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Abstract—We propose a method for verifying data-poisoning
robustness of the k-nearest neighbors (KNN) algorithm, which is
a widely-used supervised learning technique. Data poisoning aims
to corrupt a machine learning model and change its inference
result by adding polluted elements into its training set. The
inference result is considered n-poisoning robust if it cannot be
changed by up-to-n polluted elements. Our method verifies n-
poisoning robustness by soundly overapproximating the KNN
algorithm to consider all possible scenarios in which polluted
elements may affect the inference result. Unlike existing methods
which only verify the inference phase but not the significantly
more complex learning phase, our method is capable of verifying
the entire KNN algorithm. Our experimental evaluation shows
that the proposed method is also significantly more accurate than
existing methods, and is able to prove the n-poisoning robustness
of KNN for popular supervised-learning datasets.

I. INTRODUCTION

Data poisoning is an attack aimed to corrupt a machine
learning model by polluting its training data, and thus affect
the inference results for test data [33]. Prior work shows that
even a small amount of polluted data, e.g., ≤ 0.4% of the
training set, is enough to affect the inference result [34], [6],
[8]. Thus, verifying the robustness of the inference result in the
presence of data poisoning is a practically important problem.
Specifically, given a potentially-polluted training set T , and the
assumption that at most n elements in T are polluted, if we
can prove that the inference result for a test input x remains
unchanged by any n polluted elements in T , the inference
result can still be considered trustworthy.

This work is concerned with n-poisoning robustness of
the k-nearest neighbors (KNN) algorithm, which is a widely
used supervised learning technique in applications such as e-
commerce, video recommendation, document categorization,
and anomaly detection [18], [2], [41], [1], [30], [14], [27],
[36], [44]. However, the verification problem is challenging
for two reasons. First, KNN relies heavily on numerical anal-
ysis, which involves a large number of non-linear arithmetic
computations and complex statistical analysis techniques such
as p-fold cross validation. They are known to be difficult for
existing verification techniques. Second, even with a small n,
there can be an extremely large number of possible scenarios
in which polluted elements in T may affect the trained model
and hence the inference result.

Specifically, let m = |T | be the number of elements in T
and i ≤ n be the actual number of polluted elements in T , the
number of clean subsets of T (where polluted elements have

been removed) is
(︁
m
i

)︁
. Since i = 1, . . . , n, the total number

of clean subsets of T is
∑︁n

i=0

(︁
m
i

)︁
. Thus, it is impractical

to explicitly check, for each clean subset T ′ ⊆ T , whether
the inference result produced by the model trained using T ′

remains the same as the inference result produced by the model
trained using T .

A practical approach, which is the one used by our method,
is to soundly over-approximate the impact of all the clean sub-
sets while analyzing the machine learning algorithm, following
the abstract interpretation [9] paradigm for static program
analysis. Here, the word soundly means that our method
guarantees that, as long as the over-approximated inference
result is proved robust, the actual inference result is robust. In
addition to being sound, our method is efficient in that, instead
of training a model for each clean subset T ′, it combines all
clean subsets together to compute a set of abstract models in
a single pass.

For KNN, in particular, each model corresponds to an
optimal value of the parameter K, indicating how many
neighbors in T are used to infer the output label of a test input
x. Thus, our method computes an over-approximated set of K
values, denoted KSet. Then, it over-approximates the KNN’s
inference phase, to check if the output label of x remains the
same for all K ∈ KSet. If the output label remains the same,
the inference result for x is considered robust against any of
the possible n-poisoning attacks of the training set T .

To the best of our knowledge, our method is the first method
that can soundly verify n-poisoning robustness of the entire
KNN algorithm, consisting of both the learning (K parameter
tuning) phase and the inference phase. In the literature, there
are two closely related prior works. The first one, by Jia et
al. [21], aims to verify the robustness of KNN’s inference
phase only; in other words, they require the K value to be
fixed and given, with the implicit assumption that the optimal
K value is not affected by data poisoning. Unfortunately,
this is not a valid assumption, as shown by the motivating
examples presented in Section II. Furthermore, by fixing
the K value, the more challenging part of the verification
problem has been sidestepped, which is verifying the p-fold
cross validation during KNN’s learning phase. How to over-
approximate KNN’s learning phase soundly and efficiently is
a main contribution of our work.

The other closely-related prior work, by Drews et al. [12],
aims to prove robustness of a different machine learning
technique, namely the decision tree learning (DTL) algo-
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rithm. Since DTL differs significantly from KNN in that it
relies primarily on logical operations (such as And, Or, and
Negation) as opposed to nonlinear arithmetic computations,
their verification method relies on a fundamentally different
technique (symbolic path exploration) from ours, and is not
directly applicable to KNN.

At a high level, our verification method works as follows.
Given a tuple ⟨T, n, x⟩, where T is the potentially-polluted
training set, n is the maximum number of polluted elements
in T , and x is a test input, our method tries to prove that,
no matter which of the i ≤ n elements in T are polluted, the
KNN’s inference result for x remains the same. By default,
the training set T corresponds to a model M , whose inference
result for x is y = M(x). Using an overapproximated analysis,
our method checks if the output label y′ = M ′(x) produced
by a model M ′ corresponding to any clean subset of T ′ ⊆ T
remains the same as the default label y = M(x). If that is
the case, our method verifies the robustness of the inference
result. Otherwise, it remains inconclusive.

