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Abstract. Triggering errors in concurrent programs is a notoriously difficult
task. A key reason for this is the behavioral complexity resulting from the large
number of interleavings of operations of different threads. Efficient static tech-
niques, therefore, play a critical role in restricting the set of interleavings that
need be explored in greater depth. The goal here is to exploit scheduling con-
straints imposed by synchronization primitives to determine whether the property
at hand can be violated and report schedules that may lead to such a violation.
Towards that end, we propose the new notion of a Universal Causality Graph
(UCG) that given a correctness property P , encodes the set of all (statically) fea-
sible interleavings that may violate P . UCGs provide a unified happens-before
model by capturing causality constraints imposed by the property at hand as well
as scheduling constraints imposed by synchronization primitives as causality con-
straints. Embedding all these constraints into one common framework allows us
to exploit the synergy between the constraints imposed by different synchroniza-
tion primitives, as well as between the constraints imposed by the property and
the primitives. This often leads to the removal of significantly more redundant in-
terleavings than would otherwise be possible. Importantly, it also guarantees both
soundness and completeness of our technique for identifying statically feasible
interleavings. As an application, we demonstrate the use of UCGs in enhancing
the precision and scalability of predictive analysis in the context of runtime veri-
fication of concurrent programs.

1 Introduction
Detecting errors in concurrent programs is a notoriously difficult task. A key reason
for this is the behavioral complexity resulting from the large number of interleavings
of different threads. This leads to the state-explosion problem which renders a full-
fledged state space exploration of concurrent programs infeasible. As a result, in recent
years runtime error detection techniques have been gaining in popularity. These come
in many variants. Runtime monitoring aims at identifying violations exposed by a given
execution trace [12, 18, 5, 9]. However, due to the large number of interleavings of the
program, triggering a concurrency bug by exploring just one interleaving is unlikely. In
contrast, runtime prediction aims at detecting violations in all feasible interleavings of
events of the given trace. In other words, even if no violation exists in that trace, but
an alternative interleaving is erroneous, a predictive method [8, 15, 2, 7, 6, 14] may be
able to catch it without actually re-running the test.

Predictive analysis seems to offer a good compromise between runtime monitoring
and full-fledged model checking in that it guarantees better coverage than runtime mon-
itoring but mitigates the state explosion inherent in model checking. In its most general
form, predictive analysis has three steps (1) Run a test of the concurrent program to
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obtain an execution trace. (2) Run a sound (over-approximate) static analysis of the
given trace to detect potential violations, e.g., data races, atomicity violations, etc. If no
violation is found, return. (3) Build a precise predictive model, and for each potential
violation, check whether it is feasible. If it is feasible, find a concrete and replayable
witness trace. Many variants of this basic framework have been proposed in the litera-
ture to explore the various tradeoffs between scalability and precision. Clearly, the main
bottleneck in scalability is the feasibility check in step 3 (essentially model checking).

In the interest of scalability some techniques avoid step 3 altogether. For instance,
Farzan et. al. [6] have proposed a static analysis for predicting atomicity violations in
which they focus on the control paths and model only nested locks. For threads synchro-
nizing via nested locks only and assuming no data variables, their analysis is sound and
complete, in that step 3 can be avoided. However, this technique is not applicable to pro-
grams using non-nested locks or synchronization primitives other than locks, including
wait/notify, barriers, etc. As a result, the reported violations may be spurious. Although
such warnings can serve as hints for subsequent analysis, they are not immediately use-
ful to programmers because deciding whether they are real errors remains a challenging
task. Other techniques try to address the scalability problem by exploring only a small
subset of the feasible interleavings via trace-based under-approximations [15, 2, 14]
thereby suffering from a very limited coverage of interleavings.

If precision is of paramount concern then static analysis (step 2) is augmented with
model checking in step 3 wherein the feasibility of the set of statically generated warn-
ings can be verified. Since model checking is computationally expensive, it is impera-
tive that the static analysis be made as precise as possible. First, if static analysis can
deduce that a set of warning locations is simply unreachable then the expensive step 3
can be avoided altogether. Second, if static analysis can deduce invariants with respect
to the trace and the property at hand, we can use them to weed out many interleavings
that need be explored via step 3 thereby enhancing its scalability. Therefore, irrespective
of the predictive analysis method being used, step 2, i.e., statically detecting potentially
erroneous interleavings of events of the given trace, occupies a key role in determining
the scalability and precision of the overall framework.

However, existing static analysis techniques suffer from several drawbacks. 1. Com-
prehensive Handling of Synchronizations: State-of-the-art static analysis techniques,
e.g. [7], apply only to programs with nested locks and are therefore not applicable to
programs using non-nested locks or wait/notify-style primitives in conjunction with
locks (nested or non-nested) which are very common in Java programs. The mover-
based atomicity checkers, such as atomizer [8], are conservative even for control path
reachability (no data); they typically can robustly handle locks but not the other syn-
chronization primitives. In contrast, our new static analysis technique can handle multi-
ple synchronization primitives used in real-life programs (e.g. Java) in a unified manner,
and is both sound and complete for control path reachability for two threads, i.e., when
there is no data, or data does not affect the control flow of the program. 2. Causal Con-
straints from Properties: The existence of standard concurrency errors like data races
and atomicity violations can be expressed uniformly as a set of happens-before con-
straints between events of different threads. These property-induced constraints can be
used in conjunction with scheduling constraints imposed by synchronization primitives
to infer yet more happens-before constraints. To our knowledge, the interaction of these
two types of constraints has not been exploited by existing techniques which therefore
end up retaining more (spurious) interleavings than are necessary.
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The main contribution of this paper is the new notion of a Universal Causality
Graph (UCG), which is a unified happens-before model for the given (trace) program
as well as the property at hand, that addresses the above challenges. UCGs allow us to
capture, as happens-before constraints, the set of all possible interleavings that are fea-
sible under the scheduling constraints imposed by synchronization primitives that may
potentially lead to violations of the property at hand. With a given execution trace of a
program specified as a set of local computations x1, ...xn of n threads and a property
P , we associate a UCG, denoted by U(x1,...,xn)(P ), which is a directed graph whose
vertices are a subset of the set of synchronization events occurring along x1, ..., xn and
each of whose edges e1  e2, represents a happens-before constraint, i.e., e1 must
be executed before e2. Thus the UCG implicitly captures the set of all interleavings of
x1, ..., xn that satisfy all the happens-before constraints represented by its edges.

