
Assertion Guided Abstraction: A Cooperative Optimization
for Dynamic Partial Order Reduction

Markus Kusano
ECE Department
Virginia Tech

Blacksburg, VA 24061, USA

mukusano@vt.edu

Chao Wang
ECE Department
Virginia Tech

Blacksburg, VA 24061, USA

chaowang@vt.edu

ABSTRACT

We propose a new method for reducing the interleaving space dur-
ing stateless model checking of multithreaded C/C++ programs.
The problem is challenging because of the exponential growth of
possible interleavings between threads. We have developed a new
method, called assertion guided abstraction, which leverages both
static and dynamic program analyses in a cooperative framework
to reduce the interleaving space. Unlike existing methods that con-
sider all interleavings of all conflicting memory accesses in a pro-
gram, our new method relies on a new notion of predicate depen-
dence based on which we can soundly abstract the interleaving
space to only those conflicting memory accesses that may cause
assertion violations and/or deadlocks. Our experimental evaluation
of assertion guided abstraction on open source benchmarks shows
that it is capable of achieving a significant reduction, thereby al-
lowing for the verification of programs that were previously too
complex for existing algorithms to handle.

Categories and Subject Descriptors

F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs; D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms

Algorithm, Verification, Reliability

Keywords

Stateless model checking, partial order reduction, predicate depen-
dence, assertion guided abstraction, cooperative analysis.

1. INTRODUCTION
Analyzing the behavior of a multithreaded program remains a

difficult task despite the large body of existing work on both static
and dynamic program analysis techniques. The main reason is
that the number of thread interleavings is often exponential in the
program size, which means that the naive approach of explicitly
checking all possible interleavings is practically infeasible. Due to
this well-known interleaving explosion problem, existing methods

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE’14, September 15-19, 2014, Vasteras, Sweden.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3013-8/14/09 ...$15.00.

http://dx.doi.org/10.1145/2642937.2642998 .

based on static analysis often lack accuracy as a result of having
to track all possible executions of the program simultaneously. In
contrast, dynamic analysis methods can be made significantly more
accurate since they only have to focus on a single execution trace
at a time. However, without a global view of the program behavior,
dynamic analysis methods often lack foresight. For example, a dy-
namic analysis may have difficulty computing even simple facts of
the program such as control and data dependencies.
We present in this paper a new cooperative analysis framework

for multithreaded programs to allow static and dynamic analysis
methods to share information between each other with the goal of
increasing the accuracy and speed of the analysis as compared to
using each method alone. Specifically, we show that the new static–
dynamic analysis framework can be leveraged to efficiently check
embedded assertions in a multithreaded program. In this particu-
lar application, the static analysis is a control and data dependency
analysis, and the dynamic analysis is a stateless model checking
procedure augmented with partial order reduction. We shall demon-
strate through experiments that the use of both static and dynamic
analyses in our cooperative framework can significantly outperform
each individual method.
From a static analysis standpoint, assertions in a multithreaded

program can be checked with a concurrent data flow analysis. How-
ever, carrying out a precise whole-program static analysis that is
capable of resolving all embedded assertions is challenging in prac-
tice, due to complex language constructs such as loops, recursive
function calls, and heap allocated data structures. From a dynamic
analysis standpoint, assertions can be checked by using a stateless
model checker [15] that systematically executes the program under
all possible thread schedules. However, in the presence of inter-
leaving explosion, dynamic analysis alone is not sufficient for solv-
ing the problem. Our new cooperative static–dynamic approach,
in contrast, reduces the verification problem into two significantly
simpler subproblems: first statically computing the approximate de-
pendence between statements and then dynamically pruning away
the redundant interleavings based on the precomputed dependence.
Toward this end, we introduce the new notion of predicate de-

pendence over concurrent operations. Dependence is always at the
heart of static and dynamic analysis methods for concurrent pro-
grams. For example, dynamic partial order reduction (DPOR [13])
relies on conflict dependence. Two operations are conflict depen-
dent if they are from different threads, access the same memory lo-
cation, and at least one of them is a write operation. DPOR groups
execution traces into various equivalence classes and then picks a
representative from each equivalence class to check. According to
the trace theory by Mazurkiewicz [26], which is the foundation of
partial order reduction methods, two traces are equivalent if they
can be transformed into each other by repeatedly swapping the
adjacent, independent transitions. For example, a read of shared
variable x in if(x) and a write in x:=1 would be considered

#define NUM_THREADS 12
#define SIZE 128
#define MAX 4
int table[SIZE];
int *thread_routine(int *arg) {

int tid = ((int*)arg);
int m = 0, w, h;
while(1) {

if (m < MAX){
w = (++m) * 11 + tid;

}else {
thread_exit(0);

}
h = (w * 7) % SIZE;
if (h < 0) {
assert(0);

}
while (cas(table, h, 0, w) == 0) {
h = (h+1) % SIZE;

}
}

}
int main() {

for (int i = 0; i < NUM_THREADS; ++i)
thread_create(thread_routine(i));

...
}

Figure 1. Example from SV-COMP 2014 (IndexerSafe)
where multiple threads share a hash table. The assertion checks
if a thread reads past the array bound. cas is an atomic compare-
and-swap which modifies the state of the table at the passed index.

as conflict-dependent, whereas if(x) and y:=1 would not since
they access different memory locations.
However, the definition of conflict dependence is overly restric-

tive in many cases and does not allow redundant interleavings to be
pruned away. For example, the two write operations in x:=10 and
x:=10 are conflict-dependent and yet their relative execution order
is immaterial for property verification. One can imagine extending
conflict dependence as follows: two conflict-dependent operations
are said to be view-dependent if the two different execution orders
of them lead to different program states. In other words, x:=10
and x:=10 would not be view-dependent but x:=10 and x:=20
would be. However, even view dependence would not be able to
prune away many redundant interleavings.
The most general extension along this direction is predicate de-

pendence. For example, assume that the only place where the val-
ues written to x are used subsequently in the program is to control
the branching condition in if(x>5). In this case, it is actually
immaterial whether we execute x:=10 before or after x:=20, be-
cause both (10>5) and (20>5) are true. For the purpose of check-
ing reachability properties in a multithreaded program, all we care
about is whether the relative execution of two operations affects the
reachability of a bad state, e.g., a state where an assertion fails.
Consider the example in Figure 1, which is a variant of the run-

ning example used to illustrate the DPOR algorithm in [13]. The
program has a set of threads concurrently accessing data items in
a shared hash table. The assertion in this program checks if the
generated hash table key in each thread is out-of-bounds of the ar-
ray. When the number of threads is below 12, all possible interleav-
ings of the programs belong to the same equivalence class, meaning
that only one representative needs to be checked. However, when
the number of threads reaches or goes beyond 12, according to the
classic partial order reduction methods, the number of equivalence
classes goes up exponentially, which quickly makes existing dy-
namic analysis methods intractable.
Figure 2 shows the performance of the DPOR algorithm as well

as our new method (Pred-DPOR). The x-axis is the number of
threads in the test program, and the y-axis is the execution time.
Although DPOR performs well when the number of threads is be-
low 12, it suffers from the interleaving explosion when the number

11 12 13 14 15

100

102

Number of Threads

R
u
n
ti
m
e
(s
)

DPOR

Pred-DPOR

Figure 2. Comparing baseline DPOR with our new Pred-DPOR
method on IndexerSafe with different number of threads.

of threads is above 12. However, our observation is that, for the
purpose of checking assertions in the program, there is no need
to explore the exponentially many thread interleavings. Since the
hash key, h, relies on w and m, none of which are interfered by other
threads, the assertion cannot be violated due to thread scheduling.
Where a traditional dynamic analysis method would have to check
all possible thread interleavings of the program, with the help of a
conservative static analysis, we can tell after one run that this pro-
gram never violates the assertions due to thread scheduling.
We have implemented our newmethods by leveraging the LLVM

platform to implement the new static analysis and a modified ver-
sion of Inspect [42] to implement the new dynamic analysis. Fig-
ure 3 shows the overall flow of our method, which takes a multi-
threaded C/C++ program as input and determines if there are as-
sertion violations or deadlocks. First, we parse the input program
and instrument it to add logging/control capabilities for dynamic
analysis. Then, we perform a conservative static analysis in sub-
procedure named Dependence Calculate to compute the predicate
dependency relations between potentially concurrent operations. In
the subsequent dynamic analysis, which extends the DPOR algo-
rithm, we leverage the precomputed dependency relations to prune
away redundant thread interleavings.

