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Abstract. We propose a method for certifying the fairness of the clas-
sification result of a widely used supervised learning algorithm, the k-
nearest neighbors (KNN), under the assumption that the training data
may have historical bias caused by systematic mislabeling of samples
from a protected minority group. To the best of our knowledge, this is
the first certification method for KNN based on three variants of the
fairness definition: individual fairness, ϵ-fairness, and label-flipping fair-
ness. We first define the fairness certification problem for KNN and then
propose sound approximations of the complex arithmetic computations
used in the state-of-the-art KNN algorithm. This is meant to lift the
computation results from the concrete domain to an abstract domain,
to reduce the computational cost. We show effectiveness of this abstract
interpretation based technique through experimental evaluation on six
datasets widely used in the fairness research literature. We also show
that the method is accurate enough to obtain fairness certifications for
a large number of test inputs, despite the presence of historical bias in
the datasets.

1 Introduction

Certifying the fairness of the classification output of a machine learning model
has become an important problem. This is in part due to a growing interest in
using machine learning techniques to make socially sensitive decisions in areas
such as education, healthcare, finance, and criminal justice systems. One rea-
son why the classification output may be biased against an individual from a
protected minority group is because the dataset used to train the model may
have historical bias; that is, there is systematic mislabeling of samples from the
protected minority group. Thus, we must be extremely careful while considering
the possibility of using the classification output of a machine learning model, to
avoid perpetuating or even amplifying historical bias.

One solution to this problem is to have the ability to certify, with certainty,
that the classification output y = M(x) for an individual input x is fair, despite
that the model M is learned from a dataset T with historical bias. This is a
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Fig. 1. FairKNN: our method for certifying fairness of KNNs with label bias.

form of individual fairness that has been studied in the fairness literature [14];
it requires that the classification output remains the same for input x even if
historical bias were not in the training dataset T . However, this is a challenging
problem and, to the best of our knowledge, techniques for solving it efficiently
are still severely lacking. Our work aims to fill the gap.

Specifically, we are concerned with three variants of the fairness definition.
Let the input x = ⟨x1, . . . , xD⟩ be a D-dimensional input vector, and P be the
subset of vector indices corresponding to the protected attributes (e.g., race,
gender, etc.). The first variant of the fairness definition is individual fairness,
which requires that similar individuals are treated similarly by the machine
learning model. For example, if two individual inputs x and x′ differ only in some
protected attribute xi, where i ∈ P, but agree on all the other attributes, the
classification output must be the same. The second variant is ϵ-fairness, which
extends the notion of individual fairness to include inputs whose un-protected
attributes differ and yet the difference is bounded by a small constant (ϵ). In
other words, if two individual inputs are almost the same in all unprotected
attributes, they should also have the same classification output. The third variant
is label-flipping fairness, which requires the aforementioned fairness requirements
to be satisfied even if a biased dataset T has been used to train the model in
the first place. That is, as long as the number of mislabeled elements in T is
bounded by n, the classification output must be the same.

We want to certify the fairness of the classification output for a popular
supervised learning technique called the k-nearest neighbors (KNN) algorithm.
Our interest in KNN comes from the fact that, unlike many other machine
learning techniques, KNN is a model-less technique and thus does not have
the high cost associated with training the model. Because of this reason, KNN
has been widely adopted in real-world applications [1, 4, 16, 18, 23, 29, 36, 45, 46].
However, obtaining a fairness certification for KNN is still challenging and, in
practice, the most straightforward approach of enumerating all possible scenarios
and then checking if the classification outputs obtained in these scenarios agree
would have been prohibitively expensive.

To overcome the challenge, we propose an efficient method based on the idea
of abstract interpretation [10]. Our method relies on sound approximations to
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analyze the arithmetic computations used by the state-of-the-art KNN algorithm
both accurately and efficiently. Figure 1 shows an overview of our method in the
lower half of this figure, which conducts the analysis in an abstract domain, and
the default KNN algorithm in the upper half, which operates in the concrete
domain. The main difference is that, by staying in the abstract domain, our
method is able to analyze a large set of possible training datasets (derived from
T due to n label-flips) and a potentially-infinite set of inputs (derived from x due
to ϵ perturbation) symbolically, as opposed to analyze a single training dataset
and a single input concretely.

To the best of our knowledge, this is the first method for KNN fairness
certification in the presence of dataset bias. While Meyer et al. [26, 27] and
Drews et al. [12] have investigated robustness certification techniques, their
methods target decision trees and linear regression, which are different types
of machine learning models from KNN. Our method also differs from the KNN
data-poisoning robustness verification techniques developed by Jia et al. [20] and
Li et al. [24], which do not focus on fairness at all; for example, they do not
distinguish protected attributes from unprotected attributes. Furthermore, Jia et
al. [20] consider the prediction step only while ignoring the learning step, and
Li et al. [24] do not consider label flipping. Our method, in contrast, considers
all of these cases.

We have implemented our method and demonstrated the effectiveness through
experimental evaluation. We used all of the six popular datasets in the fairness
research literature as benchmarks. Our evaluation results show that the pro-
posed method is efficient in analyzing complex arithmetic computations used in
the state-of-the-art KNN algorithm, and is accurate enough to obtain fairness
certifications for a large number of test inputs. To better understand the impact
of historical bias, we also compared the fairness certification success rates across
different demographic groups.

To summarize, this paper makes the following contributions:

– We propose an abstract interpretation based method for efficiently certifying
the fairness of KNN classification results in the presence of dataset bias. The
method relies on sound approximations to speed up the analysis of both the
learning and the prediction steps of the state-of-the-art KNN algorithm, and
is able to handle three variants of the fairness definition.

– We implement the method and evaluate it on six datasets that are widely
used in the fairness literature, to demonstrate the efficiency of our approx-
imation techniques as well as the effectiveness of our method in obtaining
sound fairness certifications for a large number of test inputs.

