
ConcBugAssist: Constraint Solving for
Diagnosis and Repair of Concurrency Bugs

Sepideh Khoshnood
ECE Dept., Virginia Tech
Blacksburg, VA, USA

sepidehk@vt.edu

Markus Kusano
ECE Dept., Virginia Tech
Blacksburg, VA, USA

mukusano@vt.edu

Chao Wang
ECE Dept., Virginia Tech
Blacksburg, VA, USA

chaowang@vt.edu

ABSTRACT

Programmers often have to spend a significant amount of time in-
specting the software code and execution traces to identify the cause
of a bug. For a multithreaded program, debugging is even more
challenging due to the subtle interactions between threads and the
often astronomical number of interleavings. In this work, we pro-
pose a logical constraint based symbolic analysis method to aid
in the diagnosis of concurrency bugs and to recommend repairs.
Both diagnosis and repair are formulated as constraint solving prob-
lems. Our method, by leveraging the power of satisfiability (SAT)
solvers and a bounded model checker, performs a semantic analy-
sis of the sequential computation as well as thread interactions. The
constraint based analysis is designed for handling critical software
with small to medium code size, but complex concurrency control,
such as device drivers, implementations of synchronization proto-
cols, and concurrent data structures. We have implemented our new
method in a software tool and demonstrated its effectiveness in di-
agnosing bugs in multithreaded C programs.

Categories and Subject Descriptors

F.3.1 [Logics andMeanings of Programs]: Specifying and Verify-
ing and Reasoning about Program; D.2.5 [Software Engineering]:
Testing and Debugging

Keywords

Concurrency; bounded model checking; error diagnosis; program
repair; unsatisfiability core; partial MAX-SAT; binate covering

1. INTRODUCTION
Multithreaded programs are notoriously difficult to design and

analyze due to the subtle interaction between concurrent threads
and the astronomical number of possible interleavings. Because
of its complexity, it is often challenging for programmers to rea-
son about the behavior of their code. Testing is also difficult be-
cause the program execution is inherently non-deterministic. Fur-
thermore, even after a bug is detected the programmer still needs to
sift through the relevant code and the failing execution to localize

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

Bounded
Model
Checking

schedule

blocking

errneous

MAX−
Parital

SAT
clause

Root Causes

solutions

Program
Code

Binate
Compute

Cover

potential

Transform

Assertion pP
Program

RepairDiagnosis

New Program P ′

Figure 1: The diagnose-and-repair flow of ConcBugAssist.

the root cause. Finally, coming up with a correct repair is a non-
trivial task. For example, a race condition may be eliminated either
by introducing a critical section or by imposing a certain execution
order via signal–wait primitives. However, it may be difficult to de-
cide which approach is better or if a certain fix is bug free. There-
fore, having a software tool to help identify the potential root cause
and suggest possible repairs can be beneficial to programmers.

Our work is inspired by recent developments in constraint-based
methods for diagnosing software bugs [32, 18, 50, 56, 69, 68]. A
representative of these methods is Bug-Assist [32], which uses a
bounded model checker to search for failing executions and then a
partial maximum satisfiability solver to localize the root cause. The
main advantage of this method, as well as similar techniques based
on error invariants [18], weakest preconditions [56, 69, 68] and in-
terpolants [50], is the rigorous semantic analysis of the program
built upon various constraint solvers. As such, it guarantees that,
under realistic assumptions, it can systematically explore all pos-
sible failing executions up to a bounded execution depth, thereby
providing a comprehensive analysis of the root cause. However,
these existing methods only work for sequential programs. It is not
immediately clear how the underlying techniques can be extended
to handle multithreaded programs.

We introduce ConcBugAssist, a logical constraint based sym-
bolic analysis method for diagnosing and repairing concurrency
bugs in multithreaded programs. In contrast to the existing meth-
ods [32, 18, 50], which focus solely on bugs in sequential programs,
our new method focuses solely on concurrency bugs. We assume
the sequential program logic is implemented correctly: a sequen-
tialized execution of the program would have the intended behavior.
Rather, the concurrency control of the program is buggy: under rare
thread schedules, the interleaved execution of the program would
exhibit erroneous behaviors. Given such a buggy program, our goal
is to identify the root causes of the failing executions automatically,
and then compute possible ways of repairing the source code of the
program to eliminate the bug.

Figure 1 shows the overall flow of our method. We start with
a multithreaded program P where the concurrency bug is a viola-
tion of an assertion. First, we apply bounded model checking to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’15, July 12–17, 2015, Baltimore, MD, USA
c© 2015 ACM. 978-1-4503-3620-8/15/07...$15.00

http://dx.doi.org/10.1145/2771783.2771798

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *
A
E
C

165

compute a failing execution, which consists of the program input
as well as the erroneous thread schedule. The thread schedule im-
poses a total order over all the executed instructions. Second, we
run a partial maximum satisfiability (MAX-SAT) solver to compute
a minimum subset of the inter-thread ordering constraints that are
responsible for the assertion failure. Next, we want to check for any
other thread schedules which result in an error. To do so, we block
the previously discovered erroneous thread schedule. To block the
schedule, we negate the minimum subset of inter-thread ordering
constraints and add them back to the bounded model checker as a
blocking clause (thus preventing the model checker from selecting
this schedule again). After blocking the erroneous schedule, we try
to generate a new failing execution. We repeat these steps until no
new failing execution can be generated. At this moment, we have
computed a set (union) of minimal inter-thread ordering constraints
that characterize the root causes of all failing executions.

There are two ways of using the diagnosis result. First, we can
help programmers understand the root cause of failure by reporting
the diagnosis result. We will show in our experiments that, com-
pared to the full information contained in the failing executions,
the set of inter-thread ordering constraints contained in our diagno-
sis result represent on average a tiny fraction of the ordering con-
straints in the failing execution. As such, they are much easier to
comprehend. Another way to use the diagnosis result is as input
to a follow-up procedure for computing the potential repairs. By
potential repair we mean modifications to the source code of the
original program that are sufficient to eliminate the observed viola-
tions. As shown on the right-hand side of Figure 1, we formulate
the computation of potential repairs as an instance of another con-
straint solving problem, i.e., the binate covering problem.

It is important to note that, since it is impossible in general, we
do not attempt to fully automate the repair process by taking pro-
grammers out of the loop. Instead, we aim at leveraging program
analysis techniques as a debugging aid to provide meaningful sug-
gestions. There are three reasons for us to make this choice. First,
although we can infer with high certainty the programmer’s intent
regarding concurrency control, e.g., by analyzing the passing and
failing executions using constraint solvers, there is no guarantee
that our inference is always correct. In the absence of a complete
formal specification, it is generally not possible to automatically
repair programs. Second, verifying programs written in realistic
programming languages is undecidable in general, and, for concur-
rent programs, even the context-sensitive synchronization-sensitive
analysis of a highly abstracted Boolean program can be undecid-
able [59]. Third, in practice, developers are generally skeptical
about tools that modify software code without going through the
standard process of code review and certification.

We have implemented our method in a software tool based on
CBMC [35] and a partial MAX-SAT solver called MSUnCore [47].
We have evaluated it on a set of multithreaded C programs. Our
experimental results show that the new method is effective both in
localizing the root cause of a concurrency bug and in computing
potential repairs. Specifically, in all benchmark programs, the re-
pairs suggested by our tool is consistent with the correct bug fixes
as confirmed by our manual code inspection.

To summarize, this paper makes the following contributions:
• We propose a new symbolic analysis method for diagnosing

concurrency bugs by localizing the inter-thread ordering con-
straints responsible for the manifested failure.
• We propose a new method for computing potential repairs,

by iteratively adding inter-thread ordering constraints to the
program to eliminate erroneous schedules.
• We implement the new diagnose-and-repair framework in a

software tool and demonstrate its effectiveness on a set of
multithreaded C programs.

The remainder of this paper is organized as follows. First, we
establish notation and review the basics of model checking concur-
rent programs in Section 2. Then, we present our new diagnosis
method in Section 3. We present our new method for computing
potential repairs in Section 4. We present the results of our experi-
mental evaluation in Section 5. We review related work in Section 6
and finally give our conclusions in Section 7.

2. PRELIMINARIES

2.1 Bounded Model Checking (BMC)
Bounded model checking is a method for checking temporal

logic properties in a state transition system by encoding the possi-
ble program executions as logical formulas and then solving them
using constraint solvers. For directly analyzing software code, tools
such as CBMC [35] typically focus on checking safety properties
specified using assertions. An assertion violation indicates the pres-
ence of a bug. To ensure the verification problem remains decid-
able, bounded model checkers either require the program to be ter-
minating, or ensure the program is terminating by bounding all ex-
ecutions up to a certain depth. Under this assumption, the model
checker guarantees that all erroneous executions up to the depth
bound are detected. However, if an erroneous execution is beyond
the bound, it will be missed by the model checker. As such, the
primary goal of bounded model checking is not to verify the cor-
rectness of a program but to quickly find bugs.

Since our work uses BMC largely as a black-box, we review only
the technical details relevant for understanding our new method. At
a high level, bounded model checking relies on a static traversal of
the program to encode all possible executions as a set of constraints
in logics supported by the underlying solvers. For programs with
loops, the conversion from program code to logical constraints in-
volves unrolling the loops up to the bounded depth. The input of the
program, to capture all possible values, is represented by symbolic
variables. In the context of multithreaded programs, additional con-
straints, as defined by the semantics of the program, are constructed
to precisely restrict the execution to the set of valid thread sched-
ules. For a comprehensive review, refer to [1, 35].

