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Abstract. Linear approximations of nonlinear functions have a wide
range of applications such as rigorous global optimization and, recently,
verification problems involving neural networks. In the latter case, a lin-
ear approximation must be hand-crafted for the neural network’s activa-
tion functions. This hand-crafting is tedious, potentially error-prone, and
requires an expert to prove the soundness of the linear approximation.
Such a limitation is at odds with the rapidly advancing deep learning
field – current verification tools either lack the necessary linear approxi-
mation, or perform poorly on neural networks with state-of-the-art acti-
vation functions. In this work, we consider the problem of automatically
synthesizing sound linear approximations for a given neural network acti-
vation function. Our approach is example-guided : we develop a procedure
to generate examples, and then we leverage machine learning techniques
to learn a (static) function that outputs linear approximations. How-
ever, since the machine learning techniques we employ do not come with
formal guarantees, the resulting synthesized function may produce linear
approximations with violations. To remedy this, we bound the maximum
violation using rigorous global optimization techniques, and then adjust
the synthesized linear approximation accordingly to ensure soundness.
We evaluate our approach on several neural network verification tasks.
Our evaluation shows that the automatically synthesized linear approx-
imations greatly improve the accuracy (i.e., in terms of the number of
verification problems solved) compared to hand-crafted linear approxi-
mations in state-of-the-art neural network verification tools. An artifact
with our code and experimental scripts is available at: https://zenodo.
org/record/6525186#.Yp51L9LMIzM.

1 Introduction

Neural networks have become a popular model choice in machine learning due
to their performance across a wide variety of tasks ranging from image classifi-
cation, natural language processing, and control. However, they are also known
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to misclassify inputs in the presence of both small amounts of input noise and
seemingly insignificant perturbations to the inputs [37]. Indeed, many works
have shown they are vulnerable to a variety of seemingly benign input trans-
formations [1,9,17], which raises concerns about their deployment in safety-
critical systems. As a result, a large number of works have proposed verification
techniques to prove that a neural network is not vulnerable to these perturba-
tions [35,43,44], or in general satisfies some specification [15,18,27,28].

Crucial to the precision and scalability of these verification techniques are
linear approximations of the network’s activation functions.

In essence, given some arbitrary activation function σ(x), a linear approxi-
mation is a coefficient generator function G(l, u) → 〈al, bl, au, bu〉, where l, u ∈ R

are real values that correspond to the interval [l, u], and al, bl, au, bu ∈ R are real-
valued coefficients in the linear lower and upper bounds such that the following
condition holds:

∀x ∈ [l, u]. al · x + bl ≤ σ(x) ≤ au · x + bu (1)

Indeed, a key contribution in many seminal works on neural network verification
was a hand-crafted G(l, u) [2,7,19,33–35,42–45,47] and follow-up work built off
these hand-crafted approximations [36,38]. Furthermore, linear approximations
have applications beyond neural network verification, such as rigorous global
optimization and verification [21,40].

However, crafting G(l, u) is tedious, error-prone, and requires an expert.
Unfortunately, in the case of neural network activation functions, experts have
only crafted approximations for the most common functions, namely ReLU,
sigmoid, tanh, max-pooling, and those in vanilla LSTMs. As a result, existing
techniques cannot handle new and cutting-edge activation functions, such as
Swish [31], GELU [14], Mish [24], and LiSHT [32].

In this work, we consider the problem of automatically synthesizing the coef-
ficient generator function G(l, u), which can alternatively be viewed as four indi-
vidual functions Gal

(l, u), Gbl(l, u), Gau
(l, u), and Gbu(l, u), one for each coeffi-

cient. However, synthesizing the generator functions is a challenging task because
(1) the search space for each function is very large (in fact, technically infinite),
(2) the optimal generator functions are highly nonlinear for all activation func-
tions considered both in our work and prior work, and (3) to prove soundness of
the synthesized generator functions, we must show:

∀[l, u] ∈ IR, x ∈ [l, u] .

(Gal
(l, u) · x + Gbl(l, u)) ≤ σ(x) ≤ (Gau

(l, u) · x + Gbu(l, u))
(2)

where IR = {[l, u] | l, u ∈ R, l ≤ u} is the set of all real intervals. The above
equation has highly non-linear constraints, which cannot be directly handled by
standard verification tools, such as the Z3 [6] SMT solver.

To solve the problem, we propose a novel example-guided synthesis and veri-
fication approach, which is applicable to any differentiable, Lipschitz-continuous
activation function σ(x). (We note that activation functions are typically
required to be differentiable and Lipschitz-continuous in order to be trained
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Fig. 1. Overview of our method for synthesizing the coefficient generator function.

by gradient descent, thus our approach applies to any practical activation func-
tion). To tackle the potentially infinite search space of G(l, u), we first propose
two templates for G(l, u), which are inspired by the hand-crafted coefficient func-
tions of prior work. The “holes” in each template are filled by a machine learning
model, in our case a small neural network or linear regression model. Then, the
first step is to partition the input space of G(l, u), and then assign a single tem-
plate to each subset in the partition. The second step is to fill in the holes of each
template. Our approach leverages an example-generation procedure to produce
a large number of training examples of the form ((l, u), (al, bl, au, bu)), which can
then be used to train the machine learning component in the template. However,
a template instantiated with a trained model may still violate Eq. 2, specifically
the lower bound (resp. upper bound) may be above (resp. below) the activation
function over some interval [l, u]. To ensure soundness, the final step is to bound
the maximum violation of a particular template instance using a rigorous global
optimization technique based on interval analysis, which is implemented by the
tool IbexOpt [5]. We then use the computed maximum violation to adjust the
template to ensure Eq. 2 always holds.