C/C++
Program LLVM Instrument

Dependence
Calculate

Program
Input

Inst. Binary Dependence
Relations

DPOR

Assertion Guided Abstraction + DPOR

Figure 3. Overall flow of our new method.

We have evaluated our new method on a set of open source
benchmarks and benchmarks from SV-COMP 2014. Our experi-
ments show that the cooperative analysis framework can greatly
reduce the search efforts by focusing on the subset of the conflict-
dependent operations that actually affect the validity of the prop-
erties at hand. In fact, our results show that, when compared to
the default DPOR algorithm, our new method can quickly verify
the assertion properties of many programs that were previously in-
tractable.
In summary, this paper makes the following contributions:

• We introduce the new notion of predicate dependence and
propose a new static analysis method for computing the de-
pendence conservatively.

• We propose a new cooperative static–dynamic analysis frame-
work that leverages the new dependency relation to reduce
the interleaving space at run time.

• We also propose two new optimizations for the DPOR algo-
rithm to further improve the performance.

• We implement the new methods and demonstrate their effec-
tiveness through experiments using open source benchmarks.

The remainder of this paper is organized as follows. We will
establish notation in Section 2 before introducing predicate depen-
dence in Section 3. We will present our new cooperative static–
dynamic analysis framework in Section 4, and the two additional
optimizations for DPOR in Section 5. Our experimental results will
be presented in Section 6. We will review related work in Section 7,
and finally, give our conclusions in Section 8.

2. PRELIMINARIES
This section provides the background information on existing dy-

namic analysis methods for multithreaded programs.

2.1 Concurrent System
A concurrent system is composed of a finite number of threads

and a finite set of communication objects. Individually, each thread
executes a sequence of operations of a sequential program. During
dynamic analysis, operations on communication objects are consid-
ered visible whereas all other operations are considered invisible –
they are not monitored during the program execution. We also as-
sume that each visible operation is atomic, i.e., it can be executed
on one communication object at a time without interference from
the other threads. An operation is blocking if it cannot currently
be executed. For example, a thread waiting for a mutex lock to be
released by another thread is said to be blocked.
A global state is reached whenever the next operation for each

thread is a visible operation. We assume that there exists at least
one visible operation for each thread and that there is a unique ini-
tial state s0. A transition from one state to another is the execution
of a visible operation followed by any finite number of invisible
operations by the same thread, ending just before another visible
operation. The state space of a concurrent program is simply all
the global states reachable from s0 and all the transitions between
these states. Following the notation used by Godefroid [15], we
combine local (invisible) operations with the previous visible oper-
ation into one transition. Therefore, the state space is reduced by
avoiding unnecessary interleavings of local operations. From here
on, we will use the term state to mean global state.
Formally, a concurrent system can be modeled as a transition

system AG = (S,∆, s0) where S is the set of states for the system,
∆ ⊆ S × S is the transition relation, and s0 is the initial state. Let
T be the set of all transitions for the system, and T ∗ be the set of all
finite words (all sequences of transitions) that can be created from

T . We use s
t
−→ s′ to mean that executing t ∈ T from s leads to

state s′. We use s
w
=⇒ s′ to mean that executing the finite sequence

of transitions w ∈ T ∗ leads from s to s′. A state s′ is said to be
reachable from s if there exists some w such that s

w
=⇒ s′.

A transition is disabled in the state s if its visible operation is
blocking, implying that the transition cannot currently be executed.
If a transition is not disabled, it is enabled in s. Two transitions are
co-enabled if there exists some state where they are both enabled.

2.2 Stateless Model Checking
The state space of a concurrent system can be fully explored

by using a stateless model checking [15] procedure, which system-
atically executes the program under all possible thread schedules.
Different from the classic model checkers [7] which are typically
stateful, here the search is carried out without explicitly storing
any system state. Instead, a system state is uniquely identified by
the sequence of transitions executed, starting from the initial state
s0. In other words, instead of exploring the reachable states of the
system, the procedure systematically explores the set of execution

traces. When dealing with full-fledged programming languages
such as C/C++/Java, where the system state consists of values for
all memory locations that can be accessed by a thread, stateless
model checking is a far more practical method.
To exhaustively explore the interleaving space, we must check at

least one representative thread interleaving from each equivalence
class of interleavings, also called the Mazurkiewicz trace [26]. This
can be regarded as the theoretical foundation of partial-order reduc-
tion (POR). More formally, Mazurkiewicz traces [26], in the con-
text of concurrent systems, are defined as equivalence classes of
sequences of transitions. Let D ⊆ T × T be a valid dependency
relation between transitions. Two sequences of transitions over T
are equivalent if the two traces can be obtained from each other
by successively exchanging adjacent independent transitions. Con-
sider two transitions t and t′. If t and t′ are independent, then the
sequences containing tt′ and t′t, respectively, are in the same equiv-
alence class. This implies that the concurrent program will end up
in the same state regardless of the execution order of t and t′.
Computing the equivalence classes rests on the concept of a de-

pendency relation. In classic POR methods such as DPOR, the
dependency relation is typically defined with respect to the concur-
rent system itself, without considering the properties to be checked.
Godefroid [15] formalizes the general requirement for a relation
over concurrent operations to be a dependency relation as follows:

Definition 1. Let T be the set of transitions and D ⊆ T × T be
a binary, reflexive, and symmetric relation. D is a valid dependency
relation for the system iff for all t1t2 ∈ T , (t1, t2) 6∈ D (t1 and t2
are independent) implies that the two following properties hold for
all states s in the state space AG of the system:

1. if t1 is enabled in s and s
t1−→ s′, then t2 is enabled in s iff t2

is enabled in s′ (independent transitions can neither disable
nor enable each other), and

2. if t1 and t2 are enabled in s such that s
t1t2==⇒ s′ and s

t2t1==⇒
s′′, then s′ must be the same as s′′ (commutativity of enabled
independent transitions).

A stricter definition of the dependency relation would result in
fewer equivalence classes, which in turn corresponds to fewer ex-
ecutions to be explored. However, accurately computing the de-
pendence can be difficult; the DPOR algorithm uses conflict depen-
dence mainly because it is easy to compute.
A subset T of the transitions enabled at a state s is said to be

persistent in s if each transition not in T does not interact with
T . It has been proved [15] that exploring only transitions in the
persistent set of each state guarantees detection of all deadlock and
assertion violations. Below is a formal definition of persistent sets.

