
Monotonic Partial Order Reduction: An Optimal
Symbolic Partial Order Reduction Technique

Vineet Kahlon, Chao Wang and Aarti Gupta

NEC Laboratories America
4 Independence Way, Princeton, NJ 08540, USA

Abstract. We present a new technique calledMonotonic Partial Order Reduc-
tion (MPOR)that effectively combines dynamic partial order reductionwith sym-
bolic state space exploration for model checking concurrent software. Our tech-
nique hinges on a new characterization of partial orders defined by computations
of a concurrent program in terms ofquasi-monotonic sequencesof thread-ids.
This characterization, which is of independent interest, can be used both for ex-
plicit or symbolic model checking. For symbolic model checking, MPOR works
by adding constraints to allow automatic pruning of redundant interleavings in a
SAT/SMT solver based search by restricting the interleavings explored to the set
of quasi-monotonic sequences. Quasi-monotonicity guarantees both soundness
(all necessary interleavings are explored) and optimality(no redundant interleav-
ing is explored) and is, to the best of our knowledge, the onlyknown optimal
symbolic POR technique.

1 Introduction

Verification of concurrent programs is a hard problem. A key reason for this is the be-
havioral complexity resulting from the large number of interleavings of transitions of
different threads. In explicit-state model checking, partial order reduction (POR) tech-
niques [6, 14, 16] have, therefore, been developed to exploit the equivalence of inter-
leavings of independent transitions in order to reduce the search space. Since computing
the precise dependency relation between transitions may beas hard as the verification
problem itself, existing POR methods often use a conservative statically computed ap-
proximation. Dynamic [5] and Cartesian [9] partial order reduction obviate the need
to apply static analysisa priori by detecting collisions (data dependencies) on-the-fly.
These methods can, in general, achieve better reduction dueto more accurate collision
detection. However, applying these POR methods (which weredesigned for explicit
state space search) to symbolic model checking is a non-trivial task.

A major strength of symbolic state space exploration methods [2] is thatproperty
dependentanddata dependentsearch space reduction is automatically exploited inside
modern SAT or SMT (Satisfiability Modulo Theory) solvers, through the addition of
conflict clauses and non-chronological backtracking [15].Symbolic methods are often
more efficient in reasoning about variables with large domains. However, combining
classic POR methods (e.g., those based on persistent-sets [7]) with symbolic algorithms
has proven to be difficult [1, 12, 8, 3, 10]. The difficulty arises from the fact that sym-
bolic methods implicitly manipulate largesets of statesas opposed to manipulating



2

states individually. Capturing and exploiting transitions that are dynamically indepen-
dent with respect to aset of statesis much harder than for individual states.

Consider the example program from [17] shown in Fig. 1 comprised of two concur-
rent threads accessing a global arraya[ ]. It is hard to determine statically whether tran-
sitionstA, tB in threadT1 are dependent withtα, tβ in T2. Similarly, without knowing
the points-to locations ofp andq, we cannot decide whethertC andtγ are dependent or
not. This renders POR methods relying on a static computation of conflicts non-optimal.
Indeed, wheni 6= j holds in some executions,tA, tB and tα, tβ become indepen-
dent, meaning that the two sequencestA; tB; tα; tβ ; tC ; tγ ; and tα; tβ ; tA; tB; tC ; tγ ;
are equivalent. However, none of the existing symbolic partial order reduction meth-
ods [1, 12, 8, 3, 10] takes advantage of such information. Among explicit-state POR
methods, dynamic partial order reduction [5] and Cartesianpartial order reduction [9]
are able to achieve some reduction by detecting conflicts on-the-fly; in any individual
states, the values ofi andj (as well asp andq) are fully determined, allowing us to
detect conflicts accurately. However, it is not clear how to directly apply these tech-
niques to symbolic model checking, where conflict detectionis performed with respect
to a set of states. Missing out on these kind of partial-orderreductions can be costly
since the symbolic model checker needs to exhaustively search among the reduced set
of execution sequences.

T1

i = foo() ;
...

A a[i] = 10 ;
B a[i] = a[i]+20;
C *p = a[j] ;

T2

j = bar() ;
...

α a[j] = 50 ;
β a[j] = a[j]+100;
γ *q = a[i] ;

Fig. 1. tA, tB are independent withtα, tβ wheni 6=
j; tC is independent withtγ when(i 6= j)∧ (p 6= q).

A

A

A

A

B

B

B

C

C B

C

C

{ }

β γ

β

α

α

α

α

β

β

γ

γ

γ

{A, B, C, α, β, γ}

Fig. 2.The lattice of interleavings

Recently, a new technique called Peephole Partial Order Reduction (PPOR) [17]
has been proposed that allows partial order reduction to be integrated with symbolic
state space exploration techniques. The key idea behind PPOR is to place constraints
on which processes can be scheduled to execute in the next twosteps starting at each
global state. If in a global state, transitionstr and tr′ such thattid(tr) < tid(tr′),
wheretid denotes thread-id, are enabled and independent thentr′ cannot execute im-
mediately beforetr. It was shown that PPOR is optimal for programs with two threads
but non-optimal for programs with more than two. The reason is that in order to achieve
optimality for programs with more than two threads, we mightneed to track depen-



3

dency chains involving many processes. These chains, whichcould be spread out over
an entire computation, are hard to capture via local scheduling constraints.

