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Abstract—We propose a method for formally certifying and
quantifying individual fairness of deep neural networks (DNN).
Individual fairness guarantees that any two individuals who are
identical except for a legally protected attribute (e.g., gender
or race) receive the same treatment. While there are existing
techniques that provide such a guarantee, they tend to suffer from
lack of scalability or accuracy as the size and input dimension
of the DNN increase. Our method overcomes this limitation
by applying abstraction to a symbolic interval based analysis
of the DNN followed by iterative refinement guided by the
fairness property. Furthermore, our method lifts the symbolic
interval based analysis from conventional qualitative certification
to quantitative certification, by computing the percentage of
individuals whose classification outputs are provably fair, instead
of merely deciding if the DNN is fair. We have implemented our
method and evaluated it on deep neural networks trained on four
popular fairness research datasets. The experimental results show
that our method is not only more accurate than state-of-the-art
techniques but also several orders-of-magnitude faster.

I. INTRODUCTION

The problem of certifying the fairness of machine learning
models is more important than ever due to strong interest in
applying machine learning to automated decision making in
various fields from banking [1] and healthcare [2] to public
policy [3] and criminal justice [4]. Since the decisions are
socially sensitive, it is important to certify that the machine
learning model indeed treats individuals or groups of individ-
uals fairly. However, this is challenging when the model is a
deep neural network (DNN) with a large number of hidden
parameters and complex nonlinear activations. The challenge
is also exacerbated as the network size and input dimension
increase. In this work, we aim to overcome the challenge by
leveraging abstract interpretation techniques to certify fairness
both qualitatively and quantitatively.

Our work focuses on individual fairness which, at a high
level, requires that similar individuals are treated similarly [5].
Here, similar individuals are those who differ only in some
legally protected input attribute (e.g., gender or race) but agree
in the unprotected attributes, and being treated similarly means
that the DNN generates the same classification output.1 Let
the DNN be a function f : X → Y from input domain X
to output range Y , where an individual x ∈ X is an input
and a class label y ∈ Y is the output. Assume that each input

1This notion can be understood as causal fairness [35] or dependency
fairness [31], which is a non-probabilistic form of counterfactual fairness [6].

Certification
Problem
⟨f, xj , X⟩

∃P ∈ stack S
to certify?

Fair, Unfair, and
Undecided rates (%)

initial partition
P ← X

added to S No

Yes

Certification
Subproblem
⟨f, xj , P ⟩

Abstraction
(Forward Analysis)

Refinement
(Backward Analysis)

Quantification
(Rate Computation)

Undecided
Fair Unfair

new partitions
Pl, Pu

added to S

Fig. 1. FairQuant for certifying and quantifying fairness of a DNN model f
where xj is a protected attribute and X is the input domain.

x = ⟨x1, . . . , xD⟩ is a D-dimensional vector, and xj , where
1 ≤ j ≤ D, is a protected attribute. We say that the DNN
is provably fair (certified) for the entire input domain X if
f(x) = f(x′) holds for any two individuals x ∈ X and x′ ∈ X
that differ only in xj but agree in the unprotected attributes
(∀xi where i ̸= j). Conversely, the DNN is provably unfair
(falsified) for input domain X if f(x) ̸= f(x′) holds for any
two individuals (x ∈ X and x′ ∈ X) that differ only in the
protected attribute. If the DNN is neither certified nor falsified,
it remains undecided.

Given a DNN f , a protected attribute xj , and an input
domain X , a qualitative certification procedure aims to de-
termine whether f is fair, unfair, or undecided for all x ∈ X .
Qualitative analysis is practically important because, if f is
provably fair, the model may be used as is, but if f is provably
unfair, the model should not be used to make decision for any
x ∈ X . When the result of qualitative analysis is undecided,
however, there is a need for quantitative analysis, to compute
the degree of fairness. For example, the degree of fairness may
be measured by the percentage of individuals in input domain
X whose classification outputs are provably fair.

Both qualitative certification and quantitative certification
are hard problems for deep neural networks. While there
are many verification tools for deep neural networks, ex-
isting verifiers such as ReluVal [7], DeepPoly [8], and α-
β-CROWN [9] focus on certifying perturbation robustness,
which is a fundamentally different property, and cannot certify



individual fairness. To the best of our knowledge, the only
existing technique for certifying individual fairness of a DNN
is Fairify [10]. However, since it directly analyzes the behavior
of a DNN in the concrete domain using the SMT solver, the
computational cost is extremely high; as a result, Fairify can
only certify tiny networks. Furthermore, it cannot quantify
the degree of fairness. Prior works on quantitative analysis
of fairness focus on either testing [11], [12], [13], which do
not lead to sound certification, or statistical parity [14], [15]
that concerns another type of fairness, group fairness, which
differs significantly from individual fairness.

To fill the gap, we propose the first scalable method
for certifying and quantifying individual fairness of a DNN.
Our method, named FairQuant, takes a certification problem
(consisting of the DNN f , protected attribute xj , and input
domain X) as input and returns one of the following three
outputs: (1) certified (fair) for all input x ∈ X; (2) falsified
(unfair) for all input x ∈ X; or (3) undecided, meaning
that f is neither 100% fair nor 100% unfair. In the third
case, our method also computes the percentage of inputs
in X whose classification outputs are provably fair. More
specifically, our method provides a lower bound of the certified
percentage, which can guarantee that the DNN meets a certain
requirement, e.g., the DNN is individually fair for at least 80%
of all inputs in X .

As shown in Fig. 1, FairQuant iterates through three steps:
abstraction (forward analysis), refinement (backward analy-
sis), and quantification (rate computation). Assuming that the
legally protected attribute xj has two possible values (e.g.,
male and female), forward analysis tries to prove that, for each
x in the input partition P (which is the entire input domain
X initially), flipping the value of the protected attribute of
x does not change the model’s output. This is accomplished
by propagating two symbolic input intervals I (∀x ∈ P that
are male) and I ′ (∀x′ ∈ P that are female) to compute the
two corresponding output intervals that are overapproximated.
If the classification labels (for all x and x′) are the same,
our method returns certified (fair). On the other hand, if the
classification labels (for all x and x′) are different, our method
returns falsified (unfair). In these two cases, 100% of the inputs
in the partition P are resolved.

Otherwise, we perform refinement (backward analysis) by
splitting P into partitions Pl and Pu and apply forward analy-
sis to each of these new partitions. Since smaller partitions
often lead to smaller approximation errors, refinement has
the potential to increase the number of certified (or falsified)
inputs and decrease in the number of undecided inputs. To
ensure that our method terminates quickly, we propose two
early termination conditions based on the refinement depth of
each partition P ⊆ X . The refinement depth is the number of
times X is partitioned to produce P . There are two predefined
thresholds. Once the refinement depth exceeds the higher
threshold, we classify the partition P as undecided and avoid
splitting it further. But if the refinement depth exceeds the
lower threshold without exceeding the higher threshold, we
use random sampling to try to find a concrete example x ∈ P

that violates the fairness property. If such a counterexample
is found, we classify P as undecided and avoid splitting it
further. Otherwise, we keep splitting P into smaller partitions.

We have evaluated our method on a large number of
deep neural networks trained using four widely-used datasets
for fairness research: Bank [16] (for predicting marketing),
German [17] (for predicting credit risk), Adult [18] (for
predicting earning power), and Compas [19] (for predicting
recidivism risk). For comparison, we apply Fairify [10] since
it represents the current state-of-the-art in certifying individual
fairness; we also apply α-β-CROWN since it is currently the
best robustness verifier for deep neural networks. Our results
show that α-β-CROWN is not effective in certifying individual
fairness. As for Fairify, our method FairQuant significantly
outperforms Fairify in terms of both accuracy and speed for
all DNN benchmarks. In fact, FairQuant often completes
certification in seconds, whereas Fairify often times out after
30 minutes and certifies nothing or only a tiny fraction of the
entire input domain.