Definition 2. A set T of transitions enabled in a state s is persis-
tent in s iff for all nonempty sequences of transitions

s = s1
t1−→ s2

t2−→ s3...
t
n−1

−−−→ sn
tn−→ sn+1

from s in AG and including only transitions ti 6∈ T , 1 ≤ i ≤ n, tn
is independent with all transitions in T.

2.3 Dynamic Partial Order Reduction
Early partial order reduction algorithms (such as in [15]) stati-

cally computed the persistent set, but limitations such as imprecise
pointer alias information often caused the persistent set to over-
approximate dependence of transitions, causing equivalent traces
to be explored. Dynamic partial order reduction [13] addressed this
issue by focusing on one execution trace at a time, where precise
alias information can be obtained, and by computing the necessary
transitions to explore dynamically using backtrack sets.

Algorithm 1 shows the pseudocode of the DPOR algorithm. The
algorithm performs a depth-first search through the state space of
AG starting with the initial state s0. The stack represents a finite
transition sequence S ∈ T ∗, t1t2 . . . tn, from the states s1 . . . sn

such that s1
t1−→ s2

t2−→ . . .
tn−→ sn+1. Here, dom(S) means

the set {1, . . . , n}, pre(S, i) for i ∈ dom(S) refers to the state
si, last(S) refers to sn+1, next(s, p) is the unique transition to
be executed by process p in state s, and proc(t) is the thread that
executed the transition t. A happens-before relation on a sequence
S, i →S p, for i ∈ dom(S) and process p is a relation indicating
causality between the transition executed at i and p.
Each state s has a backtrack set, denoted backtrack(s). The

backtrack set of a state s represents the set of processes at s with
enabled transitions that still need to be explored from s.
The DPOR algorithm starts by callingExplore()with an empty

stack. The stack represents the set of transitions executed to reach
last(S) (Line 2). Line 4 examines the next transition of each pro-
cess from s (next(s, p)). The algorithm then examines S to find
the last transition (if it exists) that is

1. dependent with next(s, p),
2. may be co-enabled with next(s, p), and
3. i 6→S p.

Step 1 uses the conflict dependency relation. Upon finding a con-
flicting transition i in S, a backtrack point is inserted in the state
pre(S, i). Which process to add into the backtrack set is deter-
mined on Line 5. Here, the algorithm attempts to find the set E
of enabled processes in pre(S, i) that happen-before next(s, p) in
the current sequence. The happens-before relation signifies causal-
ity; executing a transition of a process in E will cause the transi-
tion next(s, p) to be executed. If such a causality relationship is
not found (E is empty), then the algorithm over-approximates by
adding all the enabled transitions in pre(S, i) to the backtrack set.
Overall, the goal of Lines 5–10 is to first identify two dependent

transitions in the current sequence and then insert a backtrack point
to potentially reverse the order of execution of the dependent tran-
sitions in a future execution. The algorithm, on Lines 13 through
20, continues the depth-first search by exploring each non-explored
transition from a state’s backtrack set. The authors of [13] proved
that the backtrack sets explore a set of transitions from each state
s which is persistent in s. As a result, they are able to leverage the
theorems from [15] to ensure that DPOR will find all deadlock and
assertion violations in an acyclic concurrent program.
However, neither DPOR nor any other existing PORmethod con-

sidered the properties to be checked while computing the depen-
dency relation. We shall show in the next section that, by taking
the properties into consideration, we can often obtain a more re-
fined dependency relation, which leads to a drastic reduction in the
number of equivalence classes.

3. ASSERTION GUIDED ABSTRACTION
In this section, we introduce the new notion of predicate depen-

dence to soundly reduce the number of thread interleavings. We
refer to this method as assertion guided abstraction.

3.1 Predicate Dependency Relation
We modify the general requirement for a relation over concur-

rent operations to be a valid dependency relation by considering
the influence on the outcome of assertion checking. The new re-
quirement, as compared to Definition 1, is given as follows:

Definition 3. Let T be the set of transitions and D ⊆ T × T be
a binary, reflexive, and symmetric relation. D is a valid dependency
relation for the system iff for all t1t2 ∈ T , (t1, t2) 6∈ D (t1 and t2
are independent) implies that the two following properties hold for
all states s in the state space AG of the system:

if (cond)
x = 1;

x = 7;
x = 5;
y = x + 2;

Figure 4. Examples for control (left) and data dependency (right).

1. if t1 is enabled in s and s
t1−→ s′, then t2 is enabled in s iff t2

is enabled in s′ (independent transitions can neither disable
nor enable each other), and

2. if t1 and t2 are enabled in s such that s
t1t2==⇒ s′ and s

t2t1==⇒
s′′, then s′ can lead to a bad state iff s′′ can lead to the same
bad state (commutativity of enabled independent transitions
is predicated on property checking).

In other words, two transitions t1 and t2 are predicate-dependent
if and only if the relative execution order of t1 and t2 can affect
whether an error state is reached or not. Otherwise, they are consid-
ered to be predicate-independent. An error state is any state where
a property is violated. We focus on two type of errors in this work:
assertion violations and deadlocks.
Definition 3 induces an abstraction of the system’s interleaving

space to ignore operations that are conflict-dependent and yet unre-
lated to the validity of the properties. Alternatively, the abstraction
is transforming the original program into a simpler program, con-
taining only those program statements that can cause an error. We
call these program statements essential statements.
In the next subsection, we explain that by using predicate depen-

dence to replace conflict dependence in DPOR we can obtain a new
dynamic analysis method that is more efficient and at the same time
guarantees that no error states are missed. Here, the error state is
a state where the assertion fails or a deadlock occurs. The essen-
tial statements are all the statements which could affect assert and
lock/unlock calls. Throughout this section, we shall focus our dis-
cussion on dealing with a single assertion statement. The case for
multiple assertions and/or lock calls will be similar.

3.2 Correctness of the Reduction
First, we introduce the concept of control and data dependencies.

Figure 4 (left) shows an example of the control dependency. The
statement on Line 1 determines if the statement on Line 2 is exe-
cuted. In other words, Line 2 is control dependent on Line 1. In
general, a statement b is said to be control dependent on another
statement a if and only if there exists a path from a to b such that
every statement c 6= a in the path is post-dominated by b and a is
not post-dominated by b.
Figure 4 (right) shows an example of a data dependency. The

value of y on Line 2 is dependent on the value of x on Line 1. A
statement a is said to be data dependent on another statement b if
and only if both statements access the same memory location and
at least one of them stores into it, and there is a feasible run-time
execution path from a to b.
Furthermore, the order in which statements are executed deter-

mines their dependency relation. For example, Line 3 of Figure 4
(right) is data dependent on Line 2 but not Line 1. This is because
the write on Line 2 to x overwrites the write on Line 1. The same
idea applies if all three lines of Figure 4 (right) were executed by
three different threads. Line 3 would be dependent on either Line
1 or Line 2 depending on the thread scheduling. We will use this
concept of changes in dependencies to prove our method is sound.
To prove that predicate dependence based reduction is correct,

we use Theorem 2.2 from [25] as a lemma, which states:

LEMMA 1. Any reordering transformation that preserves every
dependence in a program preserves the meaning of that program.

Algorithm 1 Classic dynamic partial order reduction algorithm.