The overall flow of our method is shown in Fig. 1. It takes as input the acti-
vation function σ(x), and the set of input intervals Ix ⊆ IR for which G(l, u)
will be valid. During design time, we follow the previously described approach,
which outputs a set of sound, instantiated templates which make up G(l, u).
Then the synthesized G(l, u) is integrated into an existing verification tool such
as AutoLiRPA [46] or DeepPoly [35]. These tools take as input a neural
network and a specification, and output the verification result (proved, coun-
terexample, or unknown). At application time (i.e., when attempting to verify
the input specification), when these tools need a linear approximation for σ(x)
over the interval [l, u], we lookup the appropriate template instance, and use it
to compute the linear approximation (al, bl, au, bu), and return it to the tool.

To the best of our knowledge, our method is the first to synthesize a lin-
ear approximation generator function G(l, u) for any given activation function
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σ(x). Our approach is fundamentally different from the ones used by state-
of-the-art neural network verification tools such as AutoLiRPA and Deep-
Poly, which require an expert to hand-craft the approximations. We note that,
while AutoLiRPA can handle activations that it does not explicitly support
by decomposing σ(x) into elementary operations for which it has (hand-crafted)
linear approximations, and then combining them, the resulting bounds are often
not tight. In contrast, our method synthesizes linear approximations for σ(x)
as a whole, and we show experimentally that our synthesized approximations
significantly outperform AutoLiRPA.

We have implemented our approach and evaluated it on popular neural
network verification problems (specifically, robustness verification problems in
the presence of input perturbations). Compared against state-of-the-art lin-
ear approximation based verification tools, our synthesized linear approxima-
tions can drastically outperform these existing tools in terms of the number of
problems verified on recently published activation functions such as Swish [31],
GELU [14], Mish [24], and LiSHT [32].

To summarize, we make the following contributions:

– We propose the first method for synthesizing the linear approximation gen-
erator function G(l, u) for any given activation function.

– We implement our method, use it to synthesize linear approximations for
several novel activation functions, and integrate these approximations into a
state-of-the-art neural network verification tool.

– We evaluate our method on a large number of neural network verification
problems, and show that our synthesized approximations significantly out-
perform the state-of-the-art tools.

2 Preliminaries

In this section, we discuss background knowledge necessary to understand our
work. Throughout the paper, we will use the following notations: for variables
or scalars we use lower case letters (e.g., x ∈ R), for vectors we use bold lower
case letters (e.g., x ∈ R

n) and for matrices we use bold upper case letters (e.g.,
W ∈ R

n×m). In addition, we use standard interval notation: we let [l, u] = {x ∈
R|l ≤ x ≤ u} be a real-valued interval, we denote the set of all real intervals
as IR = {[l, u]|l, u ∈ R, l ≤ u}, and finally we define the set of n-dimensional
intervals as IRn = {×n

i=1
[li, ui] | [li, ui] ∈ IR}, where×is the Cartesian product.

2.1 Neural Networks

We consider a neural network to be a function f : X ⊆ R
n → Y ⊆ R

m, which
has n inputs and m outputs. For ease of presentation, we focus the discussion
on feed-forward, fully-connected neural networks (although the bounds synthe-
sized by our method apply to all neural network architectures). For x ∈ X, such
networks compute f(x) by performing an alternating series of matrix multipli-
cations followed by the element-wise application of an activation function σ(x).
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Formally, an l-layer neural network with ki neurons in each layer (and letting
k0 = n, kl = m) has l weight matrices and bias vectors Wi ∈ R

ki−1×ki and
bi ∈ R

ki for i ∈ {1..l}. The input of the network is f0 = xT , and the output
of layer i is given by the function: fi = σ(fi−1 · Wi + bi) which can be applied
recursively until the output layer of the network is reached.

Initially, common choices for the activation function σ(x) were ReLU(x) =
max(0, x), sigmoid(x) = ex

ex+1 , and tanh(x) = ex−e−x

ex+e−x , however the field has
advanced rapidly in recent years and, as a result, automatically discovering
novel activations has become a research subfield of its own [31]. Many recently
proposed activations, such as Swish and GELU [14,31], have been shown to
outperform the common choices in important machine learning tasks.

2.2 Existing Neural Network Verification Techniques
and Limitations

We consider neural network verification problems of the following form: given
a neural network f : X → Y and an input set X ⊆ X, compute an over-
approximation Y such that {f(x) | x ∈ X} ⊆ Y ⊆ Y. The most scalable
approaches to neural network verification (where scale is measured by num-
ber of neurons in the network) use linear bounding techniques to compute Y ,
which require a linear approximation of the network’s activation function. This
is an extension of interval analysis [26] (e.g., intervals with linear lower/upper
bounds [35,46]) to compute Y , and thus X and Y are represented as elements
of IRn and IR

m, respectively.
We use Fig. 2 to illustrate a typical neural network verification problem. The

network has input neurons x1, x2, output neurons x7, x8 and a single hidden
layer. We assume the activation function is swish(x) = x · sigmoid(x), which is
shown by the blue line in Fig. 3. Our input space is X = [−1, 1] × [−1, 1] (i.e.,
x1, x2 ∈ [−1, 1]), and we want to prove x7 > x8, which can be accomplished by
first computing the bounds x7 ∈ [l7, u7], x8 ∈ [l8, u8], and then showing l7 > u8.
Following the prior work [35] and for simplicity, we split the affine transformation
and application of activation function in the hidden layer into two steps, and we
assume the neurons xi, where i ∈ {1..8}, are ordered such that i < j implies
that xi is in either the same layer as xj , or a layer prior to xj .

Linear bounding based neural network verification techniques work as follows.
For each neuron xi, they compute the concrete lower and upper bounds li and
ui, together with symbolic lower and upper bounds. The symbolic lower and
upper bounds are linear constraints

∑i−1
j=0 cl

j · xj + cl
i ≤ xi ≤ ∑i−1

j=0 cu
j · xj + cu

i ,
where each of cl

i, c
u
i is a constant. Both bounds are computed in a forward layer-

by-layer fashion, using the result of the previous layers to compute bounds for
the current layer.