We present a new technique calledMonotonic Partial Order Reduction (MPOR)that
exploits a new characterization of partial orders defined bycomputations of a given con-
current program in terms ofquasi-monotonic sequencesof thread-ids. This characteri-
zation, which is of independent interest, can be used both for explicit or symbolic model
checking. In this paper, we show that restricting the interleavings explored to the set of
quasi-monotonic sequences guarantees both soundness (allnecessary interleavings are
explored) and optimality (no redundant interleaving is explored). This is accomplished
by proving that for each computation there exists a quasi-monotonic sequence that is
Mazurkiewicz equivalent1 [13] to it, and that no two quasi-monotonic sequences can
be Mazurkiewicz equivalent. The key intuition behind quasi-monotonicity is that if all
transitions enabled at a global state are independent then we need to explore just one
interleaving. We choose this interleaving to be the one in which transitions are executed
in increasing (monotonic) order of their thread-ids. If, however, some of the transitions
enabled at a global state are dependent than we need to explore interleavings that may
violate thisnatural monotonic order. In that case, we allow an out-of-order-execution,
viz., a transitiontr with larger thread-id than that of transitiontr′ to execute beforetr′

only if there exists adependency chainfrom tr to tr′, i.e., a sequence of transitions
from tr to tr′ wherein adjacent transitions are pairwise dependent. Suchsequences are
called quasi-monotonic.

Note that although our monotonic POR method has the same goalas classic POR
methods [6, 14, 16, 5, 9], it does not correspond directly to any existing method. In
particular, it is not a symbolic implementation of any of these explicit-state methods.
Importantly, our method is optimal for programs with arbitrarily many threads, which,
to the best of our knowledge, is not guaranteed by any of the existing symbolic POR
techniques [1, 12, 8, 3, 10, 17]. Finally, the proposed encoding scheme is well suited
for symbolic search using SAT/SMT solvers.

To summarize, our main contributions are: (1) the notion of quasi-monotonic se-
quences, which isolates a unique representative for each partial order resulting from the
computations of the given program; (2) a new partial order reduction that adds con-
straints to ensure quasi-monotonicity, along with a symbolic formulation; and (3) the
guarantee of removal of all redundant interleavings for programs with an arbitrary num-
ber of threads.

2 Classical Partial Order Reduction

We start by reviewing standard notions from classical partial order reduction (POR)
[11, 7]. LetTi (1 ≤ i ≤ N ) be a thread with the settransi of transitions. Lettrans =
⋃N

i=1
transi be the set of all transitions. LetVi be the set of local variables of threadTi,

andVglobal the set of global variables of the given concurrent program.Fort1 ∈ transi,
we denote the thread-id, i.e.,i, by tid(t1), and denote the enabling condition byent1 . If

1 Intuitively, two computationsx and y are said to be Mazurkiewicz equivalent ifx can be
obtained fromy by repeatedly permuting adjacent pairs of independent transitions, and vice
versa.



4

t1 is a transition inTi from control locationsloc1 to loc2 and is guarded bycond, then
ent1 is defined as(pci = loc1)∧ cond. Herepci ∈ Vi is a special variable representing
the thread program counter. LetS be the set of global states of the given program. A
states ∈ S is a valuation of all local and global variables. For two statess, s′ ∈ S,

s
t1→ s′ denotes a state transition by applyingt1, ands

ti...tj

→ s′ denotes a sequence of
state transitions.

2.1 Independence Relation

Partial-order reduction exploits the fact that computations of concurrent programs are
partial orders on operations of threads on communication objects. Thus instead of ex-
ploring all interleavings that realize these partial orders it suffices to explore just a few
(ideally just one for each partial order). Interleavings which are equivalent, i.e., realize
the same partial order, are characterized using the notion of an independence relation
over the transitions of threads constituting the given concurrent program.

Definition 1 (Independence Relation [11, 7]).R ⊆ trans×trans is an independence
relation iff for each〈t1, t2〉 ∈ R the following two properties hold for alls ∈ S:

1. if t1 is enabled ins ands
t1→ s′, thent2 is enabled ins iff t2 is enabled ins′; and

2. if t1, t2 are enabled ins, there is a unique states′ such thats
t1t2→ s′ ands

t2t1→ s′.

In other words, independent transitions can neither disable nor enable each other, and
enabled independent transitions commute. As pointed out in[6], this definition has
been mainly of semantic use, since it is not practical to check the above two proper-
ties for all states to determine which transitions are independent. Instead, traditional
collision detection, i.e., identification of dependent transitions, often uses conservative
but easy-to-check sufficient conditions. These checks, which are typically carried out
statically, over-approximate the collisions leading to exploration of more interleavings
than are necessary. Consider, for example, the transitionst1:a[i] = e1 andt2:a[j] = e2.
Wheni 6= j, t1 andt2 are independent. However since it is hard to determine statically
whethera[i] anda[j] refer to the same array element,t1 andt2 are considered (stati-
cally) dependent irrespective of the values ofi andj. This results in the exploration of
more interleavings than are necessary. Such techniques aretherefore not guaranteed to
be optimal.

In theconditionaldependence relation [11, 7], which is a refinement of the depen-
dence relation, two transitions are defined as independent with respect to a states ∈ S
(as opposed to for all statess ∈ S). This extension is geared towards explicit-state
model checking, in which persistent sets are computed for individual states. A persis-
tent set at states is a subset of the enabled transitions that need to be explored from s.
A transition is added to the persistent set if it may conflict with a future operation of
another thread. The main difficulty in persistent set computation lies in detecting future
collisions with enough precision due to which these classicdefinitions of independence
are not well suited for symbolic search.