For the sake of discussing our own work, it suffices to assume
that the entire program is statically converted to a logical formula,
denoted φ, which symbolically captures all valid executions up to
a given depth. To detect violations of a reachability property, e.g.,
a local assertion, we simply negate the assertion condition p and
conjoin it with φ. If the combined formula (φ ∧ ¬p) is satisfiable,
then there exists a valid execution of the program where the asser-
tion does not hold. Upon detecting this buggy execution, the solver
returns a satisfying assignment mapping each variable in φ to a
concrete value. Implicitly, the satisfying assignment represents the
combination of a concrete program input, a concrete thread sched-
ule, and the sequence of instructions in the failing execution.

2.2 Modeling Concurrent Programs
For ease of comprehension, we use the program in Figure 2 as

an example of bounded model checking for concurrent programs.
The program consists of two threads with entry functions f and
main. The main thread creates the child thread on Line 8, after
which the two threads run concurrently. The two threads share the
global variable x, whose value is checked in main to be non-zero.
The assert statement on Line 10 indicates that the programmer
expects x to be a non-zero integer. However, this property may be
violated by the program under certain thread schedules.

During bounded model checking, we statically construct the logi-
cal formula φ∧(x == 0), where (x == 0) represents the violation
of the assertion on Line 10. Furthermore, φ, the symbolic represen-
tation of the program, can be decomposed into TF1 ∧ TF2 ∧Ord,

166

0 pthread_t t1;
1 int x = 1;
2
3 void f () {
4 x = 0;
5 }
6

7 int main () {
8 pthread_create(&t1,0,f,0);
9 if (x != 0)

10 assert(x != 0);
11 return 0;
12 }
13

Figure 2: Motivating example.

where TFi, i ∈ { 1, 2 }, is a trace formula representing the sequen-
tial execution semantics of the i-th thread. Each instruction in the
thread is associated with a clock variable representing the logical
time when the instruction is executed (i.e., the clock variable im-
poses a total order over all statements executed by all threads). Fi-
nally, to compose the two threads together, we need to restrict the
values of the clock variables to ensure only valid thread interactions
are allowed (e.g., since a thread cannot execute before it is created,
the clock variable of Line 8 must be less than the clock variable of
Line 4). These logical constraints are in the Ord formula.

Every satisfying assignment to the above formula corresponds
to a program execution that violates the assertion. In general the
satisfying assignment consists of two types of information: a set of
concrete values for the program (data) input variables, and a set of
concrete values for the clock variables, representing the erroneous
thread schedule. In the running example in Figure 2, since there is
no data input, the solver returns only the thread schedule, which is
a total order of all instructions visited by the failing execution.

Let l1 → l2 denote that the instruction at Line l1 is executed
before the instruction at Line l2. For the example in Figure 2, one
erroneous schedule is 1 → 7 → 8→ 9→ 3→ 4→ 5→ 10. If
the program goes through these instructions in order, x would have
the value 0 at Line 10 which violates the assertion.

2.3 Partial Maximum Satisfiability
The logical formulas constructed during bounded model check-

ing are often represented in conjunctive normal form (CNF), where
each formula is a conjunction of many clauses, each clause is a
disjunction of many literals, and each literal is either a Boolean
variable/predicate or its negation. For example, the CNF formula
(x1 ∨¬x2)∧ (x2 ∨x3) has two clauses (x1 ∨¬x2) and (x2 ∨ x3),
three variables x1, x2, x3, and four literals x1, ¬x2, x2, and x3. In
the satisfiability (SAT) problem, we ask whether there exists a sat-
isfying assignment, i.e., a valuation for all variables, such that the
entire formula evaluates to true. For the above formula, a satisfy-
ing assignment is { x1 = true, x2 = true, x3 = true }. If no such
valuation exists, we say the formula is unsatisfiable.

The maximum satisfiability (MAX-SAT) problem is a general-
ization of SAT, with the goal of finding a valuation of all variables
that maximizes the number of clauses evaluated to true. If the for-
mula is satisfiable, a solution to the MAX-SAT problem is also a
solution to the SAT problem. But, if the formula is unsatisfiable, a
solution to the MAX-SAT problem corresponds to the largest sub-
set of clauses that can be satisfied. The partial MAX-SAT problem
is a further extension that separates the clauses into hard clauses
and the soft clauses, where the hard clauses must be satisfied and
the soft clauses do not have to be satisfied. In the partial MAX-SAT
problem, we ask for an assignment that satisfies (1) all hard clauses
and (2) as many soft clauses as possible.

There is a duality between the maximally satisfiable subformula
and the minimally unsatisfiable subformula (MUS) [38]. The MUS
is defined as a subset of the original formula that, by itself, is unsat-
isfiable, but removing any clause from it would make it satisfiable.
In other words, the MUS is an irreducible cause of the infeasibil-
ity of the original logical formula. Liffiton et al. [38] show that
MUS can be computed by leveraging existing SAT and MAX-SAT

Algorithm 1 Diagnosing the concurrency failure.

Input: Program P , depth d, and the failed assertion p
Output: Constraint φ∆ to block all failed executions

1: φ∆ ← ∅

2: φ← ENCODEVALIDEXECUTIONS(P, d)
3: while (φ ∧ ¬p) is satisfiable do
4: (φin, φsch)← GENERATEBADEXECUTION(φ ∧ ¬p)
5: φcore ← GENERATEUNSATCORE(φ ∧ φin ∧ p, φsch)
6: φ← φ ∧ ¬φcore

7: φ∆ ← φ∆ ∪ {φcore}
8: end while
9: return φ∆

solvers [49, 37, 47]. They also show that there may be multiple
reasons why a logical formula is unsatisfiable, in which case the re-

moval of any one MUS may not be sufficient to make it satisfiable.
When a formula contains multiple MUSs, it will remain infeasible

as long as any of the MUSs are present.

3. DIAGNOSING CONCURRENCY BUGS
As shown in Figure 1, our method consists of a diagnosis phase

and a repair phase. In the diagnosis phase, given a program P
and a property assert(p), our goal is to compute the set, φ∆,

of minimal inter-thread ordering constraints causing the violation.
The set φ∆ may be reported directly to the programmers, or used

as input to compute potential bug fixes (Section 4).

3.1 Generating the Failing Executions
The first step of the diagnosis phase, whose pseudocode is shown

in Algorithm 1, leverages the bounded model checker to generate

failing executions. The input includes the program P , the assertion
condition p, and the maximum execution depth d. The program P
can be represented as a deterministic multithreaded program whose
behavior is uniquely decided by the pair (in, sch) containing the

data input (in) and thread schedule (sch). So, a failing execution is

represented by a pair (in, sch) under which the program satisfies
the condition ¬p (i.e., the property is violated). Bounded model

checkers such as CBMC [35] are ideally suited for systematically
generating such failing executions.

Specifically, Algorithm 1 constructs a logical formula, φ, to cap-
ture all valid executions of the program P up to the given depth

d (Line 2). Then, the conjunction (φ ∧ ¬p) is able to capture all
the failing executions symbolically. If this combined formula is sat-

isfiable (Line 3), then there exists a data input and thread schedule

((φin, φsch), Line 4) such that when provided as input to P the con-
dition p is violated. The subroutine GENERATEBADEXECUTION

extracts the constraints over the data input and thread schedule from
the satisfiable formula φ ∧ ¬p.
At this point, it is worth noting that our focus is on diagnosing

concurrency bugs as opposed to logical defects in the sequential

computation of the program. That is, the assertion should not be
violated under any sequentialized execution, or under every feasi-

ble thread schedule. Instead, bugs in the concurrency control logic

manifest themselves only under some thread interleavings. If, for
example, a program has an assertion violation under all possible

thread schedules, it is not concurrency bug but a logical defect in
the program, and therefore is out of the scope of this work. To

qualify as a concurrency bug, the program must have both passing
executions and failing executions under any valid data input (in).
Under this assumption, our goal is to analyze the erroneous thread

schedule, φsch, returned by the bounded model checker, and local-

ize the subset of inter-thread ordering constraints that are responsi-

ble for the failure. In practice, the number of ordering constraints

167

in φsch may be very large since it represents a total order of all

instructions visited by the failing execution. To make the matter
worse, there may be many failing executions as well. Reporting

the entire total order, one per failing execution, to the programmers

is not only complex, but it is often unnecessary. Our focus is to
minimize the set of ordering constraints so as to retain only those

necessary for explaining the failure.

