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Abstract—We introduce CCmutator, a mutation generation tool
for multithreaded C/C++ programs written using POSIX threads
and the recently standardized C++11 concurrency constructs.
CCmutator is capable of performing partial mutations and gen-
erating higher order mutants, which allow for more focused and
complex combinations of elementary mutation operators leading
to higher quality mutants. We have implemented CCmutator
based on the popular Clang/LLVM compiler framework, which
allows CCmutator to be extremely scalable and robust in handling
real-world C/C++ applications. CCmutator is also designed in
such a way that all mutants of the same order can be generated
in parallel, which allows the tool to be easily parallelizedon
commodity multicore hardware to improve performance.

I. I NTRODUCTION

Software testing has always been an expensive part of the
software development process, typically taking up more than
50% of the total development cost [3]. Now the situation is
exacerbated by the increasingly widespread use of multicore
processors, whose computing power can only be unleashed by
concurrent software. However, developing concurrent software
is known to be difficult. Due to scheduling nondeterminism,
multiple runs of the program may exhibit different behaviors
even under the same input. Furthermore, the number of thread
interleavings is often astronomically large. In addition,pro-
grammers today often think sequentially and therefore may
overlook the crucial interleaving corner cases [21].

Mutation testing is a fault-based testing technique where
small synthetic faults are systematically seeded into a pro-
gram [17]. Mutation generation tools have been used for
sequential software, e.g., to select test cases [9] and evaluate
testing methods [5]. However, tools targeting multithreaded
C/C++ programs, especially for POSIX threads and the newly
standardized C++11 concurrency constructs, are still lacking.
Our CCmutatortool will fill the gap.

To the best of our knowledge,CCmutator, shown in Fig. 1,
is the first mutation generation tool for multithreaded C/C++
applications written using the PThreads and C++11 concur-
rency constructs. PThreads are available on a wide range of
platforms spanning from embedded computing to distributed
systems. C/C++ have widespread use in low-level systems
code. The newly created C++11 standard also defines arelaxed
memory model and a set of new concurrency constructs.

CCmutator can inject a broad spectrum of concurrency
related software bugs into multithreaded C/C++ applications,
to quickly generate hundreds or thousands of mutants, each of
which may contain concurrency bugs that span across many
lines of source code. There will be many applications for
such mutants, including a direct use of them to provide a
controlled way of evaluating software testing and verification
tools. For example, with mutants generated from real world
multithreaded applications, we can evaluate not only whether
a tool is able to find particular types of concurrency bugs,

but more importantly, whether its bug detection algorithm can
scale upto applications of realistic size and complexity.

In the past, testing and verification tools for multithreaded
C/C++ applications have been evaluated on two kinds of
benchmarks:small synthetic benchmarksor bugs in a few real
applications. Although bugs in real applications are essential
for creating practically relevant tools, finding a sufficiently
large number of bugs of a specific pattern can be challenging.
Even more difficult is finding bug samples of enough variety
to form a comprehensivebenchmark set. For example, we
noticed that most of the recent studies are using a small set
bugs, e.g., fromMozilla, Apache, MySQL, Aget, andBzip,
just because they are well-documented and easy to find. This
may threaten the validity of the evaluation metrics. In contrast,
synthetic benchmarks, such as the security vulnerability related
benchmark examples in NIST’s Juliet suite [19], are programs
created specifically for exhibiting certain bug patterns. They
have the advantage of being rich in number and variety.
However, their main problem is that the programs tend to be
fairly small, and the bugs arepredictablein the sense that tool
developers already knowa priori what to look for.CCmutator
can be used to address the aforementioned problems.

We have implementedCCmutator based on the popular
Clang/LLVM compiler platform. By leveraging the mature
development infrastructure provided by LLVM, we are able to
complete a robust implementation ofCCmutatorin a relatively
short period of time. The LLVM platform also has a wide
range of built-in program analysis methods, together with a
large and rapidly growing user base. In addition to having a
production quality C/C++ front-end (Clang), LLVM also has
llvm-gcc and many other front-ends under development for
languages such as Java and JavaScript. SinceCCmutator is
implemented on the LLVM intermediate representation (IR),
it can potentially leverage the aforementioned front-endsto
handle other languages. Therefore, we expectCCmutator to
have a broad impact and be quickly adopted by researchers and
developers in this community. The tool is currently available
at http://github.com/markus-kusano/CCMutator.