UCGs have the following desirable properties (a) Precision: If data is not tracked,
for two threads the UCG captures precisely the set of interleavings of x1, . . . , x2 sat-
isfying the property P , e.g., the existence of a data race or atomicity violation. For an
arbitrary number of threads the set of interleavings captured is a super-set of the set of
interleavings satisfying P . In other words, the analysis is sound in general and complete
for two threads interacting via synchronization primitives only. (b) Unified View: The
UCG encodes both property-induced causality constraints and scheduling constraints
imposed by synchronization primitives in terms of happens-before constraints. Unlike
existing techniques, it can handle multiple synchronization primitives in a unified man-
ner. This enables us to leverage the synergy between causality constraints induced by
both the property as well as the program, and allows us to deduce more causal con-
straints than would otherwise be possible. More importantly, these constraints are nec-
essary to guarantee both soundness and completeness of our method for two threads. (c)
Scalability: Since the given trace could be arbitrarily long, incorporating all synchro-
nization events of the trace as vertices and all the deduced causal constraints as edges
into the UCG would impact the scalability of the analysis. However, we show that, for
predictive analysis of a given property, the UCG need not keep track of causality edges
induced by the entire traces x1, ..., xn but only short suffixes thereof. The novelty of
this chopping result lies in the existence of a set of special lock-free control states, from
which the UCG based analysis can still guarantee both soundness and completeness.

UCGs are a generalization of lock causality graphs (LCGs) [10] which were formu-
lated to reason about pairwise reachability for threads communicating purely via locks.
However, LCGs could only be used to reason about programs using locks. Further-
more, LCGs were formulated to reason only about pairwise reachability and therefore
could not exploit causality constraints induced by properties such as atomicity viola-
tions. Also, our UCG based analysis is a backward inference process starting from the
property at hand—it does not enumerate interleavings. This differs from the forward
analysis used in [15, 2, 14] which explicitly enumerate thread interleavings.

Happens-before constraints have been exploited before for predictive analysis for
detecting races and atomicity violations [4, 9]. However, the causal models considered
were restrictive in that the set of interleavings explored had to preserve the global order-
ing of lock/unlock statements in the original global computation x. Since the number
of such interleavings is a small fraction of the total number of feasible interleavings of
local computations of different threads along x, these techniques could miss detection
of errors and were therefore not guaranteed sound (though they were sound with respect
to the global ordering of lock/unlock statements along x). UCGs, on the other hand, al-
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low the lock/unlock statements from different threads to be re-ordered relative to each
other and will therefore explore all possible statically feasible interleavings of local
computations of different threads along x. This guarantees soundness of our technique.

The proofs of all the results can be found in the full version available on-line [1].

2 Preliminaries
A concurrent program has a set {T1, . . . , Tn} of threads and a set SV of shared vari-
ables. Each thread Ti, where 1 ≤ i ≤ n, has a set of local variables LV i. Let
T id = {1, . . . , n} be the set of thread indices. Let Vi = SV ∪ LV i, where 1 ≤ i ≤ n,
be the set of variables accessible in Ti. An execution trace of the program is a sequence
x = t1 . . . tK of events. An event t ∈ x is a tuple 〈tid, action〉, where tid ∈ T id and
action is of one of the form (let tid = i)

– guarded assignment (assume(g), asgn), where g is a condition over Vi and asgn

is a set of assignments, each of the form v := exp, where v ∈ Vi and exp is an
expression over Vi. Intuitively, g must be true for the assignments to proceed.

– fork (j) and join(j). The former models the creation of child thread Tj by thread
Ti. The latter models that thread Ti waits for thread Tj to join back.

– lock(l) and unlock(l). The former models the acquire of lock l. The latter models
the release of lock l.

– waitpre(c), waitpost(c) and notify(c). The first two, when combined, model the
wait of condition variable c. The last event models the notification of c.

Each event t in x is a unique execution instance of a statement in the program. If a state-
ment in the program is executed multiple times, e.g., in a loop or a recursive function,
each execution instance is modeled as a separate event. If we project x back to the local
threads, each current thread x1, . . . , xn is a purely straight-line program.
Synchronization Primitives. In both Java and PThreads, the primitive wait(c,l) ,
where l is a lock and c is a condition variable, is a composite statement. Before calling
it, thread Ti is expected to hold lock l. Upon calling it, thread Ti releases lock l, and
then blocks—waiting for another thread Tj to call notify(c) . After that, and only
when lock l is available again, thread Ti wakes up and immediately re-acquires lock
l. Therefore, for verification purposes, we model wait(c,l) using the semantically
equivalent event sequence waitpre(c); unlock(l); lock(l); waitpost(c). Also note that
the suggested way of using condition variables, in both Java and PThreads, is to wrap
both wait(c,l) and notify(c) with a pair of lock(l) and unlock(l) .

By defining the expression syntax suitably, the guarded assignment event itself is
expressive enough to model the execution of all kinds of statements including synchro-
nization primitives. In fact, this is what we have implemented in the model checking
procedure at the final step. The reason why we represent lock-unlock events and wait-
notify events separately is for convenience in understanding the UCG-based static anal-
ysis; in static analysis, our focus is on these concurrency/synchronization events only
(data is ignored). To understand the expressiveness of guarded assignment, consider
the following variants: (1) when the guard is true, the set asgn models normal assign-
ment statements; (2) when the set asgn is empty, assume(g) models a branching state-
ment if(cond) ; and (3) with both the guard and the assignment set, it can model the
atomic check-and-set operation, which is the foundation of all synchronization primi-
tives. For example, acquire of lock l in thread Ti, where i ∈ T id, is modeled as event
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〈i, (assume(l = 0), {l := i})〉; here 0 means the lock is available and thread index i

indicates the lock owner. Release of lock l is modeled as 〈i, (assume(l = i), {l := 0})〉.
Concurrent Trace Programs The semantics of an execution trace x = e1 . . . eK is
defined using a state transition system. Let V be the set of all program variables and Val

be a set of values of variables in V . A state is a map s : V → Val assigning a value to
each variable. We also use s[v] and s[exp] to denote the values of v ∈ V and expression
exp in state s. We say that a state transition s

t
−→ s′ exists, where s, s′ are states and

e is a guarded assignment event in thread Ti, if the action is (assume(g), asgn), s[g] is
true, and for each assignment v := exp in asgn, s′[v ] = s[exp] holds; states s and s′

agree on all other variables. The execution trace x = t1 . . . tK can be viewed as a total
order of the events along x. From x one can derive a partial order called the concurrent
trace program (CTP) [17].
Definition 1. The concurrent trace program with respect to x, denoted CTPx, is a par-
tially ordered set (T,v) such that, T = {t | t ∈ x} is the set of events, and for any
ti, tj ∈ T , ti v tj iff

– tid(ti) = tid(tj) and i < j; or
– ti has action fork(tid(tj)); or
– tj has action join(tid(ti)); or
– ti has action waitpre(c) and tj has the matching notify(c); or
– tj has action waitpost(c) and ti has the matching notify(c).