3.2 Localizing the Ordering Constraints
Next, we continue analyzing the remainder of Algorithm 1. Our

procedure for localizing the inter-thread ordering constraints re-

sponsible for the failure is shown on Line 5. It takes two sets of
constraints: the hard constraints (φ ∧ p ∧ φin), and the soft con-

straints (φsch), as input and returns a minimal subset (φcore) of the
ordering constraints in φsch causing the assertion violation as out-

put. We will explain shortly why these constraints are considered

as hard and soft.
The subset φcore is computed inside the subroutine GENERA-

TEUNSATCORE by first constructing an intentionally unsatisfiable
formula, φ ∧ p ∧ φin ∧ φsch, and then computing its minimal un-

satisfiable subformula (MUS).
First, the formula is guaranteed to be unsatisfiable because the

conjunction φ ∧ p ∧ φin ∧ φsch is a contradiction: the subformula
φ∧φin∧φsch restricts the program (φ) to the data input and thread
schedule (φin ∧ φsch) which were just determined to cause the

program to violate the assertion (¬p holds). Thus, the conjunction
of this formula with p is an unsatisfiable contradiction (it is “asking”
the solver if the program can be executed under the buggy input and
thread schedule such that the property p holds). Specifically, there
is a contradiction because, for a deterministic program, when both
the data input and the thread schedule are fixed, the program should

either pass or fail the assertion.
Second, the subformula φ∧φin∧p is guaranteed to be satisfiable

because it represents the set of passing executions. Based on the

assumption mentioned earlier, there must be at least one passing
execution, because otherwise, this is not a concurrency bug since

the program would fail under φin regardless of the thread schedule.
Therefore, we know that the root cause of the failure resides in the

erroneous schedule, φsch, which is a total order of all instructions
visited by the failing execution.

Given both subformulas φ∧ p∧ φin and φsch, which contradict
each other, we would like to compute a minimal subset, φcore , of

φsch such that the conjunction (φ∧φin∧p)∧φcore remains unsat-

isfiable. Therefore, φcore is the minimally unsatisfiable subformula
(MUS) when φ∧p∧φin is a hard constraint and φsch is a soft con-

straint. It represents the minimal set of inter-thread ordering con-
straints that are responsible for the infeasibility and therefore is the

root cause of the concurrency failure. (Recall that the MUS, is the
minimal subset of the soft constraints such that when conjuncted

with the hard constraints the resulting formula is unsatisfiable).

To eliminate the entire set of erroneous thread schedules repre-
sented by φcore (i.e., all the thread schedules containing φcore), we

add the negation of φcore back to φ on Line 6. This is equivalent to
enforcing the constraint ¬φcore in the original program. Because

of this, during subsequent iterations, the model checker will never
generate a failing execution containing φcore . Furthermore, due to

the finite number of bounded program executions, Algorithm 1 is
guaranteed to terminate. Finally, during any iteration, the set φ∆

contains the diagnosis information of all erroneous thread sched-

ules, one (non-negated) φcore per schedule, seen so far. In the end,
φ∆ contains the diagnosis information across all buggy schedules.

3.3 Diagnosing the Running Example
Consider the example in Figure 2, where the first failing execu-

tion corresponds to the line numbers: 1 → 7 → 8→ 9→ 3→ 4

→ 5 → 10. As previously stated, the order in which statements

are executed is represented by a clock variable assigned to each
instruction. For ease of presentation, let us assume that ei, where
i ∈ { 1, 2, . . . }, is the clock variable associated with the instruc-

tion at line i. Let ei → ej denote that the instruction at Line i
happens-before the instruction at Line j (i.e., the clock variable for
line i is smaller than the clock variable for line j). Under these as-
sumptions, the failing execution can be represented by φsch, which

is a total order of all the visited instructions:

φsch ≡ (e1 → e7) ∧ (e7 → e8) ∧ . . .

However, many of these ordering constraints are not relevant to the

root cause of the error. To localize the root cause, we construct an
intentionally unsatisfiable formula as follows:

TF1 ∧ TF2 ∧Ord
︸ ︷︷ ︸

valid executions (φ)

∧ φin ∧ φsch
︸ ︷︷ ︸

failing trace

∧ (x 6= 0)
︸ ︷︷ ︸

assertion

The formula is unsatisfiable because φ∧ φin ∧ φsch represents the
failing execution, and yet (x 6= 0) requires the assertion condition
to hold (a contradiction). Since the program does not have any data

input, φin ≡ true. By declaring φsch as soft constraints and the
rest as hard constraints, we are able to localize the subset φcore of

constraints responsible for the failure.

φcore ≡ (e9 → e4) ∧ ¬(e10 → e4)

When viewed graphically, the root cause clearly shows the lack of

atomicity between lines 9 and line 10:

Line 9: e9:
if(x != 0)

Line 4: e4:
x = 0

Line 10: e10:
assert(x != 0)

After adding ¬φcore back to φ, we are able to block all the other
erroneous executions. In other words, φcore implicitly captures

a large set of erroneous schedules, all of which share the same
core constraints in φcore . Although this particular example requires

only one iteration in Algorithm 1, in general, our diagnosis proce-

dure needs multiple iterations to eliminate all erroneous executions.
Within each iteration, we conjoin ¬φcore with φ. At the same time,
we record φcore in φ∆ for latter use. When the model checker can
no longer find failing executions, φ∆ contains the set of constraints

sufficient for explaining all failing executions.

4. COMPUTING POTENTIAL REPAIRS
In this section, we present our method for computing repairs that

can be presented to programmers for review and confirmation. The
pseudocode of the procedure is shown in Algorithm 2, which takes

the program P and the set φ∆ computed in the diagnosis phase as
input, and returns a set P of new programs as output.

The procedure consists of the following steps: For each erro-

neous thread schedule φsch (and more specifically φcore), we con-
struct a kill-set, defined as the set of inter-thread ordering constraints

such that if any were enforced in the program, the erroneous thread
schedule would be infeasible.

Based on the kill-sets, we formulate the repair computation as a
binate covering problem (BCP), where each repair is a cover, con-

taining at least one constraint from each kill-set. Furthermore, these
chosen constraints must not contradict with each other, or with the

hard constraints that model the program logic. Since in general

there may be multiple solutions to the BCP, we explore the solution

168

Algorithm 2 Computing the potential repairs.

Input: Program P , and the set φ∆

Output: Set P of repaired programs

1: P ← ∅

2: Skill ← CONSTRUCTKILLSETS(P, φ∆)
3: Srepair ← COMPUTEBINATECOVERS(P, Skill)
4: for all repair ∈ Srepair do

5: P ′ ← TRANSFORMPROGRAM(P, repair)
6: P ← P ∪ { P ′ }
7: end for

8: return P

1 int x = 0;
2 int y = 0;
3
4 void f1(void) {
5 x = 0;
6 y = 0;
7 }
8
9 void f2(void) {
10 x = 1;
11 y = 1;
12 }
13

14
15
16 int main() {
17 pthread_t t1, t2;
18 thread_create(t1,f1);
19 thread_create(t2,f2);
20
21 thread_join(t1);
22 thread_join(t2;
23 assert(x == y);
24 return 0;
25 }
26

Figure 3: Buggy program: there are atomicity violations be-

tween the two threads.

space to find the most efficient repairs, either in terms of the size of

the code changes in the repair or its permissiveness.

Finally, we realize the chosen repairs as a modification to the
original program, by enforcing the inter-thread ordering constraints

using synchronization primitives such as locks, signal/wait, or the
atomic keyword in transactional memory systems.

4.1 Constructing the Kill-Sets
First, we construct the kill-set for each erroneous thread schedule

(an item in φ∆). The kill-set is a set of all inter-thread ordering

constraints such that each constraint, when added to the original
program, would be sufficient to eliminate the erroneous schedule.

Consider an example kill-set for the program in Figure 3: the two
threads, t1 and t2, share variables x and y. The assertion condi-
tion (x == y) indicates that the assignment statements in both
threads should run atomically without interference from the other

thread. However, this atomicity property is not enforced in either
thread: t1 can interleave in between t2’s updates and vice versa.
As a result, there are two sets of erroneous schedules: one where x
= 0 is immediately followed by y = 1 and another where x =
1 is immediately followed by y = 0.
Algorithm 1, presented in the previous section, would be able to

return the localized constraints for both sets (φcore1 and φcore2) of

all erroneous schedules:
1. φcore1 : e10 → e5 ∧ e6 → e11,
2. φcore2 : e5 → e10 ∧ e11 → e6.

Here, when ei → ej appears in φcore , it means the happens-before

edge is necessary for explaining why the assertion is violated.

To compute the kill-sets for φcore1 and φcore2 as required by
Algorithm 2, we construct a graphical representation of each erro-

neous schedule, consisting of not only the constraints in the UN-
SAT core, but also the related program-order constraints. Each

program-order constraint, denoted ei → e′i, represents the sequen-
tial execution order of instructions from the same thread. Figure 4

shows the graphical representations of these two erroneous thread
schedules side by side. Specifically, Figure 4 (a) shows t1 writing

to x (e5) followed by t2 writing to x (e10). Next, t2 writes to

y (e11) before t1 (e6). This results in a final state where x == 1

e5: x = 0

e10: x = 1

e11: y = 1

e6: y = 0

(a)

e10: x = 1

e5: x = 0

e6: y = 0

e11: y = 1

(b)

Figure 4: Graphical representation of the two buggy interleav-

ings of Figure 3. Each results in an assertion violation.

e5: x = 0

e10: x = 1

e11: y = 1

e6: y = 0

(a)

e10: x = 1

e5: x = 0

e6: y = 0

e11: y = 1

(b)

Figure 5: Potential happens-before edges that block the two

buggy interleavings in Figure 3. The solid edges are the or-

dering of erroneous interleaving while the dashed edges are

happens-before edges that block the erroneous interleaving.

and y == 0. Figure 4 (b) shows a similar schedule where the final
state results in x == 0 and y == 1.
Next, we compute a set of new happens-before constraints such

that enforcing any of them in the original program is sufficient to

prevent the erroneous interleaving (the kill-set). We define a new
happens-before relation (→s) where ei →s ej indicates that in all
schedules of the program ei occurs before ej . Given an erroneous
schedule, such as in Figure 4 (a), the kill-set can be constructed by
adding new happens-before edges to create cycles in the graph.