We illustrate the computation in Fig. 2. In the beginning, we have x1 ∈ [−1, 1]
as the concrete bounds, and −1 ≤ x1 ≤ 1 as the symbolic bounds, and similarly
for x2. To obtain bounds for x3, x4, we multiply x1, x2 by the edge weights, which
for x3 gives the linear bounds −x1+x2 ≤ x3 ≤ −x1+x2. Then, to compute l3 and



154 B. Paulsen and C. Wang

Fig. 2. An example of linear bounding for neural network verification.

u3, we minimize and maximize the linear lower and upper bounds, respectively,
over x1, x2 ∈ [−1, 1]. Doing so results in l3 = −2, u3 = 2. We obtain the same
result for x4.

However, we encounter a key challenge when attempting to bound x5, as
we need a linear approximation of σ(x3) over [l3, u3] when bounding x5, and
similarly for x6. Here, a linear approximation for x5 can be regarded as a set
of coefficients al, bl, au, bu such that the following soundness condition holds:
∀x3 ∈ [l3, u3] . al · x3 + bl ≤ σ(x3) ≤ au · x3 + bu. In addition, a sub goal for
the bounds is tightness, which typically means the volume between the bounds
and σ(x) is minimized. Crafting a function to generate these coefficients has
been the subject of many prior works. Many seminal papers on neural network
verification have focused on solving this problem alone. Broadly speaking, they
fall into the following categories.

Hand-Crafted Approximation Techniques. The first category of techniques use
hand-crafted functions for generating al, bl, au, bu. Hand-crafted functions are
generally fast because they are static, and tight because an expert designed
them. Unfortunately, current works in this category are not general – they only
considered the most common activation functions, and thus cannot currently
handle our motivating example or any recent, novel activation functions. For
these works to apply to our motivating example, an expert would need to hand-
craft an approximation for the activation function, which is both difficult and
error-prone.

Expensive Solver-Aided Techniques. The second category use expensive solvers
and optimization tools to compute sound and tight bounds in a general way, but
at the cost of runtime. Recent works include DiffRNN [25] and POPQORN [19].
The former uses (unsound) optimization to synthesize candidate coefficients and
then uses an SMT solver to verify soundness of the bounds. The latter uses
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constrained-gradient descent to compute coefficients. We note that, while these
works do not explicitly target an arbitrary activation function σ(x), their tech-
niques can be naturally extended. Their high runtime and computational cost
are undesirable and, in general, make them less scalable than the first category.

Fig. 3. Approximation of AutoLiRPA
(red) and our approach (green). (Color
figure online)

Decomposing Based Techniques. The
third category combine hand-crafted
approximations with a decomposing
based technique to obtain general-
ity and efficiency, but at the cost of
tightness. Interestingly, this is sim-
ilar to the approach used by non-
linear SMT solvers and optimizers
such as dReal [11] and Ibex [5].
To the best of our knowledge, only
one work AutoLiRPA [46] imple-
ments this approach for neural net-
work verification. Illustrating on our
example, AutoLiRPA does not have
a static linear approximation for
σ(x3) = x3 · sigmoid(x3), but it has
static approximations for sigmoid(x3) and x3·y. Thus we can bound sigmoid(x3)
over x3 ∈ [−2, 2], and then, letting y = sigmoid(x3), bound x3 · y. Doing so
results in the approximation shown as red lines in Fig. 3. While useful, they are
suboptimal because they do not minimize the area between the two bounding
lines. This suboptimality occurs due to the decomposing, i.e., the static approx-
imations used here were not designed for swish(x) as a whole, but designed for
the individual elementary operations.

Our Work: Synthesizing Static Approximations. Our work overcomes the limi-
tation of prior work by automatically synthesizing a static function specifically
for any given activation function σ(x) without decomposing. Since the synthesis
is automatic, and results in a bound generator function, we obtain general-
ity and efficiency, and since the synthesis targets σ(x) specifically, we usually
(demonstrated empirically) obtain tightness. In Fig. 3, for example, the bounds
computed by our method are represented by the green lines. The synthesized
bound generator function can then be integrated to state-of-the-art neural net-
work verification tools, including AutoLiRPA.

Wrapping Up the Example. For our running example, using AutoLiRPA’s lin-
ear approximation, we would add the linear bounds for x5 shown in Fig. 2. To
compute l5, u5, we would substitute the linear bounds for x3 into x5’s linear
bounds, resulting in linear bounds with only x1, x2 terms that can be mini-
mized/maximized for l5, l6 respectively. We do the same for x6, and then we
repeat the entire process until the output layer is reached.
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3 Problem Statement and Challenges

In this section, we formally define the synthesis problem and then explain the
technical challenges. During the discussion, we focus on synthesizing the gen-
erator functions for the upper bound, but in Sect. 3.1, we explain how we can
obtain the lower bound functions.

3.1 The Synthesis Problem

Given an activation function σ(x) and an input universe x ∈ [lx, ux], we define
the set of all intervals over x in this universe as Ix = { [l, u] | [l, u] ∈ IR, l, u ∈
[lx, ux]}. In our experiments, for instance, we use lx = −10 and ux = 10. Note
that if we encounter an [l, u] 	∈ Ix, we fall back to a decomposing-based technique.