The remainder of this paper is organized as follows. We first present the
technical background in Section 2 and then give an overview of our method
in Section 3. Next, we present our detailed algorithms for certifying the KNN
prediction step in Section 4 and certifying the KNN learning step in Section 5.
This is followed by our experimental results in Section 6. We review the related
work in Section 7 and, finally, give our conclusion in Section 8.
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2 Background

Let L be a supervised learning algorithm that takes the training dataset T
as input and returns a learned model M = L(T ) as output. The training set
T = {(x, y)} is a set of labeled samples, where each x ∈ X ⊆ RD has D
real-valued attributes, and the y ∈ Y ⊆ N is a class label. The learned model
M : X → Y is a function that returns the classification output y′ ∈ Y for any
input x′ ∈ X .

2.1 Fairness of the Learned Model

We are concerned with fairness of the classification output M(x) for an individ-
ual input x. Let P be the set of vector indices corresponding to the protected
attributes in x ∈ X . We say that xi is a protected attribute (e.g., race, gender,
etc.) if and only if i ∈ P.

Definition 1 (Individual Fairness). For an input x, the classification output
M(x) is fair if, for any input x′ such that (1) xj ̸= x′

j for some j ∈ P and (2)
xi = x′

i for all i ̸∈ P, we have M(x) = M(x′).

It means two individuals (x and x′) differing only in some protected attribute
(e.g., gender) but agreeing on all other attributes must be treated equally. While
being intuitive and useful, this notion of fairness may be too narrow. For example,
if two individuals differ in some unprotected attributes and yet the difference is
considered immaterial, they must still be treated equally. This can be captured
by ϵ−fairness.

Definition 2 (ϵ-Fairness). For an input x, the classification output M(x) is
fair if, for any input x′ such that (1) xj ̸= x′

j for some j ∈ P and (2) |xi−x′
i| ≤ ϵ

for all i ̸∈ P, we have M(x) = M(x′).

In this case, such inputs x′ form a set. Let∆ϵ(x) be the set of all inputs x′ con-
sidered in the ϵ−fairness definition. That is, ∆ϵ(x) := {x′ | xj ̸= x′

j for some j ∈
P, |xi − x′

i| ≤ ϵ for all i ̸∈ P}. By requiring M(x) = M(x′) for all x′ ∈ ∆ϵ(x),
ϵ-fairness guarantees that a larger set of individuals similar to x are treated
equally.

Individual fairness can be viewed as a special case of ϵ-fairness, where ϵ = 0.
In contrast, when ϵ > 0, the number of elements in ∆ϵ(x) is often large and
sometimes infinite. Therefore, the most straightforward approach of certifying
fairness by enumerating all possible elements in ∆ϵ(x) would not work. Instead,
any practical solution would have to rely on abstraction.

2.2 Fairness in the Presence of Dataset Bias

Due to historical bias, the training dataset T may have contained samples whose
output are unfairly labeled. Let the number of such samples be bounded by n.
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We assume that there are no additional clues available to help identify the mis-
labeled samples. Without knowing which these samples are, fairness certification
must consider all of the possible scenarios. Each scenario corresponds to a de-
biased dataset, T ′, constructed by flipping back the incorrect labels in T . Let
dBiasn(T ) = {T ′} be the set of these possible de-biased (clean) datasets. Ideally,
we want all of them to lead to the same classification output.

Definition 3 (Label-flipping Fairness). For an input x, the classification
output M(x) is fair against label-flipping bias of at most n elements in the dataset
T if, for all T ′ ∈ dBiasn(T ), we have M ′(x) = M(x) where M ′ = L(T ′).

Label-flipping fairness differs from and yet complements individual and ϵ-
fairness in the following sense. While individual and ϵ-fairness guarantee equal
output for similar inputs, label-flipping fairness guarantees equal output for sim-
ilar datasets. Both aspects of fairness are practically important. By combining
them, we are able to define the entire problem of certifying fairness in the pres-
ence of historical bias.

To understand the complexity of the fairness certification problem, we need
to look at the size of the set dBiasn(T ), similar to how we have analyzed the size
of ∆ϵ(x). While the size of dBiasn(T ) is always finite, it can be astronomically
large in practice. Let q is the number of unique class labels and m be the actual
number of flipped elements in T . Assuming that each flipped label may take
any of the other q − 1 possible labels, the total number of possible clean sets is(|T |
m

)
· (q − 1)m for each m. Since m ≤ n, |dBiasn(T )| =

∑n
m=1

(|T |
m

)
· (q − 1)m.

Again, the number of elements in dBiasn(T ) is too large to enumerate, which
means any practical solution would have to rely on abstraction.

3 Overview of Our Method

Given the tuple ⟨T,P, n, ϵ, x⟩, where T is the training set, P represents the
protected attributes, n bounds the number of biased elements in T , and ϵ bounds
the perturbation of x, our method checks if the KNN classification output for x
is fair.

3.1 The KNN Algorithm

Since our method relies on an abstract interpretation of the KNN algorithm,
we first explain how the KNN algorithm operates in the concrete domain (this
subsection), and then lift it to the abstract domain in the next subsection.

As shown in Fig. 2, KNN has a prediction step where KNN predict computes
the output label for an input x using T and a given parameter K, and a learning
step where KNN learn computes the K value from the training set T .

Unlike many other machine learning techniques, KNN does not have an ex-
plicit model M ; instead, M can be regarded as the combination of T and K.
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1 func KNN_predict(T,K, x) {

2 Let TK
x = the K nearest neighbors of x in T;

3 Let Freq(TK
x ) = the most frequent label in TK

x ;

4 return Freq(TK
x );

5 }
6
7 func KNN_learn(T) {
8 for (each candidate k value) { // conducting p-fold cross validation
9 Let {Gi} = a partition of T into p groups of roughly equal size;

10 Let errki = {(x, y) ∈ Gi | y ̸= KNN predict(T \ Gi, k, x)} for each Gi;
11 }

12 Let K = argmin
k

1
p

∑p
i=1

|errki |
|Gi|

;

13 return K;
14 }

Fig. 2. The KNN algorithm, consisting of the prediction and learning steps.