We have implemented our method and conducted experi-
mental evaluation using six popular machine learning datasets,
which include both small and large datasets. The small datasets
are particularly useful in evaluating the accuracy of the ver-
ification result because, when datasets are small, even the
baseline approach of explicitly enumerating all clean subsets
T ′ ⊆ T is fast enough to complete and obtain the ground
truth. The large datasets, some of which have more than 50,000
training data elements and thus are well beyond the reach of
the baseline enumeration approach, are useful in evaluating the
efficiency of our method. For comparison, we also evaluated
the method of Jia et al. [21] with fixed K values.

Our experimental results show that, for KNN’s inference
phase only, our method is significantly more accurate than
the method of Jia et al. [21] and as a result, proves robust-
ness for many more cases. Overall, our method is able to
achieve similar empirical accuracy as the ground truth on small
datasets, while being reasonably accurate on large datasets and
several orders-of-magnitudes faster than the baseline method.
In particular, our method is the only one that can finish the
complete verification of 10,000 test inputs for a training dataset
with more than 50,000 elements within half an hour.

To summarize, this paper has the following contributions:

• We propose the first method for soundly verifying data-
poisoning robustness of the entire KNN algorithm, con-
sisting of both the learning phase and the inference phase.

• We evaluate the method on popular supervised learning
datasets to demonstrate its advantages over both the
baseline and a state-of-the-art technique.

The remainder of this paper is organized as follows. First,
we review the definition of n-poisoning robustness and the ba-
sics of the k-nearest neighbors (KNN) algorithm in Section II.
Then, we present the intuition and overview of our method in
Section III. Next, we present our method for verifying the
KNN learning phase in Section IV and verifying the KNN
inference phase in Section V. We present our experimental

results in Section VI, review the related work in Section VII,
and give our conclusions in Section VIII.

II. BACKGROUND

A. Data-Poisoning Robustness

Let L be a supervised learning algorithm that takes a set
T = {(x, y)} of training data elements as input and returns
a learned model M = L(T ) as output. Within each data
element, input x ∈ X ⊆ RD is an D-dimensional real-valued
feature vector, and output y ∈ Y ⊆ N is a natural number that
represents a class label. The model is a prediction function
M : X → Y that maps a test input x ∈ X to its class label
y ∈ Y . Following Drews et al. [12], we define data-poisoning
robustness as follows.

a) n-Poisoning Model: Let T be a potentially-polluted
training set, m = |T | be the total number of elements in
T , and n be the maximum number of polluted elements in
T . Assuming that we do not know which elements in T are
polluted, the set of all possible scenarios is captured by the set
of clean subsets, denoted ∆n(T ) = {T ′ ⊆ T : |T \ T ′| ≤ n}.
In other words, each T ′ may be the result of removing all of
the polluted elements from T .

b) n-Poisoning Robustness: We say the inference result
y = M(x) for a test input x ∈ X is robust to n-poisoning
attacks of T if and only if, for all T ′ ∈ ∆n(T ) and the
corresponding model M ′ = L(T ′), we have M ′(x) = M(x).
In other words, the predicted label remains the same.

For example, when T = {a, b, c, d} and n = 1, the clean
subsets are T1 = {b, c, d}, T2 = {a, c, d}, T3 = {a, b, d} and
T4 = {a, b, c}, which correspond to models M1 − M4 and
inference results x1 = M1(x), x2 = M2(x), x3 = M3(x) and
x4 = M4(x). Let M be the default model obtained by T and
x = M(x) be the default output label. The inference result is
1-poisoning robust if and only if x1 = x2 = x3 = x4 = x.

This robustness definition has two advantages. First, when-
ever the inference result for a test input x is proved to
be robust, it provides a strong guarantee of trustworthiness.
Second, the verification procedure does not require the actual
label of x to be known, which means it is applicable to
unlabeled test data, which are common in practice.

B. k-Nearest Neighbors (KNN)

KNN is a supervised learning algorithm with two phases.
During the learning phase, the training set T is used to
compute the optimal value of the parameter K, which indicates
how many neighbors in T to consider when deciding the
output label for a test input x. During the inference phase,
given an unlabeled test input x ∈ X , the K nearest neighbors
of x in T are used to compute the most frequent label, which
is returned as the output label of x.

The distance between data elements, which is used to find
the nearest neighbors of x in T , is defined on the input
feature vectors. The most widely used metric is the Euclidean
distance: given two elements xa, xb ∈ X ⊆ RD, where D
is the dimension of the input feature vector, the Euclidean

distance is
√︂∑︁D

i=1(xa[i]− xb[i])2.
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Fig. 1. Example of direct influence of the polluted data.

?

Poisoning 

data

(a) polluted dataset (K=3)

?

(b) clean dataset (K=5)

Fig. 2. Example of indirect influence of polluted data.

The optimal K value is the one that has the smallest average
misclassification error on the training set T . The misclassifi-
cation error is computed using p-fold cross validation, which
randomly divides T into p groups of approximately equal size
and, for each group, compute the misclassification error by
treating this group as the test set and the union of all the other
p− 1 groups as the training set. Finally, the misclassification
errors of the individual groups are used to compute the average
misclassification error among all p groups.

III. THE INTUITION AND OVERVIEW OF OUR METHOD

We first present the intuition behind our method, and then
give an overview of the method in contrast to the baseline.

A. Two Ways of Affecting the Inference Result

In general, there are two ways in which polluted training
elements in T affect the inference result. One of them, called
direct influence, is to change the neighbors of x and thus their
most frequent label. The other one, called indirect influence,
is to change the parameter K itself.