Our goal is to synthesize a generator function G(l, u) → 〈au, bu〉, or equiva-
lently, two generator functions Gau

(l, u) and Gbu(l, u) such that ∀[l, u] ∈ Ix, x ∈
R, the condition x ∈ [l, u] =⇒ σ(x) ≤ Gau

(l, u) · x + Gbu(l, u) holds. This is the
same as requiring that the following condition does not hold (i.e., the formula
is unsatisfiable):

∃[l, u] ∈ Ix, x ∈ R . x ∈ [l, u] ∧ σ(x) > Gau
(l, u) · x + Gbu(l, u) (3)

The formula above expresses the search for a counterexample, i.e., an input
interval [l, u] such that Gau

(l, u) ·x+Gbu(l, u) is not a sound upper bound of σ(x)
over the interval [l, u]. Thus, if the above formula is unsatisfiable, the soundness
of the coefficient functions Gau

,Gbu is proved. We note that we can obtain the
lower bound generator functions Gal

(l, u),Gbl(l, u) by synthesizing upper bound
functions Gau

(l, u),Gbu(l, u) for −σ(x) (i.e. reflecting σ(x) across the x-axis), and
then letting Gal

= −Gau
(l, u),Gbl = −Gbu(l, u).

In addition to soundness, we want the bound to be tight, which in our context
has two complementary goals. For a given [l, u] ∈ Ix we should have (1) σ(z) =
Gau

(l, u) · z + Gbu(l, u) for at least one z ∈ [l, u] (i.e., the bound touches σ(x)
at some point z), and (2) the volume below Gau

(l, u) · x + Gbu(l, u) should be
minimized (which we note is equivalent to minimizing the volume between the
upper bound and σ(x) since σ(x) is fixed). We will illustrate the volume by the
shaded green region below the dashed bounding line in Fig. 6.

The first goal is intuitive: if the bound does not touch σ(x), then it can be
shifted downward by some constant. The second goal is a heuristic taken from
prior work that has been shown to yield a precise approximation of the neural
network’s output set.

3.2 Challenges and Our Solution

We face three challenges in searching for the generator functions Gau
and Gbu .

First, we must restrict the search space so that a candidate can be found in a
reasonable amount of time (i.e., the search is tractable). The second challenge,
which is at odds with the first, is that we must have a large enough search space
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Fig. 4. Illustration of the two-point form bound (upper dashed line) and tangent-line
form bound (lower dashed line).

such that it permits candidates that represent tight bounds. Finally, the third
challenge, which is at odds with the second, is that we must be able to formally
verify Gau

,Gbu to be sound. While more complex geneator functions (Gau
,Gbu)

will likely produce tighter bounds, they will be more difficult (if not impractical)
to verify.

We tackle these challenges by proposing two templates for Gau
,Gbu and then

developing an approach for selecting the appropriate template. We observe that
prior work has always expressed the linear bound for σ(x) over an interval x ∈
[l, u] as either the line connecting the points (l, σ(l)), (u, σ(u)), referred to as
the two-point form, or as the line tangent to σ(x) at a point t, referred to as
tangent-line form. We illustrate both forms in Fig. 4. Assuming that σ′(x) is the
derivative of σ(x), the two templates for Gau

and Gbu as follows:

Gau
(l, u) =

σ(u) − σ(l)
u − l

Gbu(l, u) = −Gau
(l, u) · l + σ(l) + ε

two-point
form template

(4)

Gau
(l, u) = σ′(g(l, u))

Gbu(l, u) = −Gau
(l, u) · g(l, u) + σ(g(l, u)) + ε

tangent-line
form template

(5)

In these templates, there are two holes to fill during synthesis: ε and g(l, u).
Here, ε is a real-valued constant upward (positive) shift that ensures soundness
of the linear bounds computed by both templates. We compute ε when we verify
the soundness of the template (discussed in Sect. 4.3). In addition to ε, for the
tangent-line template, we must synthesize a function g(l, u) = t, which takes the
interval [l, u] as input and returns the tangent point t as output.

These two templates, together, address the previously mentioned three chal-
lenges. For the first challenge, the two-point form actually does not have a search
space, and thus can be computed efficiently, and for the tangent-line form, we
only need to synthesize the function g(l, u). In Sect. 4.2, we will show empirically
that g(l, u) tends to be much easier to learn than a function that directly predicts
the coefficients au, bu. For the second challenge, if the two-point form is sound,
then it is also tight since the bound touches σ(x) by construction. Similarly, the
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tangent-line form touches σ(x) at t. For the third challenge, we will show empir-
ically that these templates can be verified to be sound in a reasonable amount
of time (on the order of an hour). prove the soundness of Gau

,Gbu for large
At a high level, our approach contains three steps. The first step is to partition

Ix into subsets, and then for each subset we assign a fixed template – either
the two-point form template or tangent-line form template. The advantage of
partitioning is two-fold. First, no single template is a good fit for the entire Ix,
and thus partitioning results in overall tighter bounds. And second, if the final
verified template for a particular subset has a large violation (which results in a
large upward shift and thus less tight bounds) the effect is localized to that subset
only. Once we have assigned a template to each subset of Ix, the second step is to
learn a g(l, u) for each subset that was assigned a tangent-line template. We use
an example-generation procedure to generate training examples, which are then
used to train a machine learning model. After learning each g(l, u), the third
step is to compute ε for all of the templates. We phrase the search for a sound
ε as a nonlinear global optimization problem, and then use the interval-based
solver IbexOpt [5] to bound ε.

4 Our Approach

In this section, we first present our method for partitioning Ix, the input interval
space, into disjoint subsets and then assigning a template to each subset. Then,
we present the method for synthesizing the bounds-generating function for a
subset in the partition of Ix (see Sect. 3.1). Next, we present the method for
making the bounds-generating functions sound. Finally, we present the method
for efficiently looking up the appropriate template at runtime.

4.1 Partitioning the Input Interval Space (Ix)

A key consideration when partitioning Ix is how to represent each disjoint subset
of input intervals. While we could use a highly expressive representation such as
polytope or even use non-linear constraints, for efficiency reasons, we represent
each subset (of input intervals) as a box. Since a subset uses either the two-point
form template or the tangent-line form template, the input interval space can
be divided into Ix = I2pt ∪ Itan. Each of I2pt and Itan is a set of boxes.