Inside KNN predict, the set TK
x represents the K-nearest neighbors of x in

the dataset T , where distance is measured by Euclidean (or Manhattan) distance
in the input vector space. Freq(TK

x ) is the most frequent label in TK
x .

Inside KNN learn, a technique called p-fold cross validation is used to select
the optimal value for K, e.g., from a set of candidate k values in the range
[1, |T |× (p−1)/p] by minimizing classification error, as shown in Line 12. This is
accomplished by first partitioning T into p groups of roughly equal size (Line 9),
and then computing errki (a set of misclassified samples from Gi) by treating Gi

as the evaluation set, and T \Gi as the training set. Here, an input (x, y) ∈ Gi

is “misclassified” if the expected output label, y, differs from the output of
KNN predict using the candidate k value.

3.2 Certifying the KNN Algorithm

Algorithm 1 shows the top-level procedure of our fairness certification method,
which first executes the KNN algorithm in the concrete domain (Lines 1-2), to
obtain the default K and y, and then starts our analysis in the abstract domain.

Algorithm 1: Our method for certifying fairness of KNN for input x.

1 K = KNN learn(T );
2 y = KNN predict(T,K, x);
3 KSet = abs KNN learn (T, n);
4 for each K ∈ KSet do
5 if abs KNN predict same(T, n,K, x, y) = False then
6 return unknown;
7 end if

8 end for
9 return certified;
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In the abstract learning step (Line 3), instead of considering T , our method
considers the set of all clean datasets in dBiasn(T ) symbolically, to compute the
set of possible optimal K values, denoted KSet.

In the abstract prediction step (Lines 4-8), for each K, instead of consider-
ing input x, our method considers all perturbed inputs in ∆ϵ(x) and all clean
datasets in dBiasn(T ) symbolically, to check if the classification output always
stays the same. Our method returns “certified” only when the classification out-
put always stays the same (Line 9); otherwise, it returns “unknown” (Line 6).

We only perturb numerical attributes in the input x since perturbing cate-
gorical or binary attributes often does not make sense in practice.

In the next two sections, we present our detailed algorithms for abstracting
the prediction step and the learning step, respectively.

4 Abstracting the KNN Prediction Step

We start with abstract KNN prediction, which is captured by the subroutine
abs KNN predict same used in Line 5 of Algorithm 1. It consists of two parts.
The first part (to be presented in Section 4.1) computes a superset of TK

x , de-
noted overNN , while considering the impact of ϵ perturbation of the input x.
The second part (to be presented in Section 4.2) leverages overNN to decide if
the classification output always stays the same, while considering the impact of
label-flipping bias in the dataset T .

4.1 Finding the K-Nearest Neighbors

To compute overNN , which is a set of samples in T that may be the K nearest
neighbors of the test input x, we must be able to compute the distance between
x and each sample in T .

This is not a problem at all in the concrete domain, since the K nearest
neighbors of x in T , denoted TK

x , is fixed and is determined solely by the Eu-
clidean distance between x and each sample in T in the attribute space. However,
when ϵ perturbation is applied to x, the distance changes and, as a result, the
K nearest neighbors of x may also change.

Fortunately, the distance in the attribute space is not affected by label-
flipping bias in the dataset T , since label-flipping only impacts sample labels,
not sample attributes. Thus, in this subsection, we only need to consider the
impact of ϵ perturbation of the input x.

The Challenge. Due to ϵ perturbation, a single test input x becomes a potentially-
infinite set of inputs ∆ϵ(x). Since our goal is to over-approximate the K near-
est neighbors of ∆ϵ(x), the expectation is that, as long as there exists some
x′ ∈ ∆ϵ(x) such that a sample input t in T is one of the K nearest neighbors of
x′, denoted t ∈ TK

x′ , we must include t in the set overNN . That is,⋃
x′∈∆ϵ(x)

TK
x′ ⊆ overNN ⊆ T.
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However, finding an efficient way of computing overNN is a challenging task. As
explained before, the naive approach of enumerating x′ ∈ ∆ϵ(x), computing the
K nearest neighbors, TK

x′ , and unionizing all of them would not work. Instead,
we need abstraction that is both efficient and accurate enough in practice.

Our solution is that, for each sample t in T , we first analyze the distances
between t and all inputs in ∆ϵ(x) symbolically, to compute a lower bound and an
upper bound of the distances. Then, we leverage these lower and upper bounds to
compute the set overNN , which is a superset of samples in T that may become
the K nearest neighbors of ∆ϵ(x).

Bounding Distance Between ∆ϵ(x) and t. Assume that x = (x1, x2, ..., xD)
and t = (t1, t2, ..., tD) are two real-valued vectors in the D-dimensional attribute
space. Let ϵ = (ϵ1, ϵ2, ..., ϵD), where ϵi ≥ 0, be the small perturbation. Thus, the
perturbed input is x′ = (x′

1, x
′
2, ..., x

′
D) = (x1 + δ1, x2 + δ2, ..., xD + δD), where

δi ∈ [−ϵi, ϵi] for all i = 1, ..., D.

The distance between x and t is a fixed value d(x, t) =
√∑D

i=1(xi − ti)2, since

both x and the samples t in T are fixed, but the distance between x′ ∈ ∆ϵ(x) and

t is a function of δi ∈ [−ϵi, ϵi], since
√∑D

i=1(x
′
i − ti)2 =

√∑D
i=1(xi − ti + δi)2.

For ease of presentation, we define the distance as dϵ =
√∑D

i=1 d
ϵ
i , where dϵi =

(xi − ti + δi)
2 is the (squared) distance function in the i-th dimension. Then,

our goal becomes computing the lower bound, LB(dϵ), and the upper bound,
UB(dϵ), in the domain δi ∈ [−ϵi, ϵi] for all i = 1, ..., D.

