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Abstract—We introduce CCmutator, a mutation generation tool  but more importantly, whether its bug detection algorithan c
for multithreaded C/C++ programs written using POSIX threads  scale upto applications of realistic size and complexity.
and the recently standardized C++11 concurrency constriust | the past, testing and verification tools for multithreséde

CCmutator is capable of performing partial mutations and gen- L .
erating higher order mutants, which allow for more focused ad ~C/C++ @pplications have been evaluated on two kinds of

complex combinations of elementary mutation operators leging Penchmarkssmall synthetic benchmarks bugs in a few real

to higher quality mutants. We have implemented CCmutator — applications Although bugs in real applications are essential
based on the popular Clang/LLVM compiler framework, which  for creating practically relevant tools, finding a suffidign
allows CCmutator to be extremely scalable and robustin handling |arge number of bugs of a specific pattern can be challenging.
real-world C/C++ applications. CCmutator is also designed in Even more difficult is finding bug samples of enough variety

such a way that all mutants of the same order can be generated .
in parallel, which allows the tool to be easily parallelizedon to form a comprehensivébenchmark set. For example, we

commodity multicore hardware to improve performance. noticed that most of the recent studies are using a small set
bugs, e.g., fromvbzi | | a, Apache, MySQL, Aget , andBzi p,
. INTRODUCTION just because they are well-documented and easy to find. This

Software testing has always been an expensive part of thay threaten the validity of the evaluation metrics. In cas,
software development process, typically taking up mor& thaynthetic benchmarks, such as the security vulnerabdlgted
50% of the total development cost [3]. Now the situation isenchmark examples in NIST’s Juliet suite [19], are program
exacerbated by the increasingly widespread use of multicareated specifically for exhibiting certain bug patterneeyr
processors, whose computing power can only be unleashechbye the advantage of being rich in number and variety.
concurrent software. However, developing concurrents® However, their main problem is that the programs tend to be
is known to be difficult. Due to scheduling nondeterminisnfairly small, and the bugs amredictablein the sense that tool
multiple runs of the program may exhibit different behasiordevelopers already knowa priori what to look for.CCmutator
even under the same input. Furthermore, the number of threah be used to address the aforementioned problems.
interleavings is often astronomically large. In additiquo- We have implementedCCmutator based on the popular
grammers today often think sequentially and therefore m&ang/LLVM compiler platform. By leveraging the mature
overlook the crucial interleaving corner cases [21]. development infrastructure provided by LLVM, we are able to

Mutation testing is a fault-based testing technique whecemplete a robust implementation@Cmutatorin a relatively
small synthetic faults are systematically seeded into a psehort period of time. The LLVM platform also has a wide
gram [17]. Mutation generation tools have been used fonge of built-in program analysis methods, together with a
sequential software, e.g., to select test cases [9] andiaeal large and rapidly growing user base. In addition to having a
testing methods [5]. However, tools targeting multithreghd production quality C/C++ front-end (Clang), LLVM also has
C/C++ programs, especially for POSIX threads and the newlyvm gcc and many other front-ends under development for
standardized C++11 concurrency constructs, are stillitack languages such as Java and JavaScript. SB€mutatoris
Our CCmutatortool will fill the gap. implemented on the LLVM intermediate representation (IR),

To the best of our knowledg€&€Cmutator shown in Fig. 1, it can potentially leverage the aforementioned front-etws
is the first mutation generation tool for multithreaded CGfC+handle other languages. Therefore, we exg&Cmutatorto
applications written using the PThreads and C++11 conchave a broad impact and be quickly adopted by researchers and
rency constructs. PThreads are available on a wide rangedef/elopers in this community. The tool is currently avdiab
platforms spanning from embedded computing to distributed http://github.com/markus-kusano/CCMutator.
systems. C/C++ have widespread use in low-level systems
code. The newly created C++11 standard also defimelsiged Il. THE APPROACH
memory model and a set of new concurrency constructs.  The overall flow ofCCmutatoris shown in Fig. 1. Specif-