To summarize, this paper makes the following contributions:
• We propose the first scalable method for certifying and

quantifying individual fairness of DNNs using symbolic
interval based analysis techniques.

1) For forward analysis, we propose techniques for
more accurately deciding if the DNN is fair/unfair
for all inputs in an input partition.

2) For refinement, we propose techniques for more
effectively deciding how to split the input partition.

3) For quantification, we propose techniques for effi-
ciently computing the percentages of inputs whose
outputs can be certified and falsified.

• We demonstrate the advantages of our method over
the current state-of-the-art on a large number of DNNs
trained using four popular fairness research datasets.

The remainder of this paper is organized as follows. First,
we motivate our work in Section II using examples. Then,
we present the technical background in Section III. Next, we
present the high-level procedure of our method in Section IV,
followed by detailed algorithms of the abstraction, refinement,
and quantification subroutines in Sections V, VI and VII. We
present the experimental results in Section VIII, review the
related work in Section IX, and finally give our conclusions
in Section X.

II. MOTIVATION

In this section, we use an example to illustrate the limita-
tions of existing methods.

A. The Motivating Example

Fig. 2 (left) shows a DNN for making hiring decisions. It
has three input nodes (i1, i2 and i3), two hidden neurons (h1

and h2) and one output node (o). The values of h1 and h2

are computed in two steps: first, the values of i1, i2 and i3
are multiplied by the edge weights before they are added up;
then, the result is fed to an activation function. For instance,
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Fig. 2. Symbolic interval analysis of an example DNN for making hiring
decisions: the left figure is for female applicants (i2 ∈ [0, 0]), and the right
figure is for male applicants (where i2 ∈ [1, 1]). Except for the protected
attribute i2, the symbolic intervals of the other attributes are the same.

the activation function may be ReLU(z) = max(0, z). The
output of the entire network f is based on whether the value
of o is above 0; that is, positive label is generated if o > 0;
otherwise, negative label is generated.

The DNN takes an input vector x with three attributes: x1

is the interview score of the job applicant, x2 is the gender (0
for female and 1 for male), and x3 is the number of years of
experience. Furthermore, x2 is the protected attribute while x1

and x3 are unprotected attributes. In general, the input domain
may be unbounded, e.g., when some attributes are real-valued
variables. However, for illustration purposes, we assume that
the input domain is X = {x | x1 ∈ {1, 2, 3, 4, 5}, x2 ∈
{0, 1}, and x3 ∈ {0, 1, 2, 3, 4, 5}}, meaning that X has a total
of 5× 2× 6 = 60 individuals.

Consider the individual x = ⟨5, 0, 5⟩, meaning that x1 = 5,
x2 = 0 and x3 = 5. According to the DNN in Fig. 2, the
output is the positive label. After flipping the value of the
protected attribute x2 from 0 to 1, we have the individual x′ =
⟨5, 1, 5⟩, for which the DNN’s output is also the positive label.
Since the DNN’s output is oblivious to the gender attribute,
we say that it is fair for this input x.

Consider another individual x = ⟨1, 0, 5⟩ whose gender-
flipped counterpart is x′ = ⟨1, 1, 5⟩. Since the DNN produces
the negative label as output for both, it is still fair for this
input x.

To summarize, the DNN f may be fair regardless of whether
a particular x ∈ X receives a positive or negative output; as
long as x receives the same label as its counterpart x′, the
DNN is considered fair.

In contrast, since the individual x = ⟨1, 0, 3⟩ and its
counterpart x′ = ⟨1, 1, 3⟩ receive different outputs from f ,
where x gets the positive label but x′ gets the negative label,
the DNN is not fair for this input x. Furthermore, this pair
(x, x′) serves as a counterexample.

B. Limitations of Prior Work

One possible solution to the fairness certification problem
as defined above would be explicit enumeration of the (x, x′)
pairs. For each x ∈ X , we may flip its protected attribute
to generate x′ and then check if f(x) = f(x′). However,
since the size of the input domain X may be extremely large

or infinite, this method would be prohibitively expensive in
practice.

Another possible solution is to leverage existing DNN ro-
bustness verifiers, such as ReluVal [7], [20], DeepPoly [8], and
α-β-CROWN [9]. However, since robustness and individual
fairness are fundamentally different properties, applying a
robustness verifier would not work well in practice. The reason
is because a robustness verifier takes an individual x and
tries to prove that small perturbation of x (often defined by
||x − x′|| < δ, where δ is a small constant) does not change
the output label. However, during fairness certification, we are
not given a concrete individual x; instead, we are supposed to
check for all x ∈ X and x′ ∈ X , where xj ̸= x′

j . If we force
a robustness verifier to take a symbolic input I (∀x ∈ X), it
would try to prove that the DNN produces the same output
label for all inputs in X (implying that the DNN makes the
same decision for all inputs in X).

Recall our example network f in Fig. 2. While our method
can prove that f is fair for an input domain that contains x =
⟨5, 0, 5⟩ and x′ = ⟨5, 1, 5⟩ (both receive a positive outcome) as
well as x = ⟨1, 0, 5⟩ and x′ = ⟨1, 1, 5⟩ (both receive a negative
outcome), this cannot be accomplished by a robustness verifier
(since it is almost never possible for all individuals in the input
domain to have the same outcome).

The only currently available method for (qualitatively) cer-
tifying individual fairness of a DNN is Fairify [10], which
relies on the SMT solver and may return one of the following
results: SAT (meaning that there exists a counterexample that
violates the fairness property), UNSAT (meaning that there
is no counterexample), or UNKNOWN (meaning that the
result remains inconclusive). The main problem of Fairify is
that it works directly in the concrete domain by precisely
encoding the non-linear computations inside the DNN as
logical formulas and solving these formulas using the SMT
solver. Since each call to the SMT solver is NP-complete, the
overall computational cost is high. Although Fairify attempts
to reduce the computational cost by partitioning input domain
a priori and heuristically pruning logical constraints, it does
not scale as the network size and input dimension increase.
Indeed, our experimental evaluation of Fairify shows that only
tiny networks (with ≤ 100 neurons) can be certified.

C. Novelty of Our Method

We overcome the aforementioned (accuracy and scalability)
limitations by developing a method that is both scalable and
able to quantify the degree of fairness.

First, FairQuant relies on abstraction to improve effi-
ciency/scalability while maintaining the accuracy of sym-
bolic forward analysis. This increases the chance of quickly
certifying more input regions as fair or falsifying them as
unfair, and decreases the chance of leaving them as undecided.
Specifically, we use symbolic interval analysis, instead of the
SMT solver used by Fairify. The advantage is that symbolic
interval analysis focuses on the behavior of the DNN in
an abstract domain, which is inherently more efficient and
scalable than analysis in the concrete domain.
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Fig. 3. Iterative refinement tree for the example DNN in Fig. 2, to increase
the chance of certifying or falsifying the DNN within an input partition.

Second, FairQuant relies on iterative refinement (partition-
ing of the input domain) to improve the accuracy of forward
analysis. Instead of creating input partitions a priori, it con-
ducts iterative refinement on a “need-to” basis guided by the
fairness property to be certified. This makes it more effective
than the static partitioning technique of Fairify, which divides
the input domain into a fixed number of equal chunks even
before verifying any of them.