Distance Bounds are Compositional. Our first observation is that bounds
on the distance dϵ as a whole can be computed using bounds in the individual
dimensions. To see why this is the case, consider the (square) distance in the i-th
dimension, dϵi = (xi − ti + δi)

2, where δi ∈ [−ϵi, ϵi], and the (square) distance in
the j-th dimension, dϵj = (xj − tj + δj)

2, where δj ∈ [−ϵj , ϵj ]. By definition, dϵi
is completely independent of dϵj when i ̸= j.

Thus, the lower bound of dϵ, denoted LB(dϵ), can be calculated by finding
the lower bound of each dϵi in the i-th dimension. Similarly, the upper bound of
dϵ, denoted UB(dϵ), can also be calculated by finding the upper bound of each
dϵi in the i-the dimension. That is,

LB(dϵ) =
√∑D

i=1 LB(dϵi) and UB(dϵ) =
√∑D

i=1 UB(dϵi).

Four Cases in Each Dimension. Our second observation is that, by utilizing
the mathematical nature of the (square) distance function, we can calculate the
minimum and maximum values of dϵi , which can then be used as the lower bound
LB(dϵi) and upper bound UB(dϵi), respectively.

Specifically, in the i-th dimension, the (square) distance function dϵi = ((xi−
ti) + δi)

2 may be rewritten to (δi + A)2, where A = (xi − ti) is a constant and
δi ∈ [−ϵ,+ϵ] is a variable. The function can be plotted in two dimensional space,
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(a) (b)

(c) (d)

Fig. 3. Four cases for computing the upper and lower bounds of the distance function
dϵi(δi) = (δi+A)2 for δi ∈ [−ϵi, ϵi]. In these figures, δi is the x-axis, and dϵi is the y-axis,
LB denotes LB(dϵi), and UB denotes UB(dϵi).

using δi as x-axis and the output of the function as y-axis; thus, it is a quadratic
function Y = (X +A)2.

Fig. 3 shows the plot, which reminds us of where the minimum and maximum
values of a quadratic function is. There are two versions of the quadratic function,
depending on whether A > 0 (corresponding to the two subfigures at the top)
or A < 0 (corresponding to the two subfigures at the bottom). Each version
also has two cases, depending on whether the perturbation interval [−ϵi, ϵi] falls
inside the constant interval [−|A|, |A|] (corresponding to the two subfigures on
the left) or falls outside (corresponding to the two subfigures on the right). Thus,
there are four cases in total.

In each case, the maximal and minimal values of the quadratic function are
different, as shown by the LB and UB marks in Fig. 3.

Case (a) This is when (xi − ti) > 0 and −ϵi > −(xi − ti), which is the same
as saying A > 0 and −ϵi > −A. In this case, function di(ϵi) = (δi + A)2 is
monotonically increasing w.r.t. variable δi ∈ [−ϵi,+ϵi].

Thus, LB(dϵi) = (−ϵi + (xi − ti))
2 and UB(dϵi) = (+ϵi + (xi − ti))

2.

Case (b) This is when (xi − ti) > 0 and −ϵi < −(xi − ti), which is the same
as saying A > 0 and −ϵi < −A. In this case, the function is not monotonic.
The minimal value is 0, obtained when δi = −A. The maximal value is obtained
when δi = +ϵi.

Thus, LB(dϵi) = 0 and UB(dϵi) = (+ϵi + (xi − ti))
2.
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Case (c) This is when (xi − ti) < 0 and ϵi < −(xi − ti), which is the same as
saying A < 0 and ϵi < −A. In this case, the function is monotonically decreasing
w.r.t. variable δi ∈ [−ϵi, ϵi].

Thus, LB(dϵi) = (ϵi + (xi − ti))
2 and UB(dϵi) = (−ϵi + (xi − ti))

2.

Case (d) This is when (xi − ti) < 0 and ϵi > −(xi − ti), which is the same as
saying A < 0 and ϵi > −A. In this case, the function is not monotonic. The
minimal value is 0, obtained when δi = −A. The maximal value is obtained
when δi = −ϵi.

Thus, LB(dϵi) = 0 and UB(dϵi) = (−ϵi + (xi − ti))
2.

Summary By combining the above four cases, we compute the bounds of the
entire distance function dϵ as follows:

√√√√ D∑
i=1

max(|xi − ti| − ϵi, 0)2,

√√√√ D∑
i=1

(|xi − ti|+ ϵi)2


Here, the take-away message is that, since xi, ti and ϵi are all fixed values, the
upper and lower bounds can be computed in constant time, despite that there
is a potentially-infinite number of inputs in ∆ϵ(x).

Computing overNN Using Bounds. With the upper and lower bounds of
the distance between∆ϵ(x) and sample t in the dataset T , denoted [LB(dϵ(x, t)),
UB(dϵ(x, t))], we are ready to compute overNN such that every t ∈ overNN
may be among the K nearest neighbors of ∆ϵ(x).

Let UBKmin denote the K-th minimum value of UB(dϵ(x, t)) for all t ∈ T .
Then, we define overNN as the set of samples in T whose LB(dϵ(x, t)) is not
greater than UBKmin. In other words,

overNN = {t ∈ T | LB(dϵ(x, t)) ≤ UBKmin}.

Example Given a dataset T = {t1, t2, t3, t4, t5}, a test input x, perturbation
ϵ, and K = 3. Assume that the lower and upper bounds of the distance be-
tween∆ϵ(x) and samples in T are [25.4, 29.4], [30.1, 34.1], [35.3, 39.3], [37.2, 41.2],
[85.5, 90.5]. Since K = 3, we find the 3rd minimum upper bound, UB3min =
39.3. By comparing UB3min with the lower bounds, we compute overNN3 =
{t1, t2, t3, t4}, since t5 is the only sample in T whose lower bound is greater than
39.3. All the other four samples may be among the 3 nearest neighbors of ∆ϵ(x).

