
NeuroDiff: Scalable Differential Verification of Neural
Networks using Fine-Grained Approximation

Brandon Paulsen
University of Southern California

Los Angeles, California, USA

Jingbo Wang
University of Southern California

Los Angeles, California, USA

Jiawei Wang
University of Southern California

Los Angeles, California, USA

Chao Wang
University of Southern California

Los Angeles, California, USA

ABSTRACT

As neural networks make their way into safety-critical systems,

where misbehavior can lead to catastrophes, there is a growing

interest in certifying the equivalence of two structurally similar

neural networks – a problem known as differential verification.

For example, compression techniques are often used in practice for

deploying trained neural networks on computationally- and energy-

constrained devices, which raises the question of how faithfully the

compressed network mimics the original network. Unfortunately,

existing methods either focus on verifying a single network or rely

on loose approximations to prove the equivalence of two networks.

Due to overly conservative approximation, differential verification

lacks scalability in terms of both accuracy and computational cost.

To overcome these problems, we propose NeuroDiff, a symbolic

and fine-grained approximation technique that drastically increases

the accuracy of differential verification on feed-forward ReLU net-

works while achieving many orders-of-magnitude speedup. Neu-

roDiff has two key contributions. The first one is new convex

approximations that more accurately bound the difference of two

networks under all possible inputs. The second one is judicious

use of symbolic variables to represent neurons whose difference

bounds have accumulated significant error. We find that these two

techniques are complementary, i.e., when combined, the benefit is

greater than the sum of their individual benefits. We have evalu-

ated NeuroDiff on a variety of differential verification tasks. Our

results show that NeuroDiff is up to 1000X faster and 5X more

accurate than the state-of-the-art tool.

1 INTRODUCTION

There is a growing need for rigorous analysis techniques that can

compare the behaviors of two or more neural networks trained for

the same task. For example, such techniques have applications in

better understanding the representations learned by different net-

works [46], and finding inputs where networks disagree [52]. The

need is further motivated by the increasing use of neural network

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416560

compression [14] – a technique that alters the network’s parame-

ters to reduce its energy and computational cost – where we expect

the compressed network to be functionally equivalent to the origi-

nal network. In safety-critical systems where a single instance of

misbehavior can lead to catastrophe, having formal guarantees on

the equivalence of the original and compressed networks is highly

desirable.

Unfortunately, most work aimed at verifying or testing neural

networks does not provide formal guarantees on their equivalence.

For example, testing techniques geared toward refutation can pro-

vide inputs where a single network misbehaves [22, 31, 42, 44, 51] or

multiple networks disagree [23, 34, 52], but they do not guarantee

the absence of misbehaviors or disagreements. While techniques

geared toward verification can prove safety or robustness prop-

erties of a single network [7–9, 15, 18, 25, 38, 41, 47], they lack

crucial information needed to prove the equivalence of multiple

networks. One exception is the ReluDiff tool of Paulsen et al. [33],

which computes a sound approximation of the difference of two

neural networks, a problem known as differential verification. While

ReluDiff performs better than other techniques, the overly con-

servative approximation it computes often causes both accuracy

and efficiency to suffer.

To overcome these problems, we propose NeuroDiff, a new sym-

bolic and fine-grained approximation technique that significantly

increases the accuracy of differential verification while achieving

many orders-of-magnitude speedup. NeuroDiff has two key con-

tributions. The first contribution is the development of convex ap-

proximations, a fine-grained approximation technique for bound-

ing the output difference of neurons for all possible inputs, which

drastically improves over the coarse-grained concretizations used

by ReluDiff. The second contribution is judiciously introducing

symbolic variables to represent neurons in hidden layers whose dif-

ference bounds have accumulated significant approximation error.

These two techniques are also complementary, i.e., when combined,

the benefit is significantly greater than the sum of their individual

benefits.

The overall flow of NeuroDiff is shown in Figure 1, where it

takes as input two neural networks f and f ′, a set of inputs to the
neural networks X defined by box intervals, and a small constant ϵ
that quantifies the tolerance for disagreement. We assume that f
and f ′ have the same network topology and only differ in the

numerical values of their weights. In practice, f ′ could be the

compressed version of f , or they could be networks constructed
using the same network topology but slightly different training

784

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3324884.3416560&domain=pdf&date_stamp=2021-01-27

Inputs NeuroDiff

Forward

Analysis

Convex

Approximation

Intermediate

Variables Check ϵ

Yes Verified

Partition

X

No

f f ′

X ⊆ Rnϵ

X1

X2

Proven?

Figure 1: The overall flow of NeuroDiff.

data. We also note that this assumption can support compression

techniques such as weight pruning [14] (by setting edges’ weights

to 0) and even neuron removal [10] (by setting all of a neuron’s

incoming edge weights to 0). NeuroDiff then aims to prove ∀x ∈
X .| f ′(x) − f (x)| < ϵ . It can return (1) verified if a proof can be

found, or (2) undetermined if a specified timeout is reached.