To see why iterative refinement can improve accuracy,
consider our running example in Fig. 2. Initially, forward
analysis is applied to the DNN in the entire input domain
X , for which the certification result is undecided. During
refinement, our method would choose x1 (over x3) to split,
based on its impact on the network’s output. After splitting
x1 ∈ {1, 2, 3, 4, 5} into x1 ∈ {1, 2, 3} and x1 ∈ {4, 5}, we
apply forward analysis to each of these two new partitions.

As shown in Fig. 3, while the partition for x1 ∈ {1, 2, 3}
remains undecided, the partition for x1 ∈ {4, 5} is certified as
fair. This partition has 12 pairs of x ∈ X and x′ ∈ X , where
x2 ̸= x′

2. Therefore, from the input domain X which has 30
(x, x′) pairs, we certify 12/30 = 40% as fair. Next, we split
the undecided partition x1 ∈ {1, 2, 3} into x1 ∈ {1, 2} and
x1 ∈ {3} and apply forward analysis to each of these two new
partitions. While the first new partition remains undecided,
the second one is certified as fair. Since this partition has six
(x, x′) pairs, it represents 6/30 = 20% of the input domain.

This iterative refinement process continues until one of
the following two termination conditions is satisfied: either
there is no more partition to apply forward analysis to, or a
predetermined time limit (e.g., 30 minutes) is reached.

III. PRELIMINARIES

In this section, we review the fairness definitions as well as
the basics of neural network verification.

A. Fairness Definitions

Let f : X → Y be a classifier, where X is the input domain
and Y is the output range. Each input x ∈ X is a vector in
the D-dimensional attribute space, denoted x = ⟨x1, . . . , xD⟩,
where 1, . . . , D are vector indices. Each output y ∈ Y is
a class label. Some attributes are legally protected attributes
(e.g., gender and race) while others are unprotected attributes.
Let P be the set of vector indices corresponding to protected
attributes in x. We say that xj is a protected attribute if and
only if j ∈ P .

Definition 1 (Individual Fairness for a Given Input): Given
a classifier f , an input x ∈ X , and a protected attribute j ∈ P ,
we say that f is individually fair for x if and only if f(x) =
f(x′) for any x′ ∈ X that differs from x only in the protected
attribute xj .

This notion of fairness is local in the sense that it requires
the classifier to treat an individual x in a manner that is
oblivious to its protected attribute xj of x.

Definition 2 (Individual Fairness for the Input Domain):
Given a classifier f , an input domain X , and a protected
attribute j ∈ P , we say that f is individually fair for the
input domain X if and only if, for all x ∈ X , f(x) = f(x′)
holds for any x′ ∈ X that differs from x only in the protected
attribute xj .

This notion of fairness is global since it requires the
classifier to treat all x ∈ X in a manner that is oblivious
to the protected attribute xj of x. The method of explicit enu-
meration would be prohibitively expensive since the number
of individuals in X may be astronomically large or infinite.

B. Connecting Robustness to Fairness

Perturbation robustness, which is the most frequently
checked property by existing DNN verifiers, is closely related
to the notion of adversarial examples. The idea is that, if
the DNN’s classification output were robust, then applying a
small perturbation to a given input x should not change the
classifier’s output for x.

Definition 3 (Robustness): Given a classifier f , an input
x ∈ X , and a small constant δ, we say that f is robust against
δ-perturbation if and only if f(x) = f(x′) holds for all x′ ∈ X
such that ||x− x′|| ≤ δ.

By definition, perturbation robustness is a local property
defined for a particular input x, where the set of inputs defined
by ||x−x′|| ≤ δ is not supposed to be large. While in theory, a
robustness verifier may be forced to check individual fairness
by setting δ to a large value (e.g., to include the entire input
domain X), it almost never works in practice. The reason
is because, by definition, such a global robustness property
requires that all inputs to have the same classification output
returned by the DNN – such a classifier f would be practically
useless.

This observation has been confirmed by our experiments
using α-β-CROWN [9], a state-of-the-art DNN robustness
verifier. Toward this end, we have created a merged network
that contains two copies of the same network, with one input
for one protected attribute group (e.g., male) and the other
input for the other group (e.g., female). While the verifier
finds counterexamples in seconds (and thus falsifies fairness
of the DNN), it has the same limitation as Fairify: it merely
declares the DNN as unsafe (unfair, in our context) as soon as
it finds a counterexample, but does not provide users with any
meaningful, quantitative information. In contrast, our method
provides a quantitative framework for certified fairness by
reasoning about all individuals in the input domain.



IV. OVERVIEW OF OUR METHOD

In this section, we present the top-level procedure of our
method; detailed algorithms of the subroutines will be pre-
sented in subsequent sections.

Let the DNN y = f(x) be implemented as a series of
affine transformations followed by nonlinear activations, where
each affine transformation step and its subsequent nonlinear
activation step constitute a hidden layer. Let l be the total
number of hidden layers, then f = fl(fl−1(...f2(f1(x ·W1) ·
W2)... · Wl−1). For each k ∈ [1, l], Wk denotes the affine
transformation and fk() denotes the nonlinear activation. More
specifically, W1 consists of the edge weights at layer 1 and
x ·W1 = Σixiw1,i. Furthermore, f1 is the activation function,
e.g., ReLU(x ·W1) = max(0, x ·W1).

A. The Basic Components

Similar to existing symbolic interval analysis based DNN
verifiers [7], [8], [9], our method consists of three basic
components: forward analysis, classification, and refinement.

a) Forward Analysis: The goal of forward analysis is
to compute upper and lower bounds of the network’s output
for all inputs. It starts by assigning a symbolic interval to
each input attribute. For example, in Fig. 2, i1 = [x1, x1] is
symbolic, where x1 ∈ {0, 1, 2, 3, 4, 5}. Compared to concrete
values, symbolic values have the advantages of making the
analysis faster and more scalable. They are also sound in that
they overapproximate the possible concrete values.

b) Classification: In a binary classifier, e.g., the DNN in
Fig. 2 for making hiring decisions, the output is a singular
node o whose numerical values needs to be turned to either
the positive or the negative class label based on a threshold
value (say 0). For example, if o ∈ [0.3, 0.4], the output label
is guaranteed to be positive since o > 0 always holds, and if
o ∈ [−0.7,−0.6], the output label is guaranteed to be negative
since o < 0 always holds. However, if o ∈ [−0.7, 0.4], the
output label remains undecided – this is when our method
needs to conduct refinement.

c) Refinement: The goal of refinement is to partition
the input domain of the DNN to improve the (upper and
lower) symbolic bounds computed by forward analysis. Since
approximation error may be introduced when linear bounds
are pushed through nonlinear activation functions (e.g., unless
ReLU is always on or always off), by partitioning the input
domain, we hope to increase the chance that activation func-
tions behave similar to their linear approximations for each
of the new (and smaller) input partitions, thus reducing the
approximation error.

B. The Top-Level Procedure

Algorithm 1 shows the top-level procedure, whose input
consists of the network f , the protected attribute xj , and the
input domain X . Together, these three parameters define the
fairness certification problem, denoted ⟨f, xj , X⟩.