Intuitively, inserting such a cycle creates a contradiction ensuring
that the interleaving cannot occur. For example, in the erroneous in-

terleaving in Figure 4 (a), there is an edge e5 → e10. Thus, we can
create a cycle by inserting a new happens-before edge e10 →s e5.
This creates a proof by contradiction ensuring that the interleaving
does not happen. The reason is that in order for the erroneous in-

terleaving to occur, e5 must occur before e10, but, at the same time,
e10 must always occur before e5, leading to a contradiction.
Figure 5 shows all the possible new happens-before edges (dashed

edges) that, individually, can block the erroneous schedule. The
solid edges, in contrast, are the ordering of the erroneous schedule.

It is interesting to note that some of the dashed edges are negations
of the solid edges, such as e6 →s e11 and e10 →s e5. However,
there are also dashed edges, such as e6 →s e10 and e11 →s e5, that
cannot be constructed directly from the negations of the solid edges:

they can only be constructed using our graph based algorithm.

Also, although any edge from a kill-set of a schedule is suffi-
cient for eliminating the schedule, sometimes, edges chosen from

different kill-sets contradict each other. For example, the erroneous
schedule in Figure 5 (a) can be eliminated with the insertion of

e6 →s e11 while the one in Figure 5 (b) can be eliminated with the
insertion of e11 →s e6. However, these two happens-before edges
cannot simultaneously be enforced in the program. In the remain-
der of this section, we formulate the repair computation as a binate

covering problem, which ensures that the solution is free of such

contradictions.

169

4.2 Computing the Binate Cover
The repair computation, in general, can be formulated as a binate

covering problem (BCP) [64]. BCP has been studied extensively in
logic synthesis and combinatorial optimization. Here, our goal is to

find a valid set of happens-before edges, at least one from each kill-
set (all kill-sets are covered) without introducing any contradiction.

Let the set of happens-before constraints in the union of all kill-
sets be represented by S = {s1, . . . , sn} and the cost of select-

ing each happens-before constraint si is ki, where ki ≥ 0. We

associate a Boolean variable xi to si, which has a value 1 if si is se-
lected and 0 otherwise. The binate covering problem can be defined

as finding a subset C ⊆ S (or cover) that minimizes Σn
i=1kixi sub-

ject to a Boolean constraint A(x1, x2, . . . , xn), where A precisely

specifies the set of valid solutions.
In our application, the constraint function A is a conjunction of

two parts. The first part is
∧n

i
KSi, where each KSi represents

that at least one constraint from the kill-set of schedule i must
be chosen. The second part, which we refer to as ω, is a con-

straint that specifies the compatibility of all the chosen constraints
based on their definitions as well as the semantics of the concur-

rent program e.g., the chosen happens-before edge cannot violate a
happens-before edge already existing in the program.

For example, if we use x1 to denote the selection of the edge
e10 →s e5 and use x2 to denote the selection of the edge e5 →s

e10, we need to add the Boolean constraint (¬x1∨¬x2) to ω since,
by definition, these two variables cannot be set to 1 simultaneously.

If we use x3 to denote the selection of the edge e6 →s e10, we also
need to add the Boolean constraint (¬x1∨¬x3) to ω, because these
two edges would from a cycle with the program-order constraint

e5 → e6 (which is always true).
To make the example complete, we now show the two kill-sets

for the program in Figure 5. The first kill-set is defined as follows:

KS1 = (e10 →s e5)∨(e11 →s e5)∨(e6 →s e10)∨(e6 →s e11)

Enforcing any of these new happens-before edges in the program
would be sufficient for blocking the erroneous thread schedule. Sim-

ilarly, the second kill-set is defined as follows:

KS2 = (e5 →s e10)∨(e6 →s e10)∨(e11 →s e5)∨(e11 →s e6)

Finally, a valid repair (for blocking all erroneous interleavings) is a
satisfiable assignment to the formula A = KS1 ∧KS2 ∧ ω.
When the constraint formula A is given in a product-of-sums

form, one can represent the BCP using a table, where each variable

in A (a happens-before edge) is a column and each clause (sum)
is a row, and the problem can be interpreted as one of finding a

subset C of the columns of minimum cost, such that for every row

is covered. The binate covering problem is NP-hard, but in practice,
can also be solved by efficient branch-and-bound algorithms [64].

As shown in Figure 6, for our example from Figure 3, there are
a total of sixteen possible solutions, among which there are four

valid (unique) solutions:
• Solution (A): e6 →s e10
• Solution (B): e11 →s e5
• Solution (C): e5 →s e10 ∧ e6 →s e11
• Solution (D): e10 →s e5 ∧ e11 →s e6

All the other solutions are either invalid, meaning that they lead to
cycles in the graph, or are equivalent to one of these four solutions.

Due to the use of compatibility constraints (ω andA) in BCP, our
method guarantees that the repair will not introduce certain type of

deadlocks, i.e., the ones caused by incompatibility of newly added
happens-before edges and the original thread program order con-

straints. However, it is possible for a repair to introduce other type
of deadlocks, e.g., from reversed lock orderings between threads.

Since our method uses bounded model checking as the underlying

verification procedure, in principle, we cannot guarantee that the re-

No. Cover Set Valid Simplified Result

1 (e10 → e5) ∧ (e5 → e10) cycle
2 (e10 → e5) ∧ (e11 → e5) YES (e11 → e5)
3 (e10 → e5) ∧ (e6 → e10) cycle
4 (e10 → e5) ∧ (e11 → e6) YES (e10 → e5) ∧ (e11 → e6)
5 (e11 → e5) ∧ (e5 → e10) cycle

6 (e11 → e5) ∧ (e11 → e5) YES (e11 → e5)
7 (e11 → e5) ∧ (e6 → e10) cycle

8 (e11 → e5) ∧ (e11 → e6) YES (e11 → e5)
9 (e6 → e10) ∧ (e5 → e10) YES (e6 → e10)
10 (e6 → e10) ∧ (e11 → e5) cycle
11 (e6 → e10) ∧ (e6 → e10) YES (e6 → e10)
12 (e6 → e10) ∧ (e11 → e6) cycle
13 (e6 → e11) ∧ (e5 → e10) YES (e6 → e11) ∧ (e5 → e10)
14 (e6 → e11) ∧ (e11 → e5) cycle

15 (e6 → e11) ∧ (e6 → e10) YES (e6 → e10)
16 (e6 → e11) ∧ (e11 → e6) cycle

Figure 6: Binate Covering: The set of all valid repairs.

e5 e10

e6 e11

(A)

e5 e10

e6 e11

(B)

e5 e10

e6 e11

(C)

e5 e10

e6 e11

(D)

Figure 7: Happens-before constraints added by the solutions.

pair is always correct. A possible remedy for the deadlock problem
is to verify the suggested repairs using a static deadlock analysis

and then filter out the erroneous repairs.
In general, repairs computed in this section are merely sugges-

tions to the programmer, who is expected to review the solution and
ultimately decide if a repair should be applied. We do not attempt

to fully automate this process, since in the absence of a complete

formal specification of the intended program behavior, the debug-
ging process cannot be completely automated. Nevertheless, we

shall show in the experiments section that the repairs suggested by
our tool are often the correct repairs and in many cases are optimal

in terms of the size of code changes and/or the permissiveness.

4.3 Realizing the Solution
Just like the four solutions computed above, in general, valid

solutions to the BCP form a hierarchy. For a closer look at the
different thread ordering enforced by these solutions, see the sce-

narios illustrated in Figure 7. Here, the dashed edges are newly

added happens-before constraints to the program while the solid
edges are those enforced by the program order. It is clear that any

of these four solutions would be sufficient for repairing the pro-
gram. However, they also have different cost in terms of both ease

of implementation and performance overhead.
One way to rank these solutions is using the implementation cost.

For example, to enforce e11 →s e5 in the program, a cond-wait can
be inserted before e5 and a cond-signal inserted after e11. If we

define the implementation cost as the number of signal–wait pairs

added to the program code, Solution (A) and Solution (B) would
be better than Solution (C) and Solution (D).

Another way to rank these solutions is using permissiveness, i.e.,
the number of allowed interleavings. In this case, Solution (A) and

Solution (B) would be worse than Solution (C) and Solution (D).
We say Solution (A) is less permissive than Solution (C) because it

can eliminate all interleavings that are eliminated by Solution (C),
and more. If the goal is to allow the program more freedom to

“choose” thread schedules in the hope that it leads to better perfor-

mance, Solution (C) and solution (D) are better choices.

170

e5: x = 0 e10: x = 1

e6: y = 0 e11: y = 1

Figure 8: Graphical representation of the either-or edges—

Solutions (a) and (b)—for fixing the bug in Figure 3. Blue edges

are happens-before relations returned by the bug repair proce-

dure. Black edges are intra-thread program-order relations.