Fig. 1 shows how polluted data may change the test input’s
neighbors and thus the inference result. Here, the gray dot
represents the test input x, while the orange and blue dots
represent elements in the training set T . There is only one
polluted element, which is an orange dot marked in Fig. 1
(a). This element no longer exists in Fig. 1 (b). Assume that
the optimal value for the parameter K is 3. For the clean set
shown in Fig. 1 (b), the result is ‘blue’ since two of the three
nearest neighbors of the test input x are blue. For the polluted
set shown in Fig. 1 (a), however, the result is ‘orange’ since
two of the three nearest neighbors are orange.

Fig. 2 shows how polluted data may change the inference
result by changing the optimal value of the parameter K. In
this case, the polluted element in Fig. 2 (a) is far away from
the test input x. However, its presence changes the optimal
value of the parameter K during the p-fold cross validation
phase. While the K value for the clean set is 5, the K value
for the polluted set is 3. As a result, the most frequent label of
the neighbors is changed from ‘blue’ in Fig. 2 (b) to ‘orange’
in Fig. 2 (a).

These two examples highlight the importance of analyzing
both the learning phase and the inference phase of the KNN
algorithm. Otherwise, the verification result may be unsound,
which is the case for Jia et al. [21] due to their implicit
(and incorrect) assumption that K is not affected by polluted
elements in T . In contrast, our method soundly verifies both
phases of the KNN algorithm.

While verifying the KNN inference phase itself is already
challenging, verifying the KNN learning phase is even more
challenging, since it uses p-fold cross validation to compute
the optimal K value.

B. Overview of Our Method

Before presenting our method, we present a conceptually-
simple, but computationally-expensive, baseline method. It
will help explain why the verification problem is challenging.

Algorithm 1: Baseline method KNN Verify(T, n, x).
for each T ′ ∈ ∆n(T ) do

K′ ← KNN learn(T ′)
y′ ← KNN predict(T ′,K′, x)
Y Set← Y Set ∪ {y′}

end
robust← (|Y Set| = 1)

a) The Baseline Method: This method relies on checking
whether the inference result remains the same for all possible
ways in which the training set is polluted. Algorithm 1 shows
the pseudo code, where T is the training set, n is the maximal
polluted number, and x is a test input. For each clean subset
T ′ ∈ ∆n(T ), the parameter K is computed using the standard
KNN learn subroutine, and used to predict the label of
x using the standard KNN predict subroutine. Here, Y Set
stores the set of predicted labels; thus, |Y Set| = 1 means the
prediction result is always the same (and hence robust).

The baseline method is both sound and complete, and thus
may be used to obtain the ground truth when the size of the
dataset is small enough. However, it is not a practical solution
for large datasets because of the combinatorial blowup – it has
to explicitly enumerate all |∆n(T )| =

∑︁n
i=0

(︁
m
i

)︁
cases. Even

for m = 100 and n = 5, for example, the number becomes
as large as 8 ∗ 107. For realistic datasets, often with tens of
thousands of elements, the baseline method would not finish
in a billion years.

b) The Proposed Method: Our method avoids enumer-
ating the individual scenarios in ∆n(T ). As shown in Algo-
rithm 2, it first analyzes, in a single pass, the KNN’s learning
phase while simultaneously considering the impact of up-to-n
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Algorithm 2: Our method abs KNN Verify(T, n, x).
KSet← abs KNN learn(T, n)
Y Set← abs KNN predict(T, n,KSet, x)

robust← (|Y Set| = 1)

Algorithm 3: Subroutine for the baseline: KNN learn(T ).
Divide T into p groups {Gi} of equal size;
for each K ∈ CandidateKset do

for each group Gi do
errCntKi = 0
for each sample (x, y) ∈ Gi do

errCntKi ++ when
(KNN predict(T \Gi,K, x) ̸= y);

errorKi = errCntKi /|Gi|

errorK = 1
p

∑︁p
i=1 error

K
i

return the K value with the smallest errorK

polluted elements in T . The result of this over-approximated
analysis is a superset of possibly-optimal K values, stored in
KSet. Details of the subroutine abs KNN learn is presented
in Section IV.

Then, for each K ∈ KSet, our method analyzes the KNN’s
inference phase while considering all possible ways in which
up-to-n elements in T may have been polluted. The result
of this over-approximated analysis is a superset of possible
output labels, denoted Y Set. We say the inference result for
x is robust if the cardinality of Y Set is 1; that is, the label of x
remains the same regardless of how T may have been polluted.
Details of the subroutine abs KNN predict is presented in
Section V.

IV. ANALYZING THE KNN LEARNING PHASE

To understand why soundly analyzing the KNN learning
phase is challenging, we need to compare our method with
the the original subroutine, KNN learn, shown in Algo-
rithm 3, which computes the optimal K value using p-
fold cross-validation. Note that both the value of p and the
CandidateKset are hyper-parameters of the KNN algorithm
itself, not part of the verification method. In practice, they
typically do not depend on the size of T (see Section II-B for
a detailed explanation).

A. The Algorithm

In contrast, our method shown in Algorithm 4 computes an
over-approximated set of K values. The input consists of the
training set T and the maximal polluted number n, while the
output KSet is a superset of the optimal K values.

Inside Algorithm 4, our method first computes the lower and
upper bounds of the misclassification error for each K value,
by considering the best case (errorLBK) and the worst case
(errorUBK) when up-to-n elements in T are polluted.

After computing the interval [errorLBK , errorUBK ] for
each K value, it computes minUB, which is the minimal
upper bound among all K values.