CCmutator can inject a broad spectrum of concurrencigally, the C/C++ source code is first compiled by Clang
related software bugs into multithreaded C/C++ applicetjo into LLVM’s intermediate representation (IR) (althoughyan
to quickly generate hundreds or thousands of mutants, dacHamguage with a LLVM front-end could be used). All the
which may contain concurrency bugs that span across mamperations performed bg Cmutatorwork on LLVM IR. The
lines of source code. There will be many applications fapplication of each mutation operator consists of two stityes
such mutants including a direct use of them to provide aenumerationstep and themutationstep. In the enumeration
controlled way of evaluating software testing and verifmat step, the tool automatically findsutation sites which are
tools. For example, with mutants generated from real worltteas in the input code where a chosen mutation operator can
multithreaded applications, we can evaluate not only wdrettbe applied. At a bare minimung;Cmutatorwill output these
a tool is able to find particular types of concurrency bugsyutation sites to the user, in the format of flenames and line
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Fig. 1: Overall flow of CCmutator C/C++ was used as the input source code but any languagédbadn LLVM front-end is supported.
LLVM utility llc can convert the output mutant into variousrims.

numbers in the original source, allowing the user to decidfrink the critical sections. IECmutatorswaps the two mutex
how to create the mutation. In the mutation st€&mutator locks-unlock pairs in this code, for instance, it would prod
applies the mutation operator at the chosen mutation sitesthie mutant in Fig. 2 (right), which introduces a deadlock.
produce the mutant. The output mutant can be used agaitowever, swapping the two locks in the above code is not
as the input toCCmutatorin order to generate higher-ordera local operation. At the very least, one needs to identify
mutants.CCmutatoralso provides a stripped down computewhether two lock operations—for exampleyt ex_I ock()
friendly output of the enumeration step for easy automatiand nut ex_unl ock() —access the same lock. In real world
The resulting LLVM IR mutant can be passed to other tookpplications, lock pointers may be used insteat afk1 and
to transform it into another desired output format. | ock2 to represent the same locks. But it becomes a non-

The language-independent IR of LLVM resembles a typedvial task to figure out whether the logk—I k acquired in
assembly language, but is fully readable, allowing for nmene program location is the same as the look_| k released
variables and debug information to persist across mutationanother program location. In general, one would need to
phases. Leveraging the mature development infrastruatureperform analias analysisto find out if p—I k andt mp_I k
LLVM, we have largely avoided the difficulties experienced iare the same lock. In our implementation @Cmutator we
implementing other mutation testing tools such as Csaw, [1LBhve leveraged the availability of a flow-insensitive peint
for which parsing and transforming the C/C++ language inalysis in LLVM to carry out the aforementioned analysis.
real world applications is a major challenge.

Both LLVM and its IR have been widely used not only in
the research community, e.g., serving as foundation ofstoq
such as KLEE [7] and Coredet [4], but also in real industr
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nmut ex_| ock( | ockl); mut ex_| ock( | ock2);
/1 /1

development systems such as Apple’s LLVM compiler [1] an if (cond) { if (cond) {
Google’s Portable Native Client [12]. The LLVM IR can alsg mut ex_unl ock(l ockd): mut ex_unl ock(1 ock2);

be constructed by using various front-ends for C/C++, Jay
JavaScript, Haskell and many other languages. Furthermg
tools such as RevGen [8] can convert x86 and ARM bina
executables back to the LLVM IR. By leveraging these fron
end tools,CCmutatorwill have even broader applications.
The architecture oC£Cmutatoris designed to easily makeFig. 2: Example: Swapping the mutexes of the lock-unlockspto
use of multiprocessor hardware. Since each mutation aperdgverse the locking order, thereby inserting a deadlock.
is implemented in a separate LLVMpt pass, different oper-
ators can be applied in parallel. For example, every partialln the enumeratiorstep, we implemented an algorithm for
mutation applied to a file can run as its own OS procedgentifying the lock/unlock pairs that define critical seats.
allowing as much or as little hardware parallelism as ddsirés shown in Fig. 2 (left), a lock acquire operation (in Line 1)
by the user. There are no data dependencies between samyg correspond to multiple lock release operations alofig di
order mutations as long as their input files are not the sar@sent program paths (in Line 4 and Line 10). Although there

} }
nmut ex_| ock(| ock2); mut ex_| ock( | ockl);
1. 1. ..
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mut éx_unl ock(l ockl);
0 rmutex_unl ock(l ock2);

mut éx_unl ock(l ock2);
nmut ex_unl ock(l ockl);
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as their output files. is alock_guard template in C++11, the use of PThreads
style mutexes in C++ code is still allowed. In general, our
Il. CHALLENGES AND OUR SOLUTIONS implementation ofCCmutator consists of a combination of