Interestingly, there are composite solutions, a combination of
multiple elementary solutions, that get us the best of both worlds.

One such composite solution is enforcing either Solution (A) or So-
lution (B) at runtime. This composite approach can be realized by

inserting a mutex lock–unlock pair to surround lines 5–6 and lines
10–11, to make them mutually exclusive. While the previous ele-

mentary solutions (in Figure 7) require t1 to always happen before
t2 (or vice versa), this composite solution, however, allows for the
program have either behavior. Such a composite solution is still

bug free and allows greater concurrency. However, it remains to be
shown if such composite solutions can be identified automatically.

In our method, we first systematically search for the elementary
solutions while minimizing the implementation cost, and then try

to combine them together to increase the permissiveness. Toward
this end, we examine the set of all happen-before edges that forms

a valid repair. As an example, we consider the combination of so-

lutions (A) and (B): e11 →s e5, or e6 →s e10. Note that there
is an implicit happens-before edge, or program-order constraint,

between the two assignments within a thread. That is, e5 → e6
and similarly e10 → e11 (since they are within the same thread)

is fixed. We assume that the programs are sequentially consis-
tent. As a result, the two happens-before edges specify that either

(e10 → e11)→s (e5 → e6), or (e5 → e6)→s (e10 → e11). This
is represented graphically in Figure 8.

For repairs with more than two possible solutions, we identify

this situation by building a graph such as in Figure 8 with intra-
thread happens-before edges for pairs of possible solutions such

that they do not contradict each other. Then, we group statements
from the same thread (e10 and e11, and e5 and e6 in this example)
together. If the result is graph with two threads connected by two
either-or edges to from a cycle, then we can insert a mutex lock/un-

lock pair before/after the intra-thread statements. Otherwise, we
select one of the satisfying happens-before edges and enforce it by

inserting a condition variable signal/wait pair.

The critical sections computed above for the composite solution
do not have to be enforced by adding lock-unlock pairs. Another

way to implement such repair is to use the atomic keyword in a
transactional memory system.

5. EXPERIMENTS
We have implemented our diagnosis and repair methods in a

software tool called ConcBugAssist based on the latest version of

the CBMC [35] model checker, which supports the verification of

multithreaded programs [1]. We used the MSUnCore [47] partial
MAX-SAT solver during the diagnosis and repair computation.

We have evaluated our methods on 34 benchmark programs. Our
experiments were designed to answer two research questions:

• Can our diagnosis method accurately localize the root cause
of a concurrency bug?

• Can our repair method compute meaningful code modifica-
tions to eliminate the bug?

Table 1 shows the statistics of the 34 benchmark programs, includ-

ing the name, the number of lines of code, the number of threads,

Table 1: Characteristics of the benchmark programs.

Name LOC Threads Bug Type Origin

boop 98 3 atomicity violation [60]

testc 19 2 order violation [60]
fibbench 47 3 order violation [60]

fibbench_longer 45 3 order violation [60]

reorder 105 5 order violation [60]
account 58 4 order violation [60]

read_write 140 5 order violation [60]
barrier 85 4 order violation [60]

lazy01 55 4 data race [60]

VectPrime02 183 3 data race [8]
lineEq2t01 58 3 data race [8]

linux-tg3 115 3 order violation [8]

linux-iio 87 3 atomicity violation [8]

mysql-169 27 3 atomicity violation [72, 53]
mysql-12848 142 2 atomicity violation [72, 52]

mysql-3596 83 3 order violation [45]
mysql-644 165 3 order violation [45]

apache-21287 79 3 atomicity violation [2]

apache-25520 192 3 data race [3]
freebsd-aa 104 4 order violation [70]

cherokee-0.9.2 188 3 atomicity violation [72]
llvm-8441 244 3 order violation [44]

gcc-25330 86 3 atomicity violation [22]
gcc-3584 104 3 data race [23]

gcc-21334 94 3 data race [21]
gcc-40518 114 3 data race [24]

transmission-1.42 78 3 order violation [72]

glib-512624 98 3 atomicity violation [26]
jetty-1187 74 3 order violation [30]

mozilla-61369 68 3 order violation [45]

hash_table 156 3 atomicity violation [27]
list_seq 122 3 atomicity violation [27]

counter_seq 41 3 data race [27]
queue_seq 97 3 data race [27]

and the type of the bug. The last column also shows the origin. Our
benchmarks can be classified into four groups.

The first group consists of the POSIX threads related buggy pro-

grams from the 2015 Software Verification Competition [60] (SV-
COMP). Although these programs are small in terms of the lines

of code, they implement tricky concurrency protocols and synchro-
nization algorithms such as read–write locks.

The second group consists of four programs used by Bloem et
al. [8], where the first two are synthetic benchmarks, while linux-

iio and linux-tg3 are real bugs found in the industrial I/O subsys-
tem (IIO) of the linux kernel (http://git.io/JjCEXg), and Broadcom

Tigon3 (TG3) Ethernet driver (http://git.io/7wWrKw), respectively.

The third group consists of bug patterns extracted from vari-
ous versions of open source applications. They are reported in

MySQL [51], the Apache Web Server [4], the FreeBSD Operating
System [19], the Cherokee Web Server [11], the LLVM Compiler

Framework [43], the GNU Compiler Collection [20], the Linux
Kernel [39], the Transmission BitTorrent client [61], the GNOME

Library [25], the Jetty HTTP Server [29], and Mozilla’s XPCOM li-
brary [67]. These programs are used to evaluate the effectiveness of

our method in handling the diverse set of bugs from the real world.

The fourth group consists of implementations of concurrent data
structures as described in the Art of Multiprocessor Programming

book [27]. Some of these programs are stripped off the synchro-
nization operations intentionally to see if our method can correctly

repair them back to normal.

5.1 Diagnosis Results
First, we evaluate the effectiveness of our diagnosis algorithm.

Table 2 summarizes the results. Columns 1 and 2 show the program

name and the diagnosis time, respectively. The experiments were

171

run on a machine with a 2.60 GHz Intel Core i5-3230M CPU and

8 GB of RAM running a 64-bit Linux OS.
Column 3 shows the number of iterations required to complete

the diagnosis, i.e., the number of erroneous schedules. It is also

the same as the number of blocking constraints (φcore) computed
by our method as part of the diagnosis result. Column 4 shows, on

average, the number of inter-thread ordering constraints present in
an erroneous schedule (φsch); they are the number of constraints

that programmers have to inspect manually if they do not use our
diagnosis method.

Columns 5–6 show the average size of the root cause returned
by our method, in terms of the number of inter-thread ordering

constraints to block an erroneous schedule (φcore), as well as the

the total number of such unique constraints for blocking all erro-
neous schedules. Finally, Column 7 shows the reduction ratio, i.e.,

the number of constraints in the root cause divided by the average
number of constraints in a bad schedule.

Overall, our method can quickly identify the root cause: most of
the programs took only a few seconds to complete, with the maxi-

mum run time of just over two minutes. Furthermore, the reduction

ratio in Column 7 indicates that our method is effective in localiz-
ing the root cause of a concurrency failure. On average, the number

of inter-thread ordering constraints reported in the root cause is sig-
nificantly smaller than the total number of raw constraints in the

error traces returned by CBMC.
The reason why the number of unique constraints for glib-512624,

jetty-1187, list-seq, and queue-seq appears to be lower than expect
is because some happens-before edges are mapped to the same lines

of code for their source and target nodes. In such cases, we merge

these happens-before edges into one for ease of comprehension.
We also confirmed manually that all the diagnosis results com-

puted by our tool correctly could explain bugs in the benchmark
programs. Furthermore, the root causes were always straightfor-

ward to understand. In addition, we will show later in this section
that the diagnosis results are specific enough that they can be lever-

aged to automatically compute the repair.

5.2 Repair Results
Next, we evaluate the effectiveness of the repair algorithm. Ta-

ble 3 summarizes the results, where Columns 1 and 2 show the pro-
gram name and the repair time, respectively. Column 3 shows the

number of valid repairs returned by our method. Columns 4–5 show
the types of these repairs. Specifically, if the bug can be fixed by

adding critical sections, either through the insertion of lock-unlock
pairs or using the atomic keyword, we put a X in Column 4. Sim-

ilarly, if the bug can be fixed by adding signal-wait pairs, we put a

X in Column 5.
Since the benchmarks used in our evaluation span a wide range

of concurrency bugs, the results shown in Table 3 are particularly
promising. In general, our repair algorithm can quickly return mul-

tiple repairs. Some of these repairs rely on the insertion of atomic
blocks, some rely on the insertion of signal-wait pairs, and some

may be fixed using both approaches.
Currently, our tool ranks the repairs before presenting them to

the user. For elementary solutions, the ranking is based on the num-

ber of happens-before constraints used in the solutions (fewer is
better). In addition, we always search for composite solutions that

combine multiple elementary solutions to allow for greater concur-
rency, and rank them higher. We leave the design and analysis of

more complex ranking systems as future work.
Our repair procedure returns a surprisingly large number of re-

pairs for certain programs. We believe it is due to the many distinct
but semantically equivalent repairs in these programs. For exam-

ple, in the buggy list implementation in Figure 9, executing Line 11

before Line 19 is a different solution than running Line 12 before

Table 2: Summary of the error diagnosis results.