Initially: Explore(∅)
1: procedure EXPLORE(S)
2: s← last(S)
3: for all processes p do
4: if ∃i = max({i ∈ dom(S) | Si is dependent and may be co-enabled with next(s, p) and i 6→S p}) then
5: E ← {q ∈ enabled(pre(S, i)) | q = p ∨ ∃j ∈ dom(S) : j > i ∧ q = proc(Sj) ∧ j →S p}
6: if E 6= ∅ then

7: add any q ∈ E to backtrack(pre(S, i))
8: else

9: add all q ∈ enabled(pre(S, i)) to backtrack(pre(S, i))
10: end if

11: end if

12: end for

13: if ∃p ∈ enabled(s) then
14: backtrack(s)← {p}
15: done← ∅

16: while ∃p ∈ (backtrack(s) \ done) do
17: add p to done

18: Explore(S.next(s, p))
19: end while

20: end if

21: end procedure

The proof for Lemma 1 in [25] was based on the fact that a sin-
gle statement will produce a different result if and only if its de-
pendencies change. Thus, if every statement has its dependencies
preserved, the program will not produce a different result.
Definitions such as conflict dependence use Lemma 1 to test

all possible outcomes of the program caused by concurrent non-
determinism. Each reordering performed by conflict dependence
is a change in the dependencies of the program. However, this is
often unnecessarily strong. We are not interested in how reordering
affects the entire program but only essential statements. We present
this idea in the following corollary:

COROLLARY 1. Any reordering transformation that preserves
every dependence of a statement will not affect the outcome of that
statement.

Using Corollary 1, we can prove that using predicate dependence
in DPOR to replace the conflict dependence will result in a sound
reduction, which is stated formally as follows:

THEOREM 1. Predicate dependence, as defined in Definition 3,
will not cause any error state to be missed.

PROOF. First, two transitions, t1 and t2, affect the reachability
of an error state only if they are control or data dependent with
the essential statements (e.g., assertions, lock/unlock calls). If they
are neither control nor data dependent with any essential statement,
then based on the definitions of control/data dependence and essen-
tial statements, they cannot affect the reachability of the error state.
Now we prove the theorem by contradiction. Assume that t1

and t2 are not predicate dependent, but one of their two execution
orders can result in an error state serr being missed.

• Since one of the two execution orders leads to serr being
missed, by Corollary 1 this means that the order of t1 and
t2 does not preserve the dependencies of the essential state-
ments.

• However, if the dependencies of the essential statements are
not preserved, then by definition, t1 and t2 are predicate de-
pendent, which contradicts our assumption (that they are not
predicate dependent).

Therefore, our assumption is not correct; the theorem is proved.

However, there is difficulty in using Theorem 1 during a purely
dynamic analysis, because checking whether t1 and t2 are control/-
data dependent at run time is not an easy task. Although in theory,
we could have pre-computed the control/data dependency relation
between all pairs of potentially concurrent operations in a purely
static manner before starting the dynamic analysis, it would be
computationally expensive, and at the same time, difficult to obtain
accurate results due to the limitations in a static inter-procedural,
inter-thread, dependency analysis. Instead, we propose a new co-
operative static–dynamic framework. The idea is to get the best of
both worlds, since static analysis is able to get an approximation of
the entire program while dynamic analysis is able to provide infor-
mation on aliasing and feasible executions.

4. THE COOPERATIVE ANALYSIS
In this section, we provide an overview of our newmethod shown

in Algorithm 2. The input is the program under test (P) together
with data input (I). Subprocedure Instrument adds monitoring and
control capabilities to the program to prepare it for dynamic analy-
sis. Subprocedure IfConvert converts all assertion statements of the
form assert(c) into if(!c) ERROR. Subprocedure Depen-
denceCalculate analyzes the program and returns the dependency
relationships. Subprocedure exec runs the program-under-test with
our scheduler. Subprocedure Explore takes the dependency rela-
tions and performs an exploration of the interleaving space.

Algorithm 2 High level overview of our new analysis method.

1: P ← program under test

2: I ← program inputs

3: P ← Instrument(P)
4: P ← IfConvert(P)
5: dep← DependenceCalculate(P)
6: exec(P, I)
7: Explore(∅, dep) ⊲ Algorithm 4

The bulk of the static analysis takes place in DependenceCal-
culate. This procedure collects all the interprocedural control and
data dependencies of each statement of interest (e.g., assert, lock-
/unlock calls) while ignoring aliasing. We will explain how we deal
with aliasing in subsection 4.2. The process of collecting interpro-

cedural control and data dependencies is the generation of the in-
terprocedural slice of each statement. We will explain our method
for computing the interprocedural slice in subsection 4.1. For a
more comprehensive description of existing methods for creating
the interprocedural slice, please refer to [21] and [41].

4.1 Control and Data Dependency Analysis
In our cooperative framework, we divide our approach to inter-

thread control and data dependency analysis into three steps:

1. intraprocedural control and data dependency computations,
2. interprocedural control and data dependency computations,
3. inter-thread alias computations.

Steps 1 and 2 are purely static and they are carried out only once,
before the dynamic analysis procedure starts, whereas Step 3 is dy-
namic – the alias information is updated incrementally while the
DPOR algorithm is running.
The static analysis methods used in this application are required

to be over-approximated. That is, as long as the execution order
of two concurrent operations t1 and t2 may affect the property, the
static analysis method must ensure that t1 and t2 are dependent.
Our method uses an intermediate program representation known

as the program dependence graph (PDG) [12]. For a given proce-
dure, a PDG explicitly provides both the control and data depen-
dencies. The transitive closure of control dependences is the con-
trol dependence graph; a node in the control dependence graph is
a statement and an edge from node x to node y indicates that y is
control dependent on x. The data dependence graph can be cre-
ated similarly. When combined for a single procedure, the control
and data dependence graphs are the two subgraphs of the program
dependence graph [12].
The system dependence graph [21] is an interprocedural version

of the program dependence graph. It consists of the program de-
pendence graphs for each procedure as well as additional edges to
include (1) direct dependencies between call site and called proce-
dure, and (2) transitive dependencies due to calls. As an example,
consider the program in Figure 5 (top) and its system dependence
graph (bottom). Control dependencies between statements are rep-
resented as edges with a diamond head, edges with an arrow head
are data dependencies, and dashed edges are dependencies due to
function calls and parameter passing.
The parameter inputs of function add are represented in the nodes

ain and bin and the output in the node aout. To handle parameter
passing, two additional nodes in main are added (ain = sum and
bin = i) and connected to the add procedure. These extra nodes
can be thought of as stack frames to handle pass-by-value seman-
tics. The program dependence graph of main and add are the nodes
reachable from the nodes Enter main and Enter add excluding func-
tion calls and parameter passing (dashed edges).
For a given node s (statement) in the system dependence graph,

an interprocedural slice is the graph containing all nodes that can
reach s. The usefulness of a slice on s is that it contains all possible
statements that could influence s (Corollary 1).

4.2 Computing Alias Information on the Fly
For languages such as C/C++, aliasing becomes an issue for cre-

ating slices. Consider a slice S on program statement s ignoring
aliasing. S contains only the statements which could directly affect
either the execution of s (control dependencies) or the value used
by s (data dependencies). In the presence of aliasing, S also needs
to contain any other statement in the program which could alias to
any statement already in S. These are additional data dependencies
caused by aliasing. Together, they represent the complete set of all
statements that could influence s.
To see the effects of aliasing, consider the example program in

Figure 6. A thread is accessing the first six elements of a shared
array of 12 elements. Similarly, main takes an index as input from

1 int add(int a, b) {
2 return a + b;
3 }
4 int main() {
5 int sum = 0, i = 1;
6 sum = add(sum, i);
7 if(sum!=1) assert(0);
8 }

sum = 0 i = 1

sum = addout

assert(0)

ain = sum bin = i

if (sum 6= 1)

addout = a+ b

a = ain b = bin

Figure 5. A program (top) and its system dependence graph (bot-
tom). Diamond headed edges are control dependencies while arrow
headed edges are data dependencies. Dashed lines represent func-
tion calls and parameter passing.