5

3 Optimal Partial Order Reduction

We formulate a new characterization of partial order reduction in terms of quasi mono-
tonic sequences that is easy to incorporate in both explicitand symbolic methods for
state space search. To motivate our technique, we consider asimple concurrent program
P comprised of three threadsT1, T2 andT3 shown in figure 3. Suppose that, to start
with P is in the global state(c1, c2, c3) with threadTi at locationci (for simplicity, we
show only the control locations and not the values of the variables in each global state).
Our goal is to add constraints on-the-fly during model checking that restrict the set of

T1(){
c1: sh = 1;

}

T2(){
c2: sh = sh’;

}

T3(){
c3: sh’ = 2;

}

Fig. 3.An Example Program

interleavings explored in a way such that all necessary interleavings are explored and
no two interleavings explored are Mazurkiewicz equivalent. Let ti denote the program
statement at locationci of threadTi, respectively. In the global states = (c1, c2, c3),
we see that transitionst1 andt2 are dependent as aret2 andt3. However,t1 andt3 are
independent with each other. Sincet1 andt2 are dependent with each other, we need to
explore interleavings whereint1 is executed beforet2, and vice versa.

For convenience, given transitionst andt′ executed along a computationx of the
given program, we writet <x t′ to denote thatt is executed beforet′ alongx. Note that
the same thread statement (say within a program loop) may be executed multiple times
along a computation. Each execution is considered a different transition. Then, using
the new notation, we can rephrase the scheduling constraints imposed by dependent
transitions as follows: sincet1 and t2 are dependent transitions, we need to explore
interleavings along whicht1 < t2 and those along whicht2 < t1. Similarly, we need
to explore interleavings along whicht2 < t3, and vice versa. However, sincet1 andt3
are independent we need to avoid exploring both relative orderings of these transitions
wherever possible.

Let the thread-id of transitiontr executed by threadTi, denoted bytid(tr), be i.
In general, one would expect that for independent transitions tr andtr′ we need not
explore interleavings along whichtr < tr′ as well as those along whichtr′ < tr
and it suffices to pick one relative order, say,tr < tr′, wheretid(tr) < tid(tr′), i.e.,
force pairwise independent transitions to execute in increasing order of their thread-
ids. However, going back to our example, we see that the transitivity of ‘ <’, might
result in ordering constraints on the independent transitionst1 andt3 that force us to
explore both relative orderings of the two transitions. Indeed, the ordering constraints
t3 < t2 andt2 < t1 imply that t3 < t1. On the other hand, the constraintst1 < t2
andt2 < t3 imply that t1 < t3. Looking at the constraintst3 < t2 andt2 < t1 from
another perspective, we see thatt3 needs to be executed beforet1 because there is a
sequence of transitions fromt3 to t1 (in this caset3, t2, t1) wherein adjacent transitions
are pairwise dependent. Thus given a pair of independent transitionstr andtr′ such



6

thattid(tr) < tid(tr′), a modification to the previous strategy would be to explore an
interleaving whereintr′ < tr only if there is a sequence of transitions fromtr′ to tr
wherein adjacent transitions are pairwise dependent, i.e., force independent transitions
to execute in increasing order of their thread-ids as long asthere are no dependency
constraints arising from the transitivity of ‘<’ that force anout-of-orderexecution.

This strategy, however, might lead to unsatisfiable scheduling constraints. To see
that we consider a new example program with a global state(c1, c2, c3, c4), where for
eachi, local transitionti of Ti is enabled. Suppose thatt1 aret4 dependent only with
each other, as aret2 andt3. Consider the set of interleavings satisfyingt4 < t1 and
t3 < t2. Using the facts that (i)tid(t1) < tid(t3), and (ii) there cannot be a sequence of
transitions leading fromt3 to t1 wherein adjacent transitions are pairwise dependent, by
the above strategy we would executet1 beforet3 leading to the interleavingt4, t1, t3, t2.
However, sincet2 andt4 are independent, and there is no sequence of transitions from
t4 to t2 wherein adjacent transitions are pairwise dependent,t2 must be executed before
t4. This rules out the above interleaving. Using a similar reasoning, one can show that
the above strategy will, in fact, rule out all interleavingswheret4 < t1 and t3 <
t2. Essentially, this happens because thread-ids of processes in groups of dependent
transitions have opposing orders. In our case, the groupst1, t4 andt2, t3 of mutually
dependent transitions are such thattid(t1) < tid(t2) but tid(t4) > tid(t3).

Our strategy to handle the above problem, is to start scheduling the transitions in
increasing order of their thread-ids while taking into account the scheduling constraints
imposed by the dependencies. Thus in the above example, suppose that we want to
explore interleavings satisfyingt4 < t1 andt3 < t2. Then we start by first trying to
schedulet1. However, sincet4 < t1, we have to schedulet4 beforet1. Moreover, since
there are no scheduling restrictions (even via transitivity) on t2 andt3, vis-a-vist1 and
t4, and sincetid(t2) > tid(t1) andtid(t3) > tid(t1), we schedule botht2 andt3 to
execute aftert1. Thus we constrain all interleavings satisfyingt4 < t1 and t3 < t2
to start with the sequencet4, t1. Next we try to schedule the transition with the lowest
thread-id that has not yet been scheduled, i.e.,t2. However, sincet3 < t2, we must
schedulet3 first and thent2 resulting in the unique interleavingt4t1t3t2.

In general, for independent transitionst andt′, wheretid(t) < tid(t′), we allowt′

to be executed beforet only if there is a sequence of transitionst0, t1, ..., tk, wherein
t0 = t′, each pair of adjacent transitions is dependent, and eithertk = t or tid(tk) <
tid(t). This leads to the key concept of adependency chain.

Definition 2 (Dependency Chain)Let t andt′ be transitions executed along a compu-
tationx such thatt <x t′. A dependency chain alongx starting att is a (sub-)sequence
of transitionstri0 , ..., trik

executed alongx, where (a)i0 < i1 < ... < ik, (b) for each
j ∈ [0..k − 1], trij

is dependent withtrij+1
, and (c) there does not exist a transition

executed alongx betweentrij
andtrij+1

that is dependent withtrij
.