II. T HE APPROACH

The overall flow ofCCmutatoris shown in Fig. 1. Specif-
ically, the C/C++ source code is first compiled by Clang
into LLVM’s intermediate representation (IR) (although any
language with a LLVM front-end could be used). All the
operations performed byCCmutatorwork on LLVM IR. The
application of each mutation operator consists of two steps: the
enumerationstep and themutationstep. In the enumeration
step, the tool automatically findsmutation sites, which are
areas in the input code where a chosen mutation operator can
be applied. At a bare minimum,CCmutatorwill output these
mutation sites to the user, in the format of filenames and line
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Fig. 1: Overall flow ofCCmutator. C/C++ was used as the input source code but any language thathas an LLVM front-end is supported.
LLVM utility llc can convert the output mutant into various forms.

numbers in the original source, allowing the user to decide
how to create the mutation. In the mutation step,CCmutator
applies the mutation operator at the chosen mutation sites to
produce the mutant. The output mutant can be used again
as the input toCCmutator in order to generate higher-order
mutants.CCmutatoralso provides a stripped down computer
friendly output of the enumeration step for easy automation.
The resulting LLVM IR mutant can be passed to other tools
to transform it into another desired output format.

The language-independent IR of LLVM resembles a typed
assembly language, but is fully readable, allowing for named
variables and debug information to persist across mutation
phases. Leveraging the mature development infrastructurein
LLVM, we have largely avoided the difficulties experienced in
implementing other mutation testing tools such as Csaw [10],
for which parsing and transforming the C/C++ language in
real world applications is a major challenge.

Both LLVM and its IR have been widely used not only in
the research community, e.g., serving as foundation of tools
such as KLEE [7] and Coredet [4], but also in real industry
development systems such as Apple’s LLVM compiler [1] and
Google’s Portable Native Client [12]. The LLVM IR can also
be constructed by using various front-ends for C/C++, Java,
JavaScript, Haskell and many other languages. Furthermore,
tools such as RevGen [8] can convert x86 and ARM binary
executables back to the LLVM IR. By leveraging these front-
end tools,CCmutatorwill have even broader applications.

The architecture ofCCmutator is designed to easily make
use of multiprocessor hardware. Since each mutation operator
is implemented in a separate LLVMopt pass, different oper-
ators can be applied in parallel. For example, every partial
mutation applied to a file can run as its own OS process,
allowing as much or as little hardware parallelism as desired
by the user. There are no data dependencies between same
order mutations as long as their input files are not the same
as their output files.

III. C HALLENGES AND OUR SOLUTIONS

In mutation testing, the set of code changes needed to
produce a mutantP ′ from the original programP is called the
mutation operator. The mutation operators inCCmutatorare
designed specifically for concurrency constructs. In contrast to
mutation operators for sequential programs, which tend to be
simple syntactic code changes, concurrency related mutation
operators are significantly more involved.

As an example, consider the mutation of lock-based critical
sections in Fig. 2 (left), defined by using mutex lockslock1
and lock2. Suppose that we want to split, expand, shift, or

shrink the critical sections. IfCCmutatorswaps the two mutex
locks-unlock pairs in this code, for instance, it would produce
the mutant in Fig. 2 (right), which introduces a deadlock.

However, swapping the two locks in the above code is not
a local operation. At the very least, one needs to identify
whether two lock operations—for example,mutex_lock()
andmutex_unlock()—access the same lock. In real world
applications, lock pointers may be used instead oflock1 and
lock2 to represent the same locks. But it becomes a non-
trivial task to figure out whether the lockp→lk acquired in
one program location is the same as the locktmp_lk released
in another program location. In general, one would need to
perform analias analysisto find out if p→lk and tmp_lk
are the same lock. In our implementation ofCCmutator, we
have leveraged the availability of a flow-insensitive pointer
analysis in LLVM to carry out the aforementioned analysis.

Original

1 mutex_lock(lock1);
2 //...
3 if (cond) {
4 mutex_unlock(lock1);
5 return;
6 }
7 mutex_lock(lock2);
8 //...
9 mutex_unlock(lock2);
10 mutex_unlock(lock1);

Mutant

1 mutex_lock(lock2);
2 //...
3 if (cond) {
4 mutex_unlock(lock2);
5 return;
6 }
7 mutex_lock(lock1);
8 //...
9 mutex_unlock(lock1);
10 mutex_unlock(lock2);

Fig. 2: Example: Swapping the mutexes of the lock-unlock pairs to
reverse the locking order, thereby inserting a deadlock.

In the enumerationstep, we implemented an algorithm for
identifying the lock/unlock pairs that define critical sections.
As shown in Fig. 2 (left), a lock acquire operation (in Line 1)
may correspond to multiple lock release operations along dif-
ferent program paths (in Line 4 and Line 10). Although there
is a lock_guard template in C++11, the use of PThreads
style mutexes in C++ code is still allowed. In general, our
implementation ofCCmutator consists of a combination of
static program analysis and mutation generation.