Within the top-level procedure, we first initialize the input
partition P as X and push it into the stack S. Each input
partition is associated with a refinement depth. Since P is

Algorithm 1: Overview Method of FairQuant
Input: neural network f , protected attribute xj , input domain X
Result: rcer, rfal, rund, which are percentages of certified,

falsified, and undecided inputs
1 Initial partition P ← X with refinement depth 0
2 Push P into an empty stack S
// initially, 100% undecided

3 rcer ← 0, rfal ← 0, rund ← 1
4 while S is not empty and not-yet-timed-out do
5 Pop P from the stack S

// certify current partition
6 result← SYMBOLICFORWARD(f, xj , P )
7 if result = Undecided then

// split current partition
8 Pl, Pu ← BACKWARDREFINEMENT(f, P )
9 Push Pl and Pu into the stack S

// update the percentages
10 rcer, rfal, rund ← QUANTIFYFAIRNESS(result, P,X)

11 return rcer, rfal, rund

initially the entire input domain X , its refinement depth is
set to 0. Subsequently, the refinement depth increments every
time P is bisected to two smaller partitions. In general, the
refinement depth of P ⊆ X is the number of times that X is
bisected to reach P .

In Lines 4-10 of Algorithm 1, we go through each partition
stored in the stack S, until there is no partition left or a time
limit is reached. For each partition P , we first apply symbolic
forward analysis (Line 6) to check if the DNN f is fair for
all individuals in P . There are three possible outcomes: (1)
fair (certified), meaning that f(x) = f(x′) for all x ∈ P and
its counterpart x′; (2) unfair (falsified), meaning that f(x) ̸=
f(x′) for all x ∈ P and its counterpart x′; or (3) undecided.

Next, if the result is undecided (Line 7), we apply backward
refinement by splitting P into two disjoint new partitions Pl

and Pu. By focusing on each of these smaller partitions in a
subsequent iteration step, we hope to increase the chance of
certifying it as fair (or falsifying it as unfair).

Finally, we quantify fairness (Line 10) by updating the
percentages of certified (rcer), falsified (rfal) and undecided
(rund) inputs of X . Specifically, if the previously-undecided
partition P is now certified as fair, we decrease the undecided
rate rund by |P |/|X| and increase the certified rate rcer by the
same amount. On the other hand, if P is falsified as unfair,
we decrease rund by |P |/|X| and increase the falsified rate
rfal by the same amount.

In the next three sections, we will present our detailed algo-
rithms for forward analysis (Section V), backward refinement
(Section VI), and quantification (Section VII).

C. The Correctness

Before presenting the detailed algorithms, we would like to
make two claims about the correctness of our method. The
first claim is about the qualitative result of forward analysis,
which may be fair, unfair, or undecided.

Theorem 1: When forward analysis declares an input par-
tition P ⊆ X as fair, the result is guaranteed to be sound in
that f(x) = f ′(x) holds for all x ∈ P and its counterpart



x′, Similarly, when forward analysis declares P as unfair, the
result is guaranteed to be sound in that f(x) ̸= f ′(x) holds
for all x ∈ P and its counterpart x′.

The above soundness guarantee is because SYMBOLICFOR-
WARD soundly overapproximates the DNN’s actual behavior.
That is, the upper bound UB is possibly-bigger than the actual
value, and the lower bound LB is possibly-smaller than the
actual value. As a result, the symbolic interval [LB,UB]
computed by SYMBOLICFORWARD guarantees to include all
concrete values. In the next three sections, we shall discuss in
more detail how the symbolic interval is used to decide if P
is fair, unfair, or undecided.

When an input partition P is undecided, it means that some
individuals in P may be treated fairly whereas others in P may
be treated unfairly. This brings us to the second claim about
the quantitative result of our method, represented by the rates
rcer, rfal and rund.

Theorem 2: The certification rate rcer computed by our
method is guaranteed to be a lower bound of the percentage of
inputs whose outputs are actually fair. Similarly, the falsified
rate rfal is a lower bound of the percentage of inputs whose
outputs are actually unfair.

In other words, when our method generates the percentages
of fair and unfair inputs, it guarantees that they are provable
lower bounds of certification and falsification, respectively.
The reason is because SYMBOLICFORWARD soundly overap-
proximates the actual value range. When the output intervals
indicate that the model is fair (unfair) for all inputs in P , it is
definitely fair (unfair). Thus, both rcer and rfal are guaranteed
to be lower bounds.

Since the sum of the three rates is 1, meaning that rund =
1 − rcer − rfal, the undecided rate rund is guaranteed to be
an upper bound.

V. SYMBOLIC FORWARD ANALYSIS

Algorithm 2 shows our forward analysis subroutine, which
takes the subproblem ⟨f, xj , P ⟩ as input and returns the
certification result as output.

Algorithm 2: Subroutine SYMBOLICFORWARD()
Input: neural network f , protected attribute xj , input partition P
Result: certification result, which may be fair/unfair/undecided

1 I ← P |xj∈[0,0] and I′ ← P |xj∈[1,1]

2 O ← FORWARDPASS(f, I) // for x ∈ P with xj ∈ [0, 0]

3 O′ ← FORWARDPASS(f, I′) // for x′ ∈ P with xj ∈ [1, 1]

4 if (Olb > 0 ∧O′
lb > 0) ∨ (Oub < 0 ∧O′

ub < 0) then
5 result← Fair

6 else if (Olb > 0 ∧O′
ub < 0) ∨ (Oub < 0 ∧O′

lb > 0) then
7 result← Unfair

8 else
9 result← Undecided

10 return result

A. The Two Steps

Our forward analysis consists of two steps. First, a standard
symbolic interval based analysis is invoked twice, for the

0

O O′

both negative
(fair)

O′O

both positive
(fair)

0

O O′

O neg, O′ pos
(unfair)

O′ O

O pos, O′ neg
(unfair)

Fig. 4. Sufficient conditions for deciding fairness based on symbolic output
intervals O and O′, and the threshold 0: there are two fair conditions (left)
and two unfair conditions (right).

symbolic inputs I and I ′, to compute the corresponding
symbolic outputs O and O′. Second, O and O′ are used to
decide if the certification result is fair, unfair, or undecided.

In the first step, the symbolic input I = P |xj∈[0,0] is defined
as the subset of input partition P where all inputs have the
protected attribute xj set to 0. In contrast, I ′ = P |xj∈[1,1] is
defined as the subset of P where all inputs have xj set to
1. The output O is a sound overapproximation of f(x) for
x ∈ I , whereas the output O′ is a sound overapproximation
of f(x′) for x′ ∈ I ′. The subroutine FORWARDPASS used
to compute O and O′ is similar to any state-of-the-art neural
network verifier based on symbolic interval analysis; in our
implementation, we used the algorithm of ReluVal [7].

In the second step, the two output intervals, O = [Olb, Oub]
and O′ = [O′

lb, O
′
ub], are used to compute the certification

result. To understand how it works, recall that in the concrete
domain, the numerical value of the DNN’s output node is
compared against a threshold, say 0, to determine if the output
label should be positive or negative. In the symbolic interval
abstract domain, the upper and lower bounds of the numerical
values are used to determine if the model is fair, unfair, or
undecided.

Below are the five scenarios:
1) If Olb > 0 and O′

lb > 0, both O and O′ have the positive
label, meaning that f is fair for P .

2) If Oub < 0 and O′
ub < 0, both O and O′ have the

negative label, meaning that f is fair for P .
3) If Olb > 0 and O′

ub < 0, O is positive but O′ is negative,
meaning that f is unfair for P .

4) If Oub < 0 and O′
lb > 0, O is negative but O′ is positive,

meaning that f is unfair for P .
5) Otherwise, f remains undecided for P .