Internally, NeuroDiff first performs a forward analysis using

symbolic interval arithmetic to bound both the absolute value

ranges of all neurons, as in single network verification, and the dif-

ference between the neurons of the two networks. NeuroDiff then

checks if the difference between the output neurons satisfies ϵ , and
if so returns verified. Otherwise, NeuroDiff uses a gradient-based

refinement to partition X into two disjoint sub regions X1 and X2,
and attempts the analysis again on the individual regions. Since X1
and X2 form independent sub-problems, we can do these analyses

in parallel, hence gaining significant speedup.

The new convex approximations used in NeuroDiff are signifi-

cantly more accurate than not only the coarse-grained concretiza-

tions in ReluDiff [33] but also the standard convex approximations

in single-network verification tools [39, 40, 47, 54]. While these

(standard) convex approximations aim to bound the absolute value

range of y = ReLU (x), where x is the input of the rectified linear

unit (ReLU) activation function, our new convex approximations

aim to bound the difference z = ReLU (x + Δ) − ReLU (x), where
x and x + Δ are ReLU inputs of two corresponding neurons. This

is significantly more challenging because it involves the search of

bounding planes in a three-dimensional space (defined by x , Δ and

z) as opposed to a two-dimensional space as in the prior work.
The symbolic variables we judiciously add to represent values of

neurons in hidden layers should not be confused with the symbolic

inputs used by existing tools either.While the use of symbolic inputs

is well understood, e.g., both in single-network verification [39, 40,

47, 54] and differential verification [33], this is the first time that

symbolic variables are used to substitute values of hidden neurons

during differential verification. While the impact of symbolic inputs

often diminishes after the first few layers of neurons, the impact

of these new symbolic variables, when judiciously added, can be

maintained in any hidden layer.

We have implemented the proposed NeuroDiff in a tool and

evaluated it on a large set of differential verification tasks. Our

benchmarks consists of 49 networks, from applications such as

aircraft collision avoidance, image classification, and human activity

recognition. We have experimentally compared with ReluDiff [33],

the state-of-the-art tool which has also been shown to be superior

1.9

1.1

-1.9

1.0

2.1

0.9

1.1

-1.0

1.0

-1.0

n0,1

n0,2 n1,2

n1,1 n2,1

n2,2

n3,1

x1 ∈ [−2, 2]

x2 ∈ [−2, 2]

-2.0

1.0

2.0

1.0

-1.0

1.0

2.0

1.0

1.0

-1.0

Figure 2: Motivating example.

to ReluVal [48] and DeepPoly [40] for differential verification.

Our results show that NeuroDiff is up to 1,000X faster and 5X

more accurate. In addition, NeuroDiff is able to prove many of

the same properties as ReluDiff while considering much larger

input regions.

To summarize, this paper makes the following contributions:

• We propose new convex approximations to more accurately

bound the difference between corresponding neurons of two

structurally similar neural networks.

• We propose a method for judiciously introducing symbolic

variables to neurons in hidden layers to mitigate the propa-

gation of approximation error.

• We implement and evaluate the proposed technique on a

large number of differential verification tasks and demon-

strate its significant speed and accuracy gains.

The remainder of this paper is organized as follows. First, we

provide a brief overview of our method in Section 2. Then, we

provide the technical background in Section 3. Next, we present

the detailed algorithms in Section 4 and the experimental results in

Section 5. We review the related work in Section 6. Finally, we give

our conclusions in Section 7.

2 OVERVIEW

In this section, we highlight our main contributions and illustrate

the shortcomings of previous work on a motivating example.

2.1 Differential Verification

We use the neural network in Figure 2 as a running example. The

network has two input nodes n0,1,n0,2, two hidden layers with
two neurons each (n1,1,n1,2 and n2,1,n2,2), and one output node
n3,1. Each neuron in the hidden layer performs a summation of
their inputs, followed by a rectified linear unit (ReLU) activation

function, defined asy =max(0,x), where x is the input to the ReLU
activation function, and y is the output.
Let this entire network be f , and the value of the output node be

n3,1 = f (x1,x2), where x1 and x2 are the values of input nodes n0,1
and n0,2, respectively. The network can be evaluated on a specific
input by performing a series matrix multiplications (i.e., affine

transformations) followed by element-wise ReLU transformations.

For example, the output of the neurons of the first hidden layer is[
n1,1
n1,2

]
= ReLU

([
1.9 −1.9

1.0 1.1

]
·

[
x1
x2

])
=

[
ReLU (1.9x1 − 1.9x2)
ReLU (1.1x1 + 1.0x2)

]

785

Differential verification aims to compare f to another network
f ′ that is structurally similar. For our example, f ′ is obtained by
rounding the edge weights of f to the nearest whole numbers,

a network compression technique known as weight quantization.