At a high-level, our approach first partitions Ix into uniformly sized disjoint
boxes, and then assigns each box to either I2pt or Itan. In Fig. 5, we illustrate
the partition computed for swish(x) = x · sigmoid(x). The x-axis and y-axis
represent the lower bound l and the upper bound u, respectively, and thus a
point (l, u) on this graph represents the interval [l, u], and a box on this graph
denotes the set of intervals represented by the points contained within it. We
give details on computing the partition below.
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Fig. 5. Partition of Ix for the Swish activation function, where the blue boxes belong
to Itan, and the green boxes belong to I2pt. (Color figure online)

Defining the Boxes. We first define a constant parameter cs, which is the width
and height of each box in the partition of Ix. In Fig. 5, cs = 1. The benefits of
using a smaller cs value is two-fold. First, it allows us to more accurately choose
the proper template (two-point or tangent) for a given interval [l, u]. Second, as
mentioned previously, the negative impact of a template with a large violation
(i.e., large ε) is localized to a smaller set of input intervals.

Assuming that (ux − lx) can be divided by cs, then we have (ux−lx
cs

)2 disjoint
boxes in the partition of Ix, which we represent by Ii,j where i, j ∈ {1..ux−lx

cs
}.

Ii,j represents the box whose lower-left corner is located at (lx + i · cs, lx + j · cs),
or alternatively we have Ii,j = {[l, u] | l ∈ [lx + i · cs, lx + i · cs + cs], u ∈
[lx + j · cs, lx + j · cs + cs]}.

To determine which boxes Ii,j belong to the subset I2pt, we uniformly sample
intervals [l, u] ∈ Ii,j . Then, for each sampled interval [l, u], we compute the two-
point form for [l, u], and attempt to search for a counter-example to the equation
σ(x) ≤ Gau

(l, u)x + Gbu(l, u) by sampling x ∈ [l, u]. If a counter-example is not
found for more than half of the sampled [l, u] ∈ Ii,j , we add the box Ii,j to I2pt,
otherwise we add the box to Itan.

We note that more sophisticated (probably more expensive) strategies for
assigning templates exist. We use this strategy simply because it is efficient. We
also note that some boxes in the partition may contain invalid intervals (i.e., we
have [l, u] ∈ Ii,j where u < l). These invalid intervals are filtered out during the
final verification step described in Sect. 4.3, and thus do not affect the soundness
of our algorithm.

4.2 Learning the Function g(l, u)

In this step, for each box Ii,j ∈ Itan, we want to learn a function g(l, u) = t that
returns the tangent point for any given interval [l, u] ∈ Ii,j , where t will be used
to compute the tangent-line form upper bound as defined in Eq. 5. This process
is done for all boxes in Itan, resulting in a separate g(l, u) for each box Ii,j . A



160 B. Paulsen and C. Wang

sub-goal when learning g(l, u) is to maximize the tightness of the resulting upper
bound, which in our case means minimizing the volume below the tangent line.

We leverage machine learning techniques (specifically linear regression or a
small neural network with ReLU activation) to learn g(l, u), which means we need
a procedure to generate training examples. The examples must have the form
((l, u), t). To generate the training examples, we (uniformly) sample [l, u] ∈ Ii,j ,
and for each sampled [l, u], we attempt to find a tangent point t whose tangent
line represents a tight upper bound of σ(x). Then, given the training examples,
we use standard machine learning techniques to learn g(l, u).

The crux of our approach is generating the training examples. To generate a
single example for a fixed [l, u], we follows two steps: (1) generate upper bound
coefficients au, bu, and then (2) find a tangent point t whose tangent line is close
to au, bu. In the following paragraphs, we describe the process for a fixed [l, u],
and then discuss the machine learning procedure.

Fig. 6. Illustration of the sampling and lin-
ear programming procedure for computing
an upper bound. Shaded green region illus-
trates the volume below the upper bound.
(Color figure online)

Generating Example Coefficients
au, bu . Given a fixed [l, u], we aim
to generate upper bound coefficients
au, bu. A good generation procedure
has three criteria: (1) the coefficients
should be tight for the input inter-
val [l, u], (2) the coefficients should be
sound, and (3) the generation should
be fast. The first two criteria are
intuitive: good training examples will
result in a good learned model. The
third is to ensure that we can gener-
ate a large number of examples in a
reasonable amount of time. Unfortu-
nately, the second and third criteria
are at odds, because proving sound-
ness is inherently expensive. To ensure
a reasonable runtime, we relax the
second criteria to probably sound. Thus our final goal is to minimize volume
below au, bu such that σ(x) ≤ au · x + bu probably holds for x ∈ [l, u].

Our approach is inspired by a prior work [2,33], which formulates the goal
of a non-linear optimization problem as a linear program that can be solved
efficiently. Our approach samples points (si, σ(si)) on the activation function for
si ∈ [l, u], which are used to to convert the nonlinear constraint σ(x) ≤ au ·x+bu

into a linear one, and then uses volume as the objective (which is linear). For a
set S of sample points si ∈ [l, u], the linear program we solve is:

minimize : volume below au · x + bu

subj. to :
∧

si∈S

σ(si) ≤ au · si + bu
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Fig. 7. Plots of the training examples, smoothed with linear interpolation. On the left:
a plot of ((l, u), (t)), and on the right: a plot of ((l, u), (au)).

We illustrate this in Fig. 6. Solving the above problem results in au, bu, and the
prior work [2,33] proved that the solution (theoretically) approaches the optimal
and sound au, bu as the number of samples goes to infinity. We use Gurobi [13]
to solve the linear program.