Due to ϵ perturbation, the set overNN3 for K = 3 is expected to contain
3 or more samples. That is, since different inputs in ∆ϵ(x) may have different
samples as their 3-nearest neighbors, to be conservative, we have to take the
union of all possible sets of 3-nearest neighbors.
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Algorithm 2: Subroutine abs same label(overNN,K, y).

1 Let S be a subset of overNN obtained by removing all y-labeled elements;
2 Let y′ = Freq(S), and #y′ be the count of y′-labeled elements in S;
3 if #y′ < K − |S| − 2 ∗ n then
4 return True;
5 end if
6 return False;

Soundness Proof Here we prove that any t′ /∈ overNNK cannot be among
the K nearest neighbors of any x′ ∈ ∆ϵ(x). Since UBKmin is the K-th min-
imum UB(dϵ(x, t)) for all t ∈ T , there must be samples t1, t2, ...tK such that
UB(dϵ(x, ti)) ≤ UBKmin for all i = 1, 2, ...K. For any t′ /∈ overNN , we have
LB(dϵ(x, t′)) > UBKmin.

Combining the above conditions, we have LB(dϵ(x, t′)) > UB(dϵ(x, ti)) for
i = 1, 2, ...K. It means at least K other samples are closer to x than t′. Thus, t′

cannot be among the K-nearest neighbors of x′.

4.2 Checking the Classification Result

Next, we try to certify that, regardless of which of the K elements are selected
from overNN , the prediction result obtained using them is always the same.

The prediction label is affected by both ϵ perturbation of the input x and
label-flipping bias in the dataset T . Since ϵ perturbation affects which points are
identified as the K nearest neighbors, and its impact has been accounted for by
overNN , from now on, we focus only on label-flipping bias in T .

Our method is shown in Algorithm 2, which takes the set overNN , the
parameter K, and the expected label y as input, and checks if it is possible to
find a subset of overNN with size K, whose most frequent label differs from
y. If such a “bad” subset cannot be found, we say that KNN prediction always
returns the same label.

To try to find such a “bad” subset of overNN , we first remove all elements
labeled with y from overNN , to obtain the set S (Line 1). After that, there are
two cases to consider.

1. If the size of S is equal to or greater than K, then any subset of S with
size K must have a different label because it will not contain any element
labeled with y. Thus, the condition in Line 3 of Algorithm 2 is not satisfied
(#y′ is a positive number, and right-hand side is a negative number), and
the procedure returns False.

2. If the size of S, denoted |S|, is smaller than K, the most likely “bad” subset
will be SK = S ∪{ any (K − |S|) y-labeled elements from overNN}. In this
case, we need to check if the most frequent label in SK is y or not.

In SK , the most frequent label must be either y (whose count is K − |S|) or
y′ (which is the most frequent label in S, with the count #y′). Moreover, since
we can flip up to n labels, we can flip n elements from label y to label y′.
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Algorithm 3: Subroutine abs KNN learn(T, n)

1 for each candidate k value do
2 Let {Gi} = a partition of T into p groups of roughly equal size;

3 errUBk
i = {(x, y) ∈ Gi | abs may err (T \Gi, n, k, x, y) = true} for each

Gi;
4 errLBk

i = {(x, y) ∈ Gi | abs must err(T \Gi, n, k, x, y) = true} for each
Gi;

5 UBk = 1
p

∑p
i=1 |errUBk

i |/|Gi|;
6 LBk = 1

p

∑p
i=1 |errLB

k
i |/|Gi|;

7 end for
8 Let minUB = min({UB1, ..., UBp});
9 return KSet = {k | LBk ≤ minUB};

Therefore, to check if our method should return True, meaning the prediction
result is guaranteed to be the same as label y, we only need to compare K − |S|
with #y′ + 2 ∗ n. This is checked using the condition in Line 3 of Algorithm 2.

5 Abstracting the KNN Learning Step

In this section, we present our method for abstracting the learning step, which
computes the optimal K value based on T and the impact of flipping at most n
labels. The output is a super set of possible optimal K values, denoted KSet.

Algorithm 3 shows our method, which takes the training set T and parameter
n as input, and returns KSet as output. To be sound, we require the KSet to
include any candidate k value that may become the optimal K for some clean
set T ′ ∈ dBiasn(T ).

In Algorithm 3, our method first computes the lower and upper bounds of
the classification error for each k value, denoted LBk and UBk, as shown in
Lines 5-6. Next, it computes minUB, which is the minimal upper bound for all
candidate k values (Line 8). Finally, by comparing minUB with LBk for each
candidate k value, our method decides whether this candidate k value should be
put into KSet (Line 9).

We will explain the steps needed to compute LBk and UBk in the remainder
of this section. For now, assuming that they are available, we explain how they
are used to compute KSet.

Example Given the candidate k values, k1, k2, k3, k4, and their error bounds
[0.1, 0.2], [0.1, 0.3], [0.3, 0.4], [0.3, 0.5]. The smallest upper bound is minUB =
0.2. By comparing minUB with the lower bounds, we compute KSet = {k1, k2},
since only LBk1

and LBk2
are lower than or equal to minUB.

Soundness Proof Here we prove that any k′ /∈ KSet cannot result in the smallest
classification error. Assume that ks is the candidate k value that has the minimal
upper bound (minUB), and errks

is the actual classification error. By definition,
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Algorithm 4: Subroutine abs may err(T, n,K, x, y).

1 Let y′ be, among the non-y labels, the label with the highest count in TK
x ;

2 Let #y be the number of elements in TK
x with the y label;

3 Let n′ be min(n,#y ∈ TK
x );

4 Changing n′ elements in TK
x from y label to y′ label;

5 return Freq(TK
x ) ̸= y;

we have errks ≤ minUB. Meanwhile, for any k′ /∈ KSet, we have LBk′ >
minUB. Combining the two cases, we have errk′ > minUB ≥ errks

. Here,
errk′ > errks

means that k′ cannot result in the smallest classification error.