1 int array[12];
2 void thread1() {
3 for (int i = 0; i < 6; ++i) {
4 array[i] = array[i] + 1;
5 }
6 }
7 int main(int argc, char *argv[]) {
8 int idx = atoi(argv[1]) % 12;
9 thread_create(thread1);
10 array[idx] = array[idx] + 1;
11 }

Figure 6. A example program showing the effects of aliasing.

the user (Line 8) and increments the array at that index. Aliasing
could occur between the two accesses to the array (Lines 4 and 10).
The situation is complicated because the array index accessed by
main is based on user input; a conservative static analysis would
assume that the user could pass anything. Thus, the statements on
Line 4 and 10 would always alias. We will show in this subsection
how our cooperative static–dynamic approach avoids this problem.
The program representation shared between the static and dy-

namic analysis frameworks are program statement IDs. Specifi-
cally, each statement in a program is given a unique integer ID.
Intuitively, this provides a method of communication between the
two frameworks. In our cooperative analysis method, the output of
the static analysis is a set of program statement IDs representing
the slice on each erroneous statement ignoring aliasing. The goal
of our dynamic analysis is to extend the slices with inter-thread de-
pendency information. Dynamic partial order reduction (DPOR)
fits this task perfectly; the goal of DPOR is to dynamically enumer-
ate all relevant traces of a concurrent program.
The static analysis is made simpler since it no longer has to rea-

son about complex thread interactions (such as mutex locks) or
inter-thread aliasing. Also, the issue of calculating dependencies
becomes not only simple for a dynamic analysis but it is also ac-
curate; it is guaranteed that any possible dependencies observed by
the dynamic analysis are ones which could possibly occur in the
program (there are no false positives).
DPOR generates a set of sequences of program transitions each

corresponding to an execution of the program. The entire set of
sequences produced by DPOR contains at least one sequence from
each equivalence class. The transitions are dynamic instances of
each program statement. Due to their dynamic nature, the sequences
of transitions contain the memory address used in every memory

1 int a;
2 void thread1(void) {
3 a = 0;
4 }
5 void thread2(void) {
6 a = 1;
7 if (a != 1)
8 assert(0);
9 }

Figure 7. Example to show static–dynamic slice creation.

read and write; in the context of static analysis, this means that we
have complete alias information for the entire sequence.
Algorithm 3 shows the pseudocode for UpdateSlice, which takes

as input a transition sequence (ρ) generated from DPOR and a set of
statements on a slice Sli. It updates Sli to contain the inter-thread
dependencies observed in ρ. The for-loop on Lines 5–11 checks
each pair of transitions accessing the same object in ρ to see if they
should be added to the slice. We use obj(t) to represent the object
accessed by t, Sli.contains(t) to return true if the statement executed
by transition t is on the slice and Sli.insert(t) inserts the statement
executed by t to the slice. Note that ⊕ denotes XOR.
Statements should be added to the slice if one of the statements is

already on the slice and they are accessing the same object. This is
the situation when a statement on the slice aliases to one not on the
slice. The entire procedure is a fixpoint computation until the slice
is no longer updated. The fixpoint is required because whenever a
transition t is added to the slice all the statements not on the slice
which are dependent with t also need to be added.

Algorithm 3 Procedure to update the slice Sliwith the dependence
information observed in the sequence of transitions ρ.

1: procedure UPDATESLICE(ρ,Sli)
2: SliceUpdated← true

3: while SliceUpdated do

4: SliceUpdated← false

5: for all t1, t2 ∈ ρ such that obj(t1) = obj(t2) do
6: if Sli.contains(t1) ⊕ Sli.contains(t2) then
7: SliceUpdated← true

8: Sli.insert(t1)
9: Sli.insert(t2)
10: end if

11: end for

12: end while

13: end procedure

The combination of dynamically calculated inter-thread aliasing
using UpdateSlice and statically calculated control and data de-
pendencies completes the slicing algorithm. In the next section, we
show how this algorithm is combined with DPOR to implement
predicate dependence. Note that intra-thread aliasing is handled
statically during the control and data dependency phase.

Example. Consider the multithreaded program in Figure 7, where
two threads access a shared variable a. Assume that the line num-
ber of each statement represents the statement ID. First, we gener-
ate the slice on the assertion ignoring aliasing. The slice contains
Lines 8 (the assertion itself), 7 (a control dependency) and 6 (a data
dependency). Notice that the slice is missing a crucial component,
the aliased write to a by the first thread on Line 3.
DPOR generates three sequences of transitions for this example.

They are: S1 = 6, 7, 3, S2 = 6, 3, 7, 8 and S3 = 3, 6, 7. Next, we
run UpdateSlice on each sequence; the results are summarized for
S1 in Table 1. The table shows how the slice is updated for each
pair examined in S1 (i.e., the table is the first iteration of the while-

Sequence Pair Slice Slice Updated?

Initially: { 8, 7, 6 }

S1 (3, 6) { 8, 7, 6, 3 } true
S1 (3, 7) { 8, 7, 6, 3 } true
S1 (6, 7) { 8, 7, 6, 3 } true

Table 1. Example of running UpdateSlice (Algorithm 3) on a se-
quence of transitions generated by DPOR from the program in Fig-
ure 7. The procedure continues to run on the remaining sequences
but no modifications are made to the slice

loop in Algorithm 3). Column 3 is the value of SliceUpdated in
the fixpoint computation for S1. While examining S1, the slice is
updated; Column 4 stays true until after the first iteration of the fix-
point computation. During the next iteration on S1, no updates are
made to the slice. Examining the remaining two sequences shows
that the final slice contains { 8, 7, 6, 3 }; the update to a by Thread
1 is now included.

4.3 DPOR based on Predicate Dependence
Now, we explain how DPOR (Algorithm 1) can be modified to

include predicate dependence. The only additional input is a set of
program statements on the slice (ignoring aliasing) of every essen-
tial statement. We incorporate theUpdateSlice algorithm to dynam-
ically calculate aliasing from the previous subsection.
The major change to Algorithm 1 is that backtrack set is com-

puted at the end of each execution. This is required because we
need to examine the entire sequence of transitions of an execution
in order to dynamically update the statements contained in the slice.
Algorithm 4 introduces an additional notation to describe a se-

quence of transitions S and a state s. Here, predom(S, s) is the
set from { 1, ..., n } where n is the number of transitions that have
occurred before the state s. This the same as dom(S) if S only
contained the sequences of transitions leading up to s.
Lines 13–24 implement updating the backtrack set (similar to

Lines 3–11 in Algorithm 1) after the entire execution is completed.
Line 12 is the fixpoint computation, Algorithm 3, to dynamically
expand the slice to include alias information from the current se-
quence. The dependency relation (Line 15) is from Definition 3.
Other than these modifications, Algorithm 4 is the same as Algo-
rithm 1.

5. OPTIMIZING PREDICATED DPOR
In this section, we introduce two new optimizations in DPOR.

One optimization, called critical section peeking, is applicable to
all properties, whereas the other optimization, called write–write
pruning, is applicable to checking assertions.