We uset ⇒x t′ to denote the fact that there is a dependency chain fromt to t′ along
x. Then our strategy can be re-phrased as follow: for independent transitionst andt′,
wheretid(t) < tid(t′), we allowt′ to be executed beforet only if either (i) t′ ⇒x t, or
(ii) there exists transitiont′′, wheretid(t′′) < tid(t), t′ <x t′′ <x t andt′ ⇒x t′′. This
leads to the notion of aquasi-monotonic sequence.



7

Definition 3 (Quasi-Monotonic Computation) A computationx is said to be quasi-
monotonic if and only if for each pair of transitionstr andtr′ such thattr′ <x tr we
havetid(tr′) > tid(tr) only if either (i)tr′ ⇒x tr, or (ii) there exists a transitiontr′′

such thattid(tr′′) < tid(tr), tr′ ⇒x tr′′ andtr′ <x tr′′ <x tr.

MPOR Strategy. Restrict the interleavings explored to the set of all quasi-monotonic
computations.

We now show the following:
Soundness., i.e., all necessary interleavings are explored.
Optimality . i.e., no two interleavings explored are Mazurkiewicz equivalent.

For soundness, we show the following result.

Theorem 1. (Soundness).For each computationπ there exists a quasi-monotonic in-
terleaving that is Mazurkiewicz equivalent toπ.

Proof. The proof is by induction on the lengthn of π. For the base case, i.e.,n = 1,
the pathπ comprises only of one state and is therefore trivially quasi-monotonic.

For the induction step, we assume that the result holds for all paths of length less
than or equal tok. Consider a pathπ of lengthk+1. Writeπ asπ = ρ.tr, whereρ is the
prefix of π of lengthk andtr is the last transition executed alongπ. By the induction
hypothesis, these exists a quasi-monotonic pathρ′ that is Mazurkiewicz equivalent to
ρ. Setπ′ = ρ′.tr. Let π′ = tr0...trk−1tr. Note that we have representedπ′ in terms of
the sequence of transitions executed along it as opposed to the states occurring along it.
Thus heretri represents the(i + 1)st transition executed alongπ′. Let tr′ = trj be the
last transition executed alongρ′ such thattid(tr′) ≤ tid(tr). DefineTdc = {trl | l ∈
[j + 1, k − 1] and trl ⇒π′ tr} andTnc = {trl | l ∈ [j + 1, k − 1] andtrl 6∈ Tdc}.

Let ρ′′ = tr0...trj .ν.tr.ζ, whereν is the sequence of all transitions inTdc listed in
the relative order in which they were executed alongπ′. Similarly, letζ be the sequence
of transitions ofTnc listed in the relative order in which they were executed alongπ′. We
claim thatρ′′ is Mazurkiewicz equivalent toπ′. Indeed, the effect of our transformation
on π′ is to migrate the execution of transitions ofTnc rightwards. The only wayρ′′

cannot be Mazurkiewicz equivalent toρ′ is if there exist transitionst ∈ Tnc andt′ ∈
Tdc ∪ {tr} such thatt andt′ are dependent. However in that case we can show thatt ∈
Tdc contradicting our assumption thatt ∈ Tnc. Indeed, the only case where we cannot
move the transitiont ∈ Tnc to the right is if there exists a transitiont′ ∈ Tdc ∪ {tr}
fired aftert alongρ′ such thatt′ is dependent witht. Sincet′ ∈ Tdc∪{tr}, by definition
of Tdc, t′ ⇒π′ tr. However, sincet is dependent witht′, we have thatt ⇒π′ tr and so
t ∈ Tdc.

Setπ′′ = tr0...trj .ν
′.tr.ζ′, whereν′ andζ′ are quasi-monotonic computations that

are Mazurkiewicz equivalent toν andζ, respectively. The existence ofν′ andζ′ follows
from the induction hypothesis. Clearlyπ′′ is a valid computation.

All we need to show now is thatπ′′ is quasi-monotonic. If possible, suppose that
there exists a pair of transitionst andt′ such thattid(t′) > tid(t) that violate quasi
monotonicity. We now carry out a case analysis. Note that since tr0, ..., trj is quasi-
monotonic,t andt′ cannot both occur alongtr0, ..., trj . Thus there are two main cases



8

to be considered: (1)t′ occurs alongtr0, ..., trj andt alongν′.tr.ζ′, and (2)t′ andt
both occur alongν′.tr.ζ′.

First assume thatt′ andt occur alongtr0..., trj andν′.tr.ζ′, respectively. We start
by observing that from the definition ofj it follows that all transitions executed along
ν′ andζ′ have thread-id greater thantid(tr) ≥ tid(trj). Thustid(t) ≥ tid(trj), and so
tid(t′) > tid(t) ≥ tid(trj). Sincetr0, ..., trj is quasi-monotonic, either (i)t′ ⇒tr0...trj

trj , or (ii) there exist a transitiontrp, wherep ∈ [0..j], such thatt′ ⇒tr0...trj
trp and

tid(trp) < tid(trj). If trp ⇒π′′ t then fromt′ ⇒tr0...trj
trp it follows thatt′ ⇒π′′ t

and sot andt′ do not violate quasi-monotonicity. If, on the other hand,trp 6⇒π′′ t we
observe thattid(trp) < tid(trj) ≤ tid(t). Also sincet′ ⇒tr0...trj

trp implies that
t′ ⇒π′′ trp, we again see thatt andt′ do not constitute a violation.