In mutation testing, the set of code changes needed static program analysis and mutation generation.
produce a mutan®’ from the original progran® is called the  In the mutation step, we allow the user to select an ap-
mutation operator. The mutation operatorsd@mutatorare propriate set of the lock-unlock pairs (computed during the
designed specifically for concurrency constructs. In @sitto enumerationstep) on which we apply the mutation operator.
mutation operators for sequential programs, which tendeto Bor mutations that split, shift, expand, and shrink critica
simple syntactic code changes, concurrency related rmntatsections, the mutation step involves inserting or removing
operators are significantly more involved. lock and unlock calls in proper locations with correct mutex

As an example, consider the mutation of lock-based criticabinters as the parameters. For example, when splitting a
sections in Fig. 2 (left), defined by using mutex lodksck1l critical section, a new unlock call to the same mutex pointer
and| ock2. Suppose that we want to split, expand, shift, as inserted after the lock call of the pair; this is also theeca



f lock call i ted after th lock call TABLE I: The list of concurrency related mutation operatoxote
or a new lock call inserted atier the new unliock call. that some operators are valid only for PThreads or for C++11.
Another difficulty in mutating concurrent programs is that,

naively making small syntactic code changes, althoughst haame ,\Dﬂiz%’)'/pgg?mn o SeTaRoE Posiy o
worked well for mutating sequential programs, often lead [Omwait [ Modify parameter in cond_timedwart) 7 X
low-quality mutants—mutants that can béled by almost [ mcnt [ Modify cond timedwait() time value v X
.| rmwait| Remove Call to cond_wait() v v
every test run of the concurrent program. To generate highmwar] Remove Call cond_tmedwart( VA v
quality mutants, the application gartial [18] and higher [ swptw| Swap cond_timedwait() with cond_wait() v _[X
. P . rmsig | Remove Call cond_signal() v X
order [13] mutations is important, because it allows for very s Remove Calrto cond. broadcast) —%
specific combinations of mutations to be applied to create pGwpb | Swap cond_signal() with cond_broadcast() 7 X
tentially subtle [15] concurrency bugs. We have implemente >be. g‘gm\fg’g’aﬂga}g%ﬁo with cond_signal( A S
both approaches i€Cmutator Partial mutation allows the [Tmyld [ Remove call fo yield() 7 TX
user to select parts of the given code where mutation opsratarenn Sgpmlggg J\t/)(l)m"éwreslegrpd() 5 5
are to be_ applied rather than_the_ entire code. I_-|igher O (H€wpTckSwap Tock-unlock pﬁ‘,'}'s T
mutation is the repeated application of a mutation opera omgfecs gﬁrfrsove lexFl(l:cntcntllcéal section ; ;
SAlecs 1Tt explicCi rtical Region
to an already generated mutant. Together, they can prod4€giccs—snrink explicit Critical Region —
mutants with more focused and complex combinations of codepdecs Expand explicit Critical Region 7 v
changes relative to first order mutants, and therefore affew [ SPrecs gg%@g“cmirﬁggﬁgnce A
user to rigorously target specific areas of a code base. mfe | Modify memory fence ordering Consiraint na | v
repsf | Replace single-thread sync fence with cross-thread n/a v
IV. THE LIST OFMUTATION OPERATORS repci | Replace cross-thread sync fence with single-thread na | v
. ] repal | Replace atomic load with non-atomic Toad n/a v
We have implemented a comprehensive set of concurrency | god?ﬁ/ atoml? l?ﬁd ogdermg ctonstralumd - L nja 5
H H H H deps eplace single-tnread sync atomic load with cross-thregd n/a
r_nutatlon operators, which not Only include the ones in th ~repcl Replace cross-thread sync atomic Toad with single-thregd n/a v
literature (e.g., [6] for Java) but also new operators thgtelas Re;()jl%;:e afomic store with non-atomic store na | v
i H as Modify atomic store ordering constraint n/a v
are SpECIfIC to PThreads .and C++11. NOt_ICG that some r{ri:alps.s Replace single-thread sync atomic store with cross-threadn/a v
the concurrent Java mutation operators defined in [6] had [M&pcs [ Repace crosshread sync atomic store with single-threadn/a | v
C/C++ equiva|ent’ e.g., the Jaggnchroni zed keyword. mrmw | Modify afomic read-modify-write_ordering constraint na | v
. . . | _rsrm Replace single-thread sync atomic read-modify-write wfthn/a v
Table | shows the list of implemented mutation operators. cross-thread
These operators are useful in that they have the possiblity| rerm Eﬁg::ct%rgg%s&thread sync atomic read-modify-write witm/a | v
; ingle-
create bUQS In concurrent programs. For example! sSwapptgex Modify compare exchange ordering constraint n/a v
the lock order of one thread can introduce a deadlock. TSCX fﬁep'?fe single-thread sync compare exchange with ciossia | v/
; o e o : rea
Qperatlon.s such !ElS ,Sp“tt,mg/Shl_ftmg critical sectiores rcex Replace cross-thread sync compare exchange with singlela | v~
quires user input (shift direction, shift amount, et€muta- thread rr