Fig. 4 illustrates the first four scenarios above. Specifically,
the horizontal line segments represent the value intervals of O
and O′, whose upper/lower bounds may be either > 0 or < 0.
The vertical lines represent the threshold value 0.

We can extend out method from two protected attribute (PA)
groups (e.g., male and female) to more than two PA groups.
For example, if the protected attribute xj has three values,
we will have three symbolic inputs (I, I ′ and I ′′) and three
corresponding symbolic outputs (O,O′ and O′′). To decide if
f is fair (or unfair) in this multi-PA group setting, we check
if (1) individuals in each PA group receive the same output
label; and (2) the output labels for the three PA groups are the
same.



We can also extend our method from binary classification
to multi-valued classification. For example, if there are three
possible output labels, we will have O1, O2, and O3 as the
symbolic intervals for the three values for one PA group (I)
and O′

1, O
′
2 and O′

3 for the other PA group (I ′). To decide
if f is fair (or unfair) for this multi-valued classification, we
check (1) which output labels are generated for I and I ′; and
(2) whether these two output labels (O and O′) are the same.

B. The Running Example

For our running example in Fig. 2, consider the initial
input partition P = X . For ease of understanding, we denote
the symbolic expressions for a neuron n as Sin(n) after the
affine transformation, and as S(n) after the ReLU activation.
Furthermore, S will be used for I , and S′ will be used for I ′.

Let I = P |xj=0 and I ′ = P |xj=1. After affine transfor-
mation in the hidden layer, we have Sin(h1) = 2x1 + 1.2x3

and S′
in(h1) = 2x1 + 1.2x3 + 0.5. If we concretize these

symbolic expressions, we will have Sin(h1) = [2, 16] and
S′
in(h1) = [2.5, 16.5]. Based on these concrete intervals, we

know that h1 is always active for both I and I ′. Since the
activation function is ReLU, we have S(h1) = Sin(h1) and
S′(h1) = S′

in(h1).
For the hidden neuron h2, we have Sin(h2) = −0.2x1 +

0.4x3 and S′
in(h2) = −0.2x1+0.4x3+0.7, whose correspond-

ing concrete bounds are [−1, 1.8] and [−0.3, 2.5], respectively.
In both cases, since h2 is nonlinear (neither always-on nor
always-off), we must approximate the values using linear
expressions to obtain S(h2) and S′(h2). While we use the
sound overapproximation method of Wang et al. [20], other
techniques (e.g., [21], [8]) may also be used.

After overapproximating the ReLU behavior of h2, we
obtain S(h2) = [−0.128x1+0.257x3, −0.128x1+0.257x3+
0.643] and S′(h2) = [−0.178x1 + 0.357x3 + 0.625,
−0.178x1 + 0.357x3 + 0.893].

Finally, we compute Sin(o) = [0.528x1− 0.017x3− 0.643,
0.528x1−0.017x3] and S′

in(o) = [0.578x1−0.117x3−0.793,
0.578x1−0.117x3−0.525]. From these symbolic bounds, we
obtain the concrete bounds of O = [−0.2, 2.64] and O′ =
[−0.8, 2.368]. Since these output intervals are not tight enough
to determine the output labels for I and I ′, which are needed
to decide if the model is fair or unfair for the partition P , the
model remains undecided.

To improve the accuracy, we need to split P into smaller
input partitions and then apply symbolic forward analysis to
each partition again. How to split P will be addressed by the
iterative backward refinement method presented in the next
section.

VI. ITERATIVE BACKWARD REFINEMENT

The goal of iterative backward refinement is to split the
currently-undecided input partition P into smaller partitions,
so that for each of these smaller partitions, symbolic forward
analysis will obtain a more accurate result. Algorithm 3 shows
the pseudo code, which takes the network f and the partition
P as input and returns two smaller partitions Pl and Pu as

output. Inside this procedure, Lines 7-14 are related to splitting
P , and Lines 2-6 are related to early termination conditions.

Algorithm 3: Subroutine BACKWARDREFINEMENT()
Input: neural network f , input partition P
Result: smaller partitions Pl and Pu, if any

1 Let cex count be the total number of counterexamples found
2 if (P.depth ≥ max refinement depth) then
3 return (null,null) // do not split P

4 else if (P.depth ≥ min sample depth) and SAMPLEDCEX(P ) then
5 cex count += 1
6 return (null,null) // do not split P

7 else
// R, R′ are gradient masks computed for I, I′

8 gI ← BACKWARDPASS(f,R)
9 gI′ ← BACKWARDPASS(f,R′)

10 g = (gI + gI′ )/2
// Best input attribute to bisect

11 xi ← argmaxxi
g(xi) ∗ |ub(xi)− lb(xi)|

12 Pl ← P | xi∈[lb,(lb+ub)/2]

13 Pu ← P | xi∈[(lb+ub)/2,ub]

14 return Pl, Pu

A. Early Termination Conditions

In Lines 2-6 of Algorithm 3, we check if P.depth
exceeds the predefined max refinement depth. If the an-
swer is yes, we avoid splitting P further. For example, if
max refinement depth= 20, it means the current partition P
occupies only |P |/|X| = 1

220 of the entire input domain
X . By increasing the refinement depth, we can decrease the
percentage of undecided inputs over X .

If P.depth has not exceeded the maximal refine-
ment depth, we check if P.depth exceeds the predefined
min sample depth, which is set to a value (e.g., 15) smaller
than max refinement depth. When P.depth exceeds this
threshold, we start searching for counterexamples in P via
random sampling.

Inside the random sampling subroutine SAMPLEDCEX(P )
shown in Line 4, we sample up to 10 concrete inputs in P
and check if x and its counterpart x′ satisfy f(x) ̸= f(x′). If
this condition is satisfied, a counterexample is found (but P
remains undecided); in this case, we increment cex count and
stop splitting P . If no counterexample is found, we continue
splitting P into smaller partitions.

Note that in both early termination cases (Lines 3 and 6),
the partition P will be marked as undecided since we are not
able to decide whether the DNN model is fair or unfair to all
individuals in P .

B. Splitting Input Intervals

In Lines 7-14 of Algorithm 3, we split P into smaller
partitions Pl and Pu by first identifying the input attribute
xi that has the largest influence on the output (Lines 8-12)
and then bisecting its input interval xi ∈ [lb, ub].

Our method for identifying the input attribute xi is based on
maximizing the impact of an input attribute on the network’s
output. One way to estimate the impact is taking the product
of the gradient g(xi) and the input range |ub(xi)− lb(xi)|. In



the literature, the product is often called the smear value [22],
[23]. Unlike existing methods such as Wang et al. [7], however,
our computation of the smear value is different because we
must consider both inputs I and I ′, which may have different
gradients.

Specifically, during forward analysis, we store the neuron
activation information in two gradient mask matrices denoted
R and R′, where R[i][j] is [1,1] if the j-th neuron at i-th layer
is always active, [0,0] if it is always inactive, and [0,1] if it is
unknown. The neuron activation information is used later to
perform backward refinement for this partition P .

During refinement, we first compute the two gradients gI
and gI′ and then take the average. Our goal is to identify
the input attribute that has the largest overall influence on the
network’s output.

C. The Running Example

Consider our running example in Fig. 2 again. To compute
the smear value, we start with the output layer’s edge weights,
which are 0.2 for h1 and -1 for h2. Since the ReLU associated
with h1 is always-on, gI(h1) and gI′(h1) are set to the interval
[0.2, 0.2]. However, since the ReLU associated with h2 is
nonlinear, as indicated by the gradient mask matrices R and
R′, gI(h2) and gI′(h2) are set to the interval [−1.0, 0].

