transitions Bf. rightwards. The only way"”
cannot be Mazurkiewicz equivalent to is if there exist transitions € T;,. andt’ €
Ty U {tr} such that and¢’ are dependent. However in that case we can show that
T,. contradicting our assumption that T7,,.. Indeed, the only case where we cannot
move the transition € T,,. to the right is if there exists a transitigh € T,;. U {tr}
fired aftert alongp’ such that’ is dependent with. Sincet’ € T,.U{tr}, by definition
of Ty, t' = tr. However, since is dependent with', we have that =, tr and so
t e Tye.

Setrn” = trg...tr;. tr.(’, wherev” and¢’ are quasi-monotonic computations that
are Mazurkiewicz equivalent toand(, respectively. The existence @fand(’ follows
from the induction hypothesis. Clearty’ is a valid computation.

All we need to show now is that” is quasi-monotonic. If possible, suppose that
there exists a pair of transitionisand¢’ such thatid(t') > tid(t) that violate quasi
monotonicity. We now carry out a case analysis. Note thatesir, ..., tr; is quasi-
monotonict and¢’ cannot both occur along, ..., tr;. Thus there are two main cases

to be considered: (1) occurs alongry, ..., tr; andt alongr’.tr.¢’, and (2)t" andt
both occur along’.ir.¢".

First assume that and¢ occur alongry..., tr; andv’.tr.¢’, respectively. We start
by observing that from the definition gfit follows that all transitions executed along
v" and¢’ have thread-id greater thail(tr) > tid(tr;). Thustid(t) > tid(tr;), and so
tid(t") > tid(t) > tid(tr;). Sincetry, ..., tr; is quasi-monotonic, either @) =,,...¢r,
trj, or (i) there exist a transitionr,,, wherep € [0..j], such that’ =, 4, tr, and
tid(trp) < tid(tr;). If tr, = t then fromt’ =, 4y, tr, it follows thatt’ = t
and sot and¢’ do not violate quasi-monotonicity. If, on the other hang, % .~ t we
observe thatid(tr,) < tid(tr;) < tid(t). Also sincet’ =.,. ¢, tr, implies that
t' =~ tr,, we again see thatand¢’ do not constitute a violation.

Next we consider case 2, i.e., batand¢’ occur along/.tr.¢’. Note that since by
our construction, (i)’ and¢’ are quasi-monotonic, and (ii) there is a dependency chain
from each transition occurring along to tr, a violation could occur only if’ occurs
alongy/.tr andt along¢’. Sincet occurs along’, we havetid(t) > tid(tr). Moreover,
sincet occurs along/, there is a dependency chain frafito ¢r (note that sincer and
v are Mazurkiewicz equivalent they have the same dependéraigs). Thug andt’
satisfy the quasi-monotonicity property thereby contadg our assumption that’ is
not quasi-monotonic. This completes the induction steppandes the result. a0

For optimality, we show the following result.

Theorem 2. (Optimality). No two computations explored are Mazurkiewicz equiva-
lent.

Proof. We prove by contradiction. Assume thatr’ are two different quasi-monotonic
sequences which are (Mazurkiewicz) equivalent. By definjtr and=’ have the same
set of transitions, i.ex’ is a permutation ofr. Lettr; = 7} be the first transition along
7’ that is swapped to be;, wherei # j, alongr. Lettry = 7;. Note thati < j, else
the minimality of: will be contradicted. Them and#’ share a common prefix up to
i (Fig. 4). For definiteness, we assume thd{tr,) < tid(try), the other case where
tid(try) > tid(tro) being handled similarly.

Sincer andn’ are Mazurkiewicz equivalent and the relative order of elieowf
tro andtr; is different along the two pathgy, andtr; must be independent. Since
tid(tr1) < tid(tro) andx is quasi-monotonic, there must exist a transittosy such
thattrg <, tro < tri, tid(tre) < tid(tr1) andtry =, tre (note that there cannot
exist a dependency chain framy to tr; elser andz’ will not be Mazurkiewicz equiv-
alent). In Fig. 4, the circle on the square bracket corredpmtotr, alongr indicates
thattr, lies betweeriry andtr; alongr.