Thus, f ′, n′
k, j

and n′3,1 = f ′(x1,x2) are counterparts of f , nk, j and

n3,1 = f (x1,x2) for 0 ≤ k ≤ 2 and 1 ≤ j ≤ 2. Our goal is to prove

that | f ′(x1,x2) − f (x1,x2)| is less than some reasonably small ϵ for
all inputs defined by the intervals x1 ∈ [−2, 2] and x2 ∈ [−2, 2]. For
ease of understanding, we show the edge weights of f in black, and
f ′ in light blue in Figure 2.

2.2 Limitations of Existing Methods

Naively, one could adapt any state-of-the-art, single-network verifi-

cation tool for our task, including DeepPoly [40] and Neurify [47].

Neurify, in particular, takes a neural network and an input region

of the network, and uses interval arithmetic [27, 48] to produce

sound symbolic lower and upper bounds for each output node. Typ-

ically, Neurify would then use the computed bounds to certify the

absence of adversarial examples [43] for the network.

However, for our task, the boundsmust be computed for both net-

works f and f ′. Then, we subtract them, and concretize to compute
lower and upper bounds on f ′(x1,x2) − f (x1,x2). In our example,
the individual bounds would be (approximately, due to rounding)

[LB(f),UB(f)] = [−0.94x1−0.62x2−6.51, 0.71x1−2.35x2+7.98] and
[LB(f ′),UB(f ′)] = [−0.94x1−0.44x2−6.75, 0.75x1−2.25x2+8.00]
for nodes n3,1 and n′3,1, respectively. After the subtraction, we

would obtain the bounds [LB(f ′) − UB(f),UB(f ′) − LB(f)] =
[−1.65x1 + 1.9x2 − 14.73, 1.68x1 − 1.63x2 + 14.5]. After concretiza-
tion, we would obtain the bounds [−21.83, 21.12]. Unfortunately,

the bounds are far from being accurate.

The ReluDiff method of Paulsen et al. [33] showed that, by

directly computing a difference interval layer-by-layer, the accuracy

can be greatly improved. For the running example, ReluDiff would

first compute bounds on the difference between the neurons n1,1
andn′1,1, which is [0, 1.1], and then similarly compute bounds on the

difference between outputs of n1,2 and n
′
1,2. Then, the results would

be used to compute difference bounds of the subsequent layer. The

reason it is more accurate is because it begins computing part of

the difference bound before errors have accumulated, whereas the

naive approach first accumulates significant errors at each neuron,

and then computes the difference bound. In our running example,

ReluDiff [33] would compute the tighter bounds [−3.1101, 2.5600].

While ReluDiff improves over the naive approach, in many

cases, it uses concrete values for the upper and lower bounds. In prac-

tice, this approach can suffer from severe error-explosion. Specifi-

cally, whenever a neuron of either network is in an unstable state –

i.e., when a ReLU’s input interval contains the value 0 – it has to

concretize the symbolic expressions.

2.3 Our Method

The key contribution in NeuroDiff, our new method, is a symbolic

and fine-grained approximation technique that both reduces the

approximation error introduced when a neuron is in an unstable

state, and mitigates the explosion of such approximation error after

it is introduced.

2.3.1 Convex Approximation for the Difference Interval. Our first

contribution is developing convex approximations to directly bound

the difference between two neurons after these ReLU activations.

Specifically, for a neuron n in f and corresponding neuron n′ in f ′,
we want to bound the value of ReLU (n′) − ReLU (n). We illustrate
the various choices using Figures 3, 4, and 5.

The naive way to bound this difference is to first compute ap-

proximations of y = ReLU (n) and y′ = ReLU (n′) separately, and
then subtract them. Since each of these functions has a single vari-

able, convex approximation is simple and is already used by single-

network verification tools [40, 47, 49]. Figure 6 shows the function

y = ReLU (n) and its bounding planes (shown as dashed-lines) in
a two-dimensional space (details in Section 3). However, as we

have already mentioned, approximation errors would be accumu-

lated in the bounds of ReLU (n) and ReLU (n′) and then amplified by
the interval subtraction. This is precisely why the naive approach

performs poorly.

The ReluDiff method of Paulsen et al. [33] improves upon the

new approximation by computing an interval bound on n′ − n, de-
noted Δ, then rewriting z = ReLU (n′) − ReLU (n) as z = ReLU (n +
Δ) − ReLU (n), and finally bounding this new function instead. Fig-

ure 3 shows the shape of z = ReLU (n + Δ) − ReLU (n) in a three-
dimensional space. Note that it has four piece-wise linear subre-

gions, defined by values of the input variables n and Δ. While the

bounds computed by ReluDiff [33], shown as the (horizontal)

yellow planes in Figure 4, are sound, in practice they tend to be

loose because the upper and lower bounds are both concrete values.

Such eager concretization eliminates symbolic information that Δ
contained before applying the ReLU activation.

In contrast, our method computes a convex approximation of z,
shown by the (tilted) yellow planes in Figure 5. Since these tilted

bounding planes are in a three-dimensional space, they are sig-

nificantly more challenging to compute than the standard two-

dimensional convex approximations (shown in Figure 6) used by

single network verification tools. Our approximations have the

advantage of introducing significantly less error than the horizon-

tal planes used in ReluDiff [33], while maintaining some of the

symbolic information for Δ before applying the ReLU activation.