5.1 Overapproximating the Classification Error

To compute the upper bound errUBk
i defined in Line 3 of Algorithm 3, we use

the subroutine abs may err to check if (x, y) ∈ Gi may be misclassified when
using T \Gi as the training set.

Algorithm 4 shows the implementation of the subroutine, which checks, for
a sample (x, y), whether it is possible to obtain a set S by flipping at most n
labels in TK

x such that the most frequent label in S is not y. If it is possible to
obtain such a set S, we conclude that the prediction label for x may be an error.

The condition Freq(TK
x ) ̸= y, computed on TK

x after the y label of n′ ele-
ments is changed to y′ label, is a sufficient condition under which the prediction
label for x may be an error. The rationale is as follows.

In order to make the most frequent label in the set TK
x different from y, we

need to focus on the label most likely to become the new most frequent label. It
is the label y′(̸= y) with the highest count in the current TK

x .

Therefore, Algorithm 4 checks whether y′ can become the most frequent label
by changing at most n elements in TK

x from y label to y′ label (Lines 3-5).

5.2 Underapproximating the Classification Error

To compute the lower bound errLBk
i defined in Line 4 of Algorithm 3, we use

the subroutine abs must err to check if (x, y) ∈ Gi must be misclassified when
using T \Gi as the training set.

Algorithm 5 shows the implementation of the subroutine, which checks, for
a sample (x, y), whether it is impossible to obtain a set S by flipping at most
n labels in TK

x such that the most frequent label in S is y. In other words, is
it impossible to avoid the classification error? If it is impossible to avoid the
classification error, we conclude that the prediction label must be an error, and
thus the procedure returns True

In this sense, all samples in errLBk
i (computed in Line 4 of Algorithm 3 are

guaranteed to be misclassified.
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Algorithm 5: Subroutine abs must err(T, n,K, x, y).

1 if ∃S obtained from TK
x by flipping up to n labels such that Freq(S) = y then

2 return False;
3 end if
4 return True;

The challenge in Algorithm 5 is to check if such a set S can be constructed
from TK

x . The intuition is that, to make y the most frequent label, we should
flip the labels of non-y elements to label y. Let us consider two examples first.

Example 1 Given the label counts of TK
x , denoted {l1 * 4, l4 * 4, l3 * 2},

meaning that 4 elements are labeled l1, 4 elements are labeled l4, and 2 elements
are labeled l3. Assume that n = 2 and y = l3. Since we can flip at most 2
elements, we choose to flip one l1 → l3 and one l4 → l3, to get a set S = {l1 *
3, l4 * 3, l3 * 4}.

Example 2 Given the label counts of TK
x , denoted {l1 * 5, l4 * 3, l3 * 2}, n = 2,

and y = l3. We can flip two l1 → l3 to get a set S = {l1 * 3, l4 * 3, l3 * 4}.

The LP Problem The question is how to decide whether the set S (defined
in Line 1 of Algorithm 5) exists. We can formulate it as a linear programming
(LP) problem. The LP problem has two constraints. The first one is defined as
follows: Let y be the expected label, li ̸= y be another label, where i = 1, ..., q
and q is the total number of class labels (e.g., in the above two examples, the
number q = 3). Let #y be the number of elements in TK

x that have the y label.
Similarly, let #li be the number of elements with li label. Assume that a set S
as defined in Algorithm 5 exists, then all of the labels li ̸= y must satisfy

#li −#flipi < #y +

q∑
i=1

#flipi , (1)

where #flipi is a variable representing the number of li–to–y flips. Thus, in the
above formula, the left-hand side is the count of li after flipping, the right-hand
side is the count of y after flipping. Since y is the most frequent label in S, y
should have a higher count than any other label.

The second constraint is

q∑
i=1

#flipi ≤ n , (2)

which says that the total number of label flips is bounded by the parameter n.
Since the number of class labels (q) is often small (from 2 to 10), this LP

problem can be solved quickly. However, the LP problem must be solved |T |
times, where |T | may be as large as 50,000. To avoid invoking the LP solver
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unnecessarily, we propose two easy-to-check conditions. They are necessary con-
dition in that, if either of them is violated, the set S does not exist. Thus, we
invoke the LP solver only if both conditions are satisfied.

Necessary Conditions The first condition is derived from Formula (1a), by
adding up the two sides of the inequality constraint for all labels li ̸= y. The
resulting condition is∑

li ̸=y

#li −
q∑

i=1

#flipi

 <

(
(q − 1)#y + (q − 1)

q∑
i=1

#flipi

)
.

The second condition requires that, in S, label y has a higher count (after flip-
ping) than any other label, including the label lp ̸= y with the highest count in
the current TK

x . The resulting condition is

(#lp −#y)/2 < n,

since only when this condition is satisfied, it is possible to allow y to have a
higher count than lp, by flipping at most n of the label lp to y.

These are necessary conditions (but may not be sufficient conditions) be-
cause, whenever the first condition does not hold, Equation (1) does not hold
either. Similarly, whenever the second condition does not hold, Equation (1)
does not hold either. In this sense, these two conditions are easy-to-check over-
approximations of Equation (1).

6 Experiments

We have implemented our method as a software tool written in Python using
the scikit-learn machine learning library. We evaluated our tool on six datasets
that are widely used in the fairness research literature.

Datasets Table 1 shows the statistics of each dataset, including the name,
a short description, the size (|T |), the number of attributes, the protected at-
tributes, and the parameters ϵ and n. The value of ϵ is set to 1% of the attribute
range. The bias parameter n is set to 1 for small datasets, 10 for medium datasets,
and 50 for large datasets. The protected attributes include Gender for all six
datasets, and Race for two datasets, Compas and Adult, which are consistent
with known biases in these datasets.

In preparation for the experimental evaluation, we have employed state-of-
the-art techniques in the machine learning literature to preprocess and balance
the datasets for KNN, including encoding, standard scaling, k-bins-discretizer,
downsampling and upweighting.
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Table 1. Statistics of all of the datasets used during our experimental evaluation.