Since all adjacent transitions along a dependency chaijrbgirdefinition, depen-
dent, the relative ordering of the execution of transitialtng any dependency chain
must be the same along battandr’ as they are Mazurkiewicz equivalent. It follows
then thattrg <, trs. Sincetr; <. trg, we havetr; <,/ tro. Furthermore, it can-
not be the case that; =, try else to preserve Mazurkiewicz equivalence it must
be the case thdt; =, tro and sotr; <, tre leading to a contradiction. Therefore,
sincen’ is quasi-monotonic antd(tre) < tid(tr1), there must exist a transitidns,
such thatry <, trs <, tre, tid(trs) < tid(tre) andtr; =, trs. Again as before

I
1
| try
I

trs
tr
trg !

O

O try

Fig. 4. Dependency Chains

sincetry =, trs, we havetr; =, trs. Thustr; <. trs. Sincetry <, tr;, we have

tro < trs. Buttid(trs) < tid(tr) and we can repeat the above argument. Thus con-
tinuing the above process we can obtain a sequengceéry, ..., try of transitions such
thattid(try) < tid(tri—1) < ... < tid(tr) < tid(tro) and

1. foreach ¢ [Ok — 2], tr; = triyo (tT‘i =x trita andtr; =/ tTH_g)
2. foreachi € [1..k/2], tro; < trai—1
3. foreach e [0/€/2], troit1 <g tro;.

Since the thread-ids of the transitions form a strictly descending sequence,
there exists a sequence of transitions of maximum lengtkfgalg the above prop-
erties. Assume now that the above sequence is, in fact, nadxie consider two
cases. First assume thais even. Then there is dependency chain (property 1) from
trp_o to try alongn’. Thustry is executed afterr,_» along bothm and =’ and
SOtry_o <u try. Also, by property 3frp_1 <, trp_s. By combining the above
facts, we haver,_; <, trp_o <, tri. Note also thatid(try) < tid(trg—1). Thus
by quasi-monotonicity ofr’ either (i) there exists a dependency chain from_; to
try, or (ii) there exists a transitiotv, 1 such thattry_1 = try andtrg_; <.
trrr1 << tri. The second case cannot happen as it would violate the métyima
of the sequencétr;}. Thustry_; = try which implies thattr,_1 <, try (as de-
pendency chains are preserved across Mazurkiewicz eqoiveéquences). However
by property 2tr, <. trp—1 which is absurd. This contradicts our initial assumption
that there exist two different Mazurkiewicz equivalent sjgamonotonic sequences. The
other case wherkis odd can be handled similarly. This completes the proof. O

4 Implementation
4.1 Bounded Model Checking (BMC)

We start by reviewing the basics of SMT/SAT-based boundedaihchecking. Given a
multi-threaded program and a reachability property, BM@ caeck the property on all

10

execution paths of the program up to a fixed defgth-or each step < k¥ < K, BMC
builds a formulaZ such that is satisfiable iff there exists a lengthexecution that
violates the propertyThe formula is denoted = @ A @,,,.,,, Wwhere® represents all
possible executions of the program upktsteps andb,,.,,, is the constraint indicating
violation of the property (see [2] for more details aba@yt.,). In the following, we
focus on the formulation cb.

Let V = Vyopa U JVi, WhereV o is the set of global variables arid the
set of local variables of’;. For all local (global) program variables, we add a state
variable forV; (Vyi0par). Array and pointer accesses need special handling. Faray a
accessii], we add separate variables for the inded for the content[:]. Similarly,
for a pointer accesgp, we maintain separate state variables (fgs) andp. We add
a pc; variable for each thread; to represent its current program counter. To model
nondeterminism in the scheduler, we add a varialslewhose domain is the set of
thread indiceg1,2, ..., N}. A transition inT; is executed only whegel = i.