Algorithm 4: Subroutine KSet = abs KNN learn(T, n).
Divide T into p groups {Gi} of equal size;
for each K ∈ CandidateKset do

for each group Gi do
errCntLBK

i = errCntUBK
i = 0;

for each sample (x, y) ∈ Gi do
errCntLBK

i ++ if
(abs KNN cannot obtain correct label(T \
Gi, n,K, x, y) == True);

errCntUBK
i ++ if

(abs KNN may obtain wrong label(T \
Gi, n,K, x, y) == True);

errorLBK
i = max{0, (errCntLBK

i −n)/(|Gi| −n)};
errorUBK

i = min{errCntUBK
i /(|Gi| − n), 1};

errorLBK = 1
p

∑︁p
i=1 errorLB

K
i ;

errorUBK = 1
p

∑︁p
i=1 errorUBK

i ;

Let minUB = the smallest errorUBK for all K;
KSet = {K | errorLBK ≤ minUB};

Error

K

minUB

Fig. 3. Example of comparing the error bounds.

Then, by comparing minUB with the errorLBK for each
K, it over-approximates the set of possible K values that may
become the optimal K value for some T ′ ∈ ∆n(T ).

Here, the intuition is that, by excluding K values that are
definitely not the optimal K for any T ′ ∈ ∆n(T ) — they
are the ones whose errorLBK is larger than minUB — we
obtain a sound over-approximation in KSet.

a) Example for minUB: Fig. 3 shows an ex-
ample, where each vertical bar represents the interval
[errorLBK , errorUBK ] of a candidate K value, and the blue
dashed line represents minUB. The selected K values are
those corresponding to the blue bars, since their errorLBk

are smaller than minUB. The K values corresponding to the
gray bars are dropped, since they definitely cannot have the
smallest misclassification error.

b) The Soundness Guarantee: To understand why the
KSet computed in this manner is an over-approximation,
assume that minUB = errorUBK′

for some value K ′. We
now explain why K cannot be the optimal value (with the
smallest error) when errorLBK > minUB. Let the actual
errors be errorK ∈ [errorLBK , errorUBK ] and errorK

′ ∈
[errorLBK′

, errorUBK′
]. Since we have errorLBK >

errorUBK′
, we know errorK must be larger than errorK

′
.

Therefore, K cannot have the smallest error.

To compute the interval [errorLBK , errorUBk], we add
up the misclassification error for each element (x, y) ∈ Gi,
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where x ∈ X is the input and y ∈ Y is the (correct) label.
For each element (x, y), there is a misclassification error if,
for some reason, y differs from the predicted label.

Here, errCntLBK
i corresponds to the best case scenario

— removing n elements from T in such a way that prediction
becomes as correct as possible. In contrast, errCntUBK

i

corresponds to the worst case scenario — removing n elements
from T in such a way that prediction becomes as incorrect
as possible. These two error counts are computed by two
subroutines, which will be presented later in this section.

To convert errCntLBK
i and errCntUBK

i to error rates,
we consider removing n misclassified elements when comput-
ing the lower bound errorLBK

i , and removing n correctly-
classified data elements when computing the upper bound
errorUBK

i . We assume n < |Gi|, which is a reasonable
assumption in practice.

To explain subroutines abs cannot obtain correct label
and abs may obtain wrong label, we need to introduce
some notations, including label counter and removal strategy.

B. The Label Counter

Nearest Neighbors TK
x . Let TK

x be a subset of T consisting
of the K nearest neighbors of x. For example, given T =
{((0.1, 0.1), l2), ((1.1, 0.1), l1), ((0.1, 1.1), l1), ((2.1, 3.1), l3),
((3.3, 3.1), l3)}, test input x = (1.1, 1.1), and K = 3, the set
is T 3

x = {((0.1, 0.1), l2), ((1.1, 0.1), l1), ((0.1, 1.1), l1)}. Here,
we assume each neighbor has two real-valued input features
and three possible output class labels l1 − l3.

Label Counter E(TK
x ). Given any dataset Z, including

TK
x , we use E(Z) = { (li : #li) } to represent the label

counts, where li is a class label, and #li ∈ N is the number
of elements in Z that have the label li. For example, given T 3

x

above, we have E(T 3
x ) = {(l1 : 2), (l2 : 1)}, meaning it has

two elements with label l1 and one with label l2.
Most Frequent Label Freq(E(TK

x )). Given a label counter
E , the most frequent label, denoted Freq(E), is the label
with the largest count. Similarly, we can define the second
most frequent label. Thus, the KNN inference phase can be
described as computing Freq(E(TK

x )) for the training set T ,
test input x, and K value.

Tie-Breaker 1(li<lj). If two labels have the same frequency,
the KNN algorithm may use their lexicographic order as a tie-
breaker to ensure that Freq(E) is unique: Let < be the order
relation, (li < lj) must be either true or false. Thus, we define
an indicator function, 1(li<lj), to return the numerical value 1
(or 0) when (li < lj) is true (or false).

C. The Removal Strategy

The removal strategy is an abstract way of modeling the
impact of polluted data elements. In contrast, the removal set
is a concrete way of modeling the impact.

The Removal Set. Given a dataset Z, the removal set
R ⊂ Z can be any subset of Z. Given T 3

x above, for example,
there are 6 possible removal sets: R1 = {(x1, y1)}, R2 =
{((x2, y2))}, R3 = {(x3, y3)}, R4 = {(x1, y1), (x2, y2)},

R5 = {(x1, y1), (x3, y3)}, and R6 = {(x2, y2), (x3, y3)}. In
particular, R1 means removing element (x1, y1) from Z.

The Removal Strategy. The removal strategy is simply the
label counter of a removal set R, denoted S = E(R). In the
above example, the six removal sets correspond to only four
removal strategies S1 = {(l1 : 1)}, S2 = {(l2 : 1)}, S3 =
{(l1 : 1), (l2 : 1)}, and S4 = {(l1 : 2)} . In particular, S2

means removing an element labeled l2; however, it does not
say which of the l2 elements is removed. Thus, it captures any
removal set that has the same label counter.