Size of Root Cause

Name Time Iter. Constr./ Constr./ Unique Red.

(s) (φsch) (φcore) Constr. Ratio

boop 1.2 1 34 2.0 2 5.9%

testc 0.7 1 4 2.0 2 50.0%
fibbench 36.0 2 93 7.5 15 16.1%

fibbench_longer 106.6 2 123 9.0 18 14.6%
reorder 19.9 15 30 4.0 9 30.0%

account 6.4 3 95 1.3 3 3.2%
read_write 121.0 28 76 8.2 27 35.5%

barrier 5.5 9 48 1.6 6 12.5%

lazy01 11.9 2 186 2.0 4 2.2%

VectPrime02 2.39 2 31 3.0 3 9.7%
lineEq2t01 4.83 2 30 4.0 7 23.3%

linux-tg3 5.6 1 98 2.0 2 2.0%
linux-iio 2.5 5 31 4.4 8 25.8%

mysql-169 1.1 2 10 2.0 2 20.0%

mysql-12848 2.5 4 10 4.0 4 40.0%

mysql-3596 1.1 1 13 1.0 1 7.7%
mysql-644 1.0 1 7 2.0 2 28.6%

apache-21287 1.7 2 23 1.5 3 13.0%
apache-25520 7.9 16 23 4.0 4 17.4%

freebsd-aa 22.4 49 27 3.0 12 44.4%
cherokee-0.9.2 6.9 11 34 3.1 4 11.8%

llvm-8441 17.4 21 46 3.3 10 21.7%
gcc-25330 1.2 2 21 1.0 2 9.5%

gcc-3584 1.8 4 19 3.0 3 15.8%

gcc-21334 6.4 1 244 2.0 2 0.8%
gcc-40518 1.4 2 27 2.0 4 14.8%

transmission-1.42 1.2 2 8 1.5 2 25.0%
glib-512624 8.7 17 32 1.3 4 12.5%

jetty-1187 1.8 2 33 1.0 1 3.0%
mozilla-61369 0.8 1 5 1.0 1 20.0%

hash_table 112.0 44 94 1.4 4 4.3%

list_seq 13.6 18 60 1.2 4 6.7%

counter_seq 1.2 2 13 3.0 3 23.1%
queue_seq 7.6 2 135 1.0 1 0.7%

Average 16.01 8.15 51.85 2.77 5.26 16.81%

Table 3: Summary of the repair computation results.

Type of Fix

Name Time (s) No. of Repairs Atomic Signal–Wait

boop 0.1 5 ✓ ✓

testc 0.1 2 ✗ ✓

fibbench 2.7 97 ✗ ✓

fibbench_longer 4.2 97 ✗ ✓

reorder 0.6 34 ✗ ✓

account 0.3 73 ✗ ✓

read_write 4.8 68 ✗ ✓

barrier 0.1 33 ✗ ✓

lazy01 0.2 54 ✓ ✓

VectPrime02 0.1 7 ✓ ✓

lineEq2t01 1.2 10 ✓ ✓

linux-tg3 0.1 2 ✗ ✓

linux-iio 0.5 93 ✓ ✓

mysql-169 0.1 13 ✓ ✓

mysql-12848 0.1 27 ✓ ✓

mysql-3596 0.1 1 ✗ ✓

mysql-644 0.1 2 ✗ ✓

apache-21287 0.1 7 ✓ ✓

apache-25520 0.2 10 ✓ ✓

freebsd-aa 1.1 90 ✗ ✓

cherokee-0.9.2 0.2 10 ✓ ✓

llvm-8441 2.1 95 ✗ ✓

gcc-25330 0.1 12 ✓ ✓

gcc-3584 0.2 39 ✓ ✓

gcc-21334 0.2 5 ✓ ✓

gcc-40518 0.1 35 ✓ ✓

transmission-1.42 0.1 2 ✗ ✓

glib-512624 0.1 27 ✓ ✓

jetty-1187 0.1 2 ✗ ✓

mozilla-61369 0.1 1 ✗ ✓

hash_table 0.6 27 ✓ ✓

list_seq 0.4 15 ✓ ✓

counter_seq 0.1 7 ✓ ✓

queue_seq 0.1 3 ✓ ✓

172

Table 4: Detailed statistics of the repair computation.

Repairs Kill-Set Size

Name Elementary Composite Avg. Size Avg. Total

boop 4 1 1 4 4
testc 2 0 1 2 2

fibbench 97 0 2 35 70

fibbench_longer 97 0 2 48 96
reorder 34 0 5 6 87

account 73 0 3 12 36
read_write 68 0 3 76 2149

barrier 33 0 6 6 57
lazy01 53 1 2 8 16

VectPrime02 6 1 2 3 6

lineEq2t01 94 6 2 22 44

linux-tg3 2 0 1 2 2
linux-iio 87 6 3 5 25

mysql-169 12 1 2 4 8

mysql-12848 26 1 3 4 16
mysql-3596 1 0 1 1 1

mysql-644 2 0 1 2 2
apache-21287 6 1 2 3 6

apache-25520 9 1 3 7 112

freebsd-aa 90 0 5 21 1025
cherokee-0.9.2 9 1 3 5 52

llvm-8441 95 0 3 29 612
gcc-25330 11 1 2 4 8

gcc-3584 38 1 3 6 22
gcc-21334 4 1 1 4 4

gcc-40518 31 4 2 7 14

transmission-1.42 2 0 2 2 3
glib-512624 26 1 3 7 116

jetty-1187 2 0 1 2 4
mozilla-61369 1 0 1 1 1

hash_table 26 1 3 9 400

list_seq 14 1 3 5 95
counter_seq 6 1 2 3 6

queue_seq 2 1 2 2 4

Line 19. However, the semantics of both fixes are equivalent. This
can lead to a large number of potential combinations, especially

for those programs which require multiple happens-before edges
to be fixed (e.g., 11 → 19 can be substituted with 12 → 19 and

vice versa). However, our repair procedure automatically ranks so-
lutions based on size so the user can find a suitable repair without

having to examine all repairs.
Detailed statistics of binate cover computation are in Table 4,

which breaks down the set of repairs into elementary and composite

repairs, and show their numbers in Columns 2 and 3. We also show
in Column 4 the average size of a repair, in terms of the number

of happens-before ordering constraints it contains. Columns 5 and
6 shows the average size of the kill-set and the total number of

happens-before constraints in all kill-sets (Section 4.1).
Overall, the repair computation has little overhead compared to

the diagnosis procedure. This is likely due to the small size of the
kill-sets compared to the size of the model checking formula. Al-

though the binate covering problem has exponential complexity in

the worst case, the relatively small size of the kill-sets makes it fast.
We expect the run time of BCP solving to increase significantly as

the kill-sets get larger. In such cases, approximate algorithms can
be used to quickly compute a suboptimal solution in order to scale

up the algorithm.

5.3 Case Studies
Finally, we present two case studies to illustrate the use of our

tool in diagnosing and repairing concurrency bugs.

list_seq: This is a sequential array based list implementation (i.e.,

it has no enforced synchronization) used concurrently by multiple

threads. A shortened version of its source code can be seen in Fig-

1 struct list {
2 int arr[MAX_SIZE];
3 size_t open;
4 } gl;
5
6 void list_add(list_t *s, int i) {
7 s->arr[s->open] = i;
8 s->open += 1;
9 }
10 void t1_main() {
11 int val;
12 val = 1;
13 list_add(&gl, val);
14 return;
15 }
16 void t2_main() {
17 int val;
18 val = 2;
19 list_add(&gl, val);
20 return;
21 }
22 int main() {
23 thread_t t1, t2;
24 thread_create(&t1, t1_main);
25 thread_create(&t2, t2_main);
26 thread_join(t1);
27 thread_join(t2);
28 assert(list_contains(&gl, 1)
29 && list_contains(&gl, 2));
30 return 0;
31 }
32

s1
s2

Figure 9: Buggy list_seq with two potential repairs (s1 and s2).

ure 9. Thread 1 inserts the item 1 into the list while thread 2 inserts
the item 2. The main thread checks that the list contains both 1
and 2 after both threads finish.
The bug is due to lack of atomicity in list_add(): the inser-

tion of an item (Line 7) is not atomic with the update of the lists size

(Line 8). Our method returns this as an explanation: the bug occurs
if thread 1 executes Line 7 followed by thread 2 executing Line 8,

and thread one executing Line 7 after thread 2 executes Line 8 (and
vice versa). In this case, since the value of open has not been up-

dated, thread 2 (resp. 1) overwrites the value inserted into the list

by thread 1 (resp. 2). The end result is a list without the value 1
(resp. 2) so the assertion on Lines 28–29 will fail.
Figure 9 also shows two of the potential repairs: s1 and s2. The

edges are a happens-before constraint which, when added to the

program, will prevent the bug from happening. Repair s1 states
that thread one should add first followed by thread two; Repair s2
is the reverse fix. Together, these two solutions create an either-
or solution: either thread 1 can go first or thread 2 can go first.

The highest ranked solution in our repair procedure is to enforce

this either-or edges: the calls to list_add are surrounded with
calls to mutex_lock and mutex_unlock to enforce atomicity
of the operation. Interestingly, the final result is that our diagnosis-
n-repair procedure automatically synthesized a concurrent list from

a sequential one.