At every time frame, we add a fresh copy of the set of stataltes. Lety’ € V?
denote the copy ob € V at thei-th time frame. To represent all possible length-
k interleavings, we first encode the transition relationsnafividual threads and the
scheduler, and unfold the composed system exadilye frames.

k N
@:= I(VO) A N\(SCH(VY) /\ S(VE VDY)
i=0 j=1

wherel (V) represents the set of initial staté&;’ H represents the constraint on the
scheduler, and’R; represents the transition relation of thred Without any partial
order reductionSCH (V) := true, which means thatel takes all possible values at
every step. This defauBC' H considers all possible interleavings. Partial order reduc
tion can be implemented by adding constraint§ @H to remove redundant interleav-
ings.

We now consider the formulation @fR;. LetV'S; = Vjiopq1 U V; denote the set of
variables visible td’;. At thei-th time frame, for each € trans; (a transition between
control locationgoc; andlocz), we creatdr:. If ¢ is an assignment := e, thentr? :=

= locy /\pc;-+1 =locyg N0 =€ A(V S”l \ vt = (VSl \v') .
If ¢ is a branching statementsume(c), as ini f (c) , thentr! :=
= locy /\pc;-+1 =locy A A VS;-"‘1 = VS;.
Overall, TR’ is defined as follows:

TR, := |(sel'=jn \/ trj]|V(sel'#jAV/T =V))

tetrans;

The second term says thatlif is not selected, variables Irj; do not change values.

11

4.2 Encoding MPOR.

In order to implement our technique, we need to track deperydehains in a space
efficient manner. Towards that end, the following resultrisc@l.

Theorem 3. Let transitionstr and ¢ executed by process&s and T}, respectively,
along a computatiom, constitute a violation of quasi-monotonicity. Supposeth <,
tr andtid(tr’) > tid(tr). Then any transitiortr” executed byl; such thattr’ <,
tr' <, tr also constitutes a violation of quasi-monotonicity witepgect totr.

Proof. If possible, suppose that the pair of transitiagn$ and¢r do not constitute a
violation of quasi-monotonicity. Sinc&d(tr’”) > tid(tr) andtr” <, tr, either (1)
there is a dependency chain franf to ¢r, or (2) there existsr’”” such that (ajr” <,
tr'"" <, tr, (b) tid(¢tr"") < tid(tr), and (c) there is a dependency chain frori to
tr"’. However, since all transitions belonging to the same thaa dependent with
each other, we see that is dependent withr”’. Thus any dependency chain starting
at tr”’ can be extended backwards to start/dt As a result we have that either (1)
there is a dependency chain fram to ¢r, or (2) there existsr’” such that (a)r’ <,
tr'"" <, tr, (b)tid(tr"") < tid(tr), and (c) there is a dependency chain frofrto tr'”.
However, in that case transitions and¢r do not violate quasi-monotonicity, leading
to a contradiction. a

Theorem 3 implies that if there is a violation of quasi-mamitity involving transitions
tr andtr’ executed by threads andTj, respectively, such thatd(tr’) > tid(tr), then
there is also a violation betweenand the last transition executed Bybeforetr along
the given computation. This leads to the important obsemadhat in order to ensure
that a computation is quasi-monotonic, we need to track dependency chainsiamty
the last transition executed by each process atoagd not from every transition.

Tracking Dependency Chains.To formulate our MPOR encoding, we first show how
to track dependency chains. Towards that end, for each p#ireads’; and7};, we
introduce a new variabl®C;; defined as follows.

Definition 4. DC;; (k) is 1 or —1 accordingly as there is a dependency chain or not,
respectively, from the last transition executedlfyo the last transition executed Iy
up to time stegk. If no transition has been executed Bytill time stepk, DC;; = 0.

Updating DCj;. If at time stepk threadT; is executing transitiortr, then for each
threadT;, we check whether the last transition executedbigs dependent wittir. To
track that we introduce the dependency varialiddsP,; defined below.

Definition 5. DEP;;(k) is true or false accordingly as the transition being exedute
by threadT; at time stepk is dependent with the last transition executed/byor not.
Note thatD EP;; (k) is always true (due to control conflict).