Intuitively, CTPx orders events from the same thread by their execution order along x,
and orders events from different threads by the causal relations of fork-join and wait-
notify. Otherwise, events from different threads are not explicitly ordered with respect
to each other.

We now define feasible linearizations of CTPx. Let x′ = t′1 . . . t′n be a linearization
of CTPx, i.e. an interleaving of events of x. We say that x′ is feasible iff there exist
states s0, . . . , sn such that, s0 is the initial state of the program and for all i = 1, . . . , n,
there exists a transition si−1

t′i−→ si. This definition captures the standard sequential
consistency semantics for concurrent programs, where we modeled concurrency primi-
tives such as locks by using auxiliary shared variables.
Causal Models for Feasible Linearizations. We recall that in predictive analysis the
given concurrent program is first executed to obtain an execution trace x. By projecting
x onto the local states of individual threads one can obtain CTPx. Then given a property
P , e.g., existence of data races or atomicity violations, the goal of predictive analysis is
to find a feasible linearization of CTPx that satisfies P .

Since the total number of linearizations of CTPx may be too large, static analysis
is often employed to isolate a (small) set of linearizations of CTPx whose feasibility
can then be checked via model checking. Here static feasibility implies that data is typi-
cally ignored and the linearizations generated are required to be feasible only under the
scheduling constraints imposed by synchronization and fork-join primitives. We pro-
pose the notion of a Universal Causality Graph that captures precisely the set of feasible
interleavings of CTPx that may lead to violations while guaranteeing (i) soundness in
general and completeness for two threads, (ii) scalability, (iii) handling of different syn-
chronization primitives in a unified manner, and (iv) exploiting the synergy between
causal constraints imposed by the property as well as the program. To the best of our
knowledge, none of the existing techniques satisfies all four of these requirements.
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3 Universal Causality Graph
Given a set of local computations x1, ..., xn of threads T1,..., Tn, respectively, and a
standard property P such as the presence of a data race or an atomicity violation, we
construct a causality graph, denoted U(x1,...,xn)(P ), such that there exists an interleav-
ing of x1, ..., xn satisfying P if and only if U(x1,...,xn)(P ) is acyclic. We express both
the property as well as scheduling constraints imposed by synchronization primitives in
terms of happens-before constraints. To start with, we show how to express the occur-
rence of a property violation as a set of happens-before constraints.

3.1 Properties As Causality Constraints

We consider two standard concurrency violations: data races and atomicity violations.

Data Races. A data race occurs if there exist events ta and tb of two different threads
such that (a) a common shared variable is accessed by ta and tb with at least one of
the accesses being a write operation, and (b) there exists a reachable (global) state of
the concurrent program in which both ta and tb are enabled. In order to express the
occurrence of a data race involving ta and tb, we introduce the two happens-before
constraints ta′  tb and tb′  ta in the universal causality graph, where ta′ and tb′ are
the events immediately preceding ta and tb in their respective threads. Note that given
an execution trace, ta′ and tb′ are defined uniquely.

Atomicity Violations. A three-access atomicity violation [12, 6, 17] involves an event
sequence tc . . . tr . . . tc′ such that (a) tc and tc′ are in a user transaction of one thread,
and tr is in another thread, and (b) tc and tr are data dependent; and tr and tc′ are
data dependent. Depending on whether each event is a read or write, there are eight
possible combinations of the triplet tc, tr, tc′ . While R-R-R, R-R-W, and W-R-R are
serializable, the remaining five may indicate atomicity violations. Given the CTPx and
a transaction trans = ti . . . tj , where ti . . . tj are events from a thread in x, the set of
potential atomicity violations can be computed by scanning the trace x once, and for
each remote event tr ∈ CTPx, finding the two local events tc, tc′ ∈ trans such that
〈tc, tr, tc′〉 forms a non-serializable pattern. Such an atomicity violation can be captured
via the two happens-before constraints tc  tr and tr  tc′ .

3.2 Universal Causality Graph Construction

We motivate the concept of a Universal Causality Graph (UCG) via an example com-
prised of local traces x1 and x2 of threads T1 and T2, respectively, shown in fig 1.
Suppose that we are interested in deciding whether a9 and b9 constitute a data race.
Since the set of locks held at a9 and b9 are disjoint, these pair of locations constitute a
potential data race. Furthermore, since the traces use wait/notify statements as well as
non-nested locks, we cannot use existing techniques [7, 6, 11] to decide simultaneous
reachability of a9 and b9. As discussed in Sec. 3.1, for the race to occur there must exist
an interleaving of x1 and x2 that satisfies the constraints a8  b9 and b8  a9. Fur-
thermore, the locks along x1, x2 must be acquired in a consistent fashion and causality
constraints imposed by wait/notify events must be respected.

We now show that the causality constraints generated in the UCG by the property
as well as scheduling constraints imposed by locks, fork/join, and wait/notify events
that are relevant in exposing the data race, can be captured in a unified manner. For two
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a0: lock(l3);
a1: lock(l1);
a2: waitpre(c)
a3: unlock(l1)
a4: lock(l1)
a5: waitpost(c);
a6: lock(l2);
a7: unlock(l3);
a8: unlock(l1);
a9: sh = sh + 1;
a10: unlock(l2);

T1

b0: lock(l1);
b1: notify(c);
b2: unlock(l1);
b3: lock(l1);
b4: lock(l3);
b5: unlock(l1);
b6: lock(l2);
b7: unlock(l2);
b8: unlock(l3);
b9: sh = sh + 2;
b10: ...