The Strategy Size. Let the removal strategy be denoted S =
{(li : #li)}, we define the size as ||S|| =

∑︁
(li,#li)∈S #li — it

is the total number of removed elements. For S1 = {(l1 : 1)},
S2 = {(l2 : 2)}, and S3 = {(l1 : 1), (l3 : 3)}, the strategy size
would be ||S1|| = 1, ||S2|| = 2, and ||S3|| = 4.

In the context of the abstract interpretation paradigm [9],
the removal sets can be viewed as the concrete domain while
the removal strategies can be viewed as the abstract domain.
Focusing on the abstract domain during verification makes our
method more efficient. Let |L| be the total number of class
labels, which is often small in practice (e.g., 2 or 10). Since the
count of each label in a removal set is at most n, the number
of removal strategies is at most

∑︁n
i=0

(︁
i+|L|−1

i

)︁
. This can be

exponentially smaller than the number of possible removal
sets, which is

∑︁n
i=0

(︁|T |
i

)︁
.

D. Misclassification Error Bounds

Using the notations defined so far, we present our method
for computing the lower and upper bounds, errCntLBK

i and
errCntUBK

i , as shown in Algorithms 5 and 6.
Both bounds rely on computing TK+n

x , the K+n neighbors
of x in T , and the label counter E(TK+n

x ).
• The first subroutine checks whether it is impossible, even

after removing up-to-n elements from T , that the correct
label y becomes the most frequent label.

• The second subroutine checks whether it is possible, after
removing up-to-n elements from T , that some wrong
label becomes the most frequent label.

Before explaining the details, we present Theorem 1, which
states the correctness of these checks. It says that, to model the
impact of all subsets T ′ ∈ ∆n(T ), we only need to analyze
the (K + n) nearest neighbors of x, stored in TK+n

x .

Theorem 1 ∀T ′ ∈ ∆n(T ), we have Freq(E((T ′)Kx )) ∈
{Freq(E(TK+n

x ) \ S)|S ⊂ E(TK+n
x ), ||S|| ≤ n}.

For brevity, we omit the detailed proof. Instead, we give the
intuition behind the proof as follows:

• For each clean training subset T ′ ∈ ∆n(T ), we can
always find a label counter E(TK+i

x ) and a removal
strategy S ∈ E(TK+i

x ), where ||S|| = i ≤ n, satisfying
E(TK+i

x \ S) = E((T ′)Kx ).
• If we want to check all the predicted labels of x generated

by all T ′ ∈ ∆n(T ), we need to search through all of
E(TK

x ), E(TK+1
x ), . . ., E(TK+n

x ), which is expensive
when n is large.
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Algorithm 5: Subroutine used in our Algorithm 4 flag =
abs KNN cannot obtain correct label(T, n,K, x, y).

Let E(TK+n
x ) be the label counter of TK+n

x ;
Define removal strategy S = { (y′ : #y′ −#y + 1y′<y) | (y′ :
#y′) ∈ E(TK+n

x ), y′ ̸= y,#y′ ≥ #y};
return (||S|| > n);

Algorithm 6: Subroutine used in our Algorithm 4 flag =
abs KNN may obtain wrong label(T, n,K, x, y).

Let E(TK+n
x ) be the label counter of TK+n

x ;
Let y′ be the most frequent label in E(TK+n

x ) except the label y;
Define removal strategy
S = { (y′ : max{0,#y −#y′ + 1y<y′}) };

return (||S|| ≤ n);

• Fortunately, E(TK+n
x ) \ S, where ||S|| ≤ n, contains all

the possible scenarios denoted by E(TK+i
x ) \ S, where

||S|| = i and i = 0, . . . , n− 1.
As a result, we only need to analyze E(TK+n

x ), which corre-
sponds to the (K +n) nearest neighbors of x; other elements
which are further away from x can be safely ignored.

E. Algorithm 5

To compute the lower bound errCntLBK
i , Algorithm 5

checks if all the strategies S satisfying Freq(E(TK+n
x )\S) =

y and S ⊂ E(TK+n
x ) must have ||S|| > n.

Fig. 4 shows two examples. In each example, the gray dot
is the test input x and the other dots are neighbors of x in
TK+n
x . In Fig. 4 (a), #orange = 2 is the number of orange

dots (votes of the correct label). In contrast, #blue = 5 and
#green = 2 are votes of the incorrect labels. By assuming
the lexicographic order blue < green < orange, we define
the indicator functions (tie-breakers) as 1blue<orange = 1 and
1green<orange = 1.

Given the removal strategy S = {(blue : 4), (green : 1)},
we know ||S|| = 5 and, since n = 4, we have ||S|| > n.
Thus, removing up to n =4 dots cannot make the test input x
correctly classified (as orange). As a result, errCntLBK

i ++
is executed to increase the lower bound.

In Fig. 4 (b), however, since #blue = 4, #orange = 3,
1blue<orange = 1, and S = {(blue : 2)}, we have ||S|| =
2. Since ||S|| ≤ n, removing up to n =4 dots can make
the test data x correctly classified (as orange). As a result,
errCntLBK

i ++ is not executed.

F. Algorithm 6

To compute the upper bound errCntUBK
i , Algorithm 6

checks if there exists a strategy S that satisfies the condition:
Freq(E(TK+n

x ) \ S) ̸= y, S ⊂ E(TK+n
x ), and ||S|| ≤ n.