If DEP,;(k) = true and if DCj;(k—1) = 1, i.e., there is a dependency chain from the
last transition executed [3§; to the last transition executed [y, then this dependency
chain can be extended to the last transition executed;bye., tr. In that case, we

12

setDCj; (k) = 1. Also, since we track dependency chains only from the lasisition
executed by each thread, the dependency chain correspgdndipneeds to start afresh

and so we seDC;; (k) = —1 for all j # 4. To sum up, the updates are as follows.
DCyi(k) =1

DC;;(k) = -1 whenj #£ ¢

DCji(k)=0 whenj # i andDC};(k—1) =0
DCJZ(IC) = V?:l(Dle(k — 1) =1A DEBZ(k)) Whenj }é) andDij (k — 1) }é 0
DChy(k) = DCpqy(k — 1) whenp # i andq # i

Scheduling Constraint. Next we introduce the scheduling constraints varialslgs
wheresS; (k) is true or falsebased on whether thredd can be scheduled to execute or
not, respectively, at time stdpin order to ensure quasi-monotonicity. Then we conjoin
the following constraint t&'C H (see subsection 4.1):

n

/\(sellC =1= S;(k))

i=1

We encodés; (k) (wherel < i < n) as follows:
S;(0) = true and
fork > 0, Sz(k) = /\ chz(k) # -1V \/l<i(Dle(k — 1) = 1))

In the above formulaDC}; (k) # —1 encodes the condition that either a transition by
threadl’;, wherej > 4, hasn’t been executed up to timagi.e., DC;; (k) = 0, orifit has
then there is a dependency chain from the last transitiotuged byT’; to the transition

of T; enabled at time stefp, i.e., DC}; (k) = 1. If these two cases do not hold and there
exists a transitionr’ executed byl’; before the transitiotr of T; enabled at time stel
then in order for quasi-monotonicity to hold, there musseaitransitiortr” executed
by threadl;, wherel < i, aftertr’ and beforer such that there is a dependency chain
from ¢’ to t" which is encoded via the conditiof, _, (DCji(k — 1) = 1).

j>i(

Encoding DEP. The decoupling of the encoding of the dependency conssrifa
the DEP variables) from the encoding of quasi-monotonicity hasatieantage that it
affords us the flexibility to incorporate various notionslependencies based on the ap-
plication at hand. These include dependencies arisingf@ynehronization primitives,
memory consistency models like sequential consistencyFer our implementation,
we have, for now, used only dependencies arising out of dhaagable accesses the
encoding of which is given below.

We define the following set of variables for each thré&ad

— pWV;(k), pRV;(k), pR?V;(k) denote the Write-Variable and Read-Variables of
the last transition executed iy before stegk. For simplicity, we assume that each
assignment has at most three operands: a write variableroagon the left hand
side of the assignment, i.@}V; (k) and up to two read variables occurring on the
right hand side of the assignment, i@RV; (k) andpR2V; (k).

— wv; (k), wr; (k), r?v;(k) denote the Write-Variable and Read-Variables of the tran-
sition executed by at stepk.

13

We encodeDEP;; (k) as follows,

DEP;(k) = (pWVi(k) = wovi(k) A pW Vi (k) # OV
PWVA(E) = o, (k) A pW Vi (k) % 0V
pWVi(k) = r?vi(k) ApWV;(k) # OV
pRV;(k) = wv; (k) AN wv; (k) # OV

PRV (k) = woi(k) A woi(k) # 0)
Read and Write VariablesLetty,...,t, € trans; be the set of transitions @f;, and
t1.writeV ar be the Write-Variable of the transitiagn. Moreoveren,, (V*) equaldrue
or falseaccordingly ag; is enabled at time stefpor not, respectively.