T2

b5
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Fig. 1. An Example Universal Causality Graph

arbitrary events c1 and c2 of U(x1,x2)(P ), there exists an edge c1  c2 if c1 must be
executed before c2 in order for P to hold.

A UCG has two types of edges (i) Seed edges and (ii) Induced edges. Seed edges,
shown as bold edges in the UCG in Fig. 1(c), can be further classified as Property and
Synchronization seed edges.

Property Seed Edges are introduced by properties as in Sec. 3.1. In our example, the
potential data race at a9 and b9 introduces the edges a8 b9 and b8 a9.

Synchronization Seed Edges are induced by fork/join and the various synchronization
primitives. For simplicity, we only discuss wait/notify. Locks do not add seed edges.

– Wait-Notify: Recall that the primitive wait(c, l1) is modeled as the event sequence
a1 : lock(l1), a2 : waitpre(c), a3 : unlock(l1), a4 : lock(l1), a5 : waitpost(c).
Let b1 be the matching notify(c). The seed edges are a2  b1 and b1  a5.
Note that since x1 and x2 are generated from concrete traces for each notify state-
ment there exists a unique matching wait statement, if any, and vice versa. Strictly
speaking, we should consider all scenarios wherein notify statements are executed
without the matching wait statements. However, that will block the wait statements
causing us to miss potential violations. In order to maximize the number of viola-
tions, we assume that all pairs of matching wait/notify statements are executed in
unison.

– Fork-Join: The first edge is from fork to the first event of the child thread. The
second edge is from the last event of the child thread to join.

The interaction between these seed edges and locks can be used to deduce more
constraints that are captured as induced edges. They are the dashed edges in Fig. 1(c).
These induced edges are key in guaranteeing soundness and completeness.

Induced Edges: Consider the seed causality constraint b8  a9. From this we can
deduce the new causality constraint b7  a6. Towards that end, we observe that at
location a9, lock l2 is held which was acquired at a6. Also, once l2 is acquired at a6
it is not released until after T1 exits a10. Furthermore, we observe that b6 is the last
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e1

e2

e′2

e3

e′3
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Fig. 2. A Causality Chain from e1 to e4

statement to acquire l2 before b8 and b7 is its matching release. Due to constraint b8
 a9 and the local constraint b7 b8, one can deduce, via transitivity, that b7 a9.
Moreover, from the mutual exclusion semantics of lock l2, we have that since l2 is held
at a9 it must first be released by T2 before T1 can acquire it via a6 without which a9
cannot be executed. Thus a6 must also be executed after b7.

From b7  a6 one can, in turn, deduce that b8  a0. This is because the last
statement to acquire l3 before b7 is b4 and its matching release is b8. Using the same
argument as above, from the causality constraint b7 a6 and mutual exclusion seman-
tics of lock l3, we can deduce that l3, which is held at b7, must first be released by T2

before T1 can acquire it via a0 which it needs to in order to execute a6, i.e., b8  a0.
The process is continued till a fixpoint is reached. Fig. 1(b) shows all the induced edges
added by starting at the seed edges b8 a9 and a8 b9.

Similarly it can be seen that the wait/notify seed edges a2  b1 and b1  a5 add
further induced edges which are not shown for reasons of clarity.

3.3 Computing the Universal Causality Graph

The procedure to compute the UCG is formulated as alg. 1. It adds causality constraints
one-by-one (seed edges via steps 3-7, and induced edges via steps 8-19) till it reaches a
fixpoint. Note that steps 20-22, preserve the local causality constraints along x1, ..., xn.

Since each edge in U(x1,x2)(P ) is a happens-before constraint, we see that in order
for P to hold U(x1,x2)(P ) has to be acyclic. In fact, it turns out that for two threads
acyclicity is also a sufficient condition leading to the following Acyclicity Result.
Theorem 1. Property P is violated via a (statically) feasible interleaving of local paths
x1 and x2 of T1 and T2, respectively, if and only if U(x1,x2)(P ) is acyclic.

3.4 Generalization to n Threads

For the case of n threads, the only modification that is required to alg. 1 is in step 10.
Here a causality relation between events di and dj can be induced not only via a single
edge of the form dj  di but also via a causality chain from dj to di (see fig. 2), i.e.,
a sequence of pre-existing causality edges of the form e1  e2, e′2  e3, e′3  e4,...,
e′k−1  ek, where (i) e1 = dj and ek = di, and (ii) for each m, e′m occurs after em

along xm′ for some m′ ∈ [1..n]. Thus the condition at line 10 of alg. 1 is modified as
follows:
for each pair of events di and dj belonging to different threads Ti and Tj , respectively,
such that there is a causality chain from dj to di do
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Algorithm 1 Computing the Universal Causality Graph

1: Input: Property P and local paths x1 and x2 of T1 and T2, respectively.
2: Initialize the vertices and edges of U(x1,x2)(P ) to ∅

3: Add causality edges for P as defined in sec. 3.1 (Property Seed Edge)
4: Add fork-join induced causality edges (Fork-Join Seed Edge)
5: for each pair of locations w and n corresponding to matching wait/notify events do
6: Add edges wpre  n and n wpost, (Wait/Notify Seed Edge)
7: end for
8: repeat
9: for each lock l do

10: for each edge dj  di between events dj and di of Tj and Ti, respectively do
11: If l is held at dj and not released after dj along xj then add an edge ri  aj , where

aj is the last statement to acquire l before dj and ri is the last statement to release l

before di

12: If l is held at dj and not released after dj along xj and l is held at di then output P

does not hold and Quit
13: Let aj be the last statement to acquire l before dj along xj and rj the matching

release for aj ; and let ri be the first statement to release l after di along xi and ai

the matching acquire for ri

14: if l is held at either di or dj then
15: add edge rj  ai (Induced Edge)
16: end if
17: end for
18: end for
19: until no new edges can be added
20: for i ∈ [1..2] do
21: Add edges among all events of xi occurring in U(x1,x2)(P ) to preserve their relative