Then, we propagate these gradient intervals backwardly, to
get gI(i1) = gI′(i1) = [(0.2 × 2) + (0 × −0.2), (0.2 × 2) +
(−1 × −0.2)] = [0.4, 0.6] and gI(i2) = gI′(i2) = [−0.6, 0.1]
and gI(i3) = gI′(i3) = [−0.16, 0.24].

Next, we compute the average g, based on which we
compute the smear values. Since x1 has the smear value of
0.6× 4 = 2.4 and x3 has the smear value of 0.24× 5 = 1.2,
we choose to partition P by bisecting the input interval of x1.
This leads to the smaller partitions shown in Fig. 3.

D. Generalization

While we only consider ReLU networks in this paper, our
refinement technique can be extended to non-ReLU activa-
tions. Recall that, by definition, ReLU(z) = 0 (inactive) if
z < 0, and ReLU(z) = 1 (active) if z > 0. Let σ(z) be a
non-ReLU activation function. To compute the gradient mask
matrices R and R′, we use thresholds (ϵ1, ϵ2) to approximate
the on/off behavior: the mask is [0,0] (inactive) if z < ϵ1 and
[1,1] (active) if z > ϵ2.

Although the approximate on/off behavior of non-ReLU
activation function σ(z) is not the same as the on/off behavior
of ReLU(z), it serves as a practically-useful heuristic to rank
the input attributes. Furthermore, this generalization will not
affect the soundness of our method, since the gradient masks
computed in this manner are only used for picking which input
attribute to split first.

VII. FAIRNESS QUANTIFICATION

We now present our method for updating the percentages of
certified and falsified inputs, when the DNN model is found to
be fair or unfair for the current input partition P . The pseudo
code is shown in Algorithm 4.

Algorithm 4: Subroutine QUANTIFYFAIRNESS()
Input: certification result, input partition P , input domain X
Result: Percentages rcer, rfal, rund

1 partition size =
∏

∀xi∈P,xi ̸=xj
(UB(xi)− LB(xi))

2 domain size =
∏

∀xi∈X,xi ̸=xj
(UB(xi)− LB(xi))

// percentage of inputs in partition P

3 rP = (partition size / domain size)
4 if result = Fair then
5 rcer += rp
6 rund −= rp

7 else if result = Unfair then
8 rfal += rP
9 rund −= rP

10 return rcer, rfal, rund

There are three cases. First, if the current partition P is
found to be fair, meaning that all inputs in P are treated
fairly, we compute the percentage of input domain X covered
by the partition P , denoted rP , and then add rP to rcer, the
percentage of certified inputs. Second, if the current partition
P is found to be unfair, meaning that all inputs in P are treated
unfairly, we add rP to rfal, the percentage of falsified inputs.
In both cases, we also subtract rp from rund. Otherwise, the
current partition P remains undecided and the percentages
remain unchanged.

Consider our running example with input partition P de-
fined as x1 ∈ [4, 5] ∧ x2 ∈ [0, 1] ∧ x3 ∈ [0, 5], as shown by
the right child of the root node in Fig. 3. This partition has
a total of 24 individuals, and its corresponding I = P |x2=0

and I ′ = P |x2=1 contain 12 individuals each. In contrast, the
entire input domain X has 60 individuals, or 30 pairs of x
and its counterpart x′ (where x2 ̸= x′

2).
For this input partition P , O = [1.49, 2.65] and O′ =

[1.0, 2.36] are the output intervals. Assuming that the decision
threshold is 0, the bounds of O and O′ imply that the DNN
model will generate the positive label for both I and I ′,
meaning that the DNN model is fair for all individuals in P .

Since the input partition size is 12 and the input domain
size is 30, the rate rP = 12

30 = 40%. After certifying P to
be fair, we can add 40% to rcer, the certification rate, and
consequently subtract 40% from rund, the undecided rate.

While the above computation assumes that population dis-
tribution for each feature is uniform and thus the percentage
(e.g., 40%) is computed directly from the partition size (e.g.,
12) and the domain size (e.g., 30), the method can be easily
extended to consider a non-uniform population distribution.
Furthermore, note that the method works regardless of whether
the input attributes have integer or real values.

VIII. EXPERIMENTS

We have implemented FairQuant in a software tool written
in C, by leveraging the OpenBlas2 library for fast matrix
multiplication and symbolic representation of the upper and
lower bounds. Our forward analysis follows that of Wang et
al. [7], [20]. For experimental comparison, we also run Fairify

2http://www.openblas.net



TABLE I
STATISTICS OF THE DATASETS AND DNNS USED IN OUR EXPERIMENTS.

Dataset (PA) # Inputs DNN # Layers # Neurons Accuracy (%)

Bank (age) 16

BM-1 [10] 2 80 89.20
BM-2 [10] 2 48 88.76
BM-3 [10] 1 100 88.22
BM-4 [10] 3 300 89.55
BM-5 [10] 2 32 88.90
BM-6 [10] 2 18 88.94
BM-7 [10] 2 128 88.70
BM-8 [10] 5 124 89.20

German (age) 20

GC-1 [10] 1 50 72.67
GC-2 [10] 1 100 74.67
GC-3 [10] 1 9 75.33
GC-4 [10] 2 10 70.67
GC-5 [10] 5 124 69.33

Adult (gender) 13

AC-1 [10] 2 24 85.24
AC-2 [10] 1 100 84.70
AC-3 [10] 1 50 84.52
AC-4 [10] 2 200 84.86
AC-5 [10] 2 128 85.19
AC-6 [10] 2 24 84.77
AC-7 [10] 5 124 84.85
AC-8 [10] 2 10 82.15
AC-9 [10] 4 12 81.22
AC-10 [10] 4 20 78.56
AC-11 [10] 4 40 79.25
AC-12 [10] 9 45 81.46

Compas (race) 6

compas-1 2 24 73.46
compas-2 5 124 72.82
compas-3 3 600 72.98
compas-4 9 90 72.98
compas-5 10 2000 72.01
compas-6 4 4000 73.95
compas-7 10 10000 72.49

which is the only currently-available tool for DNN individual
fairness certification. Since Fairify cannot quantify the degree
of fairness, we compute the certified/falsified/undecided rates
based on its reported statistics.

It is worth noting that Fairify and our method (FairQuant)
have a fundamental difference in falsification. Fairify stops
and declares an input partition as SAT as soon as it finds
a counterexample in that partition; thus, the number of coun-
terexamples that it finds is always the same as the number
of SAT partitions it reports. However, SAT partitions are not
necessarily unfair partitions, since unfair partitions require all
inputs to be counterexamples, but a SAT partition, excluding
the one counterexample, still remains undecided.

FairQuant checks if an entire partition is unfair. Moreover,
when the partition is undecided, it can minimize the amount
of undecided inputs by only sampling for counterexamples
after it reaches a deep enough refinement depth. This is made
possible through our iterative refinement.

For example, in a DNN model named GC-3, Fairify finds 194
SAT partitions (together with 6 UNSAT and 1 UNKNOWN
partitions). However, none of these 194 SAT partitions are
unfair partitions. Instead, the percentage of falsified inputs is
close to being 0% (representing 194 counterexamples out of
over 435 trillion individuals in the input domain), the percent-
age of certified inputs is 2.985% (6 UNSAT partitions out of
201 partitions), and the rest remains undecided. FairQuant, on
the other hand, finds 25,963 counterexamples; furthermore, it
is able to formally certify 58.44% of the inputs as fair.