We will show through experimental evaluation (Section 5) that

our convex approximation can drastically improve the accuracy of

the difference bounds, and are particularly effective when the input

region being considered is large. Furthermore, the tilted planes

shown in Figure 5 are for the general case. For certain special cases,

we obtain even tighter bounding planes (details in Section 4). In

the running example, using our new convex approximations would

improve the final bounds to [−1.97, 1.42].

2.3.2 Symbolic Variables for Hidden Neurons. Our second contri-

bution is introducing symbolic variables to represent the output

values of some unstable neurons, with the goal of limiting the prop-

agation of approximation errors after they are introduced. In the

running example, since both n1,1 and n
′
1,1 are in unstable states,

i.e., the input intervals of the ReLUs contain the value 0, we may

introduce a new symbol x3 = ReLU (n′1,1) − ReLU (n1,1). In all sub-

sequent layers, whenever the value of ReLU (n′1,1) − ReLU (n1,1) is

needed, we use the bounds [x3,x3] instead of the actual bounds.

786

Figure 3: The shape of z = ReLU (n + Δ) − ReLU (n). Figure 4: Bounding planes computed by ReluDiff [33].

Figure 5: Bounding planes computed by our newmethod.

LB (n) UB (n)

UB
(Re

LU
(n)
)

LB
(Re

LU
(n)
)

Figure 6: Bounding planes computed by Neurify [47].

The reason why using x3 can lead to more accurate results is
because, even though our convex approximations reduce the error

introduced, there is inevitably some error that accumulates. Intro-

ducing x3 allows this error to partially cancel in the subsequent
layers. In our running example, introducing the new symbolic vari-

able x3 would be able to improve the final bounds to [−1.65, 1.18].
While creating x3 improved the result in this case, carelessly

introducing new variables for all the unstable neurons can actually

reduce the overall benefit (see Section 4). In addition, the computa-

tional cost of introducing new variables is not negligible. Therefore,

in practice, we must introduce these symbolic variables judiciously,

to maximize the benefit. Part of our contribution in NeuroDiff is

in developing heuristics to automatically determine when to create

new symbolic variables (details in Section 4).

3 BACKGROUND

In this section, we review the technical background and then intro-

duce notations that we use throughout the paper.

3.1 Neural Networks

We focus on feed-forward neural networks, which we define as a

function f that takes an n-dimensional vector of real values x ∈ X,
where X ⊆ Rn , and maps it to an m-dimensional vector y ∈ Y,

where Y ⊆ Rm . We denote this function as f : X→ Y. Typically,

each dimension of y represents a score, such as a probability, that
the input x belongs to class i , where 1 ≤ i ≤ m.
A network with l layers has l weight matrices, each of which

is denotedWk , for 1 ≤ k ≤ l . For each weight matrix, we have

Wk ∈ R
lk−1×lk where lk−1 is the number of neurons in layer (k − 1)

and likewise for lk , and l0 = n. Each element inWk represents the

weight of an edge from a neuron in layer (k − 1) to one in layer

k . Let nk, j denote the jth neuron of layer k , and nk−1,i denote

the ith neuron of layer (k − 1). We useWk [i, j] to denote the edge
weight from nk−1,i to nk, j . In our motivating example, we have
W1[1, 1] = 1.9 andW1[1, 2] = 1.1.

Mathematically, the entire neural network can be represented

by f (x) = fl (Wl · fl−1(Wl−1 · ... f1(W1 · x)...)), where fk is the

activation function of the kth layer and 1 ≤ k ≤ l . We focus on
neural networks with ReLU activations because they are the most

widely implemented in practice, but our method can be extended

to other activation functions, such as siдmoid and tanh, and other
layer types, such as convolutional and max-pooling. We leave this

as future work.

3.2 Symbolic Intervals

To compute approximations of the output nodes that are sound for

all input values, we leverage interval arithmetic [27], which can be

viewed as an instance of the abstract interpretation framework [5].

It is well-suited to the verification task because interval arithmetic

787

is soundly defined for basic operations of the network such as

addition, subtraction, and scaling.

Let I = [LB(I),UB(I)] be an interval with lower bound LB(I) and
upper bound UB(I). Then, for intervals I1, I2, we have addition and
subtraction defined as I1 + I2 = [LB(I1) + LB(I2),UB(I1) + UB(I2)]
and I1 − I2 = [LB(I1) − UB(I2),UB(I1) − LB(I2)], respectively. For
a constant c , scaling is defined as c × I1 = [c × LB(I1), c × UB(I1)
when c > 0, and c × I1 = [c × UB(I1), c × LB(I1)] otherwise.
While interval arithmetic is a sound over-approximation, it is

not always accurate. To illustrate, let f (x) = 3x − x , and say we
are interested in bounding f (x) when x ∈ [−1, 1]. One way to

bound f is by evaluating f (I) where I = [−1, 1]. Doing so yields
3 × [−1, 1] − [−1, 1] = [−4, 4]. Unfortunately, the most accurate

bounds are [−2, 2].