5.1 Critical Section Peeking
Definitions such as predicate dependence and conflict dependence

consider mutex lock calls to be dependent if they are locking the
same mutex and never consider the items in the critical section
of the mutex. However, they can be unnecessarily inefficient in
many cases. As motivation, consider the program in Figure 8. Two
threads are incrementing values in an array of 16 integers. Thread 1
is incrementing items 0–7 and thread 2 is incrementing items 8–15.
A standard DPOR implementation requires 12,870 runs to test this
program even though the two threads will never access the same
memory location. In contrast, our new automated optimizations
can reduce the the exploration down to one run.
We define critical section peeking as follows. Let m1 and m2

be two mutex lock calls and cs1 and cs2 be the statements in the
critical sections protected bym1 andm2, respectively. Two mutex
lock calls are dependent iff condition 1 is true and either condition
2 or condition 3 is true:

1. The two lock calls are to the same mutex

Algorithm 4 Predicated dynamic partial order reduction algorithm.

1: Slices← slice of every essential statement, ignoring aliasing

Initially: Explore(∅, Slices)
2: procedure EXPLORE(S,Slices)
3: s← last(S)
4: if ∃p ∈ enabled(s) then
5: backtrack(s)← {p}
6: done← ∅

7: while ∃p ∈ (backtrack(s) \ done) do
8: add p to done

9: Explore(S.next(s, p), Slices)
10: end while

11: end if

12: UpdateSlice(S, Slices) ⊲ Algorithm 3
13: for all States s′ in S do

14: for all processes p do

15: if ∃i = max({i ∈ predom(S, s′) | Si is predicate dependent and may be co-enabled with next(sp) and i 6→S p}) then
16: E ← {q ∈ enabled(pre(S, i)) | q = p ∨ ∃j ∈ predom(S, S′) : j > i ∧ q = proc(Sj) ∧ j →S p}
17: if E 6= ∅ then

18: add any q ∈ E to backtrack(pre(S, i))
19: else

20: add all q ∈ enabled(pre(S, i)) to backtrack(pre(S, i))
21: end if

22: end if

23: end for

24: end for

25: end procedure

mutex array_lock;
int array[16];
void thread_1() {

for (int i = 0; i < 8; ++i) {
lock(array_lock);
array[i] = array[i] + 1;
unlock(array_lock);

}
}
void thread_2() {

for (int i = 8; i < 16; ++i) {
lock(array_lock);
array[i] = array[i] + 1;
unlock(array_lock);

}
}

Figure 8. A motivating example for critical section peeking. A
single mutex protects an entire array. This causes a DPOR algo-
rithm to test all orderings of array accesses even if two threads are
accessing different items of the array.

2. ∃s ∈ { cs1 ∪ cs2 } | s is not a memory accessing transition
3. ∃s1 ∈ cs1 | ∃s2 ∈ cs2 | s1 is dependent with s2

In DPOR, when two mutex lock calls are reordered the effec-
tive result is that all of the transitions in the critical sections are re-
ordered. In essence, critical section peeking only reorders critical
sections when it is necessary. Item 2 prevents deadlocks from being
missed; two critical sections containing additional mutex lock calls
could, when called in a certain order, result in a deadlock even if
they are not dependent on each other. Item 3 results in the signifi-
cant reduction for programs such as in Figure 8; the mutexes only
need to reordered if they are protecting memory accesses which
could interfere with each other. When using critical section peek-
ing, none of the mutex lock calls in Figure 8 will be dependent; this
results in only one run of DPOR to be required. Critical section
peeking is implemented dynamically by examining the statements
in the critical section of two lock calls to the same mutex using the
dependence rules defined previously.

5.2 Write–Write Pruning
There are three combinations of shared memory access events

between two threads: read–read, read–write, and write–write. Two
read accesses, even from two different threads, can never affect
each other regardless of their order of execution. Thus, in this sec-
tion, we focus on read–write and write–write, and show how sup-
plemental information can generate fewer Mazurkiewicz traces.

int a = 0;
void t1_main(){
a = 7;
a = 6;

}
void t2_main() {
a = 0;
a = 1;

}
int main(int argc, char *argv[]) {
thread_create(t1_main);
thread_create(t2_main);
thread_join(t1_main);
thread_join(t2_main);
assert(a != 7);
return 0;

}

Figure 9. A read–(write–write) conflict between three threads.

We divide write–write conflicts into two new categories: write–
write and read–(write–write) conflicts.

THEOREM 2. If two writes to the same shared variable, x, by
different threads, t1 and t2, are adjacent in a trace, then regardless
of the order of the writes to x by t1 and t2, no assertion violations
local to t1 and t2 will be missed.

The key restriction to Theorem 2 is that assertions inside the two
threads are never violated. There may be assertions in other threads
that could be violated due to the order of writes by the two threads.
This can be thought of as a read–(write–write) dependency; the

order of two writes affects the value read by another thread. In
DPOR, this can only happen when there is a third thread, t3, which
reads the same location in memory as is written to by t1 and t2, and
t3 may not be co-enabled with t1 and t2 while they are writing to
x. We formalize this concept in the following theorem.

THEOREM 3. If two different threads, t1 and t2, are executing
a sequence of operations, S1 and S2 respectively, both including
some number of writes to the same shared memory location, x, then
the order of execution of t1 and t2 writing to x will only affect
assertion violations if both of the following hold:

1. there exists a shared memory read of x by a distinct third
thread t3 which cannot be co-enabled with either t1 or t2
during S1 or S2,

2. the write to x in S1 by t1 is the last write to x by t1 before t3
is enabled, and

3. the write to x in S2 by t2 is the last write to x by t2 before t3
is enabled.

The case when t3 can be co-enabled during either S1 or S2, vi-
olating condition one of Theorem 3, changes the problem from a
read–(write–write) conflict to simply a read–write conflict. Con-
sider the example of a write–write conflict between two threads
and a single assertion check in Figure 9. Furthermore, main cre-
ates and joins the two threads. The key insight is that main can
never be co-enabled with any of the writes. This situation is cap-
tured by Theorem 3; the read by main will only be able to read
the last value written by each thread (either 6 or 1). DPOR would
require 6 runs but in reality only 2 runs are necessary.

6. EXPERIMENTAL RESULTS
We have implemented our new method in a tool called Käse

based on the LLVM platform for static analysis and code instru-
mentation and on a modified version of Inspect [42] for system-
atic exploration of a concurrent program. Our tool runs both with
and without the proposed optimizations and can handle unmodified
C/C++ code using PThreads. We use the DPOR implementation in
Inspect as a baseline for comparison.
Our experiments were designed to answer the following research

questions: (1) How effective is our new method? In practice, is it
able to show significant improvement over DPOR? (2) How scal-
able is our new method? Can it handle realistic programs?
We evaluated our tool on 46 benchmarks from two groups. The

first group are a set of small programs from the Software Verifi-
cation Competition (SV-COMP) [34] as well as two of our own
synthetic examples. The second group is a set of real-world open
source programs: nbds [28] is a C implementation of several non-
blocking data structures. nedmalloc [29] is a thread-caching
malloc implementation. pfscan is a parallel directory file scanner.
When possible, we used tests and inputs provided by the authors.
Figures 10 and 11 summarize the results of all our tests. The

graphs show a comparison of our methods versus DPOR in terms of
number of runs and runtime required to test a program respectively.
Figure 10 shows that our method is always capable of testing a
program in the same number of runs as DPOR and in some cases
can offer significant reduction. Figure 11 shows similar results for
the runtime. In most cases, our tool incurs a minimal overhead and
can results in significant reduction in runtime. The cases where the
runtime was significantly higher occurred when a reduction in runs
occurred but the static analysis took longer than the saving incurred
during dynamic analysis.
Table 2 shows the statistics from tests where a reduction in runs

occurred. Column 1 shows the name of each benchmark. Column
2 shows the number of lines of code in the benchmark. Column 3
shows the number of assertions in the benchmark. Column 4 shows
the maximum number of threads in the benchmark. Columns 5–7

100 102 104
100

102

104

DPOR

P
re
d
-D
P
O
R

Figure 10. Results: comparing the number of runs of predicated
DPOR and baseline DPOR on 46 benchmark examples.