Next we consider case 2, i.e., botht andt′ occur alongν′.tr.ζ′. Note that since by
our construction, (i)ν′ andζ′ are quasi-monotonic, and (ii) there is a dependency chain
from each transition occurring alongν′ to tr, a violation could occur only ift′ occurs
alongν′.tr andt alongζ′. Sincet occurs alongζ′, we havetid(t) > tid(tr). Moreover,
sincet occurs alongν′, there is a dependency chain fromt′ to tr (note that sinceν and
ν′ are Mazurkiewicz equivalent they have the same dependency chains). Thust andt′

satisfy the quasi-monotonicity property thereby contradicting our assumption thatπ′′ is
not quasi-monotonic. This completes the induction step andproves the result. ⊓⊔

For optimality, we show the following result.

Theorem 2. (Optimality). No two computations explored are Mazurkiewicz equiva-
lent.

Proof. We prove by contradiction. Assume thatπ, π′ are two different quasi-monotonic
sequences which are (Mazurkiewicz) equivalent. By definition,π andπ′ have the same
set of transitions, i.e.,π′ is a permutation ofπ. Let tr1 = π′

i be the first transition along
π′ that is swapped to beπj , wherei 6= j, alongπ. Let tr0 = πi. Note thati < j, else
the minimality ofi will be contradicted. Thenπ andπ′ share a common prefix up to
i (Fig. 4). For definiteness, we assume thattid(tr1) < tid(tr0), the other case where
tid(tr1) > tid(tr0) being handled similarly.

Sinceπ andπ′ are Mazurkiewicz equivalent and the relative order of execution of
tr0 and tr1 is different along the two paths,tr0 andtr1 must be independent. Since
tid(tr1) < tid(tr0) andπ is quasi-monotonic, there must exist a transitiontr2, such
that tr0 <π tr2 <π tr1, tid(tr2) < tid(tr1) andtr0 ⇒π tr2 (note that there cannot
exist a dependency chain fromtr0 to tr1 elseπ andπ′ will not be Mazurkiewicz equiv-
alent). In Fig. 4, the circle on the square bracket corresponding totr2 alongπ indicates
thattr2 lies betweentr0 andtr1 alongπ.

Since all adjacent transitions along a dependency chain are, by definition, depen-
dent, the relative ordering of the execution of transitionsalong any dependency chain
must be the same along bothπ andπ′ as they are Mazurkiewicz equivalent. It follows
then thattr0 <π′ tr2. Sincetr1 <π′ tr0, we havetr1 <π′ tr2. Furthermore, it can-
not be the case thattr1 ⇒π′ tr2 else to preserve Mazurkiewicz equivalence it must
be the case thattr1 ⇒π tr2 and sotr1 <π tr2 leading to a contradiction. Therefore,
sinceπ′ is quasi-monotonic andtid(tr2) < tid(tr1), there must exist a transitiontr3,
such thattr1 <π′ tr3 <π′ tr2, tid(tr3) < tid(tr2) andtr1 ⇒π′ tr3. Again as before



9

tr3

tr5

tr2

tr4

tr2

tr3

tr4

tr5

ππ′

tr0

tr1

tr1

tr0

Fig. 4. Dependency Chains

sincetr1 ⇒π′ tr3, we havetr1 ⇒π tr3. Thustr1 <π tr3. Sincetr2 <π tr1, we have
tr2 <π tr3. But tid(tr3) < tid(tr2) and we can repeat the above argument. Thus con-
tinuing the above process we can obtain a sequencetr0, tr1, ..., trk of transitions such
thattid(trk) < tid(trk−1) < ... < tid(tr1) < tid(tr0) and

1. for eachi ∈ [0..k − 2], tri ⇒ tri+2 (tri ⇒π tri+2 andtri ⇒π′ tri+2)
2. for eachi ∈ [1..k/2], tr2i <π tr2i−1

3. for eachi ∈ [0..k/2], tr2i+1 <π′ tr2i.

Since the thread-ids of the transitionstri form a strictly descending sequence,
there exists a sequence of transitions of maximum length satisfying the above prop-
erties. Assume now that the above sequence is, in fact, maximal. We consider two
cases. First assume thatk is even. Then there is dependency chain (property 1) from
trk−2 to trk along π′. Thus trk is executed aftertrk−2 along bothπ and π′ and
so trk−2 <π′ trk. Also, by property 3,trk−1 <π′ trk−2. By combining the above
facts, we havetrk−1 <π′ trk−2 <π′ trk. Note also thattid(trk) < tid(trk−1). Thus
by quasi-monotonicity ofπ′ either (i) there exists a dependency chain fromtrk−1 to
trk, or (ii) there exists a transitiontrk+1 such thattrk−1 ⇒ trk+1 and trk−1 <π′

trk+1 <π′< trk. The second case cannot happen as it would violate the maximality
of the sequence{tri}. Thustrk−1 ⇒ trk which implies thattrk−1 <π trk (as de-
pendency chains are preserved across Mazurkiewicz equivalent sequences). However
by property 2,trk <π trk−1 which is absurd. This contradicts our initial assumption
that there exist two different Mazurkiewicz equivalent quasi-monotonic sequences. The
other case wherek is odd can be handled similarly. This completes the proof. ⊓⊔

4 Implementation
4.1 Bounded Model Checking (BMC)

We start by reviewing the basics of SMT/SAT-based bounded model checking. Given a
multi-threaded program and a reachability property, BMC can check the property on all



10

execution paths of the program up to a fixed depthK. For each step0 ≤ k ≤ K, BMC
builds a formulaΨ such thatΨ is satisfiable iff there exists a length-k execution that
violates the property. The formula is denotedΨ = Φ ∧ Φprop, whereΦ represents all
possible executions of the program up tok steps andΦprop is the constraint indicating
violation of the property (see [2] for more details aboutΦprop). In the following, we
focus on the formulation ofΦ.