There are (at least) two ways we can improve the accuracy. First,

we can soundly refine the result by dividing the input intervals

into disjoint partitions, performing the analysis independently on

each partition, and then unioning the resulting output intervals

together. Previous work has shown the result will be at least as

precise [48], and often better. For example, if we partitionx ∈ [−1, 1]
into x ∈ [−1, 0] and x ∈ [0, 1], and perform the analysis for each

partition, the resulting bounds improve to [−3, 3].

Second, the dependence between the two intervals are not lever-

aged when we subtract them, i.e., that they were both x terms and
hence could partially cancel out. To capture the dependence, we

can use symbolic lower and upper bounds [48], which are expres-

sions in terms of the input variable, i.e., I = [x ,x]. Evaluating f (I)
then yields the interval If = [2x , 2x], for x ∈ [−1, 1]. When using

symbolic bounds, eventually, we must concretize the lower and

upper bound equations. We denote concretization of LB(If) = 2x

and UB(If) = 2x as LB(If) = −2 and UB(If) = 2, respectively.

Compared to the naive solution, [−4, 4], this is a significant im-

provement.

When approximating the output of a given function f : X→ Y
over an input intervalX ⊆ X, one may prove soundness by showing

that the evaluation of the lower and upper bounds on any input

x ∈ X are always greater than and less than, respectively, to the

true value of f (x). Formally, for an interval I , let LB(I)(x) be the
evaluation of the lower bound equation on input x , and similarly for
UB(I)(x). Then, the approximation is considered sound if ∀x ∈ X ,
we have LB(I)(x) ≤ f (x) ≤ UB(I)(x).

3.3 Convex Approximations

While symbolic intervals are exact for linear operations (i.e. they do

not introduce error), this is not the case for non-linear operations,

such as the ReLU activation. This is because, for efficiency reasons,

the symbolic lower and upper bounds must be kept linear. Thus, de-

veloping linear approximations for non-linear activation functions

has become a signifciant area of research for single neural network

verification [40, 47, 49, 54]. We review the basics below, but caution

that they are different from our new convex approximations in

NeuroDiff.

We denote the input to the ReLU of a neuronnk, j as S
in (nk, j) and

the output as S(nk, j). The approach used by existing single-network
verification tools is to apply an affine transformation to the upper

bound of Sin (nk, j) such that UB(S
in (nk, j))(x) ≥ 0, where x ∈ X ,

and X is the input region for the entire network. For the lower

bound, there exist several possible transformations, including the

one used by Neurify [47], shown in Figure 6, where n = Sin (nk, j)
and the dashed lines are the upper and lower bounds.

We illustrate the upper bound transformation forn1,1 of ourmoti-
vating example. After computing the upper bound of the ReLU input

UB(Sin (n1,1)) = 1.9x1 − 1.9x2, where x1 ∈ [−2, 2] and x2 ∈ [−2, 2],
it computes the concrete lower and upper bounds. We denote these

as UB(Sin (n1,1)) = −7.6 and UB(S
in (n1,1)) = 7.6. We refer to them

as l and u, respectively, for short hand. Then, it computes the line
that passes through (u,u) and (0, l). Letting y = UB(Sin (n1,1))
be the upper bound equation of the ReLU input, it computes the

upper bound of the ReLU output as UB(S(n1,1)) =
u
u−l

(y − l) =
0.95x1 − 0.95x2 + 3.81.
When considering a single ReLU of a single network, convex

approximation is simple because there are only three states that

the neuron can be in, namely active, inactive, and unstable. Fur-

thermore, in only one of these states, convex approximation is

needed. In contrast, differential verification has to consider a pair

of neurons, which has up to nine states to consider between the

two ReLUs. Furthermore, different states may result in different lin-

ear approximations, and some states can even have multiple linear

approximations depending on the difference bound of Δ = n′ − n.
As we will show in Section 4, there are significantly more consider-

ations in our problem domain.

4 OUR APPROACH

We first present our baseline procedure for differential verification

of feed-forward neural networks (Section 4.1), and then present our

algorithms for computing convex approximations (Section 4.3) and

introducing symbolic variables (Section 4.4).

4.1 Differential Verification – Baseline

We build off the work of Paulsen et al. [33], so in this section we

review the relevant pieces. We assume that the input to NeuroD-

iff consists of two networks f and f ′, each with l layers of the
same size. Let n′

k, j
in f ′ be the neuron paired with nk, j in f . This

implicitly creates a pairing of the edge weights between the two

networks. We first introduce additional notation.

• We denote the difference between a pair of neurons as Δk, j =
n′
k, j

− nk, j . For example, Δ1,1 = 0.1 under the input x1 =

2,x2 = 1 in our motivating example shown in Figure 2.
• Wedenote the difference in a pair of edgeweights asW Δ

k
[i, j] =

W ′
k
[i, j] −Wk [i, j]. For example,W

Δ
1 [1, 1] = 2.0 − 1.9 = 0.1.