10−2 101 104
10−2

101

104

DPOR

P
re
d
-D
P
O
R

Figure 11. Results: comparing the execution time of predicated
DPOR and baseline DPOR on 46 benchmark examples.

show the time required to test the program for DPOR, predicate
dependence, and predicate dependence with optimizations, respec-
tively. Similarly, columns 8–10 show the number of runs for each
method. We allotted a maximum of two hours for each test; an ✗ in
columns 5–10 indicates that the method exceeded two hours. All
tests were run on a machine with a 2.60 GHz Intel Core i5-3230M
processor with 8 GB RAM and a 64-bit Linux OS.
First, the results show that our method is more efficient than

DPOR. On the first set of benchmarks, both DPOR and our method
can complete and the difference in runtime is small. However, on
large programs, such as nbds, pfscan and nedmalloc, DPOR
could not finish whereas our method was able to finish in a reason-
able amount of time. For some experiments, our new optimizations
were required to have good performance, since the programs make
heavy use of mutexes.
Second, as a measure of the scalability of our method, we con-

ducted tests on two parameterized programs: IndexerSafe and
nbds-hashtable. IndexerSafe is an implementation of Fig-
ure 1. We varied the number of threads from 11 to 15; the results are
summarized in Figure 2. The number of runs required for DPOR
grows exponentially with the number of threads while optimized
predicate dependence stays at a constant one run. Critical section
peeking was required for this benchmark since the compare-and-
swap operations were implemented using mutex locks. The pro-
gram nbds-hashtable was parameterized by the number of
compare-and-swap operations used by two threads. We varied the
number of operations from four to eight. The results are summa-
rized in Figure 12. Predicate dependence both takes a lower num-
ber of runs and has slower growth when compared to DPOR. Once
8 operations are performed, DPOR exceeds the two hour time limit
while predicate dependence is able to finish in just over two min-
utes. Experiments where predicated DPOR finishes in one run are
possible because our method concludes that the property does not
depend on concurrent non-determinism.

Table 2. Experimental results for a subset of the test programs to illustrate the impact of predicated DPOR and the two optimizations. LOC
is the number of lines of code. Assert is the number of assertions in the file. Thread is the maximum number of threads running in the
program. Results are given for different levels of optimization: DPOR is the original DPOR implementation. Pred-DPOR is the predicated
DPOR. Pred-DPOR-opt is the predicated DPOR with optimizations. For the Pred-DPOR columns, the time includes the static analysis
required to create the slice. The maximum testing time was two hours; tests exceeding this time are marked with an ✗.

Time (s) Runs

Name LOC Assert Thread DPOR Pred-DPOR Pred-DPOR-opt DPOR Pred-DPOR Pred-DPOR-opt

AccountBad 60 1 4 0.05 0.06 0.05 4 4 3
BluetoothBad 88 1 2 0.19 0.11 0.11 23 9 9

ReadReadWrite 50 1 3 0.07 0.04 0.03 7 3 3
ReadWriteLock 55 1 5 22.03 0.49 0.41 1983 28 28

Stateful 54 1 3 0.02 0.03 0.02 6 6 2
IndexerSafe12 92 1 12 0.57 0.69 0.15 8 8 1
IndexerSafe13 92 1 13 4.64 5.28 0.17 64 64 1
IndexerSafe14 92 1 14 36.03 43.07 0.22 512 512 1
IndexerSafe15 92 1 15 282.06 357.24 0.43 4096 4096 1

nbds-list 1887 1 3 ✗ 0.16 0.19 ✗ 1 1
nbds-hashtable4 2375 24 3 37.11 25.04 25.02 641 36 36
nbds-hashtable5 2375 24 3 68.05 25.35 25.30 999 36 36
nbds-hashtable6 2375 24 3 1082.00 38.76 37.74 16441 216 216
nbds-hashtable7 2375 24 3 1828.59 74.32 73.08 25623 216 216
nbds-hashtable8 2375 24 3 ✗ 140.28 138.04 ✗ 1296 1296
nbds-hashw01 2322 1 3 39.36 45.50 46.69 641 601 601
nbds-hashw02 2322 1 3 1173.25 1199.29 1211.83 16441 14425 14425
nbds-hashw03 2234 1 3 942.99 8.29 7.66 14923 36 36

nbds-skiplistU1 1942 16 3 1.05 3.13 3.14 35 30 30
nbds-skiplistU2 1942 16 3 43.67 49.13 49.40 1057 913 913

nbds-skiplist 1994 1 4 ✗ 0.21 0.21 ✗ 1 1

nedmalloc 6303 9 5 ✗ 9.148 9.138 ✗ 1 1
pfscan 934 1 3 ✗ ✗ 61.24 ✗ ✗ 1666

4 5 6 7

102

103

104

Number of Concurrent Operations

R
u
n
s

DPOR

Pred-DPOR

Figure 12. The number of runs versus the number of CAS opera-
tions per thread in test program nbds-hashtable.

7. RELATED WORK
There is a large body of work in the model checking literature

on soundly reducing the state space of a concurrent system, includ-
ing persistent sets [16], stubborn sets [36], ample sets [32], sleep
sets [14, 17], wakeup trees [1], symmetry [43], and property driven
pruning [39, 37]. There are also POR methods for SAT/SMT based
bounded model checking [40, 23, 3]. However, they do not exploit
the synergy between static and dynamic analysis in a cooperative
framework. Godefroid and Pirottin [16] introduced additional de-
pendence relations compared to conflict dependence to refining op-
erations for variables of certain types. Also, they introduce the idea
of conditional dependencies which are valid only at specific states
in a concurrent program as opposed to all states. However, they do
not perform property driven reduction.
Coverage guided approaches to reducing the interleaving space

consider the space fully explored when a certain coverage condi-
tion is met. These methods include preemption bounds [8, 27], fair
bounds [8], delay bounding [11], HaPSet [38], variable bounds [5],
and thread bounds [5]. For example, a preemption bound of n
means that all sequences of transitions at which no more than n
preemptive context switches occur will be explored. The goal of
these methods is not verification but accelerated bug detection. Our
method of assertion guided abstraction can work along side cover-
age metrics to potentially provide further reduction.

There are non-systematic techniques for testing concurrent pro-
grams as well. Recent empirical studies of these algorithms can
be found in [35, 20, 19]. For example, ConTest [10] inserts de-
lays at synchronization points to attempt to increase contention and
force deadlocks during testing. Two stage analysis systems such as
CTrigger [31], CalFuzzer [22], PENELOPE [33], and Maple [44]
operate by first statically or dynamically analyzing a program to
identify potentially buggy interleavings. Then, the tools take con-
trol of the scheduler and attempt to force the buggy interleavings.
While these methods scale well, our approach differs in that we
guarantee not to produce any false negatives.
There is a large body of work on dynamic slicing [2], which

use a similar method of examining dynamic sequences of transi-
tions for a given program input to build dependence information.
However, their focus was primarily on slices of single executions.
Our work expands on theirs to handle concurrent non-determinism
across multiple executions. Zhang et al. [45] expand on the early
work to create more precise and efficient dynamic slicing algo-
rithms. Additional work [4, 6, 9, 24, 30, 18] has been done to
limit the number of dynamic instrumentation points to reduce the
overhead of dynamic slicing. They are orthogonal to the method
proposed in this paper.