Fig. 5 shows two examples. In Fig. 5 (a), #orange = 2
is the number of correct label, and #blue = 5 is the number
of dots with the most frequent wrong label. Thus, S = ∅ and
since ||S|| ≤ n, we know that removing up to n = 4 dots can
make the test data misclassified. As a result, errCntUBK

i ++
is executed.

?

(a) S = {(blue : 4), (green : 1)}

and return value is true.

?

(b) S = {(blue : 2)} and return

value is false.

Fig. 4. Examples for Algorithm 5 with K = 5, n = 4, and y = orange
being the correct label.

?

(a) S = ∅ and return value is

true.

?

(b) S = {(orange : 5)} and return value

is false.

Fig. 5. Example for Algorithm 6 with K = 5, n = 4, y = orange as
correct label, and y′ = blue as the most frequent wrong label.

In Fig. 5 (b), #orange = 7 is the number of orange dots,
#blue = 2 is the number of dots with the most frequent
wrong label. Here, we assume 1orange<blue = 0. Thus, S =
{(orange : 5))} and since ||S|| > n, we know that removing
up to n = 4 dots cannot make ‘blue’ (or any other wrong
label) the most frequent label. As a result, errCntUBK

i ++
is not executed.

V. ANALYZING THE KNN INFERENCE PHASE

In this section, we present our method for analyzing the
KNN inference phase, implemented in Algorithm 2 as the sub-
routine Y Set = abs KNN predict(T, n,KSet, x), which
returns a set of output labels for test input x, by assuming
that T contains up-to-n polluted elements.

A. Computing the Classification Labels

Algorithm 7 shows our method, which first checks whether
the second most frequent label (y′) can become the most
frequent one after removing at most n elements. This is
possible only if there exists a strategy S such that (1) it
removes at most n elements labeled y, and (2) after the
removal, y′ becomes the most frequent label. This is captured
by the condition ||S|| = (#y−#y′+1y<y′) ≤ n. Otherwise,
the predicted label is not unique.

We do not attempt to compute more than two labels, as
shown by the return statement in the then-branch, because
they are not needed by the top-level procedure (Algorithm 2),
which only needs to check if |Y Set| = 1 for the purpose of
proving n-poisoning robustness.
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Algorithm 7: Method abs KNN predict(T, n,KSet, x).
Y Set = { }
visited = { }
while ∃K ∈ (KSet \ visited) do

Let E(TK+n
x ) be the label counter of TK+n

x ;
Let y be the most frequent label of E(TK+n

x );
Let y′ be the second most frequent label of E(TK+n

x );
Let removal strategy S = { (y : #y −#y′ + 1y<y′ ) };
if ||S|| ≤ n then

Y Set = Y Set ∪ {y, y′};
return Y Set;

else
Y Set = Y Set ∪ {y};
KLB = K − (#y −#y′ − n− 1y′<y);
KUB = K + (#y −#y′ − n− 1y′<y);
visited = visited ∪ [KLB ,KUB ]

return Y Set;

B. Pruning Redundant K Values

Inside Algorithm 7, after checking K ∈ KSet, our method
puts K into the visited set to make sure it will never be
checked again for the same test input x. In addition, it
identifies other values in KSet that are guaranteed to be
equivalent to K, and prunes away these redundant values.
Here, equivalent K values are defined as those with the same
inference result for test input x.

To be conservative, we underapproximate the set of equiv-
alent K values. As a result, these K values can be safely
skipped since the (equivalent) inference result has been
checked. This optimization is implemented using the visited
set in Algorithm 7. The visited set is computed from K and
E(TK+n

x ) based on the expression (#y −#y′ − n − 1y′<y)
over the removal strategy.

a) The Correctness Guarantee: We now explain why this
pruning technique is safe. The intuition is that, if the most
frequent label Freq(E(TK+n

x )) is the label with significantly
more counts than the second most frequent label, then it may
also be the most frequent label for another value K ′. There
are two possibilities:

• If (K ′ < K), then TK′+n
x has (K −K ′) fewer elements

than TK+n
x . Since removing elements from the neighbors

will not increase the label count #y′, the only way to
change the inference result is decreasing the label count
#y. When (K − K ′) ≤ (#y − #y′ − n − 1y′<y),
decreasing #y will not make any difference. Thus, the
lower bound of K ′ is K − (#y −#y′ − n− 1y′<y).

• If (K ′ > K), then TK′+n
x has (K ′ −K) more elements

than TK+n
x . Since adding elements to the neighbors will

not decrease the label count #y, the only way to change
the inference result is increasing the label count #y′.
However, as long as (K ′ − K) ≤ (#y − #y′ − n),
increasing #y′ will not make any difference. Thus, the
upper bound of K ′ is K + (#y −#y′ − n− 1y′<y).

For example, consider K = 13, n = 2, and E(T 15
x ) = {(l1 :

12), (l2 : 2), (l3 : 1)}. According to Algorithm 7, #y−#y′−
n−1y′<y = 12−2−2 = 8 and thus we compute the interval

TABLE I
STATISTICS OF THE SUPERVISED LEARNING DATASETS.

Name # training data # test data # output label # input dimension
(|T |) (|XSet|) (L) (D)

Iris [15] 135 15 3 4
Digits [17] 1,617 180 10 64
HAR [3] 9,784 515 6 561
Letter [16] 18,999 1,000 26 16
MNIST [24] 60,000 10,000 10 36
CIFAR10 [23] 50,000 10,000 10 288

[13− 8, 13 + 8] = [5, 21]. As a result, candidate K values in
the set {5, 6, 7, . . . , 21} can be safely skipped.