• We extend the symbolic interval notation to these terms.

That is, Sin (Δk, j) denotes the interval that boundsn
′
k, j
−nk, j

before applying ReLU, and S(Δk, j) denotes the interval after
applying ReLU.

Given that we have computed S(nk−1,i), S(n
′
k−1,i

), S(Δk−1,i) for

every neuron in the layer k − 1, now, we compute a single S(Δk, j)
in the subsequent layer k in two steps (and then repeat for each
1 ≤ j ≤ lk).
First, we compute Sin (Δk, j) by propagating the output intervals

from the previous layer through the edges connecting to the target

788

(x − l)u−l
′

u−l
+ l ′

(x − u)u
′−l
u−l
+ u ′

l

u

Figure 7: Illustration of Lemmas 4.1 and 4.2.

neuron. This is defined as

Sin (Δk, j) =
∑
i

(
S(Δk−1,i) ×W

′
k
[i, j] + S(nk−1,i) ×W

Δ
k−1[i, j]

)
We illustrate this computation on node Δ1,1 in our example. First,
we initialize S(Δ0,1) = [0, 0] , S(Δ0,2) = [0, 0]. Then we compute
Sin (Δ1,1) = [0, 0]×2.0+[x1,x1]×0.1+[0, 0]×−2.0+ [x2,x2]×−0.1 =
[0.1x1 − 0.1x2, 0.1x1 − 0.1x2].
For the second step, we apply ReLU to Sin (Δk, j) to obtain S(Δk, j).

This is where we apply the new convex approximations (Section 4.3)

to obtain tighter bounds. Toward this end, we will focus on the

following two equations:

z1 = ReLU (nk, j + Δk, j) − ReLU (nk, j) (1)

z2 = ReLU (n′
k, j) − ReLU (n′

k, j − Δk, j) (2)

While Paulsen et al. [33] also compute bounds of these two equa-

tions, they use concretizations instead of linear approximations, thus

throwing away all the symbolic information. For the running exam-

ple, their method would result in the bounds of S(Δ1,1) = [−.4, .4].
In contrast, our method will be able to maintain some or all of the

symbolic information, thus improving the accuracy.

4.2 Two Useful Lemmas

Before presenting our new linear approximations, we introduce

two useful lemmas, which will simplify our presentation as well as

our soundness proofs.

Lemma 4.1. Let x be a variable such that l ≤ x ≤ u for constants

l ≤ 0 and 0 ≤ u. For a constant l ′ such that l ≤ l ′ ≤ 0, we have

x ≤ (x − l) ∗ u−l ′

u−l
+ l ′ ≥ l ′.

Lemma 4.2. Let x be a variable such that l ≤ x ≤ u for constants

l ≤ 0 and 0 ≤ u. For a constant u ′ such that 0 ≤ u ′ ≤ u, we have
u ′ ≥ (x − u) ∗ u′−l

u−l
+ u ′ ≤ x .

We illustrate these lemmas in Figure 7. The solid blue line shows

the equation y = x for the input interval l ≤ x ≤ u. The upper
dashed line illustrates the transformation of Lemma 4.1, and the

lower dashed line illustrates Lemma 4.2. Specifically, Lemma 4.1

shows a transformation applied to x whose result is always greater
than both l ′ and x . Similarly, Lemma 4.2 shows a transformation
applied to x whose result is always less than both u ′ and x . These
lemmas will be useful in bounding Equations 1 and 2.

4.3 New Convex Approximations for S(Δk, j)
Now, we are ready to present our new approximations, which are

linear symbolic expressions derived from Equations 1 and 2.

We first assume that nk, j and n
′
k, j

could both be unstable, i.e.,

they could take values both greater than and less than 0. This yields

bounds for the general case in that they are sound in all states ofnk, j
and n′

k, j
(Sections 4.3.1 and 4.3.2). Then, we consider special cases

of nk, j and n
′
k, j

, in which even tighter upper and lower bounds are

derived (Section 4.3.3).

To simplify notation, we let n,n′, and Δ stand in for nk, j ,n
′
k, j
,

and Δk, j in the remainder of this section.

4.3.1 Upper Bound for the General Case. Let l = UB(Sin (Δ)) and

u = UB(Sin (Δ)). The upper bound approximation is:

UB(S(Δ)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
UB(Sin (Δ)) UB(Sin (Δ)) ≥ 0

0 UB(Sin (Δ)) ≤ 0

(UB(Sin (Δ)) − l) ∗ u
u−l

otherwise

That is, when the input’s (delta) upper bound is greater than 0 for all

x ∈ X , we can use the input’s upper bound unchanged. When the

upper bound is always less than 0, the new output’s upper bound

is then 0. Otherwise, we apply a linear transformation to the upper

bound, which results in the upper plane illustrated in Figure 5. We

prove all three cases sound.

Proof. We consider each case above separately. In the following,

we use Equation 1 to derive the bounds, but we note a symmetric

proof using Equation 2 exists and produces the same bounds.