In the mutation step, we allow the user to select an ap-
propriate set of the lock-unlock pairs (computed during the
enumerationstep) on which we apply the mutation operator.
For mutations that split, shift, expand, and shrink critical
sections, the mutation step involves inserting or removing
lock and unlock calls in proper locations with correct mutex
pointers as the parameters. For example, when splitting a
critical section, a new unlock call to the same mutex pointer
is inserted after the lock call of the pair; this is also the case



for a new lock call inserted after the new unlock call.
Another difficulty in mutating concurrent programs is that,

naively making small syntactic code changes, although it has
worked well for mutating sequential programs, often lead to
low-quality mutants—mutants that can bekilled by almost
every test run of the concurrent program. To generate high-
quality mutants, the application ofpartial [18] and higher
order [13] mutations is important, because it allows for very
specific combinations of mutations to be applied to create po-
tentially subtle [15] concurrency bugs. We have implemented
both approaches inCCmutator. Partial mutation allows the
user to select parts of the given code where mutation operators
are to be applied rather than the entire code. Higher order
mutation is the repeated application of a mutation operator
to an already generated mutant. Together, they can produce
mutants with more focused and complex combinations of code
changes relative to first order mutants, and therefore allowthe
user to rigorously target specific areas of a code base.

IV. T HE L IST OF MUTATION OPERATORS

We have implemented a comprehensive set of concurrency
mutation operators, which not only include the ones in the
literature (e.g., [6] for Java) but also new operators that
are specific to PThreads and C++11. Notice that some of
the concurrent Java mutation operators defined in [6] had no
C/C++ equivalent, e.g., the Javasynchronized keyword.

Table I shows the list of implemented mutation operators.
These operators are useful in that they have the possibilityto
create bugs in concurrent programs. For example, swapping
the lock order of one thread can introduce a deadlock.

Operations such as splitting/shifting critical sections re-
quires user input (shift direction, shift amount, etc.).CCmuta-
tor is naive in that it will not ensure a mutant is faulty. The
authors of [14] dealt with this problem when using mutation
testing by removing mutants from their test suite that did
not fail any tests, were malformed code or were killed by
every test. LLVM ensures thatCCmutatorat least generates
syntactically correct LLVM IR.

A. Mutex Locks

These operators work on explicit lock-unlock pairs, to
remove, swap, shift, or split critical sections created by these
pairs. For example, removing the lock-unlock operations from
the code allows for the critical sections to be disregarded,
potentially creating data-races or atomicity violations.Swap-
ping allows for not only the wrong locks to be used, which
creates data-races, but also the wrong order in acquiring locks,
potentially causing deadlocks. Shifting the critical section
allows for instructions to be added or removed from the top
or bottom of a critical section. Splitting allows for a new
lock-unlock pair to be inserted inside the original critical
section. Both shifting and splitting may introduce data-races
and atomicity violations on specific variables.

B. Condition Variables

Mutations on condition variables fall into two subcategories:
the mutations ofsignal/broadcastcalls and the mutations of
wait calls. For the first subcategory, we can remove calls to
signal and broadcast, or replace calls tosignal with calls to
broadcast, and vice versa. For the second subcategory, we can
remove calls towait, or replace them with calls totimed wait.
We can also replace calls totimed wait with calls to wait,

TABLE I: The list of concurrency related mutation operators. Note
that some operators are valid only for PThreads or for C++11.

Name Description posix c++
msem Modify Permit Count in Semaphore X X
mwait Modify parameter in cond_timedwait() X X
mcnt Modify cond_timedwait() time value X X
rmwait Remove Call to cond_wait() X X

rmwait Remove Call cond_timedwait() X X

swptw Swap cond_timedwait() with cond_wait() X X
rmsig Remove Call cond_signal() X X
rmsig Remove Call to cond_broadcast() X X
swpb Swap cond_signal() with cond_broadcast() X X
swps Swap cond_broadcast() with cond_signal() X X
rmjoin Remove Call to join() X X