ordering along xi

22: end for

Complexity of the UCG Construction. The total time taken for building the UCG
is O(|E||L|), where |E| denotes the number of edges that can be added to the UCG
and |L| is the number of different locks acquired/released along x1, ..., xn. In the worst
case |E| is O((n|N |)2), where |N | is the maximum number of synchronization events
occurring along any of the local sequences x1, ..., xn.
Exploiting the Synergy between Synchronization Primitives Existing static tech-
niques for reasoning about programs with multiple synchronization primitives like locks
and wait/notify consider the scheduling constraints imposed by them separately. Thus
a violation is said to exist if it can occur either under scheduling constraints imposed
by locks or under those imposed by wait/notifies. However, UCGs capture constraints
imposed by all the primitives in a unified manner thereby allowing us to exploit the
synergy between them. In our example, by considering constraints imposed by locks
and wait/notifies separately we cannot deduce that a9 and b9 do not race. Indeed,
the scheduling constraints imposed only by locks results in the acyclic lock causal-
ity graph Fig. 1(d). Similarly, the scheduling constraints imposed only by wait/notify
results in the acyclic wait/notify causality graph in Fig. 1 (e). In order generate a cycle
that proves infeasibility of the data race we have to consider both the primitives in uni-
son. Towards that end, we construct the UCG shown in Fig. 1(c) which has the cycle
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a0  a2  b1  b8  a0 thereby allowing us to deduce that a9 and b9 do not
constitute a data race.

Exploiting the Synergy between Program and Property Consider the cycle a0  
a2  b1  b8  a0 in Fig. 1(c). It is comprised of the induced edge b8  a0
and the wait/notify seed edge a2  b1. The induced edge b8  a0 was added via an
induction sequence (via steps 8-18) starting at the property seed edge b8  a9. Thus
in order to rule out the data race we have to consider the causality constraints induced
by the property as well as the synchronization primitives in unison. In contrast, existing
techniques do not exploit the synergy between these constraints and are therefore not
guaranteed complete for two threads.

3.5 Handling Multiple Properties
For clarity, the UCG construction above was formulated for a single property. However,
a given trace might generate many potential warnings for concurrency bugs and building
the UCG from scratch for each warning would be infeasible in practice. In order to
build a single UCG for all the warnings, we start by adding the seed edges for all the
warnings. The seed edges for a given property are now labeled with an id that is unique
to that property. If the same seed edge needs to be added for multiple properties then
it is labeled with the set of ids of all these properties. During the UCG construction
via alg. 1 when an edge e induces another edge f , then the property-ids are propagated
from e to f by relabeling f with the union of ids of e and f ’s pre-existing ids. In this
way each edge in the UCG may be labeled with multiple property-ids. It is easy to see
that an edge will occur in the UCG of a property P if and only if it is labeled with P ’s
id (and possibly other ids).

The resulting UCG U contains edges that are induced by all the properties. If we
are interested in checking whether a given property P holds, then we can extract from
U the UCG induced by P by simply projecting on to the edges that are labeled with P ’s
id. Then P is satisfied if and only if the resulting sub-graph is acyclic.

The above technique of propagating the ids of properties starting from the seed
edges allows us to build the UCG only once while the validity of the different properties
can be checked separately by projecting onto the appropriate sub-graphs. Note that since
the wait/notify seed edges occur in the UCGs for all the properties, they are labeled with
ids of all the properties.

4 Chopping Result: Scaling UCG Construction
In order to leverage the UCG for a practically feasible analysis we have to address the
key issue that the number of constraints added to the UCG may be too large. This is
because (1) the traces x1 and x2 could be arbitrarily long, and (2) wait/notify events
could be many and could span the entire lengths of these traces. Thus a very large
number of wait/notify seed edges, and, as a result, induced edges, could be added along
the entire lengths of x1 and x2. It contrast (see fig. 3), when constructing the lock
causality graph (LCG) as in [10] for reasoning about threads interacting only via locks,
causality edges are added only between lock/unlock statements occurring along the
suffixes of x1 and x2 starting at their last lock-free states. In practice, these suffixes of
x1 and x2 are short, as for performance reasons programmers tend to keep the lengths
of critical sections small. This ensures that the LCG size is small thereby ensuring
scalability.
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Decomposition Result. In order to guarantee scalability of the UCG construction in
the presence of both wait/notifies and locks, our goal, analogous to LCGs in [10], is
to restrict the UCG construction to only small suffixes of x1, ..., xn. Towards that end,
we start with the following key decomposition result which provides useful insight into
the structure of UCGs. Intuitively, the decomposition result states that the given paths
x1, ..., xn can be broken down into an equal number, say m, of segments, with xj =
xj1...xjm such that in order to check the acyclicity of U(x1,...,xn)(P ) it suffices to check
the acyclicity of each of the m smaller UCGs U(x1i,...,xni)(P ).

Theorem 2. (Partitioning Result). Given finite local computations x1, ..., xn of T1, ..., Tn

respectively, for each j, let xj = xj1xj2 be a partition of xj such that

– the last state occurring along xj1 is lock-free, and
– for j 6= k, there does not exist a wait/notify seed edge, a fork-join seed edge or a

property seed edge with endpoints along xj1 and xk2 or along xk1 and xj2.

Then U(x1,...,xn)(P ) is acyclic if and only if U(x11,...,xn1)(P ) and U(x12,...,xn2)(P ) are
acyclic.

Proof.
For ease of notation, we consider the two thread case. Also, we use barrieri to

denote the last local state of Ti occurring along xi1. By condition 1 of the hypothesis
barrieri is lock-free.

(⇒) Since the set of edges of U(x11,x21)(P )∪U(x12,x22)(P ) is a subset of the set of
edges of U(x1,x2)(P ), this direction is trivial.

(⇐) We start with two claims:

Claim 1: Any edge of U(x1,x2)(P ) that is not in U(x11,x21)(P )∪U(x12,x22)(P ) is of
the form a  b, where, for some j, k ∈ [1..2], a lies along xj1 and b lies along xk2.
In other words, edges of U(x1,x2)(P ) that are not in U(x11,x21)(P ) ∪ U(x12,x22)(P ) can
only go ‘forward’.

To prove this, we start by noting that if a  b is an edge where a lies along xj2

and b along xk1 for some j 6= k, then a  b cannot be a seed edge (condition 2 in
the hypothesis). Without loss of generality, we can assume that a  b is the first edge
added in the iterative computation of alg 1 that satisfies the above condition. Suppose
that a  b is induced by the edge c  d. Note that each induced edge of a UCG goes
from a lock release to a lock acquisition statement for the same lock. Let a and b be
statements releasing and acquiring lock l, respectively.