Case 1: UB(Sin (Δ)) ≥ 0. We first show that, according to Equa-

tion 1, when 0 ≤ Δ we have z1 ≤ Δ. This then implies that, if
UB(Sin (Δ)) ≥ 0, then z1 ≤ UB(Sin (Δ))(x) for all x ∈ X , and hence
it is a valid upper bound for the output interval.

Assume 0 ≤ Δ. We consider two cases of n. First, consider 0 ≤ n.
Observe 0 ≤ n ∧ 0 ≤ Δ =⇒ 0 ≤ n + Δ. Thus, the ReLU’s of
Equation 1 simplify to z1 = n + Δ − n = Δ =⇒ z1 ≤ Δ. When

n < 0, Equation 1 simplifies to z1 = ReLU (n + Δ). Since n < 0,

we have n + Δ ≤ Δ ∧ 0 ≤ Δ =⇒ ReLU (n + Δ) ≤ Δ. Thus,
z1 = ReLU (n + Δ) ≤ Δ, so the approximation is sound.

Case 2: UB(Sin (Δ)) ≤ 0. This case was previously proven [33],

but we restate it here. UB(Sin (Δ)) ≤ 0 ⇐⇒ n′ ≤ n =⇒

ReLU (n′) ≤ ReLU (n) ⇐⇒ ReLU (n′) − ReLU (n) ≤ 0.

Case 3. By case 1, any UB(S(Δ)) that satisfies UB(S(Δ))(x) ≥ 0

and UB(S(Δ))(x) ≥ UB(Sin (Δ))(x) for all x ∈ X is sound. Both in-

equalities hold by Lemma 4.1, withx = UB(Sin (Δ)), l = UB(Sin (Δ)),

u = UB(Sin (Δ)) and l ′ = 0.
�

We illustrate the upper bound computation on node n1,1 of our
motivating example. Recall that UB(Sin (n1,1)) = 0.1x1 − 0.1x2.

Since UB(Sin (n1,1)) = −0.4 and UB(Sin (n1,1)) = 0.4, we are in

the third case of our linear approximation above. Thus, we have

UB(Sin (n1,1)) =(0.1x1−0.1x2−(−0.4))∗
0.4

0.4−(−0.4)
=0.5x1−0.5x2+

0.2. This is the upper bounding plane illustrated in Figure 5. The

volume under this plane is 50% less than the upper bounding plane

of ReluDiff shown in Figure 4.

789

4.3.2 Lower Bound for the General Case. Let l = LB(Sin (Δ)) and

u = LB(Sin (Δ)), the lower bound approximation is:

LB(S(Δ)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
LB(Sin (Δ)) LB(Sin (Δ)) ≤ 0

0 LB(Sin (Δ)) ≥ 0

(LB(Sin (Δ)) − u) ∗ −l
u−l

otherwise

That is, when the input lower bound is always less than 0, we can

leave it unchanged. When it is always greater than 0, the new lower

bound is then 0. Otherwise, we apply a transformation to the lower

bound, which results in the lower plane illustrated in Figure 5. We

prove all three cases sound.

Proof. We consider each case above separately. In the following,

we use Equation 1 to derive the bounds, but we note a symmetric

proof using Equation 2 exists and produces the same bounds.

Case 1: LB(Sin (Δ)) ≤ 0. We first show that according to Equa-

tion 1, when Δ ≤ 0 we have Δ ≤ z1. This then implies that, if

LB(Sin (Δ)) ≤ 0, we have LB(Sin (Δ))(x) ≤ z1 for all x ∈ X , and
hence it is a valid lower bound for the output interval.

Assume Δ ≤ 0. We consider two cases of n + Δ. First, let 0 ≤
n + Δ. Observe 0 ≤ n + Δ ∧ Δ ≤ 0 =⇒ 0 ≤ n, so we can
simplify Equation 1 to z1 = n + Δ − n = Δ =⇒ Δ ≤ z1. Second,
let n + Δ < 0 ⇐⇒ Δ < −n. Then, Equation 1 simplifies to

z1 = −ReLU (n) = −max(0,n) = min(0,−n). Now observe Δ <
−n ∧ Δ < 0 =⇒ Δ < min(0,−n) = z1.

Case 2: LB(Sin (Δ)) ≥ 0. This case was previously proven sound

[33], but we restate it here. LB(Sin (Δ)) ≥ 0 ⇐⇒ n′ ≥ n =⇒
ReLU (n′) ≥ ReLU (n) ⇐⇒ ReLU (n′) − ReLU (n) ≥ 0.