VI. EXPERIMENTS

We have implemented our method in Python and using the
machine learning library scikit-learn 0.24.2, and evaluated it
on two sets of supervised learning datasets. Table I shows the
statistics, including the name, size of the training set, size of
the test set, number of output class labels, and dimension of the
input feature space. For MNIST and CIFAR10, in particular,
the features were extracted using the standard histogram of
oriented gradients (HOG) method [10].

The first set of datasets consists of Iris and Digits, two
small datasets for which even the baseline method as shown
in Algorithm 1 can finish and thus obtain the ground truth. We
use the ground truth to evaluate the accuracy of our method.
The second set of datasets consists of HAR, Letter, MNIST,
and CIFAR10, which are larger datasets used to evaluate the
efficiency of our method.

For comparison purposes, we also implemented the baseline
method in Algorithm 1, and the method of Jia et al. [21], which
represents the state of the art. Experiments were conducted
on polluted training sets obtained by randomly inserting ≤
n input and output mutated samples to the original datasets.
Since the same polluted training sets are used to compare all
verification methods, and since the verification methods are
deterministic, there is no need to run the experiments multiple
times and then compute the average. Instead, we run each
verification method on each polluted training set once. All
experiments were conducted on a computer with a 2 GHz
Quad-Core Intel Core i5 CPU and 16 GB of memory.

A. Results on the Small Datasets

We first compared our method with the baseline on the
small datasets where the baseline method could actually finish.
This is important because the baseline method does not rely
on over-approximation, and thus can obtain the ground truth.
Here, the ground truth means which of the test data have
inference results that are actually robust against n-poisoning
attacks. By comparing the ground truth with our result, we
were able to evaluate the accuracy of our method.

Table II shows the results. Column 1 shows the name of
the dataset and the polluted number n. Columns 2-3 show
the result of the baseline method, consisting of the number of
verified test data and the time taken. Similarly, Columns 4-5
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TABLE II
RESULTS OF OUR METHOD AND THE BASELINE METHOD ON THE SMALL

DATASETS WITH THE MAXIMAL POLLUTED NUMBER n=1, 2, AND 3.

Name Baseline New Method Accuracy
# robust time (s) # robust time (s)

Iris (n=1) 15/15 60 14/15 1 93.3%
iris (n=2) 14/15 4,770 13/15 1 92.9%
iris (n=3) - >9,999 11/15 1 -
Digits (n=1) 179/180 8,032 172/180 1 96.1%
Digits (n=2) - >9,999 170/180 1 -
Digits (n=3) - >9,999 165/180 1 -

show the result of our method. Column 6 shows the accuracy
of our method in percentage.

The results indicate that, for test data that are indeed robust
according to the ground truth, our method can successfully
verify most of them. In Iris (n=2), for example, Column 2
shows that 14 of the 15 test data are robust according to the
baseline method, and Column 4 shows that 13 out of these 15
test data are verified by our method. Therefore, our method is
92.9% accurate.

Our method is much faster than the baseline. For Digits
(n=1), in particular, our method took only 1 second to verify
172 out of the 180 test data as being robust while the
baseline method took 8,032 seconds. As the polluted number
n increases, the baseline method ran out of time even for
these small datasets. As a result, we no longer have the
ground truth needed to directly measure the accuracy of our
method. Nevertheless, since all cases verified by our method
are guaranteed to be robust, the number of verified test data in
Column 4 of Table II serves as a proxy – it decreases slowly
as n increases, indicating that the accuracy of our method
remains high.

B. Results on the Large Datasets

We also evaluated our method on the large datasets. Table III
summarizes the results on these large datasets as well as the
two small datasets but with larger polluted numbers (n). Since
these verification problems are out of the reach of the baseline
method, we no longer have the ground truth. Thus, instead of
measuring the accuracy, we measure the percentage of test
data that we can verify, shown in Column 3 of Table III.

For example, in Iris, n = 1 ∼ 5 (4%) in Column 2 means
that these experiments were conducted for each poisoning
number n = 1, 2, . . . 5. Since the training dataset has 135
elements, n = 5 means 4% (or 5/135) of these training data
may have been polluted. In Column 3, 93.3% is the percentage
of verified test data for n = 1, while 73.3% is the percentage
of verified test data for n = 5. Except for Iris, which has a
small number of training data, we set the poisoning number
n to be less than 1% of the training dataset.

Overall, our method remains fast as the sizes of T , XSet
and n increase. For MNIST, in particular, our method finished
analyzing both 10-fold cross validation and KNN inference in
26 minutes, for all of the 60,000 data elements in the training
set and 10,000 data elements in the test set. In contrast, the

TABLE III
RESULTS OF OUR METHOD ON LARGE DATASETS, AND ON SMALL

DATASETS BUT WITH LARGER POLLUTED NUMBERS.

Name Polluted Number Verified Percentage Verification Time
(n) (# robust/|XSet|) (s)

Iris 1∼5 (4%) 93.3%∼73.3% 1 ∼ 1
Digits 1∼16 (1%) 95.6%∼80.6% 1 ∼ 2
HAR 1∼98 (1%) 99.4%∼71.7% 85 ∼ 93
Letter 1∼190 (1%) 94.0%∼5.5% 33 ∼ 43
MNIST 1∼600 (1%) 99.9%∼53.5% 888 ∼ 994
CIFAR10 1∼500 (1%) 99.2%∼2.8% 1,453 ∼ 1,559

baseline method failed to verify any of the test data within the
9999-second time limit.