A. Benchmarks

Table I shows the statistics of the benchmarks, including
32 deep neural networks trained on four popular datasets for
fairness research. Among the 32 networks, 25 came from
Fairify [10] and the other 7 were trained by ourselves using
TensorFlow. All of these networks have a single node in
the output layer, to determine the binary classification re-
sult. Columns 1-2 show the name of each dataset with its
considered protected attribute (PA) and the number of input
attributes. Columns 3-6 show the name of each DNN model,
its number of hidden layers, number of hidden neurons, and
classification accuracy. The accuracy for DNNs trained on
Bank, German, and Adult was provided by the Fairify paper.
For the models we trained using Compas, we have reserved
10% of the data for testing. All the networks coming directly
from Fairify on Bank, German, and Adult datasets are small,
where the largest has only 200 hidden neurons. Moreover,
most of them have only 1 or 2 hidden layers. Thus, we
additionally trained much larger networks, with up to 10,000
hidden neurons, using the Compas dataset.

Details of the four datasets are given as follows. Bank [16]
is a dataset for predicting if a bank client will subscribe to
its marketing; it consists of 45,000 samples. German [17] is
a dataset for predicting the credit risk of a person; it consists
of 1,000 samples. Adult [18] is a dataset for predicting if a
person earns more than $50,000; it consists of 32,561 samples.
Finally, Compas [19] is a dataset for predicting the risk of
recidivism; it consists of 6,172 samples.3

We evaluate our method using three legally-protected input
attributes. For Bank and German, we use age; for Adult, we use
gender; and for Compas, we use race.4 These are consistent
with Fairify and other prior works in the fairness research.

B. Experimental Setup

We ran all experiments on a computer with 2 CPU, 4GB
memory, and Ubuntu 20.04 Linux operating system. We set
a time limit of 30 minutes for each DNN model. Our experi-
ments were designed to answer three research questions:

1) Is FairQuant more accurate than the current state-of-the-
art in certifying individual fairness of a DNN model?

2) Is FairQuant more scalable than the current state-of-
the-art in handling DNN models, especially when the
network size increases?

3) Is FairQuant more effective than the current state-of-
the-art in providing feedback, e.g., by quantitatively
measuring the percentages of certified, falsified, and
undecided inputs?

Fairify requires a parameter MS (maximum size of an input
attribute) based on which it creates a fixed number of input
partitions prior to certification. On the DNN models trained
for Bank, German, and Adult, we used the default MS values

3We used the preprocessed Compas data provided by [24].
4For Bank and German, we use binarized age attribute provided by Fairify.

For Compas, we binarize race attribute into {white, non-white} as done
in [25].



TABLE II
RESULTS FOR FAIRNESS CERTIFICATION: FAIRIFY VIS-À-VIS FAIRQUANT

Dataset DNN
Fairify [10] FairQuant (new)

Time Cex #Cex Cer% Fal% Und% Time Cex #Cex Cer% Fal% Und%

B
an

k

BM-1 30m ✓ 11 10.00 0 90.00 4.82s ✓ 2820 94.23 0 5.76
BM-2 31m ✓ 28 16.07 0 83.93 3.23s ✓ 2479 93.41 0 6.58
BM-3 31m ✓ 27 19.60 0 81.40 1.21s ✓ 1864 95.69 0 4.30
BM-4 35m ✓ 4 3.72 0 96.18 71.12s ✓ 5135 87.03 0 12.96
BM-5 23m ✓ 114 77.25 0 22.75 1.03s ✓ 1474 96.27 0 3.72
BM-6 12m ✓ 155 69.41 0 30.59 0.44s ✓ 1426 96.44 0 3.55
BM-7 30m ✓ 57 9.41 0 90.59 12.26s ✓ 7017 83.65 0 16.34
BM-8 30m ✓ 1 0.98 0 99.02 18.99s ✓ 3074 90.75 0 9.24

G
er

m
an

GC-1 32m ✓ 22 0 0 100 9.73s ✓ 31585 32.67 0 67.33
GC-2 33m ✓ 6 0 0 100 31.72s ✓ 32655 42.21 0 57.79
GC-3 8m ✓ 194 2.98 0 97.02 6.77s ✓ 25963 58.44 0 41.55
GC-4 4m ✓ 2 99.00 0 1.00 0.29s ✓ 77 99.65 0 0.34
GC-5 30m ✗ 0 0 0 100 1.24s ✓ 9 99.80 0 0.19

A
du

lt

AC-1 32m ✓ 3 0.03 0 99.97 3.23s ✓ 6151 90.68 0 9.31
AC-2 31m ✓ 9 0.01 0 99.99 30.04s ✓ 13008 79.93 0 20.06
AC-3 32m ✓ 20 0 0 100 37.12s ✓ 60494 33.29 0 66.70
AC-4 36m ✗ 0 0 0 100 8m ✓ 61324 24.79 0 75.20
AC-5 33m ✗ 0 0 0 100 4m ✓ 71012 19.12 0 80.87
AC-6 33m ✓ 4 0.01 0 99.99 10.20s ✓ 31593 58.82 0 41.17
AC-7 30m ✗ 0 0.01 0 99.99 4m ✓ 25588 31.72 0 68.27
AC-8 30m ✓ 39 0.03 0 99.97 11.18s ✓ 26179 66.50 0 33.49
AC-9 30m ✓ 126 0.64 0 99.36 3.50s ✓ 5470 91.13 0 8.86
AC-10 32m ✓ 8 0.03 0 99.97 5.01s ✓ 9033 87.65 0 12.34
AC-11 30m ✗ 0 0 0 100 36.44s ✓ 24516 58.01 0 41.98
AC-12 30m ✗ 0 0.02 0 99.98 0.91s ✓ 8824 70.82 0 29.17

C
om

pa
s

compas-1 17m ✓ 2 80.00 0.32 19.68 0.01s ✓ 17 97.27 2.72 0
compas-2 31m ✗ 0 0 0 100 0.01s ✓ 15 97.59 2.40 0
compas-3 30m ✗ 0 0 0 100 0.30s ✓ 12 98.07 1.92 0
compas-4 30m ✗ 0 0 0 100 0.01s ✓ 14 97.75 2.24 0
compas-5 T/O ✗ 0 0 0 100 5.24s ✓ 11 98.23 1.76 0
compas-6 M/O ✗ 0 0 0 100 9.19s ✓ 12 98.07 1.92 0
compas-7 M/O ✗ 0 0 0 100 101.25s ✓ 15 97.59 2.40 0

(100, 100, and 10) for Fairify to create 510, 201, and 16000
partitions, respectively. On the new DNN models trained for
Compas, we set MS to a small value of 2 to create 20 partitions
for Fairify. This was done to maximize Fairify’s performance
such that it does not “choke” in verifying each input partition.

By default, Fairify uses 100 seconds as “soft timeout” for
each input partition and uses 30 minutes as “hard timeout” for
the entire DNN. This means that it takes at most 100 seconds
to verify a single input partition, and if unsolved, it just moves
to the next partition, until the entire 30 minutes runs out.

To run FairQuant, we set the parameters min check depth to
15 and max refinement depth to 20 for all DNN models. We
also use 30 minutes as “hard timeout”, but FairQuant always
finished before the limit.

C. Experimental Results

Table II shows the results of our method (FairQuant) in
comparison with Fairify5. Columns 1-2 show the names of the
dataset and the DNN model. Columns 3-5 show the statistics
reported by Fairify, including the time taken, whether a coun-
terexample is found (Cex) and the number of counterexamples
found (#Cex). T/O or M/O in Column 3 respectively means
that Fairify either spent all 30m or ran out of memory in the
network pruning step prior to verifying any input partition.
Columns 6-8 show the percentage of certified, falsified and
undecided inputs (Cer%, Fal%, Und%). Columns 9-14 show
the corresponding results from FairQuant.