There are two cases to consider. First assume that a  b was added via step 11 of
alg. 1. In that case b would be an acquisition statement for a lock l that is never released
after b along xk. Since, by our assumption, b lies along xk1, i.e., before barrierk , we
have that lock l would be held at barrierk , thereby contradicting hypothesis 1.

Thus a  b has to be induced via step 16 of alg. 1. There are two sub-cases two
consider. Since a  b is the first edge added in the iterative computation of alg 1 such
that a lies along xj2 and b along xk1 for some j 6= k the edge c d inducing a b is
such that either c and d lie along xj1 and xk1, respectively, or c and d lie along xj2 and
xk2, respectively

First assume that c and d lie along xj1 and xk1, respectively. This implies that c lies
before barrierj along xj . Since a  b is added via step 16 of alg. 1 we see that a has
to be the matching release of the last acquisition of l before c. Thus l is acquired before
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c and hence before barrierj and released at a, i.e., after barrierj . Thus barrierj is not
lock-free contradicting condition 1 of the hypothesis.

The other case where c and d lie along xj2 and xk2, respectively, can be handled in
a similar fashion. This proves claim 1.

Claim 2: No ‘local’ edge is induced by a ‘cross’ edge, i.e., no edge of the form
a b, where a and b lie along xjm and xkm, respectively, is induced by an edge of the
form c d, where c and d lie along xj1 and xk2, respectively.

To see that first consider the case when a  b is induced by step 16. If a  b is
such that a and b lie along xj2 and xk2, respectively, then we can see that a would be
a lock release statement matching a lock acquisition for a lock held at c. Thus l would
be held at all states occurring between c and a. Thus l would also be held at barrierj .
If a  b is such that a and b lie along xj1 and xk1, respectively, then we can similarly
show that l would be held at barrierk .

The case where a  b in induced by step 11, is not possible. Indeed, then there
would exist a lock l held at c that is never released after c along xj , i.e., l would be held
at barrierj , contradicting condition 1 of the hypothesis.

Finally, to prove the main result, let cyc : a1  b2  c2  d1  a1 be a cycle
in U that does not exist in U(x11,x21)(P ) ∪ U(x12,x22)(P ). Since cyc does not exist in
U(x11,x21)(P ) ∪ U(x12,x22)(P ), at least one of the edges along cyc, say a1  b2, must
not belong to U(x11,x21)(P ) ∪ U(x12,x22)(P ). By claims 1 and 2, a1  b2 has to be a
forward cross edge, i.e., a1 and b2 lie along xj1 and xk2, respectively, where j 6= k.
Thus a1 lies before barrierj along xj and b2 lies after barrierk along xk. However,
since c2 lies after b2 along xk it also lies after barrierk along xk. Similarly, since d1

lies before a1 along xj it also lies before barrierj along xj . However, in that case
c2  d1 would be a backward edge thereby violating claim 1 above. This concludes
the proof. ut

Repeated application of the above result leads to the following partitioning result.
Corollary 3. (Decomposition Result). Given finite local computations x1, ..., xn of
threads T1, ..., Tn, respectively, for each j, let xj = xj1...xjm be a partition of xj such
that

– the last states occurring along xji, where i ∈ [1..m], are lock-free, and
– there does not exist a wait/notify seed edge, a property seed edge or a fork-join seed

edge with endpoints in xji and xki′ , where j 6= k and i 6= i′.

Then U(x1,...,xn)(P ) is acyclic if and only if for each i ∈ [1..m], U(x1i,...,xni)(P ) is
acyclic.

The situation is illustrated in fig. 3. The lock causality graph, shown in 3(a), is generated
only by the suffixes of x1 and x2 starting with the last lock free states llf1 and llf2 along
x1 and x2, respectively. However the UCG for x1 and x2 is comprised of the UCGs
U(x1i,x2i)(P ) (and some more edges which don’t impact its acyclicity) generated by
the pairs of segments x1i and x2i delineated, respectively, by the causality barriers b1i

and b1(i+1), and b2i and b2(i+1), where a causality barrier is as defined below:

Definition (Causality Barrier). Given finite local computations x1, ..., xn of threads
T1, ..., Tn, respectively, where xi = xi

0...x
i
ni

, we say that the n-tuple (x1
b1

, ..., xn
bn

), with
xi

bi
being a local state of Ti, forms a causality barrier if (1) for each i, xi

bi
is lock-free,
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Fig. 3. Universal Causality Graph Decomposition

i.e., no lock is held by Ti at xi
bi

, and (2) there does not exist a seed edge (xj
m, xk

m′),
where j 6= k, m ∈ [0..bj ] and m′ ∈ [bk + 1, nk] or m ∈ [0..bk] and m′ ∈ [bj + 1, nj ].

Intuitively, seed edges along the traces x1 and x2 gives rise to localized universal causal-
ity graphs that are separated by causality barriers.

Chopping Result for Predictive Analysis. In predictive analysis, we start from a global
execution trace x of the program. Our goal is to decide whether there exists a different
valid interleaving of the local computations x1 and x2 of T1 and T2 along x, that may
uncover an error. If we were given two arbitrary local computations y1 and y2 of threads
T1 and T2 then in order to decide whether there exists an interleaving of y1 and y2 lead-
ing to an error state, we would have to build the complete UCG along the entire lengths
of y1 and y2. However, by exploiting the fact in predictive analysis, xis are projections
of a valid global computation x onto the local states of individual threads, we now show
that we need not build the entire UCG U(x1,x2)(P ) but only the one generated by suf-
fixes x1b and x2b of x1 and x2, respectively, starting at a last barrier pair along x1 and
x2. This ensures scalability of our analysis as we can, in practice, ignore most synchro-
nization primitives except for the last few. We say that the n-tuple (x1

b1
, ..., xn

bn
) of local

states of threads T1, ...., Tn is a last causality barrier along x1, ..., xn if there does not
exist another causality barrier (x1

b′
1

, ..., xn
b′n

) such that for each i, xi
b′

i
occurs after xi

bi

along xi and all property seed edges are of the form a b, where, for some i, j, a and
b occur after xi

bi
and x

j
bj

along xi and xj , respectively. Then

Theorem 4. (Chopping Result). Let x1, ..., xn be local computations of threads T1, ...,

Tn, respectively, along a valid global computation x of the given concurrent program.
Let U(x1b,...,xnb)(P ) be the UCG generated by the suffixes x1b, ..., xnb of x1, ..., xn,
respectively, beginning with a last causality barrier (x1

b1
, ..., xn

bn
) along x1, ..., xn. Then

property P is violated via a statically feasible interleaving of x1, ..., xn if and only if
U(x1b,...,xnb) is acyclic.