Transmission-1.42: This is a BitTorrent client that contained a data

race. The relevant portion of the source code can be seen in Fig-
ure 10. Two threads share a variable bandwidth. The bug is

caused by an incorrect assumption that, when thread 2 accesses
bandwidth, thread 1 will have already initialized it. The root

cause of the bug identified by the diagnosis algorithm is Line 5
executing before Line 2.

The highest ranked solution found by our repair algorithm is
shown as the arrow from Line 2 to Line 5 in the figure. That is,

the bug can be prevented by enforcing that Line 2 is always exe-

cuted before Line 5. Our repair algorithm also return another solu-

173

1 void t1_main() {
2 bandwidth = malloc(...)
3 }
4 void t2_main() {
5 assert(bandwidth != NULL);
6 *bandwidth = ...
7 }
8 int main() {
9 thread_t t1, t2;
10 thread_create(&t1, t1_main);
11 thread_create(&t2, t2_main);
12 thread_exit();
13 }
14

Figure 10: Relevant portion of the code in transmission-1.42.

tion, which has two happens-before edges and therefore is inferior
to the first solution. Furthermore, our repair algorithm shows that

there are no composite solution that can combine the elementary

solutions together. Therefore, the repair shown in Figure 10 will be
reported to the user.

We have manually confirmed that this is a correct repair. In fact,
this is the actual solution used by developers in the Transmission

source to fix the bug.

6. RELATED WORK
Our work was inspired by the set of recent works on using con-

straint solvers for diagnosing software bugs [32, 18, 50, 56, 69,
68]. However, these methods were designed solely for diagnosing

logical bugs in sequential software. Furthermore, the type of re-

pairs computed by some of these methods were fairly limited. For
example, BugAssist [32] focuses on repairs that are minor muta-

tions of existing expressions in the program, e.g., replacing if(c
> 0)with if(c >= 0) as in the off-by-one bug pattern. None of
these methods handle concurrency bugs in multithreaded programs.
In contrast, our work focuses primarily on diagnosing concurrency

bugs and suggesting repairs.

Our work is related to methods for synthesizing synchroniza-
tions among concurrent threads based on a specification [63, 7]

or by making interleaved executions conform to sequential execu-
tions [8]. For example, the method proposed by Bloem et al. [8]

used a model checker to guide the insertion of atomic regions to
force all interleaved executions to behave the same as the sequen-

tial execution. They also targeted a certain class of programs where
computations in the data flow are largely independent of the con-

currency control, where uninterpreted functions could be used to

soundly abstract away the data path. In contrast, our method fo-
cuses on diagnosing faulty concurrent programs with existing, but

potentially buggy, implementations of the concurrency control.
The work by Wang et al. [65, 66] on dynamic deadlock avoid-

ance via discrete control is also related. Their approach relied on
building a whole-program Petri-Net model, based on which they

applied the theory of discrete control to find ways of healing dead-
locks dynamically. However, the method did not handle concur-

rency bugs other than deadlocks. Liu et al. [42, 40] extended the

approach to include certain types of atomicity violations. Liu et
al. [41] also proposed a method for fixing linearizability violations

in concurrent data structures. However, these violations are still
not general concurrency bugs targeted by our method, which in-

clude any non-deadlock concurrency bug that can be modeled as
violation of an assertion.

Krena et al. [34, 36, 33] and Jin et al. [31] proposed methods
for matching known concurrency bug patterns and fixing them by

inserting locks based on predefined rules. They focus on data-

races or one-variable, three-access, atomicity violations, but do not

handle general concurrency bugs (e.g., assertion violations), since

there are concurrency bugs that cannot be fixed solely by inserting
locks. In contrast, our method relies on a more general analysis

framework, which has wider application and at the same time re-

quires neither predefined bug patterns nor prescribed repair strate-
gies from the user. There is also a large body of work on diagnos-

ing concurrency failures through dynamic analysis and/or machine
learning [12, 73, 28, 54, 71, 6], but cannot systematically detect

failing executions. Furthermore, they tend to focus more on helping
the user diagnose bugs manually as opposed to computing repairs.

Another difference between our method and the most of the afore-
mentioned static and dynamic analysis techniques is that our method

relies on bounded model checking, which is a more precise anal-

ysis technique. In general, light-weight static analysis is ideally
suited for handling programs with large code size, but infrequent

and relatively simple thread interactions, whereas model checking
is more suitable for handling programs with a smaller code size, but

more complex thread interactions. Examples for the latter case in-
clude low-level systems code, device drivers, and implementations

of concurrent data structures.

Our work is also related, at the high level, to the theoretical work
on program synthesis [16, 46, 55, 15, 9] and controller synthe-

sis [57, 58], where the focus is on automated construction of sys-
tems from their specifications. For concurrent software, there are

also methods for automated lock insertion and refinement [5, 48,
62, 17, 10, 74], which assume the critical sections or correctness

specifications are provided as input and their goal is adding locks
or delays to transparently ensure such properties. These methods

differ from our approach in that they assume the availability and

correctness of a complete specification or golden model, which we
do not have.

Our method relies on CBMC as the underlying verification pro-
cedure, which can limit its ability of handling large programs. The

scalability problem may be addressed in two ways. First, the Boolean
SAT solvers used in the diagnosis phase may be replaced by SMT

solvers [14], which tend to work on higher levels of abstractions
and therefore are potentially more scalable than Boolean SAT solvers.

Second, our diagnosis and repair methods may be applied to a

Boolean abstraction of the program, created using well-known pred-
icate abstraction tools such as SATABS [13], as opposed to the

concrete program—it may result in some precision loss due to the
use of predicate abstraction, but at the same time will significantly

boost the runtime performance. We leave the exploration of such
optimizations for future work.

7. CONCLUSIONS
We have presented a constraint based method for diagnosing

concurrency bugs in multithreaded programs by localizing a small
set of happens-before constraints sufficient for explaining the root

causes. We have also presented a constraint based method for com-

puting potential program repairs by iteratively adding additional
happens-before constraints to block the erroneous thread schedules.

These new methods have been implemented in a software tool and
evaluated on a set of multithreaded C programs. Our experiments

show that the proposed methods are effective in explaining concur-
rency bugs and suggesting meaningful repairs.

8. ACKNOWLEDGMENTS
This work was primarily supported by the NSF under grants

CCF-1149454, CCF-1405697, and CCF-1500024. Partial support
was provided by the ONR under grant N00014-13-1-0527. Any

opinions, findings, and conclusions expressed in this material are
those of the authors and do not necessarily reflect the views of the

funding agencies.

174

9. REFERENCES

[1] Jade Alglave, Daniel Kroening, and Michael Tautschnig.
Partial orders for efficient bounded model checking of

concurrent software. In International Conference on

Computer Aided Verification, pages 141–157, 2013.

[2] Apache bug 21287 URL: http://issues.apache.org/bugzilla/

show_bug.cgi? id=21287.

[3] Apache bug 25520 URL: https://issues.apache.org/bugzilla/
show_bug.cgi? id=25520.

[4] Apache http server project URL: http://httpd.apache.org/.

[5] Paul C. Attie. Synthesis of large concurrent programs via

pairwise composition. In International Conference on
Concurrency Theory, pages 130–145, 1999.

[6] Mitra Tabaei Befrouei, Chao Wang, and Georg

Weissenbacher. Abstraction and mining of traces to explain
concurrency bugs. In International Conference on Runtime

Verification, pages 162–177, 2014.

[7] Roderick Bloem, Krishnendu Chatterjee, Swen Jacobs, and
Robert Könighofer. Assume-guarantee synthesis for

concurrent reactive programs with partial information. In
International Conference on Tools and Algorithms for

Construction and Analysis of Systems, pages 517–532, 2015.

[8] Roderick Bloem, Georg Hofferek, Bettina Könighofer,
Robert Könighofer, Simon Ausserlechner, and Raphael

Spork. Synthesis of synchronization using uninterpreted
functions. In International Conference on Formal Methods in

Computer-Aided Design, pages 35–42, 2014.

[9] Roderick Bloem, Bettina Könighofer, Robert Könighofer,
and Chao Wang. Shield synthesis: Runtime enforcement for

reactive systems. In International Conference on Tools and
Algorithms for Construction and Analysis of Systems, pages

533–548, 2015.

[10] Sigmund Cherem, Trishul M. Chilimbi, and Sumit Gulwani.
Inferring locks for atomic sections. In ACM SIGPLAN

Conference on Programming Language Design and

Implementation, pages 304–315, 2008.

[11] The cherokee web server URL: http://cherokee-project.com/.

[12] Jong-Deok Choi and Andreas Zeller. Isolating

failure-inducing thread schedules. In International
Symposium on Software Testing and Analysis, pages

210–220, 2002.

[13] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and
Karen Yorav. SATABS: SAT-based predicate abstraction for

ANSI-C. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 3440 of Lecture Notes in

Computer Science, pages 570–574. Springer Verlag, 2005.

[14] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient
SMT solver. In International Conference on Tools and

Algorithms for Construction and Analysis of Systems, pages

337–340, 2008.