Let V = Vglobal ∪
⋃

Vi, whereVglobal is the set of global variables andVi the
set of local variables ofTi. For all local (global) program variables, we add a state
variable forVi (Vglobal). Array and pointer accesses need special handling. For an array
accessa[i], we add separate variables for the indexi and for the contenta[i]. Similarly,
for a pointer access∗p, we maintain separate state variables for(∗p) andp. We add
a pci variable for each threadTi to represent its current program counter. To model
nondeterminism in the scheduler, we add a variablesel whose domain is the set of
thread indices{1, 2, . . . , N}. A transition inTi is executed only whensel = i.

At every time frame, we add a fresh copy of the set of state variables. Letvi ∈ V i

denote the copy ofv ∈ V at thei-th time frame. To represent all possible length-
k interleavings, we first encode the transition relations of individual threads and the
scheduler, and unfold the composed system exactlyk time frames.

Φ := I(V 0) ∧
k

∧

i=0

(SCH(V i) ∧
N
∧

j=1

TRj(V
i, V i+1))

whereI(V 0) represents the set of initial states,SCH represents the constraint on the
scheduler, andTRj represents the transition relation of threadTj . Without any partial
order reduction,SCH(V i) := true, which means thatsel takes all possible values at
every step. This defaultSCH considers all possible interleavings. Partial order reduc-
tion can be implemented by adding constraints toSCH to remove redundant interleav-
ings.

We now consider the formulation ofTRj. LetV Sj = Vglobal ∪Vj denote the set of
variables visible toTj . At thei-th time frame, for eacht ∈ transj (a transition between
control locationsloc1 andloc2), we createtri

t. If t is an assignmentv := e, thentri
t :=

pci
j = loc1 ∧ pci+1

j = loc2 ∧ vi+1 = ei ∧ (V Si+1

j \ vi+1) = (V Si
j \ vi) .

If t is a branching statementassume(c), as inif(c), thentri
t :=

pci
j = loc1 ∧ pci+1

j = loc2 ∧ ci ∧ V Si+1

j = V Si
j .

Overall,TRi
j is defined as follows:

TRi
j :=



seli = j ∧
∨

t∈transj

tri
t



 ∨
(

seli 6= j ∧ V i+1

j = V i
j

)

The second term says that ifTj is not selected, variables inVj do not change values.



11

4.2 Encoding MPOR.

In order to implement our technique, we need to track dependency chains in a space
efficient manner. Towards that end, the following result is crucial.

Theorem 3. Let transitionstr and tr′ executed by processesTi andTj, respectively,
along a computationx, constitute a violation of quasi-monotonicity. Suppose that tr′ <x

tr and tid(tr′) > tid(tr). Then any transitiontr′′ executed byTj such thattr′ <x

tr′′ <x tr also constitutes a violation of quasi-monotonicity with respect totr.

Proof. If possible, suppose that the pair of transitionstr′′ andtr do not constitute a
violation of quasi-monotonicity. Sincetid(tr′′) > tid(tr) andtr′′ <x tr, either (1)
there is a dependency chain fromtr′′ to tr, or (2) there existstr′′′ such that (a)tr′′ <x

tr′′′ <x tr, (b) tid(tr′′′) < tid(tr), and (c) there is a dependency chain fromtr′′ to
tr′′′. However, since all transitions belonging to the same thread are dependent with
each other, we see thattr′ is dependent withtr′′. Thus any dependency chain starting
at tr′′ can be extended backwards to start attr′. As a result we have that either (1)
there is a dependency chain fromtr′ to tr, or (2) there existstr′′′ such that (a)tr′ <x

tr′′′ <x tr, (b) tid(tr′′′) < tid(tr), and (c) there is a dependency chain fromtr′ to tr′′′.
However, in that case transitionstr′ andtr do not violate quasi-monotonicity, leading
to a contradiction. ⊓⊔

Theorem 3 implies that if there is a violation of quasi-monotonicity involving transitions
tr andtr′ executed by threadsTi andTj, respectively, such thattid(tr′) > tid(tr), then
there is also a violation betweentr and the last transition executed byTj beforetr along
the given computation. This leads to the important observation that in order to ensure
that a computationπ is quasi-monotonic, we need to track dependency chains onlyfrom
the last transition executed by each process alongπ and not from every transition.

Tracking Dependency Chains.To formulate our MPOR encoding, we first show how
to track dependency chains. Towards that end, for each pair of threadsTi andTj, we
introduce a new variableDCij defined as follows.

Definition 4. DCil(k) is 1 or −1 accordingly as there is a dependency chain or not,
respectively, from the last transition executed byTi to the last transition executed byTl

up to time stepk. If no transition has been executed byTi till time stepk, DCil = 0.

Updating DCij . If at time stepk threadTi is executing transitiontr, then for each
threadTl, we check whether the last transition executed byTl is dependent withtr. To
track that we introduce the dependency variablesDEPli defined below.

Definition 5. DEPli(k) is true or false accordingly as the transition being executed
by threadTi at time stepk is dependent with the last transition executed byTl, or not.
Note thatDEPii(k) is always true (due to control conflict).

If DEPli(k) = true and ifDCjl(k−1) = 1, i.e., there is a dependency chain from the
last transition executed byTj to the last transition executed byTl, then this dependency
chain can be extended to the last transition executed byTi, i.e., tr. In that case, we



12

setDCji(k) = 1. Also, since we track dependency chains only from the last transition
executed by each thread, the dependency chain corresponding toTi needs to start afresh
and so we setDCij(k) = −1 for all j 6= i. To sum up, the updates are as follows.