Proof.
Let x1p, ..., xnp be the prefixes of x1, ..., xn starting from the initial local states of

T1, ..., Tn along x1, ..., xn and leading to the last causality barrier states x1
b1

, ..., xn
bn

,
respectively. Let Upre be the UCG generated by x1p, ..., xnp. Since a last causality
barrier is also a causality barrier, by theorem 2 we have that U(x1,...,xn)(P ) is acyclic if
and only if both Upre and U(x1b,...,xnb)(P ) are acyclic.

(⇒) Let y be a feasible interleavings of x1, ..., xn violating P . Then we have that
U(x1,...,xn)(P ) is acyclic which by the above observation implies that U(x1b,...,xnb)(P )
is acyclic,
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(⇐) Let U(x1b,...,xnb) be acyclic.
In order to show that these exists a feasible interleaving y of x1, ..., xn violating P

we have to show that U(x1,...,xn)(P ) is acyclic which by the above observation reduces
to showing that Upre is acyclic.

Towards that end, we exploit the fact that x is a valid computation, i.e., a valid
interleaving of x1, ..., xn leading to the final states occurring along x1, ..., xn. Note
that x need not satisfy P , i.e., the causality constraints induced by the property seed
edges need not be satisfied. However, from the fact that x is a feasible interleaving
of x1, ..., xn,, we have that all scheduling constraints imposed by the wait/notify seed
edges as well as the causality constraints induced from the wait/notify seed edges are
satisfied. Thus if we consider the UCG U ′ computed by considering the wait/notify
seed edges as the only seed edges, then the fact that x is a feasible interleaving implies
that U ′ is acyclic.

Note that if we remove the property seed edges then the tuple (x1
b1

, ..., xn
bn

) re-
mains a causality barrier for x1, ..., xn. Let U ′

pre be the UCG generated by the prefixes
x1p, ..., xnp by ignoring the property seed edges. Similarly, let U ′

suf be the UCG gener-
ated by the suffixes x1b, ..., xnb of x1, ..., xn by ignoring the property seed edges. Then,
by theorem 2, U ′ is acyclic if and only if U ′

pre and U ′

suf are acyclic. Thus U ′

pre and U ′

suf

are both acyclic. However, from the fact that (x1
b1

, ..., xn
bn

) is a last causality barrier, we
have that the vertices of all property seed edges lie along the suffixes x1b, ..., xnb. Thus
U ′

pre had no property seed edges to start with and so the set of seed edges of U ′

pre and
Upre are the same. This implies that the set of induced edges of Upre and U ′

pre are also
the same. Thus U ′

pre = Upre. Since U ′

pre is acyclic, we have that Upre is also acyclic.
The concludes our proof. ut

Computing a Last Casualty Barrier. As the final step, we present a procedure (alg. 2)
to identify a last causality barrier. For simplicity, we handle only the two thread case.
Let c1 and c2 be the last local states along x1 and x2, respectively. From c1 we traverse
backwards along x1 till we reach the last lock free state lf1 along x1 before c1. Note that
all the wait/notify events occurring between lf1 and c1 along x1, denoted by WN1, must
be matched along the suffix beginning with x2

b2
. Therefore from c2, we have to traverse

backward till we encounter the first lock-free state lf2 such that all events in WN1 are
matched along the suffix of x2 starting at lf2. However, in traversing backward from
c2 to lf2 we may encounter wait/notify events, denoted by the set WN2, that are not
matched along the suffix of x1 starting at lf1. In that case, we need to traverse further
backwards starting at lf1 till we encounter a lock-free state lf ′1 such that all events in
WN2 are matched along the suffix of x1 starting at lf ′1. If we do not encounter any new
wait/notify event that is unmatched along the suffix of x2 starting at lf2 then we have
reached a fixpoint. Else if there exist wait/notify events occurring along the suffix of x1

starting at lf ′1 that are unmatched along the suffix of x2 starting at lf2 then the whole
procedure is repeated till a fixpoint is reached.

5 Experiments
We have implemented the proposed algorithm in a tool called Fusion [17]. Our tool
is capable of analyzing execution traces generated by both Java programs and multi-
threaded C programs using PThreads. For C programs, we use CIL [13] to instrument
the source code to create executables that can log execution traces at runtime. For Java
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Algorithm 2 Computing a Last Causality Barrier
1: Input: A pair of local paths x1 and x2 leading to local states c1 and c2 of threads T1 and T2,

respectively.
2: Let lf1 be the last lock-free state before c1 along x1 such all (start or end) vertices of property

edges occur after lf1 along x1 and let WN1 be the set of wait/notify events encountered along
the segment x1

[lf1,c1], i.e., between local states lf1 and c1 along x1

3: Set terminate to false and lf2 to c2

4: while terminate equals false do
5: Let lf ′2 be the last lock-free state before lf2 along x2 such that each wait/notify event in

WN1 is matched by an event along the segment x2
[lf ′

2
,c2] and all (start or end) vertices

of property edges occur after lf2 along x2. Let WN2 be the set of wait/notify events
encountered along x2

[lf ′

2
,lf2]

6: Let lf ′1 be the last lock-free state at or before lf1 along x1 such that each wait/notify
event in WN2 is matched by an event along the segment x1

[lf ′

1
,c1]. Let WN ′

1 be the set of
wait/notify events encountered along x1

[lf ′

1
,lf1]

7: if lf ′1 equals lf1 then
8: Set terminated = true and output ( lf1, lf ′2) as a last causality barrier
9: else

10: Set WN1 = WN ′

1, lf1 = lf ′1 and lf2 = lf ′2
11: end if
12: end while

programs, we use execution traces logged at runtime by a modified version of the Java
PathFinder. The Java traces used in our experiments were kindly provided to us by
Mahmoud Said. Our experiments were conducted on a PC with 1.6 GHz Intel processor
and 2GB memory running Fedora 8.