rmyld Remove call to yield() X X
repjn Replace join() with sleep() X X

rmvol Remove Volatile Keyword X X

swplck Swap lock-unlock pairs X X

rmecs Remove explicit critical section X X

shfecs Shift explicit Critical Region X X

shkecs Shrink explicit Critical Region X X

epdecs Expand explicit Critical Region X X

spltecs Split Critical Region X X

rmf Remove memory fence n/a X

mfe Modify memory fence ordering constraint n/a X

repsf Replace single-thread sync fence with cross-thread n/a X

repcf Replace cross-thread sync fence with single-thread n/a X

repal Replace atomic load with non-atomic load n/a X

mal Modify atomic load ordering constraint n/a X

repsl Replace single-thread sync atomic load with cross-thread n/a X

repcl Replace cross-thread sync atomic load with single-thread n/a X

relas Replace atomic store with non-atomic store n/a X

mas Modify atomic store ordering constraint n/a X

repss Replace single-thread sync atomic store with cross-threadn/a X

repcs Replace cross-thread sync atomic store with single-threadn/a X

mrmw Modify atomic read-modify-write ordering constraint n/a X

rsrm Replace single-thread sync atomic read-modify-write with
cross-thread

n/a X

rcrm Replace cross-thread sync atomic read-modify-write with
single-thread

n/a X

mcx Modify compare exchange ordering constraint n/a X

rscx Replace single-thread sync compare exchange with cross-
thread

n/a X

rccx Replace cross-thread sync compare exchange with single-
thread

n/a X

which may introduce deadlocks. These mutation operators
work on individual calls towait, signal, and broadcast. We
can also generate mutants by simultaneously changing all
operations over a given condition variable.

C. Thread Creation and Join

Replacing a call tojoin with a call to sleep allows for
the program to appear to be working correctly—if the sleep
time happens to be sufficient—since once the call tosleep
returns, the thread that was being waited for will have finished.
However, this may lead to intermittent program failures, for
instance, when the computer has a heavy workload. Unlike
POSIX threads C++11 threads need to be explicitly joined or
detached; if a thread has not been joined or detached and its
destructor is called thenstd::terminate is called, causing
the entire program to crash. This lowers the effectiveness of
simply removing or replacing a join-able C++11 thread, since
the bug will be detected easily at runtime. To be more effective,
we should replace the call tojoin with a call to detachand
an optional call tosleep. This would create a similar effect as
seen in POSIX threads.

D. C++11 Atomic Object

Mutations on C++11 specificatomicobjects include remov-
ing theatomickeyword from the code, which effectively turns
the atomic object into a regular object. The C++11 atomic
keyword is typically used to implement high-performancead
hoc thread synchronizations, e.g., the ones that are frequently



used in systems code as well as high-performance concurrent
data structures. Removing the atomic keyword will likely
introduce subtle concurrency bugs that are specific to the newly
defined relaxed memory model, which allows the compiler
and runtime systems to reorder certain sequential instructions
that are typically forbidden by thesequential consistency
requirement. These mutation operators are important because
they cover usages of the C++11 concurrency constructs for
systems code.

E. Semaphores

Mutations to semaphores involve modifying the permit
count which allows for counting semaphores to be converted
to arbitrary resource counts, and binary semaphores to be
converted to counting semaphores. This potentially inserts
deadlocks and/or data races.

F. POSIX Yield

Mutations onyield can remove calls that yield the current
thread to the operating system scheduler. Theseyield calls are
not as explicit of synchronization methods such as semaphores
but they can be used to prevent thread starvation. Therefore,
these mutation operators can introduce performance bugs,
which are a type of concurrency related defects that do not
lead to program crash or hang, but may degrade the runtime
performance.

V. RELATED WORK

Argrawal et al. [2] implemented the first mutation test-
ing systems for the C language. Subsequent tools such as
CSaw [10] and MiLu [16] also provide mutation operators
for sequentialaspects of C programs. Bradbury et al. [6]
proposed a set of concurrent Java mutation operators. Tools
such as Paraµ [18] implemented these operators. However, we
noticed a lack of similar operators or robust implementations
for multithreaded C and C++ programs.

Early mutation generation tools were designed based on
the competent programmerhypothesis, stating that buggy
programs would only be a few keystrokes away from a correct
program [9], [2], [17]. This is evident in their creation of
operators such as convert logical AND to logical OR. However,
Purushothaman and Perry [20] showed that in reality, 90% of
post-release faults were complex and would require more than
one change to the programs syntax to fix. This means that one
should put more efforts on creating not a large number of first
order mutants but high quality subtle faults [13].

CCmutatorimplements all the mutation operators as partial
order mutations [18]. This allows the user to select specific
combinations of occurrences of fault injection sites to produce
a mutant. This partial order mutant can then have any number
of other partial order mutation applied to it, allowing for the
creation of very specific higher order mutants [13].

In [14] different concurrent coverage metrics were evaluated
against each other using Java concurrent mutation testing to
see which could find the most bugs among many randomly
generated mutants.CCmutatorhas the potential to do the same
for C/C++. MuTMuT [11] introduces techniques for speeding
up mutantexecutionduring mutation testing.

VI. CONCLUSION

We have presented the first concurrency related mutation
generation tool for multithreaded C/C++ applications, target-
ing concurrency constructs in the popular POSIX threads and
the newly standardized C++11 threads. Our LLVM based
implementation of the tool, calledCCmutator, is both scalable
and robust in handling real C/C++ applications. We expect our
tool to be quickly adopted by researchers and developers in
the area of concurrent software testing and verification, which
is a large and rapidly growing community.
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