— We encodevv; (k) as follows

wv; (k) = (sel® =i A eny, (VF)) ? ty.writeVar :
(sel? =i A eng, (VF)) ? ty.writeVar -

(sel? =i Aeny, (VF)) ? tywriteVar : 0
— We encodeWV;(k + 1) as follows (withpWWV;(0) = 0)

pWVi(k + 1) = (sel® =i Aeny, (VF)) ? ty.writeVar :
(sel* =i A eng, (V) ? ty.writeVar :

(sel* =i Neny, (VF)) ? tywriteVar : pWV;(k)

Important Optimization. Note that the last encoding requires an if-then-else chiain o
length|trans;|. However, we need to detect dependencies only betweeritinassof
threads which access shared objects (as all internalti@rsfollowing a shared object
access can be executed in one atomic step). Thuss; would now denote the number
of transitions off; accessing only shared objects which typically is a smatitioa of

the total number of transitions @f,.

5 Experiments

We have implemented the optimal POR methods in an SMT-basadded model
checker using the Yices SMT solver [4]. The experiments vpendormed with two
variants of the optimal POR reduction and a baseline BMCréalya with no POR.
The two variants represent different tradeoffs betweeretimding overhead and the
amount of achievable reduction. The first on®RBOR[17], in which the quasi mono-
tonicity constraints are collected only within a window wfit consecutive time frames
(and so the reduction is not optimal). The second oMROR in which the entire set
of quasi-monotonicity constraints are added to ensureiguasotonicity (the reduc-
tion is optimal). Our experiments were conducted on a watkst with 2.8 GHz Xeon
processor and 4GB memory running Red Hat Linux 7.2.

We use a parameterized versiordafing philosopheras our test example. The din-
ing philosopher model we used can guarantee the absencadibdks. Each philoso-
pher has its own local state variables, and threads comiatenicrough a shared ar-
ray of chop-sticks. When accessing the global array, ttereaay have conflicts (data

14

10000 10000

o —@ v
1000
peephole o peephole

0.1 -
2 3 a4 5 6 7

0.01 0.1

(a) With SAT instances (property 'pa’) (b) With UNSAT instances (property 'pb’)
Fig. 5. Comparing runtime performance of (optimal) MPOR and (peépHPPOR.

dependency). The first property (pa) we checked is whettgh#@bsophers can eat
simultaneously (the answer is no). The second propertyigplihether it is possible to
reach a state in which all philosophers have eaten at least(time answer is yes).

We set the number of philosophers (threads) to 2, 3,and compared the runtime
performance of the three methods. The results are givergirbFThex-axis represents
unroll depth. Thej-axis is the BMC runtime in seconds, and is in logarithmidescBhe
number of variable decisions and conflicts of the SMT soleeklsimilar to the runtime
curves and are, therefore, omitted for brevity. When coingathe sizes of the SMT
formulae, we found that those produced by the optimal PORd@ng typically are
twice as large as the plain BMC instances, and those productte PPOR encoding
are slightly larger than the plain BMC instances.

The detailed results are given in Table 5. In Table 5, ColulmBshow the name of
the examples, the number of BMC unrolling steps, and whetteeproperty is true or
not. Columns 4-6 report the runtime of the three methodsui@ok 7-9 and Columns
10-12 report the number of backtracks and the number of idesi®f the SMT solver.

Test Program Total CPU Time (s) #Conflicts (k) #Decisions (k)
name [step$ prop|| none[MPOR PPOR| none[MPOR| PPOR| none|[MPOR| PPOR

phil2-pa| 15 |unsatf 0.2 0.2 0.1 1 1 1 1 1 0
phil3-pa| 22 |unsat| 18.2 0.9 1.1 17| 1 1 23 2 3
phil4-pa| 29 |unsat| 49.6 5.3 449 39 3 27| 53 8 41
phil5-pa| 36 |unsat| 76.3 22.9 148.6 48 6 53 69 17, 82
phil6-pa| 43 |unsat| 98.4 52.3 504.4 56 12 92 84 30| 147
phil7-pa| 50 |unsat| 502.3 161.4 > 1h|| 16 16 -l 238 48 -

phil2-pb| 15 | sat 0.1 0.1 0.1 1 1 1 1 1 0
phil3-pb| 22 | sat 1.5 13 0.3 2 1 1 4 4 1
phild-pb| 29 | sat| 18.3 9.5 3.8 12 3 3 17, 11 6

phil5-pb| 36 | sat || 195.5 94.7 61.7 44 9 16 61 26 31
phil6-pb| 43 | sat >1h| 315.4 2283 - 16 12 - 52| 200
phil7-pb| 50 | sat >1h| 1218 > 1h - 31 - - 85 -