The overall predictive analysis is as follows. We first find the potential errors (warn-
ings) by a simple static analysis; these are event pairs for data races and event triplets
for atomicity violations. Then we apply the UCG analysis to prune away as many spu-
rious warnings as we can. Finally, we use a SMT-based procedure (as in [17]) to check
the remaining UCG warnings. This final step uses the Yices SMT solver [3]. For each
reported error, the SMT-based procedure also returns a witness trace. The UCG warn-
ings are checked one by one in the SMT-based procedure, but we use the incremental
feature of the SMT solver to share the cost of checking different warnings. We also add
the induced constraints of the UCG to the SAT solver to help speed up the search.

Table 1 shows the results of predicting data races and three-access atomicity viola-
tions [17] in traces of Java and C programs. All benchmarks are public domain1. The
first two columns show the name and the number of threads. The next five columns show
the statistics of the trace, including the number of events, the number of lock events,
the number of wait-notify events, the number of lock variables, and the number of con-
dition variables. The next six columns show the results of predicting data races using
both static analysis and model checking. The first four columns are the total number of
warnings, the number of warnings after a lock based analysis alone (lsa), the number
of warnings after a fork/join/wait/notify analysis alone (mhb), and the number of warn-
ings after the combined UCG analysis (ucg). The next two columns shows the results of

1 The traces are available at http://www.nec-labs.com/∼chaowang/pubDOC/LnW.tar.gz
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Test Program Given Trace Predicting Data Races Predicting Atomicity Violations
# events # vars static ana. (warnings) witness gen static ana. (warnings) witness gen

name thrd total lk wn lk wn total lsa mhb ucg wits time(s) total lsa mhb ucg wits time(s)
ex.race 3 29 4 0 2 0 8 8 2 2 1 0.1 2 2 0 0 0 0.0
ex.norace 3 37 8 0 2 0 8 6 2 0 0 0.0 2 2 0 0 0 0.0
ra.Main 3 55 12 5 3 4 13 13 4 4 1 0.1 2 2 0 0 0 0.0
connectionpool 4 97 16 5 1 3 89 21 28 0 0 0.0 30 6 4 0 0 0.0
liveness.BugG 7 285 39 6 9 6 408 138 280 10 0 0.4 280 60 220 0 0 0.0
s1.JGFBarrier 10 649 62 21 2 7 1831 488 1214 30 0 1.4 852 102 612 3 0 1.6
s1.JGFBarrier 13 799 77 28 2 7 2952 656 2077 49 0 3.6 950 87 709 9 0 3.7
account.Main 11 902 146 12 21 10 372 342 186 162 20 4.0 140 140 60 60 2 1.3
philo.Philo 6 1141 126 41 6 22 1719 566 576 0 0 0.0 413 81 177 0 0 0.0
s1.JGFSyncB 16 1510 237 0 2 0 21230 1142 17415 117 0 800 13578 186 11532 0 0 0.0
account.Main 21 1747 282 20 41 20 740 680 420 360 80 54.5 280 280 120 120 3 5.9
elevator.E 4 3000 368 0 11 0 1293 1276 17 0 0 0.0 6 4 2 0 0 0.0
elevator.E 4 4998 587 0 11 0 3178 3128 50 0 0 0.0 12 8 4 0 0 0.0
elevator.E 4 8000 1126 0 11 0 3553 3458 95 0 0 0.0 18 12 6 0 0 0.0
tsp.Tsp 4 45653 20 5 5 3 113 113 4 4 3 0.1 0 0 0 0 0 0.0
atom001 3 88 6 0 1 0 8 5 3 0 0 0.0 4 4 2 2 1 0.1
atom001a 3 100 8 1 1 1 12 8 4 0 0 0.0 4 4 2 2 0 0.1
atom002 3 462 124 0 2 0 96 45 51 0 0 0.0 68 68 34 34 33 36.7
atom002a 3 462 126 3 2 1 101 49 52 0 0 0.0 68 68 34 34 0 32.0
banking-av 3 748 20 0 3 0 284 284 72 72 72 3.1 64 64 32 32 32 1.5
banking-sav 3 852 28 2 3 2 333 325 80 72 24 5.2 64 64 32 32 16 3.4
banking-noav2 3 856 32 2 3 2 337 305 80 48 0 1.3 64 48 32 16 0 1.2

Table 1. Predicting data races and atomicity violations in traces of Java/C programs.

model checking the UCG warnings, including the number of witnesses generated and
the model checking time in seconds.

The last six columns of Table 1 show the results of predicting three-access atomicity
violations. The data format is the same as predicting data races, except that the warnings
are now potential atomicity violations. Note that in order to predict atomicity violations,
the user transactions (which are intended to be atomic) need to be marked explicitly
in the traces. For Java traces, we have assumed that all the synchronized blocks are
intended to be atomic, unless the synchronized block has a wait (in which case it is
clearly intended to be non-atomic). For the C programs used in this experiment, we have
manually annotated certain blocks in the program source code as intended-to-be-atomic.
Note that in all the examples the runtime of the UCG-based analysis is negligible in
comparison to the model checking time.

The results in Table 1 show that, if one relies on either the lock analysis alone or
the fork-join-wait-notify based analysis alone, the number of (spurious) warnings (for
data races or atomicity violations) can be large. In contrast, our UCG based analysis, by
exploiting the interaction among these two types of happens-before constraints, is effec-
tive in pruning away spurious warnings. In our predictive analysis framework a precise
SMT-based algorithm [16, 17] is used at the final step to check all the UCG warnings.
The algorithm is precise in that it generates witness traces if and only if the UCG warn-
ings are indeed real errors. In the end, all the witnesses generated can be fed to a special
thread scheduler in the Fusion tool, to re-run the program and deterministically replay
the actual violation.

6 Conclusions
We have proposed the notion of a Universal Causality Graph (UCG), as a unified
happens-before model for detecting bugs in concurrent programs. Given a concurrent
(trace) program and a property, UCGs allow us to capture, as causality constraints, the
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set of all possible interleavings that are feasible under the scheduling constraints im-
posed by synchronization primitives and that may potentially lead to violations of the
property while guaranteeing (i) soundness and completeness, (ii) scalability, (iii) han-
dling of multiple synchronization primitives in a unified manner, and (iv) exploiting the
synergy between causal constraints imposed by the property as well as the program.
As an application, we demonstrated the use of UCGs in enhancing the precision and
scalability of predictive analysis in the context of runtime verification of concurrent
programs.
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