Converting au, bu to a Tangent Line. To use the generated au, bu in the
tangent-line form template, we must find a point t whose tangent line is close to
au, bu. That is, we require that the following condition (almost) holds:

(σ′(t) = au) ∧ (−σ′(t) · t + σ(t) = bu)

To solve the above problem, we use local optimization techniques (specifically
a modified Powell’s method [29] implemented in SciPy [41], but most common
techniques would work) to find a solution to σ′(t) = au.

We then check that the right side of the above formula almost holds (specif-
ically, we check (|(σ′(t) · t + σ(t)) − bu| ≤ 0.01). If the local optimization does
not converge (i.e., it does not find a t such that σ′(t) = au), or the check on bu

fails, we throw away the example and do not use it in training.
One may ask the question: could we simply train a model to directly predict

the coefficients au and bu, instead of predicting a tangent point and then con-
verting it to the tangent line? The answer is yes, however this approach has two
caveats. The first caveat is that we will lose the inherent tightness that we gain
with the tangent-line form – we no longer have a guarantee that the computed
linear bound will touch σ(x) at any point. The second caveat is that the rela-
tionship between l, u and t tends to be close to linear, and thus easier to learn,
whereas the relationship between l, u and au, or between l, u and bu, is highly
nonlinear. We illustrate these relationships as plots in Fig. 7. The left graph plots
the generated training examples ((l, u), t), converted to a smooth function using
linear interpolation. We can see most regions are linear, as shown by the flat
sections. The right plot shows ((l, u), au), where we can see the center region is
highly nonlinear.
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Training on the Examples. Using the procedure presented so far, we sample
[l, u] uniformly from Ii,j and generate the corresponding t for each of them. This
results in a training dataset of r examples Dtrain = {((li, ui), ti) | i ∈ {1..r}}.
We then choose between one of two models – a linear regression model or a
2-layer, 50-hidden-neuron, ReLU network – to become the final function g(l, u).
To decide, we train both model types, and choose the one with the lowest error,
where error is measured as the mean absolute error. We give details below.

A linear regression model is a function g(l, u) = c1 · l + c2 · u + c3, where
ci ∈ R are coefficients learned by minimizing the squared error, which formally
is: ∑

((li,ui),ti)∈Dtrain

(g(li, ui) − ti)2 (6)

Finding the coefficients ci that minimize the above constraint has a closed-form
solution, thus convergence is guaranteed and optimal, which is desirable.

However, sometimes the relationship between (l, u) and t is nonlinear, and
thus using a linear regression model may result in a poor-performing g(l, u), even
though the solution is optimal. To capture more complex relationships, we also
consider a 2-layer ReLU network where W0 ∈ R

2×50, W1 ∈ R
50×1, b0 ∈ R

50,
b1 ∈ R, and we have g(l, u) = ReLU(〈l, u〉T · W0 + b0) · W1 + b1. The weights
and biases are initialized randomly, and then we minimize the squared error
(Eq. 6) using gradient descent. While convergence to the optimal weights is not
guaranteed in theory, we find in practice it usually converges.

We choose these two models because they can capture a diverse set of g(l, u)
functions. While we could use other prediction models, such as polynomial regres-
sion, generally, a neural network will be equally (if not more) expressive. How-
ever, we believe exploring other model types or architectures of neural networks
would be an interesting direction to explore.

4.3 Ensuring Soundness of the Linear Approximations

For a given Ii,j , we must ensure that its corresponding coefficient generator
functions Gau

(l, u) and Gbu(l, u) are sound, or in other words, that the following
condition does not hold:

∃[l, u] ∈ Ii,j , x ∈ [l, u] . σ(x) > Gau
(l, u) · x + Gbu(l, u)

We ensure the above condition does not hold (the formula is unsatisfiable) by
bounding the maximum violation on the clause σ(x) > Gau

(l, u) · x + Gbu(l, u),
which we formally define as Δ(l, u, x) = σ(x) − (Gau

(l, u) · x + Gbu(l, u)). Δ
is positive when the previous clause holds. Thus, if we can compute an upper
bound Δu, we can set the ε term in Gbu(l, u) to Δu to ensure the clause does
not hold, thus making the coefficient generator functions sound.

To compute Δu, we solve (i.e., bound) the following optimization problem:

for : l, u, x ∈ [li,j , ui,j ]
maximize : Δ(l, u, x)

subj. to : l < u ∧ l ≤ x ∧ x ≤ u



Example Guided Synthesis of Linear Approximations 163

where li,j , ui,j are the minimum lower bound and maximum upper bound, respec-
tively, for any interval in Ii,j . The above problem can be solved using the general
framework of interval analysis [26] and branch-and-prune algorithms [4].

Letting Δsearch = {(l, u, x)|l, u, x ∈ [li,j , ui,j ]} be the domain over which
we want to bound Δ, we can bound Δ over Δsearch using interval analysis. In
addition, we can improve the bound in two ways: branching (i.e., partitioning
Δsearch and bounding Δ on each subset separately) and pruning (i.e., removing
from Δsearch values that violate the constraints l < u ∧ l ≤ x ∧ x ≤ u). The
tool IbexOpt [5] implements such an algorithm, and we use it solve the above
optimization problem.

One practical consideration when solving the above optimization problem
is the presence of division by zero error. In the two-point template, we have
Gau

(l, u) = σ(u)−σ(l)
u−l . While we have the constraint l < u, from an interval

analysis perspective, Gau
(l, u) goes to infinity as u − l goes to 0, and indeed, if

we gave the above problem to IbexOpt, it would report that Δ is unbounded.
To account for this, we enforce a minimum interval width of 0.01 by changing
l < u to 0.01 < u − l.