Dataset Description Size |T | # Attr. Protected Attr. Parameters ϵ and n

Salary salary level [42] 52 4 Gender ϵ = 1% attribute range, n = 1

Student academic performance [9] 649 30 Gender ϵ = 1% attribute range, n = 1

German credit risk [13] 1,000 20 Gender ϵ = 1% attribute range, n = 10

Compas recidivism risk [11] 10,500 16 Race+Gender ϵ = 1% attribute range, n = 10

Default loan default risk [47] 30,000 36 Gender ϵ = 1% attribute range, n = 50

Adult earning power [13] 48,842 14 Race+Gender ϵ = 1% attribute range, n = 50

Table 2. Results for certifying label-flipping and individual fairness (gender) on small
datasets, for which ground truth can still be obtained by naive enumeration, and com-
pared with our method.

Certifying label-flipping fairness Certifying label-flipping + individual fairness
Ground Our Ground Our

Name truth Time method Time Accuracy Speedup truth Time method Time Accuracy Speedup

Salary 50.0% 1.7s 33.3% 0.2s 66.7% 8.5X 33.3% 1.5s 33.3% 0.2s 100% 7.5X

Student 70.8% 23.0s 60.0% 0.2s 84.7% 115X 58.5% 25.2s 44.6% 0.2s 76.2% 116X

Methods For comparison purposes, we implemented six variants of our method,
by enabling or disabling the ability to certify label-flipping fairness, the ability
to certify individual fairness, and the ability to certify ϵ-fairness.

Except for ϵ-fairness, we also implemented the naive approach of enumerating
all T ′ ∈ dBiasn(T ). Since the naive approach does not rely on approximation,
its result can be regarded as the ground truth (i.e., whether the classification
output for an input x is truly fair). Our goal is to obtain the ground truth on
small datasets, and use it to evaluate the accuracy of our abstract interpretation
based method. However, as explained before, enumeration does not work for
ϵ-fairness, since the number of inputs in ∆ϵ(x) is infinite.

Our experiments were conducted on a computer with 2 GHz Quad-Core Intel
Core i5 CPU and 16 GB of memory. The experiments were designed to answer
two questions. First, is our method efficient and accurate enough in handling
popular datasets in the fairness literature? Second, does our method help us
gain insights? For example, it would be interesting to know whether decision
made on an individuals from a protected minority group is more (or less) likely
to be certified as fair.

Results on Efficiency and Accuracy We first evaluate the efficiency and
accuracy of our method. For the two small datasets, Salary and Student, we are
able to obtain the ground truth using the naive enumeration approach, and then
compare it with the result of our abstract interpretation based method. We want
to know how much our results deviate from the ground truth.

Table 2 shows the results obtained by treating Gender as the protected at-
tribute. Column 1 shows the name of the dataset. Columns 2-7 compare the
naive approach (ground truth) and our method in certifying label-flipping fair-
ness. Columns 8-13 compare the naive approach (ground truth) and our method
in certifying label-flipping plus individual fairness.
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Table 3. Results for certifying label-flipping, individual, and ϵ-fairness by our method.

Name Label-flipping fairness Time + Individual fairness Time + ϵ-fairness Time

Salary (gender) 33.3% 0.2s 33.3% 0.2s 33.3% 0.2s

Student (gender) 60.0% 0.2s 44.6% 0.2s 32.3% 0.2s

German (gender) 48.0% 0.2s 44.0% 0.3s 43.0% 0.2s

Compas (race) 95.0% 0.3s 62.4% 1.4s 56.4% 1.1s

Compas (gender) 95.0% 0.3s 65.3% 1.3s 59.4% 1.0s

Default (gender) 83.2% 2.3s 73.3% 4.4s 64.4% 3.5s

Adult (race) 76.2% 2.2s 65.3% 4.5s 53.5% 5.3s

Adult (gender) 76.2% 2.2s 52.5% 3.5s 43.6% 3.3s

Based on the results in Table 2, we conclude that the accuracy of our method
is high (81.9% on average) despite its aggressive use of abstraction to reduce the
computational cost. Our method is also 7.5X to 126X faster than the naive
approach. Furthermore, the larger the dataset, the higher the speedup.

For medium and large datasets, it is infeasible for the naive enumeration
approach to compute and show the ground truth in Table 2. However, the fairness
scores of our method shown in Table 3 provide “lower bounds” for the ground
truth since our method is sound for certification. For example, when our method
reports 95% for Compas (race) in Table 3, it means the ground truth must be
≥95% (and thus the gap must be ≤5%). However, there does not seem to be
obvious relationship between the gap and the dataset size – the gap may be due
to some unique characterristics of each dataset.

Results on the Certification Rates We now present the success rates of our
certification method for the three variants of fairness. Table 3 shows the results
for label-flipping fairness in Columns 2-3, label-flipping plus individual fairness
(denoted + Individual fairness) in Columns 4-5, and label-flipping plus ϵ-fairness
(denoted + ϵ-fairness) in Columns 6-7. For each variant of fairness, we show the
percentage of test inputs that are certified to be fair, together with the average
certification time (per test input). In all six datasets, Gender was treated as the
protected attribute. In addition, Race was treated as the protected attribute for
Compas and Adult.

From the results in Table 3, we see that as more stringent fairness standard
is used, the certified percentage either stays the same (as in Salary) or decreases
(as in Student). This is consistent with what we expect, since the classification
output is required to stay the same for an increasingly larger number of scenar-
ios. For Compas (race), in particular, adding ϵ-fairness on top of label-flipping
fairness causes the certified percentage to drop from 62.4% to 56.4%.