5The order in which Fairify sorts the partitions before running the verifica-
tion query is random and non-deterministic, so there may be minor difference
in the reported counterexamples in the original evaluation and ours.
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Fig. 5. Comparing the runtime overhead (left) and accuracy (right) of
Fairify [10], in red, and FairQuant (new), in blue.

1) Results for RQ 1: To answer the first research question
(RQ 1), i.e., whether our method is more accurate than the
current state-of-the-art, we need to compare the results shown
in Columns 4-5 (for Fairify) with the results shown in Columns
10-11 (for FairQuant). Specifically, Columns 4 and 10 indicate
whether the tool is able to find a counterexample (✓) or not
(✗) within the time limit.

While our method (FairQuant) found counterexamples for
all 32 DNNs, Fairify found counterexamples for only 20 of the
32 models. In addition, it found counterexamples for only one
of the 7 newly added models. Moreover, Columns 5 and 11
show that, on models where both tools found counterexamples,
the number of counterexamples found by FairQuant is often
thousands of times more. For example, the largest number
of counterexamples found by Fairify is 194 (for GC-3) but
the large number of counterexamples found by FairQuant is
71,012 (for AC-5).

2) Results for RQ 2: To answer the second research ques-
tion (RQ 2), i.e., whether our method is more scalable than the
current state-of-the-art, we need to compare the running time
shown in Column 3 (for Fairify) with the running time shown
in Column 9 (for FairQuant). While our method (FairQuant)
always finished within the time limit of 30 minutes, Fairify
timed out on compas-5 and ran out of memory on compas-6
and compas-7. Even on the models where both tools finished,
the time taken by Fairify is significantly longer.

To illustrate the scalability advantage of our method, we
took a subset of the models for which both FairQuant and
Fairify finished, and plot the running time in a bar chart, shown
on the left side of Fig. 5. Here, the red bars represent the time
taken by Fairify and the blue bars represent the time taken by
FairQuant. The results show that FairQuant is many orders of
magnitude faster, and can certify DNN models that are well
beyond the reach of Fairify.

3) Results for RQ 3: To answer the third research question
(RQ 3), i.e., whether our method is more effective in providing
feedback to the user, we need to compare the results in
Columns 6-8 (for Fairify) with the results in Columns 12-
14 (for FairQuant), which show the certified, falsified, and
undecided percentages. Since Fairify was not designed to
quantitatively measure the degree of fairness, it did poorly
in almost all cases. Except for a few DNN models for Bank,



GC-4, and compas-1, its certified percentages are either 0 or
close to 0, and its undecided percentages are almost 100%. It
means that, for the vast majority of individuals in the input
domain, whether they are treated by the DNN model fairly or
not remains undecided.

In contrast, the certified percentages reported by our method
(FairQuant) are significantly higher. For the models trained
using the Compas dataset, in particular, the certified percent-
ages are around or above 90%, and more importantly, the
undecided percentages are always 0. It means that FairQuant
has partitioned the input domain in such a way that each
partition is either certified as being fair, or falsified as being
unfair. Even on the subset of DNN models where some inputs
remain undecided by FairQuant, the undecided percentages
reported by our method are significantly lower than Fairify,
as shown on the right side of Fig. 5.

D. Summary

The results show that our method is more accurate and
more scalable than the current state-of-the-art techniques for
qualitative certification. In addition, our method is able to
formally quantify the degree of fairness, which is a capability
that existing methods do not have.

For some DNN models, FairQuant still has a significant
percentage of inputs left undecided. This is because we set
min check depth=15 and max refinement depth=20 for all
benchmarks. Thus, as soon as FairQuant reaches the refinement
depth 15 (see the refinement tree shown in Fig. 3) and finds
a counterexample in the input partition, it will stop refining
further; at that moment, all inputs in the partition are treated
conservatively as undecided.

In general, a smaller refinement depth allows FairQuant to
terminate quickly. During our experiments, FairQuant termi-
nated after 0.29s and 1.24s for GC-4 and GC-5, respectively,
compared to the 4 minutes and 30 minutes taken by Fairify and
yet returned better results. In fact, for GC-5, Fairify spent 30
minutes but failed to find any counterexample. If we increase
the refinement depth, by increasing the two threshold values
of FairQuant, its quantification results will get even better.

IX. RELATED WORK

Our method is the first scalable method for certifying and
quantifying individual fairness of a deep neural network, and
it outperforms the most closely related prior work, Fairify [10].
To the best of our knowledge, no other methods can match the
accuracy, scalability, and functionality of our method.

Our method differs from existing techniques for verify-
ing individual fairness properties for neural networks. Li-
bra [31], [32] uses abstract domains to perform verification
but is limited in scalability due to the expensive pre-analysis,
where a network of 20 hidden nodes takes several hours
even with leveraging multiple CPUs. DeepGemini [?], which
outperforms Libra, is built on top of Marabou [?], a SMT-
based neural network verification tool, and thus shares the
same limitations of Fairify. Furthermore, it only evaluates on
networks with up to around 250 hidden neurons. Other works

have tackled neural network verification of different definitions
of individual fairness. Benussi et al. [26] and Khedr et al. [27]
proposed different methods to certify a definition of global
individual fairness proposed in [28]. Ruoss et al. [29] verify
a type of a local individual fairness property that is similar to
local robustness, given an input x and a small constant ε for
perturbation. This is different from a global perspective we
have discussed so far in this paper.

Group fairness is yet another type of fairness property,
which can be verified using probabilistic techniques [14],
[15], [30]. The difference between individual fairness and
group fairness is that, while individual fairness requires similar
individuals to be treated similarly, group fairness requires
similar demographic groups to be treated similarly.

There are other prior works related to fairness verification
of other types of machine learning models [28], [33], [6],
but they are not applicable to deep neural networks. Testing
techniques can quickly detect fairness violations in machine
learning models including neural networks [34], [35], [11],
[36], [12], [37], but it does not provide formal guarantee that
is important for certain applications. There are also techniques
for improving fairness of machine learning models [38], [39],
[40], [41], [42], [43], [44], which are orthogonal to our method
that focuses on certifying and quantifying fairness of existing
DNN models.

At a high level, our method is related to the large number of
robustness verifiers for deep neural networks based on interval
analysis [7], [20], [8], [45], SMT solving [21], [46], [?], [47],
and mixed-integer linear programming [48], [?]. While these
verifiers can decide if a model is robust against adversarial
perturbation, they cannot directly certify individual fairness,
as explained earlier in Section II. Other neural network veri-
fiers that deal with differential [49], [50], [?] or equivalence
verification [52] are also different, since they evaluate over
two networks instead of one network.

X. CONCLUSION

We have presented FairQuant, a scalable method for cer-
tifying and quantifying individual fairness of a deep neural
network over the entire input domain. It relies on sound
abstraction during symbolic forward analysis to improve scal-
ability, and iterative refinement based on backward analysis to
improve accuracy. In addition to certifying fairness, it is able to
quantify the degree of fairness by computing the percentages
of inputs whose classification outputs can be certified as fair or
falsified as unfair. We have evaluated the method on a large
number of DNN models trained using four popular fairness
research datasets. The experimental results show that the
method significantly outperforms state-of-the-art techniques in
terms of both accuracy and scalability, as well as the ability
to quantify the degree of fairness.
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