Without the ground truth, the verified percentage provides
a lower bound on the number of test data that remain robust
against data-poisoning attacks. When n=1, the verified per-
centage in Column 3 is high for all datasets. As the polluted
number n increases to 1% of the entire training set T , the
verified percentage decreases. Furthermore, the decrease is
more significant for some datasets than for other datasets. For
example, In MNIST, at least 53.5% of the test data remain
robust under 1% (or 600) poisoning attacks. In CIFAR10,
however, only 2.8% of the test data remains robust under
1% (or 500) poisoning attacks. Thus, the relationship between
the verified percentage and the polluted number reflects more
about the unique characteristics of these datasets. By this, we
mean that if one dataset has more truly-non-robust cases than
another dataset, then the verifier will report more cannot-be-
verified cases.

The reason why the accuracy is low for Letter and CIFAR10
datasets is because they have larger attack surfaces in the
extracted feature space: elements from the same class are not
sufficiently concentrated in one area, and the neighbors include
many elements from other classes. Thus, small changes to the
neighbors can lead to significant changes of the class label.
While we believe that the accuracy (measured by the verified
percentage) may improve if a better feature extractor is used
(to improve the quality of extracted features), it is out of the
scope of the verification task.

C. Compared with the Existing Method

While our method is the only one that can verify the
entire KNN algorithm, there are existing methods that can
verify part of the KNN algorithm. The most recent method
proposed by Jia et al. [21], in particular, aims to verify the
KNN inference step with a given K value; thus, it can be
regarded as functionally equivalent to the subroutine of our
method as presented in Algorithm 7. However, our method is
significantly more accurate due to its tighter approximation. To
experimentally demonstrate the advantage of our method, we
used their method to replace Algorithm 7 in our own method
before conducting the experimental comparison. Since an
open-source implementation of their method is not available,
we have implemented it ourselves.

Fig. 6 shows the results, where blue lines represent our
method and orange lines represent their method [21]. Overall,
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Fig. 6. Comparing our method (blue) with Jia et al. [21] (orange): the x-axis
is polluted number n and the y-axis is the percentage of verified test data.

the verified percentage obtained by our method is significantly
higher, due to its tighter approximations during the KNN
inference phase. For all datasets, the verified percentage ob-
tained by their method drops more quickly than the verified
percentage obtained by our method. For Iris, in particular, their
method cannot verify any of the test data, while our method
can verify more than 70% of them as being robust.

VII. RELATED WORK

There is a large body of work on verifying the (local)
robustness of machine learning algorithms using formal meth-
ods. However, unlike most prior works which focus on adver-
sarial examples in the context of deep neural networks, this
work focuses on poisoned datasets for KNN. Unlike neural
networks, for which scalability of the verification method
typically depends on the network size but not the size of the
training data, for KNN, scalability depends on the size of the
training data and the number of poisoned elements.

In the context of robustness verification for KNN, our
method is a method that can soundly verify n-poisoning ro-
bustness of the entire KNN algorithm, while existing methods
such as Jia et al. [21] and others [39], [20], [40] are either
restricted to a small part of what constitutes a state-of-the-art
KNN system or primarily theoretical (and thus not scalable).
Since we follow the definition of n-poisoning robustness
in Drews et al.[12] instead of Jia et al. [21], our method
only handles the removal of elements from already-polluted
datasets, but not addition/modification of elements for clean

datasets. Extending our method to handle such cases will be
future work.

In addition to this line of research, there is a large body of
work on adversarial data poisoning in general.

Data Poisoning in General KNN is not the only type of
machine learning techniques found vulnerable to adversarial
data poisoning; prior work shows that regression models [29],
support vector machines (SVM) [6], [43], [42], clustering
algorithms [7], and neural networks [34], [37], [11], [45]
are also vulnerable. Unlike our work, this line of research
is primarily concerned with showing the security threats and
identifying the poisoning sets, which is often formulated as a
constrained optimization problem.

Mitigating Data Poisoning Techniques have been proposed
to mitigate data poisoning for various machine learning al-
gorithms [35], [38], [19], [13], [5]. There are also tech-
niques [22], [28] for assessing the effectiveness of mitigation
techniques such as data sanitization [22] and differentially-
private countermeasures [28]. More recently, Bahri et al. [4]
propose a method that leverages both KNN and a deep neural
network to remove mislabeled data.

Certifying the Defenses Probabilistically There are tech-
niques for certifying the defenses [32], [25] such that accuracy
is guaranteed probabilistically. For example, Rosenfeld et
al. [32] leverage randomized smoothing to guarantee test-time
robustness to adversarial manipulation with high probability.
Levine et al. [25] certify robustness of a defense by deriving a
lower bound of classification error, which relies on their deep
partition aggregation (DPA) learning and is not applicable to
typical learning approaches.

Leveraging KNN for Attacks or Defenses Orthogonal to
our work, there are techniques that leverage KNN to generate
attacks or provide defenses for other machine learning models.
For example, Li et al. [26] present a data-poisoning attack that
leverages KNN to maximize the effectiveness of malicious
behavior while mimicking the user’s benign behavior. Peri et
al. [31] use KNN to defend against adversarial input based
attacks, although it focuses only on tweaking the test input
during the inference phase.

VIII. CONCLUSIONS

We have presented the first method for soundly verifying
n-poisoning robustness for the entire KNN algorithm that
includes both the learning (K parameter tuning) and the
inference (classification) phases. It relies on sound overap-
proximations to exhaustively and yet efficiently cover the
astronomically large number of possible adversarial scenarios.
We have demonstrated the accuracy and efficiency of our
method, and its advantages over a state-of-the-art method,
through experimental evaluation using both small and large
supervised-learning datasets. Besides KNN, our method for
soundly over-approximating p-fold cross validation may be
used to analyze similar cross-validation steps frequently used
in other modern machine learning systems.
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