Nevertheless, our method still maintains a high certification percentage. Re-
call that, for Salary, the 33.3% certification rate (for +Individual fairness) is
actually 100% accurate according to comparison with the ground truth in Ta-
ble 2, while the 44.6% certification rate (for +Individual fairness) is actually
76.2% accurate. Furthermore, the efficiency of our method is high: for Adult,
which has 50,000 samples in the training set, the average certification time of
our method remains within a few seconds.
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Table 4. Results for certifying label-flipping + ϵ-fairness with both Race and Gender
as protected attributes.

(a) Compas

White Other Wt. Avg

Male 61.9% 52.2% 52.8%

Female 100% 60.0% 63.7%

Wt. Avg 63.7% 53.7% 54.4%

(b) Adult

White Other Wt. Avg

Male 35.3% 33.3% 35.1%

Female 33.3% 66.7% 37.0%

Wt. Avg 34.7% 44.4% 35.6%

Results on Demographic Groups Table 4 shows the certified percentage of
each demographic group, when both label-flipping and ϵ-fairness are considered,
and both Race and Gender are treated as protected attributes. The four demo-
graphic groups are (1) White Male, (2) White Female, (3) Other Male, and (4)
Other Female. For each group, we show the certified percentage obtained by our
method. In addition, we show the weighted averages for White and Other, as
well as the weighted averages for Male and Female.

For Compas, White Female has the highest certified percentage (100%) while
Other Female has the lowest certified percentage (52.2%); here, the classification
output represents the recidivism risk.

For Adult, Other Female has the highest certified percentage (66.7%) while
the other three groups have certified percentages in the range of 33.3%-35.3%.

The differences may be attributed to two sources, one of which is technical
and the other is social. The social reason is related to historical bias, which is
well documented for these datasets. If the actual percentages (ground truth) is
different, the percentages reported by our method will also be different. The
technical reason is related to the nature of the KNN algorithm itself, which we
explain as follows.

In these datasets, some demographic groups have significantly more samples
than others. In KNN, the lowest occurring group may have a limited number
of close neighbors. Thus, for each test input x from this group, its K nearest
neighbors tend to have a larger radius in the input vector space. As a result,
the impact of ϵ perturbation on x will be smaller, resulting in fewer changes to
its K nearest neighbors. That may be one of the reasons why, in Table 4, the
lowest occurring groups, White Female in Compas and Other Female in Adult,
have significantly higher certified percentage than other groups.

Results in Table 4 show that, even if a machine learning technique discrim-
inates against certain demographic groups, for an individual, the prediction re-
sult produced by the machine learning technique may still be fair. This is closely
related to differences (and sometimes conflicts) between group fairness and in-
dividual fairness: while group fairness focuses on statistical parity, individual
fairness focuses on similar outcomes for similar individuals. Both are useful no-
tions and in many cases they are complementary.

Caveat Our work should not be construed as an endorsement nor criticism of
the use of machine learning techniques in socially sensitive applications. Instead,
it should be viewed as an effort on developing new methods and tools to help
improve our understanding of these techniques.
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7 Related Work

For fairness certification, as explained earlier in this paper, our method is the
first method for certifying KNN in the presence of historical (dataset) bias.
While there are other KNN certification and falsification techniques, including
Jia et al. [20] and Li et al. [24, 25], they focus solely on robustness against data
poisoning attacks as opposed to individual and ϵ-fairness against historical bias.
Meyer et al. [26, 27] and Drews et al. [12] propose certification techniques that
handle dataset bias, but target different machine learning techniques (decision
tree or linear regression); furthermore, they do not handle ϵ-fairness.

Throughout this paper, we have assumed that the KNN learning (parameter-
tuning) step is not tampered with or subjected to fairness violation. However,
since the only impact of tampering with the KNN learning step will be changing
the optimal value of the parameter K, the biased KNN learning step can be
modeled using a properly over-approximated KSet. With this new KSet, our
method for certifying fairness of the prediction result (as presented in Section 4)
will work AS IS.

Our method aims to certify fairness with certainty. In contrast, there are
statistical techniques that can be used to prove that a system is fair or robust
with a high probability. Such techniques have been applied to various machine
learning models, for example, in VeriFair [6] and FairSquare [2]. However, they
are typically applied to the prediction step while ignoring the learning step,
although the learning step may be affected by dataset bias.

There are also techniques for mitigating bias in machine learning systems.
Some focus on improving the learning algorithms using random smoothing [33],
better embedding [7] or fair representation [34], while others rely on formal
methods such as iterative constraint solving [38]. There are also techniques for
repairing models to improve fairness [3]. Except for Ruoss et al. [34], most of
them focus on group fairness such as demographic parity and equal opportunity;
they are significantly different from our focus on certifying individual and ϵ-
fairness of the classification results in the presence of dataset bias.

At a high level, our method that leverages a sound over-approximate analysis
to certify fairness can be viewed as an instance of the abstract interpretation
paradigm [10]. Abstract interpretation based techniques have been successfully
used in many other settings, including verification of deep neural networks [17,
30], concurrent software [21,22,37], and cryptographic software [43,44].

Since fairness is a type of non-functional property, the verification/certifi-
cation techniques are often significantly different from techniques used to veri-
fy/certify functional correctness. Instead, they are more closely related to tech-
niques for verifying/certifying robustness [8], noninterference [5], and side-channel
security [19, 39, 40, 48], where a program is executed multiple times, each time
for a different input drawn from a large (and sometimes infinite) set, to see if
they all agree on the output. At a high level, this is closely related to differential
verification [28, 31, 32], synthesis of relational invariants [41] and verification of
hyper-properties [15,35].
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8 Conclusions

We have presented a method for certifying the individual and ϵ-fairness of the
classification output of the KNN algorithm, under the assumption that the train-
ing dataset may have historical bias. Our method relies on abstract interpreta-
tion to soundly approximate the arithmetic computations in the learning and
prediction steps. Our experimental evaluation shows that the method is efficient
in handling popular datasets from the fairness research literature and accurate
enough in obtaining certifications for a large amount of test data. While this
paper focuses on KNN only, as a future work, we plan to extend our method to
other machine learning models.
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