[15] Jyotirmoy V. Deshmukh, G. Ramalingam, Venkatesh Prasad

Ranganath, and Kapil Vaswani. Logical concurrency control

from sequential proofs. In European Symposium on
Programming, pages 226–245, 2010.

[16] E. A. Emerson and E. M. Clarke. Using branching time
temporal logic to synthesize synchronization skeletons.

Science of Computer Programming, 2:241–266, 1982.

[17] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak
Majumdar. Lock allocation. In ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, pages

291–296, 2007.

[18] Evren Ermis, Martin Schäf, and Thomas Wies. Error

invariants. In International Symposium on Formal Methods,
volume 7436, pages 187–201. 2012.

[19] The FreeBSD project URL: http://www.freebsd.org.

[20] The GNU compiler collection URL: https://gcc.gnu.org/.

[21] GCC bug 21334 URL:

http://gcc.gnu.org/bugzilla/show_bug.cgi? id=21334.

[22] GCC bug 25530 URL: http://gcc.gnu.org/bugzilla/

show_bug.cgi? id=25330.

[23] GCC bug 3584 URL: http://gcc.gnu.org/bugzilla/
show_bug.cgi? id=3584.

[24] GCC bug 40518 URL: http://gcc.gnu.org/bugzilla/

show_bug.cgi? id=40518.

[25] GLib reference manual URL: https://bugzilla.gnome.org/
show_bug.cgi? id=512624.

[26] Glib bug 512624 URL: https://bugzilla.gnome.org/

show_bug.cgi? id=512624.

[27] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2008.

[28] Nicholas Jalbert and Koushik Sen. A trace simplification
technique for effective debugging of concurrent programs. In

ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 57–66, 2010.

[29] Jetty servlet engine URL: http://www.eclipse.org/jetty/.

[30] Jetty bug 1187 URL:
http://jira.codehaus.org/browse/JETTY-1187.

[31] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben

Liblit. Automated atomicity-violation fixing. In ACM
SIGPLAN Conference on Programming Language Design

and Implementation, pages 389–400, 2011.

[32] Manu Jose and Rupak Majumdar. Cause clue clauses: error
localization using maximum satisfiability. In ACM SIGPLAN

Conference on Programming Language Design and

Implementation, pages 437–446, 2011.

[33] Bohuslav Krena, Zdenek Letko, Yarden Nir-Buchbinder,

Rachel Tzoref-Brill, Shmuel Ur, and Tomás Vojnar. A

concurrency testing tool and its plug-ins for dynamic
analysis and runtime healing. In International Conference on

Runtime Verification, pages 101–114, 2009.

[34] Bohuslav Krena, Zdenek Letko, Rachel Tzoref, Shmuel Ur,

and Tomás Vojnar. Healing data races on-the-fly. In

Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging, pages 54–64. ACM, 2007.

[35] Daniel Kroening and Michael Tautschnig. CBMC—C

bounded model checker. In International Conference on
Tools and Algorithms for Construction and Analysis of

Systems, pages 389–391, 2014.

[36] Zdenek Letko, Tomás Vojnar, and Bohuslav Krena.
AtomRace: data race and atomicity violation detector and

healer. InWorkshop on Parallel and Distributed Systems:
Testing, Analysis, and Debugging, page 7. ACM, 2008.

[37] Chu-Min Li, Zhiwen Fang, and Ke Xu. Combining MaxSAT

reasoning and incremental upper bound for the maximum
clique problem. In IEEE 25th International Conference on

Tools with Artificial Intelligence, pages 939–946, Nov 2013.

[38] Mark H. Liffiton, Zaher S. Andraus, and Karem A. Sakallah.
From Max-SAT to Min-UNSAT: Insights and applications.

Technical Report CSE-TR-506-05, University of Michigan,
2005.

[39] The Linux kernel archives URL: http://kernel.org.

[40] Peng Liu, Omer Tripp, and Charles Zhang. Grail:

context-aware fixing of concurrency bugs. In ACM SIGSOFT

175

Symposium on Foundations of Software Engineering, pages

318–329, 2014.

[41] Peng Liu, Omer Tripp, and Xiangyu Zhang. Flint: fixing
linearizability violations. In ACM SIGPLAN Conference on

Object Oriented Programming, Systems, Languages, and
Applications, pages 543–560, 2014.

[42] Peng Liu and Charles Zhang. Axis: Automatically fixing

atomicity violations through solving control constraints. In
International Conference on Software Engineering, pages

299–309, 2012.

[43] The LLVM compiler infrastructure URL: http://llvm.org/.

[44] LLVM bug 8441 URL: http://llvm.org/bugs/show_bug.cgi?
id=8441.

[45] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.

Learning from mistakes: A comprehensive study on real
world concurrency bug characteristics. In Architectural

Support for Programming Languages and Operating
Systems, pages 329–339, 2008.

[46] Zohar Manna and Pierre Wolper. Synthesis of

communicating processes from temporal logic specifications.
ACM Trans. Program. Lang. Syst., 6(1):68–93, 1984.

[47] Joao Marques-Silva. The MSUnCore MAXSAT Solver.

[48] Bill McCloskey, Feng Zhou, David Gay, and Eric A. Brewer.

Autolocker: synchronization inference for atomic sections.
In ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pages 346–358, 2006.

[49] Minisat URL: http://minisat.se/.

[50] Vijayaraghavan Murali, Nishant Sinha, Emina Torlak, and

Satish Chandra. What gives? A hybrid algorithm for error

trace explanation. In International Conference on Verified
Software, pages 270–286, 2014.

[51] Mysql the world’s most popular open source database URL:

http://www.mysql.com/.

[52] Mysql bug 12848 URL: http://bugs.mysql.com/bug.php?

id=12848.

[53] Mysql bug 169 URL: http://bugs.mysql.com/bug.php?
id=169.

[54] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold.

Falcon: fault localization in concurrent programs. In
International Conference on Software Engineering, pages

245–254, 2010.

[55] Amir Pnueli and Roni Rosner. On the synthesis of a reactive
module. In ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, pages 179–190,
1989.

[56] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil

Vaswani. DARWIN: an approach to debugging evolving
programs. ACM Trans. Softw. Eng. Methodol., 21(3):19,

2012.

[57] R. J. Ramadge and W. M. Wonham. Supervisory control of a
class of discrete event processes. SIAM J. Control and

Optimization, 25(1):206–230, 1987.

[58] R. J. Ramadge and W. M. Wonham. The control of discrete
event systems. Proc. of the IEEE, pages 81–98, 1989.

[59] G. Ramalingam. Context-sensitive synchronization-sensitive

analysis is undecidable. ACM Trans. Program. Lang. Syst.,
22(2):416–430, 2000.

[60] SV-COMP. 2015 software verification competition. URL:

http://sv-comp.sosy-lab.org/2015/, 2015.

[61] Tranmission URL: https://www.transmissionbt.com/.

[62] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating
synchronization constraints with data in an object-oriented

language. In ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, pages 334–345,
2006.

[63] Martin T. Vechev, Eran Yahav, and Greta Yorsh.

Abstraction-guided synthesis of synchronization. In ACM
SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pages 327–338, 2010.

[64] T. Villa, T. Kam, R.K. Brayton, and A.L.
Sangiovanni-Vincenteili. Explicit and implicit algorithms for

binate covering problems. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on,
16(7):677–691, Jul 1997.

[65] Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane

Lafortune, and Scott A. Mahlke. Gadara: Dynamic deadlock
avoidance for multithreaded programs. In USENIX

Symposium on Operating Systems Design and
Implementation, pages 281–294, 2008.

[66] Yin Wang, Stéphane Lafortune, Terence Kelly, Manjunath

Kudlur, and Scott A. Mahlke. The theory of deadlock
avoidance via discrete control. In ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, pages
252–263, 2009.

[67] Mozilla XPCOM URL: https://developer.mozilla.org/en-

US/docs/Mozilla/Tech/XPCOM.

[68] Qiuping Yi, Zijiang Yang, Jian Liu, Chen Zhao, and Chao
Wang. Explaining software failures by cascade fault

localization. ACM Transactions on Design Automation of
Electronic Systems, 2015.

[69] Qiuping Yi, Zijiang Yang, Jian Liu, Chen Zhao, and Chao

Wang. A synergistic analysis method for explaining failed
regression tests. In International Conference on Software

Engineering, 2015.

[70] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar
Pasupathy, and Lakshmi Bairavasundaram. How do fixes

become bugs? In ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 26–36, 2011.

[71] Elad Yom-Tov, Rachel Tzoref, Shmuel Ur, and Shlomo

Hoory. Automatic debugging of concurrent programs
through active sampling of low dimensional random

projections. In IEEE/ACM International Conference On
Automated Software Engineering, pages 307–316, 2008.

[72] Jie Yu and Satish Narayanasamy. A case for an interleaving

constrained shared-memory multi-processor. In International
Symposium on Computer Architecture, pages 325–336, 2009.

[73] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan

Zhou, and Shankar Pasupathy. SherLog: error diagnosis by
connecting clues from run-time logs. In International

Conference on Architectural Support for Programming
Languages and Operating Systems, pages 143–154, 2010.

[74] Lu Zhang and Chao Wang. Runtime prevention of

concurrency related type-state violations in multithreaded
applications. In International Symposium on Software

Testing and Analysis, pages 1–12, 2014.

176