4.4 Efficient Lookup of the Linear Bounds

Due to partitioning Ix, we must have a procedure for looking up the appropriate
template instance for a given [l, u] at the application time. Formally, we need to
find the box Ii,j , which we denote [ll, ul] × [lu, uu], such that l ∈ [ll, ul] and u ∈
[lu, uu], and retrieve the corresponding template. Lookup can actually present
a significant runtime overhead if not done with care. One approach is to use a
data structure similar to an interval tree or a quadtree [10], the latter of which
has O(log(n)) complexity. While the quadtree would be the most efficient for an
arbitrary partition of Ix into boxes, we can in fact obtain O(1) lookup for our
partition strategy.

We first note that each box, Ii,j , can be uniquely identified by ll and uu.
The point (ll, uu) corresponds to the top-left corner of a box in Fig. 5. Thus we
build a lookup dictionary keyed by (ll, uu) for each box that maps to the cor-
responding linear bound template. To perform lookup, we exploit the structure
of the partition: specifically, each box in the partition is aligned to a multiple
of cs. Thus, to lookup Ii,j for a given [l, u], we view (l, u) as a point on the
graph of Fig. 5, and the lookup corresponds to moving left-ward and upward
from the point (l, u) to the nearest upper-left corner of a box. More formally, we
perform lookup by rounding l down to the nearest multiple of cs, and u upward
to the nearest multiple of cs. The top-left corner can then be used to lookup the
appropriate template.

5 Evaluation

We have implemented our approach as a software tool that synthesizes a linear
bound generator function G(l, u) for any given activation function σ(x) in the
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input universe x ∈ [lx, ux]. The output is a function that takes as input [l, u]
and returns coefficients al, bl, au, bu as output. For all experiments, we use lx =
−10, ux = 10, cs = 0.25, and a minimum interval width of 0.01. If we encounter
an [l, u] 	⊆ [lx, ux], we fall back to the interval bound propagation of dReal [11].
After the generator function is synthesized, we integrate it into AutoLiRPA,
a state-of-the-art neural network verification tool, which allows us to analyze
neural networks with σ(x) as activation functions.

5.1 Benchmarks

Neural Networks and Datasets. Our benchmarks are eight deep neural
networks trained on the following two datasets.

MNIST. MNIST [22] is a set of images of hand-written digits each of which are
labeled with the corresponding written digit. The images are 28× 28 grayscale
images with one of ten written digits. We use a convolutional network archi-
tecture with 1568, 784, and 256 neurons in its first, second, and third layer,
respectively. We train a model for each of the activation functions described
below.

CIFAR. CIFAR [20] is a set of images depicting one of 10 objects (a dog, a truck,
etc.), which are hand labeled with the corresponding object. The images are
32× 32 pixel RGB images. We use a convolutional architecture with 2048, 2048,
1024, and 256 neurons in the first, second, third, and fourth layers, respectively.
We train a model for each of the activation functions described below.

Activation Functions. Our neural networks use one of the activation func-
tions shown Fig. 8 and defined in Table 1. They are Swish [14,31], GELU [14],
Mish [24], LiSHT [32], and AtanSq [31]. The first two are used in language mod-
els such as GPT [30], and have been shown to achieve the best performance for
some image classification tasks [31]. The third and fourth two are variants of
the first two, which are shown to have desirable theoretical properties. The last
was discovered using automatic search techniques [31], and found to perform
on par with the state-of-the-art. We chose these activations because they are
representative of recent developments in deep learning research.

Robustness Verification. We evaluate our approach on robustness verification
problems. Given a neural network f : X ⊆ R

n → Y ⊆ R
m and an input x ∈ X,

we verify robustness by proving that making a small p-bounded perturbation
(p ∈ R) to x does not change the classification. Letting x[i] ∈ R be the ith

element in x, we represent the set of all perturbations as X ∈ IR
n, where X =×n

i=1
[x[i] − p,x[i] + p]. We then compute Y ∈ IR

m where Y =×m

i=1
[li, ui], and,

assuming the target class of x is j, where j ∈ {1..m}, we prove robustness by
checking (lj > ui) for all i 	= j and i ∈ {1..m}.
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Table 1. Definitions of activation functions
used in our experiments.

Name Definition

Swish x · sigmoid(x)

GELU 0.5x(1 + tanh [
√

2/π(x + 0.044715x3)])

Mish x · tanh [ln(1 + ex)]

LiSHT x · tanh (x)

AtanSq (tan−1(x))2 − x
Fig. 8. Activation functions used
in our experiments.

For each network, we take 100 random test images, and following prior
work [12], we filter out misclassified images. We then take the remaining images,
and create a robustness verification problem for each one. Again following prior
work, we use p = 8/255 for MNIST networks and p = 1/255 for CIFAR networks.

5.2 Experimental Results

Our experiments were designed to answer the following question: How do our
synthesized linear approximations compare with other state-of-the-art, hand-
crafted linear approximation techniques on novel activation functions? To the
best of our knowledge, AutoLiRPA [46] is the only neural network verification
tool capable of handling the activation functions we considered here using static,
hand-crafted approximations. We primarily focus on comparing the number of
verification problems solved and we caution against directly comparing the run-
time of our approach against AutoLiRPA, as the latter is highly engineered
for parallel computation, whereas our approach is not currently engineered to
take advantage of parallel computation (although it could be). We conducted all
experiments on an 8-core 2.7 GHz processor with 32 GB of RAM.

We present results on robustness verification problems in Table 2. The first
column shows the dataset and architecture. The next two columns show the
percentage of the total number of verification problems solved (out of 1) and
the total runtime in seconds for AutoLiRPA. The next two columns show the
same statistics for our approach. The final column compares the output set
sizes of AutoLiRPA and our approach. We first define |Y | as the volume of
the (hyper)box Y . Then letting Yauto and Yours be the output set computed
by AutoLiRPA and our approach, respectively, |Yours|

|Yauto| measures the reduction
in output set size. In general, |Yours| < |Yauto| indicates our approach is better
because it implies that our approach has more accurately approximated the true
output set, and thus |Yours|

|Yauto| < 1 indicates our approach is more accurate.
We point out three trends in the results. First, our automatically synthe-

sized linear approximations always result in more verification problems solved.
This is because our approach synthesizes a linear approximation specifically for
σ(x), which results in tighter bounds. Second, AutoLiRPA takes longer on
more complex activations such as GELU and Mish, which have more elementary
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Table 2. Comparison of the verification results of our approach and AutoLiRPA.