Table 1. Comparing PPOR, MPOR and plain BMC

In general, adding more SAT constraints involves a tradeetffveen the state space
pruned and the additional overhead in processing theséraaris. However, the results
in Fig. 5 indicate that the reduction achieved by MPOR moaa thutweighs its encod-
ing overhead. For programs with two threads, PPOR alwayseoigrms MPOR. This

15

is because PPOR is also optimal for two threads, and it hagéisantly smaller en-
coding overhead. However, as the number of threads in@gpseentage-wise, more
and more redundant interleavings elude the PPOR constrdiatis shown in Fig. 5,
for more than four threads, the overhead of PPOR constrairtseighs the benefit
(runtime becomes longer than MPOR).

6 Conclusions

We have presented a monotonic partial order reduction ndefinmomodel checking
concurrent systems, based on the new notion of quasi-moicatequences. We have
also presented a concise symbolic encoding of quasi-maiosequences which is
well suited for use in SMT/SAT solvers. Finally, our new nmadhs guaranteed optimal,
i.e., removes all redundant interleavings.

References

[1] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S.Rajamani. Partial-order
reduction in symbolic state-space exploratiBormal Methods in System Desjdi8(2):97—
116, 2001.
[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic mdadecking without BDDs. In
TACAS 1999.
[3] B. Cook, D. Kroening, and N. Sharygina. Symbolic modeécking for asynchronous
boolean programs. ISPIN 2005.
[4] B. Dutertre and L. de Moura. A fast linear-arithmetic\sai for dpli(t). In CAV, 2006.
[5] C. Flanagan and P. Godefroid. Dynamic partial-ordeuntidn for model checking soft-
ware. InPrinciples of programming languages (POPL'Q0ppges 110-121, 2005.
[6] P. Godefroid. Partial-Order Methods for the Verification of ConcurrentsBgms - An Ap-
proach to the State-Explosion Proble®@pringer, 1996.
[7] P. Godefroid and D. Pirottin. Refining dependencies inps partial-order verification
methods. IrComputer Aided Verificatigmpages 438—449. Springer, 1993. LNCS 697.
[8] O.Grumberg, F. Lerda, O. Strichman, and M. TheobaldoRguided underapproximation-
widening for multi-process systems. ROPL, 2005.
[9] G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesaatigb-order reduction. I$PIN
Workshop on Model Checking Softwapages 95-112. Springer, 2007. LNCS 4595.
[10] V.Kahlon, A. Gupta, and N. Sinha. Symbolic model chegkof concurrent programs using
partial orders and on-the-fly transactions AV, 2006.
[11] S. Katz and D. Peled. Defining conditional independeimsiag collapsesTheor. Comput.
Sci, 101(2):337-359, 1992.
[12] F. Lerda, N. Sinha, and M. Theobald. Symbolic model &heg of software.Electr. Notes
Theor. Comput. Sgi89(3), 2003.
[13] A. W. Mazurkiewicz. Trace theory. IAdvances in Petri Netpages 279-324. Springer,
1986. LNCS 255.
[14] D. Peled. All from one, one for all: on model checkingngsrepresentatives. BAV, 1993.
[15] J. P. M. Silva and K. A. Sakallah. Grasp—a new searchrédlguo for satisfiability. In
International Conference on Computer-Aided Desigan Jose, CA, 1996.
[16] A. Valmari. Stubborn sets for reduced state space g¢ioer InApplications and Theory
of Petri Nets pages 491-515. Springer, 1989. LNCS 483.
[17] C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole phdider reduction. ITACAS
2008.