DCii(k) = 1
DCij(k) = −1 whenj 6= i
DCji(k) = 0 whenj 6= i andDCjj(k − 1) = 0
DCji(k) =

∨n
l=1

(DCjl(k − 1) = 1 ∧ DEPli(k)) whenj 6= i andDCjj(k − 1) 6= 0
DCpq(k) = DCpq(k − 1) whenp 6= i andq 6= i

Scheduling Constraint. Next we introduce the scheduling constraints variablesSi,
whereSi(k) is true or falsebased on whether threadTi can be scheduled to execute or
not, respectively, at time stepk in order to ensure quasi-monotonicity. Then we conjoin
the following constraint toSCH (see subsection 4.1):

n
∧

i=1

(selk = i ⇒ Si(k))

We encodeSi(k) (where1 ≤ i ≤ n) as follows:
Si(0) = true and
for k > 0, Si(k) =

∧

j>i(DCji(k) 6= −1 ∨
∨

l<i(DCjl(k − 1) = 1))

In the above formula,DCji(k) 6= −1 encodes the condition that either a transition by
threadTj , wherej > i, hasn’t been executed up to timek, i.e.,DCji(k) = 0, or if it has
then there is a dependency chain from the last transition executed byTj to the transition
of Ti enabled at time stepk, i.e.,DCji(k) = 1. If these two cases do not hold and there
exists a transitiontr′ executed byTj before the transitiontr of Ti enabled at time stepk,
then in order for quasi-monotonicity to hold, there must exist a transitiontr′′ executed
by threadTl, wherel < i, aftertr′ and beforetr such that there is a dependency chain
from tr′ to tr′′ which is encoded via the condition

∨

l<i(DCjl(k − 1) = 1).

Encoding DEP. The decoupling of the encoding of the dependency constraints (via
theDEP variables) from the encoding of quasi-monotonicity has theadvantage that it
affords us the flexibility to incorporate various notions ofdependencies based on the ap-
plication at hand. These include dependencies arising out of synchronization primitives,
memory consistency models like sequential consistency, etc. For our implementation,
we have, for now, used only dependencies arising out of shared variable accesses the
encoding of which is given below.

We define the following set of variables for each threadTi:

– pWVi(k), pRVi(k), pR2Vi(k) denote the Write-Variable and Read-Variables of
the last transition executed byTi before stepk. For simplicity, we assume that each
assignment has at most three operands: a write variable occurring on the left hand
side of the assignment, i.e.,pWVi(k) and up to two read variables occurring on the
right hand side of the assignment, i.e.,pRVi(k) andpR2Vi(k).

– wvi(k), wri(k), r2vi(k) denote the Write-Variable and Read-Variables of the tran-
sition executed byTi at stepk.



13

We encodeDEPij(k) as follows,

DEPij(k) = ( pWVi(k) = wvi(k) ∧ pWVi(k) 6= 0∨
pWVi(k) = rvi(k) ∧ pWVi(k) 6= 0∨
pWVi(k) = r2vi(k) ∧ pWVi(k) 6= 0∨
pRVi(k) = wvi(k) ∧ wvi(k) 6= 0∨
pR2Vi(k) = wvi(k) ∧ wvi(k) 6= 0)

Read and Write VariablesLet t1, . . . , tn ∈ transi be the set of transitions ofTi, and
t1.writeV ar be the Write-Variable of the transitiont1. Moreover,enti

(V k) equalstrue
or falseaccordingly asti is enabled at time stepk or not, respectively.

– We encodewvi(k) as follows

wvi(k) = (selk = i ∧ ent1(V
k)) ? t1.writeV ar :

(selk = i ∧ ent2(V
k)) ? t2.writeV ar :

. . .
(selk = i ∧ entn

(V k)) ? tn.writeV ar : 0

– We encodepWVi(k + 1) as follows (withpWVi(0) = 0)

pWVi(k + 1) = (selk = i ∧ ent1(V
k)) ? t1.writeV ar :

(selk = i ∧ ent2(V
k)) ? t2.writeV ar :

. . .
(selk = i ∧ entn

(V k)) ? tn.writeV ar : pWVi(k)

Important Optimization. Note that the last encoding requires an if-then-else chain of
length|transi|. However, we need to detect dependencies only between transitions of
threads which access shared objects (as all internal transitions following a shared object
access can be executed in one atomic step). Thus,transi would now denote the number
of transitions ofTi accessing only shared objects which typically is a small fraction of
the total number of transitions ofTi.

5 Experiments
We have implemented the optimal POR methods in an SMT-based bounded model
checker using the Yices SMT solver [4]. The experiments wereperformed with two
variants of the optimal POR reduction and a baseline BMC algorithm with no POR.
The two variants represent different tradeoffs between theencoding overhead and the
amount of achievable reduction. The first one isPPOR[17], in which the quasi mono-
tonicity constraints are collected only within a window of two consecutive time frames
(and so the reduction is not optimal). The second one isMPOR, in which the entire set
of quasi-monotonicity constraints are added to ensure quasi monotonicity (the reduc-
tion is optimal). Our experiments were conducted on a workstation with 2.8 GHz Xeon
processor and 4GB memory running Red Hat Linux 7.2.