Network Architecture AutoLiPRA [46] Our Approach
|Yours|
|Yauto|

% certified time (s) % certified time (s)

MNIST 4-Layer CNN with Swish 0.34 15 0.74 195 0.59

4-Layer CNN with Gelu 0.01 359 0.70 289 0.22

4-Layer CNN with Mish 0.00 50 0.28 236 0.29

4-Layer CNN with LiSHT 0.00 15 0.11 289 0.32

4-Layer CNN with AtanSq1 - - 0.16 233 -

CIFAR 5-Layer CNN with Swish 0.03 69 0.35 300 0.42

5-Layer CNN with Gelu 0.00 1,217 0.29 419 0.21

5-Layer CNN with Mish 0.00 202 0.29 363 0.17

5-Layer CNN with LiSHT 0.00 68 0.00 303 0.09

5-Layer CNN with AtanSq1 - - 0.22 347 -
1AutoLiRPA does not have an approximation for tan−1.

operations than Swish and LiSHT. This occurs because AutoLiRPA has more
linear approximations to compute (it must compute one for every elementary
operation before composing the results together). On the other hand, our app-
roach computes the linear approximation in one step, and thus does not have
the additional overhead for the more complex activation functions. Third, our
approach always computes a much smaller output set, in the range of 2-10X
smaller, which again is a reflection of the tighter linear bounds.

Synthesis Results. We also report some key metrics about the synthesis pro-
cedure. Results are shown in Table 3. The first three columns show the total
CPU time for the three steps in our synthesis procedure. We note that all three
steps can be heavily parallelized, thus the wall clock time is roughly 1/8 the
reported times on our 8-core machine. The final column shows the percentage
of boxes in the partition that were assigned a two-point template (we can take
the complement to get the percentage of tangent-line templates).

6 Related Work

Most closely related to our work are those that leverage interval-bounding tech-
niques to conduct neural network verification. Seminal works in this area can
either be thought of as explicit linear bounding, or linear bounding with some
type of restriction (usually for efficiency). Among the explicit linear bounding
techniques are the ones used in DeepPoly [35], AutoLiRPA [46], Neu-
rify [42], and similar tools [2,7,19,33,34,44,45,47]. On the other hand, tech-
niques using Zonotopes [12,23] and symbolic intervals [43] can be thought of
as restricted linear bounding. Such approaches have an advantage in scalabil-
ity, although they may sacrifice completeness and accuracy. In addition, recent
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Table 3. Statistics of the synthesis step in our method.

Activation σ(x) Partition
Time (s)

Learning
Time (s)

Verification
Time (s)

|I2pt|
|Ix|

Swish 81 1,762 20,815 0.45

GELU 104 2,113 45,504 0.57

Mish 96 2,052 38,156 0.45

LiSHT 83 1,650 61,910 0.46

AtanSq 85 1,701 18,251 0.38

work leverages semi-definite approximations [15], which allow for more expres-
sive, nonlinear lower and upper bounds. In addition, linear approximations are
used in nonlinear programming and optimization [5,40]. However, to the best
of our knowledge, none of these prior works attempt to automate the process of
crafting the bound generator function G(l, u).

Less closely related are neural network verification approaches based on solv-
ing systems of linear constraints [3,8,16,18,38]. Such approaches typically only
apply to networks with piece-wise-linear activations such as ReLU and max
pooling, for which there is little need to automate any part of the verification
algorithm’s design (at least with respect to the activation functions). They do
not handle novel activation functions such as the ones concerned in our work.
These approaches have the advantage of being complete, although they tend to
be less scalable than interval analysis based approaches.

Finally, we note that there are many works built off the initial linear approx-
imation approaches, thus highlighting the importance of designing tight and
sound linear approximations in general [36,39,42].

7 Conclusions

We have presented the first method for statically synthesizing a function that
can generate tight and sound linear approximations for neural network activa-
tion functions. Our approach is example-guided, in that we first generate example
linear approximations, and then use these approximations to train a prediction
model for linear approximations at run time. We leverage nonlinear global opti-
mization techniques to ensure the soundness of the synthesized approximations.
Our evaluation on popular neural network verification tasks shows that our app-
roach significantly outperforms state-of-the-art verification tools.
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36. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: Boosting robustness certification
of neural networks. In: ICLR (2019)

37. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv:1312.6199 (2013)
38. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with

mixed integer programming. ICLR (2019)
39. Tran, H.D., et al.: Star-based reachability analysis of deep neural networks. In: FM

(2019)
40. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval

linearizations for global optimization. In: AAAI (2011)
41. Virtanen, P.: SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Sci-

entific Computing in Python. Nature Methods (2020)
42. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis

of neural networks. In: NIPS (2018)
43. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of

neural networks using symbolic intervals. In: USENIX Security (2018)
44. Weng, T., et al.: Towards fast computation of certified robustness for relu networks.

In: ICML (2018)
45. Wu, Y., Zhang, M.: Tightening robustness verification of convolutional neural net-

works with fine-grained linear approximation. In: AAAI (2021)
46. Xu, K., et al.: Automatic perturbation analysis for scalable certified robustness

and beyond. In: NIPS (2020)
47. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-

work robustness certification with general activation functions. In: NIPS (2018)

http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1901.05894
http://arxiv.org/abs/1312.6199


170 B. Paulsen and C. Wang

Open Access This chapter is licensed under the terms of the Creative Commons
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source, provide a link to the Creative Commons license and indicate if changes were
made.
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