tor is naive in that it will not ensure a mutant is faulty. The

authors of [14] dealt with this problem when using mutation

testing by removing mutants from their test suite that di@hich may introduce deadlocks. These mutation operators
not fail any tests, were malformed code or were killed byork on individual calls towait, signal and broadcast We
every test. LLVM ensures tha€Cmutatorat least generatescan also generate mutants by simultaneously changing all
syntactically correct LLVM IR. operations over a given condition variable.

A. Mutex Locks C. Thread Creation and Join

These operators work on explicit lock-unlock pairs, to Replacing a call tojoin with a call to sleep allows for
remove, swap, shift, or split critical sections created liigse the program to appear to be working correctly—if the sleep
pairs. For example, removing the lock-unlock operationsfr time happens to be sufficient—since once the calkleep
the code allows for the critical sections to be disregardedfurns, the thread that was being waited for will have fiaish
potentially creating data-races or atomicity violatioBsvap- However, this may lead to intermittent program failures, fo
ping allows for not only the wrong locks to be used, whicinstance, when the computer has a heavy workload. Unlike
creates data-races, but also the wrong order in acquiriigsJo POSIX threads C++11 threads need to be explicitly joined or
potentially causing deadlocks. Shifting the critical gmett detached; if a thread has not been joined or detached and its
allows for instructions to be added or removed from the tagestructor is called thest d: : t er ni nat e is called, causing
or bottom of a critical section. Splitting allows for a newthe entire program to crash. This lowers the effectivendss o
lock-unlock pair to be inserted inside the original criticasimply removing or replacing a join-able C++11 thread, sinc
section. Both shifting and splitting may introduce dateesa the bug will be detected easily at runtime. To be more effecti

and atomicity violations on specific variables. we should replace the call foin with a call to detachand
" i an optional call tesleep This would create a similar effect as
B. Condition Variables seen in POSIX threads.

Mutations on condition variables fall into two subcategeri _ .
the mutations okignal/lbroadcastalls and the mutations of D- C*++11 Atomic Object
wait calls. For the first subcategory, we can remove calls to Mutations on C++11 specifiatomicobjects include remov-
signal and broadcast or replace calls tsignal with calls to ing theatomickeyword from the code, which effectively turns
broadcastand vice versa. For the second subcategory, we cie atomic object into a regular object. The C++11 atomic
remove calls towvait, or replace them with calls tbmed wait keyword is typically used to implement high-performamrae
We can also replace calls timed wait with calls to wait, hocthread synchronizations, e.g., the ones that are frequentl



used in systems code as well as high-performance concurrent VI. CONCLUSION

data structures. Removing the atomic keyword will likely \we have presented the first concurrency related mutation
introduce subtle concurrency bugs that are specific to théyne generation tool for multithreaded C/C++ applicationsgear

defined relaxed memory modelvhich allows the compiler jng concurrency constructs in the popular POSIX threads and
and runtime systems to reorder certain sequential ISt the newly standardized C++11 threads. Our LLVM based
that are typically forbidden by theequential consistencyjmplementation of the tool, calledCmutator is both scalable
requirement. These mutation operators are important Isecand robust in handling real C/C++ applications. We expect ou
they cover usages of the C++11 concurrency constructs {gp| to be quickly adopted by researchers and developers in
systems code. the area of concurrent software testing and verificatioricivh

is a large and rapidly growing community.
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