8. CONCLUSIONS
We have presented a new cooperative static–dynamic analysis

method for reducing the interleaving space of multithreaded C/C++
programs. We have also presented two optimizations for DPOR to
provide further reduction. We have implemented our new methods
and evaluated them on open source benchmarks. Our experimental
evaluation shows that the proposed methods can result in significant
speedup over DPOR alone. For future work, we plan to increase the
accuracy and efficiency of our static analysis method.

9. ACKNOWLEDGMENT
This work was primarily supported by the NSF under grant CCF-

1149454 (Markus Kusano). Partial support was provided by the
ONR under grant N00014-13-1-0527 (Chao Wang).

10. REFERENCES

[1] P. A. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas.
Optimal dynamic partial order reduction. In ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 373–384, 2014.

[2] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 246–256, 1990.

[3] J. Alglave, D. Kroening, and M. Tautschnig. Partial orders
for efficient bounded model checking of concurrent software.
In International Conference on Computer Aided Verification,
pages 141–157, 2013.

[4] T. Ball and J. R. Larus. Optimally profiling and tracing
programs. ACM Trans. Program. Lang. Syst.,
16(4):1319–1360, July 1994.

[5] S. Bindal, S. Bansal, and A. Lal. Variable and thread
bounding for systematic testing of multithreaded programs.
In International Symposium on Software Testing and
Analysis, pages 145–155, 2013.

[6] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for
debugging parallel programs with flowback analysis. ACM
Trans. Program. Lang. Syst., 13(4):491–530, Oct. 1991.

[7] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, Cambridge, MA, USA, 1999.

[8] K. E. Coons, M. Musuvathi, and K. S. McKinley. Bounded
partial-order reduction. In ACM SIGPLAN Conference on
Object Oriented Programming, Systems, Languages, and
Applications, pages 833–848, 2013.

[9] E. Duesterwald, R. Gupta, and M. Soffa. Distributed slicing
and partial re-execution for distributed programs. In
Languages and Compilers for Parallel Computing, pages
497–511. ACM, 1993.

[10] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded java program test generation. IBM Syst. J.,
41(1):111–125, Jan. 2002.

[11] M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-bounded
scheduling. In ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pages 411–422,
2011.

[12] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans.
Program. Lang. Syst., 9(3):319–349, July 1987.

[13] C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. In ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 110–121, 2005.

[14] P. Godefroid. Using partial orders to improve automatic
verification methods. In International Conference on
Computer Aided Verification, pages 176–185, 1991.

[15] P. Godefroid. Model checking for programming languages
using verisoft. In ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pages 174–186,
1997.

[16] P. Godefroid and D. Pirottin. Refining dependencies
improves partial-order verification methods (extended
abstract). In International Conference on Computer Aided
Verification, pages 438–449, 1993.

[17] P. Godefroid and P. Wolper. Using partial orders for the
efficient verification of deadlock freedom and safety
properties. In International Conference on Computer Aided
Verification, pages 332–342, 1992.

[18] R. Gupta, M. L. Soffa, and J. Howard. Hybrid slicing:
Integrating dynamic information with static analysis. ACM
Trans. Softw. Eng. Methodol., 6(4):370–397, Oct. 1997.

[19] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold. Testing
concurrent programs to achieve high synchronization
coverage. In International Symposium on Software Testing
and Analysis, pages 210–220, 2012.

[20] S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel. The
impact of concurrent coverage metrics on testing
effectiveness. In IEEE International Conference on Software
Testing, Verification and Validation, pages 232–241, 2013.

[21] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
35–46, 1988.

[22] P. Joshi, M. Naik, C.-S. Park, and K. Sen. CalFuzzer: An
extensible active testing framework for concurrent programs.
In International Conference on Computer Aided Verification,
pages 675–681, 2009.

[23] V. Kahlon, C. Wang, and A. Gupta. Monotonic partial order
reduction: An optimal symbolic partial order reduction
technique. In International Conference on Computer Aided
Verification, pages 398–413, 2009.

[24] M. Kamkar, P. Fritzson, and N. Shahmehri. Three approaches
to interprocedural dynamic slicing. Microprocessing and
Microprogramming, 38(1):625–636, 1993.

[25] K. Kennedy and J. R. Allen. Optimizing Compilers for
Modern Architectures: A Dependence-based Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

[26] A. Mazurkiewicz. Trace theory. In Advances in Petri Nets
1986, Part II on Petri Nets: Applications and Relationships
to Other Models of Concurrency, pages 279–324, New York,
NY, USA, 1987. Springer-Verlag New York, Inc.

[27] M. Musuvathi and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 446–455, 2007.

[28] Non-blocking data structures. URL:
https://code.google.com/p/nbds/.

[29] Thread-caching malloc implementation. URL:
http://www.nedprod.com/programs/portable/nedmalloc/.

[30] R. H. B. Netzer and M. H. Weaver. Optimal tracing and
incremental reexecution for debugging long-running
programs. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 313–325, 1994.

[31] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing atomicity
violation bugs from their hiding places. In International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 25–36, 2009.

[32] D. Peled. Combining partial order reductions with on-the-fly
model-checking. In International Conference on Computer
Aided Verification, pages 377–390, 1994.

[33] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE:
weaving threads to expose atomicity violations. In ACM
SIGSOFT Symposium on Foundations of Software
Engineering, pages 37–46, 2010.

[34] 2013 software verification competition. URL:
http://sv-comp.sosy-lab.org/2013/.

[35] P. Thomson, A. F. Donaldson, and A. Betts. Concurrency
testing using schedule bounding: An empirical study. In
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 15–28, 2014.

[36] A. Valmari. Stubborn sets for reduced state space generation.
In International Conference on Applications and Theory of
Petri Nets, pages 491–515, 1991.

[37] C. Wang, S. Chaudhuri, A. Gupta, and Y. Yang. Symbolic
pruning of concurrent program executions. In ACM

SIGSOFT Symposium on Foundations of Software
Engineering, pages 23–32, 2009.

[38] C. Wang, M. Said, and A. Gupta. Coverage guided
systematic concurrency testing. In International Conference
on Software Engineering, pages 221–230, 2011.

[39] C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan.
Dynamic model checking with property driven pruning to
detect race conditions. In International Symposium on
Automated Technology for Verification and Analysis, pages
126–140, 2008.

[40] C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole partial
order reduction. In International Conference on Tools and
Algorithms for Construction and Analysis of Systems, pages
382–396, 2008.

[41] M. Weiser. Program slicing. In International Conference on
Software Engineering, pages 439–449, 1981.

[42] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby.
Efficient stateful dynamic partial order reduction. In

International SPIN workshop on Model Checking Software,
pages 288–305, 2008.

[43] Y. Yang, X. Chen, G. Gopalakrishnan, and C. Wang.
Automatic discovery of transition symmetry in multithreaded
programs using dynamic analysis. In International SPIN
workshop on Model Checking Software, pages 279–295,
2009. LNCS 5578.

[44] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: A
coverage-driven testing tool for multithreaded programs. In
ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications, pages
485–502, 2012.

[45] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing
algorithms. In International Conference on Software
Engineering, pages 319–329, May 2003.