We use a parameterized version ofdining philosophersas our test example. The din-
ing philosopher model we used can guarantee the absence of deadlocks. Each philoso-
pher has its own local state variables, and threads communicate through a shared ar-
ray of chop-sticks. When accessing the global array, threads may have conflicts (data



14

(a) With SAT instances (property ’pa’) (b) With UNSAT instances (property ’pb’)

Fig. 5. Comparing runtime performance of (optimal) MPOR and (peephole) PPOR.

dependency). The first property (pa) we checked is whether all philosophers can eat
simultaneously (the answer is no). The second property (pb)is whether it is possible to
reach a state in which all philosophers have eaten at least once (the answer is yes).

We set the number of philosophers (threads) to 2, 3,. . ., and compared the runtime
performance of the three methods. The results are given in Fig. 5. Thex-axis represents
unroll depth. They-axis is the BMC runtime in seconds, and is in logarithmic scale. The
number of variable decisions and conflicts of the SMT solver look similar to the runtime
curves and are, therefore, omitted for brevity. When comparing the sizes of the SMT
formulae, we found that those produced by the optimal POR encoding typically are
twice as large as the plain BMC instances, and those producedby the PPOR encoding
are slightly larger than the plain BMC instances.

The detailed results are given in Table 5. In Table 5, Columns1-3 show the name of
the examples, the number of BMC unrolling steps, and whetherthe property is true or
not. Columns 4-6 report the runtime of the three methods. Columns 7-9 and Columns
10-12 report the number of backtracks and the number of decisions of the SMT solver.

Test Program Total CPU Time (s) #Conflicts (k) #Decisions (k)
name steps prop none MPOR PPOR none MPOR PPOR none MPOR PPOR

phil2-pa 15 unsat 0.2 0.2 0.1 1 1 1 1 1 0
phil3-pa 22 unsat 18.2 0.9 1.1 17 1 1 23 2 3
phil4-pa 29 unsat 49.6 5.3 44.9 39 3 27 53 8 41
phil5-pa 36 unsat 76.3 22.9 148.6 48 6 53 69 17 82
phil6-pa 43 unsat 98.4 52.3 504.4 56 12 92 84 30 147
phil7-pa 50 unsat 502.3 161.6 > 1h 161 16 - 238 48 -

phil2-pb 15 sat 0.1 0.1 0.1 1 1 1 1 1 0
phil3-pb 22 sat 1.5 1.3 0.3 2 1 1 4 4 1
phil4-pb 29 sat 18.3 9.5 3.8 12 3 3 17 11 6
phil5-pb 36 sat 195.5 94.7 61.7 44 9 16 61 26 31
phil6-pb 43 sat >1h 315.4 2283 - 16 122 - 52 200
phil7-pb 50 sat >1h 1218 > 1h - 31 - - 85 -

Table 1.Comparing PPOR, MPOR and plain BMC

In general, adding more SAT constraints involves a tradeoffbetween the state space
pruned and the additional overhead in processing these constraints. However, the results
in Fig. 5 indicate that the reduction achieved by MPOR more than outweighs its encod-
ing overhead. For programs with two threads, PPOR always outperforms MPOR. This



15

is because PPOR is also optimal for two threads, and it has a significantly smaller en-
coding overhead. However, as the number of threads increases, percentage-wise, more
and more redundant interleavings elude the PPOR constraints. As is shown in Fig. 5,
for more than four threads, the overhead of PPOR constraintsoutweighs the benefit
(runtime becomes longer than MPOR).

6 Conclusions
We have presented a monotonic partial order reduction method for model checking
concurrent systems, based on the new notion of quasi-monotonic sequences. We have
also presented a concise symbolic encoding of quasi-monotonic sequences which is
well suited for use in SMT/SAT solvers. Finally, our new method is guaranteed optimal,
i.e., removes all redundant interleavings.

References

[1] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-order
reduction in symbolic state-space exploration.Formal Methods in System Design, 18(2):97–
116, 2001.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In
TACAS, 1999.

[3] B. Cook, D. Kroening, and N. Sharygina. Symbolic model checking for asynchronous
boolean programs. InSPIN, 2005.

[4] B. Dutertre and L. de Moura. A fast linear-arithmetic solver for dpll(t). InCAV, 2006.
[5] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking soft-

ware. InPrinciples of programming languages (POPL’05), pages 110–121, 2005.
[6] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An Ap-

proach to the State-Explosion Problem. Springer, 1996.
[7] P. Godefroid and D. Pirottin. Refining dependencies improves partial-order verification

methods. InComputer Aided Verification, pages 438–449. Springer, 1993. LNCS 697.
[8] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided underapproximation-

widening for multi-process systems. InPOPL, 2005.
[9] G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian partial-order reduction. InSPIN

Workshop on Model Checking Software, pages 95–112. Springer, 2007. LNCS 4595.
[10] V. Kahlon, A. Gupta, and N. Sinha. Symbolic model checking of concurrent programs using

partial orders and on-the-fly transactions. InCAV, 2006.
[11] S. Katz and D. Peled. Defining conditional independenceusing collapses.Theor. Comput.

Sci., 101(2):337–359, 1992.
[12] F. Lerda, N. Sinha, and M. Theobald. Symbolic model checking of software.Electr. Notes

Theor. Comput. Sci., 89(3), 2003.
[13] A. W. Mazurkiewicz. Trace theory. InAdvances in Petri Nets, pages 279–324. Springer,

1986. LNCS 255.
[14] D. Peled. All from one, one for all: on model checking using representatives. InCAV, 1993.
[15] J. P. M. Silva and K. A. Sakallah. Grasp—a new search algorithm for satisfiability. In

International Conference on Computer-Aided Design, San Jose, CA, 1996.
[16] A. Valmari. Stubborn sets for reduced state space generation. InApplications and Theory

of Petri Nets, pages 491–515. Springer, 1989. LNCS 483.
[17] C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole partial order reduction. InTACAS,

2008.