Case 3. By case 1, any LB(S(Δ)) that satisfies LB(S(Δ))(x) ≤ 0

and LB(S(Δ))(x) ≤ LB(Sin (Δ))(x) for all x ∈ X will be valid. Both

inequalities hold by Lemma 4.2, with x = LB(Sin (Δ)),u ′ = 0, l =

LB(Sin (Δ)), and u = LB(Sin (Δ)).
�

We illustrate the lower bound computation on node n1,1 of our
motivating example. Recall that LB(Sin (n1,1)) = 0.1x1−0.1x2. Since

LB(Sin (n1,1)) = −0.4 and LB(Sin (n1,1)) = 0.4, we are in the third
case of our linear approximation. Thus, we have LB(S(n1,1)) =

(0.1x1 − 0.1x2 − (−0.4)) ∗
−(−0.4)

0.4−(−0.4)
= 0.05x1 − 0.05x2 − 0.2. This is

the lower bounding plane illustrated in Figure 5. The volume above

this plane is 50% less than the lower bounding plane of ReluDiff

shown in Figure 4.

4.3.3 Tighter Bounds for Special Cases. While the bounds pre-

sented so far apply in all states of n and n′, under certain con-

ditions, we are able to tighten these bounds even further. Toward

this end, we restate the following two lemmas proved by Paulsen

et al. [33], which will come in handy. They are related to properties

of Equations 1 and 2, respectively.

Lemma 4.3. ReLU (n + Δ) − n ≡max(−n,Δ)

Lemma 4.4. n′ − ReLU (n′ − Δ) ≡min(n′,Δ)

These lemmas provide bounds when n and n′ are proved to be
linear based on the absolute bounds that we compute.

Figure 8: Tighter upper bounding plane.

Figure 9: Tighter lower bounding plane.

Tighter Upper Bound When n′ Is Linear. In this case, we have
UB(S(Δ)) = UB(Sin (Δ)), which is an improvement for the second
or third case of our general upper bound.

Proof. By our case assumption, Equation 2 simplifies to the one

in Lemma 4.4. Thus, z2 =min(n′,Δ) =⇒ z2 ≤ Δ. �

Tighter Upper BoundWhenn Is Linear,UB(Sin (Δ)) ≤ −LB(Sin (n))

≤ UB(Sin (Δ)). We illustrate the z1 plane under these constraints

in Figure 8. Let l = UB(Sin (Δ)), and let u = UB(Sin (Δ)), and l ′ =

−LB(Sin (n)), we use Lemma 4.1 to deriveUB(S(Δ)) = (UB(Sin (Δ))−

l)∗u−l
′

u−l
+l ′. This results in the upper plane of Figure 8. This improves

over the third case in our general upper bound because it allows

the lower bound of UB(S(Δ)) to be less than 0.

Proof. By our case assumption, Equation 1 simplifies to the one

in Lemma 4.3. By Lemma 4.1, we have for all x ∈ X , UB(S(Δ))(x) ≥
−LB(Sin (n)) andUB(S(Δ))(x) ≥ UB(Sin (Δ))(x). These two inequal-
ities imply UB(S(Δ)) ≥ max(−n,Δ). �

Tighter Lower Bound When n Is Linear. Here, we can use the

approximation LB(S(Δ)) = LB(Sin (Δ)). This improves over the
second and third cases of our general lower bound.

Proof. By our case assumption, Equation 1 simplifies to the one

in Lemma 4.3. Thus, z1 =max(−n,Δ) =⇒ z1 ≥ Δ. �

Tighter Lower Bound when n′ is Linear, LB(Sin (Δ)) ≤ LB(Sin (n′))

≤ LB(Sin (Δ)). We illustrate the z2 plane under these constraints

in Figure 9. Here, letting l = LB(Sin (Δ)), u = LB(Sin (Δ)), and u ′ =

LB(Sin (n′)), we can use Lemma 4.2 to derive the approximation

LB(S(Δ)) = (LB(Sin (Δ)) − u) ∗ u−l ′

u−l
+ u ′. This results in the lower

plane of Figure 9. This improves over the third case, since it allows

the upper bound to be greater than 0.

790

Proof. By our case assumption, Equation 2 simplifies to the

one shown in Lemma 4.4. By Lemma 4.2, we have for all x ∈

X , LB(S(Δ))(x) ≤ LB(Sin (Δ))(x) and LB(S(Δ))(x) ≤ LB(Sin (n′)).
These two inequalities imply LB(S(Δ))(x) ≤ min(n′,Δ). �

4.4 Intermediate Symbolic Variables for S(Δ)
While convex approximations reduce the error introduced by ReLU,

even small errors tend to be amplified significantly after a few

layers. To combat the error explosion, we introduce new symbolic

terms to represent the output values of unstable neurons, which

allow their accumulated errors to cancel out.

We illustrate the impact of symbolic variables on n1,1 of our
motivating example. Recall we have S(Δ1,1) =[0.05x1−0.05x2−0.2,
0.05x1−0.05x2+0.2]. After applying the convex approximation, we
introduce a new variable x3 such that x3 = [0.05x1 − 0.05x2 − 0.2,
0.05x1−0.05x2+0.2]. Then we set S(Δ1,1) = [x3,x3], and propagate
this interval as before. After propagating through n2,1 and n2,2 and
combining them at n3,1, the x3 terms partially cancel out, resulting
in the tighter final output interval [−1.65, 1.18].

In principle, symbolic variables may be introduced at any unsta-

ble neurons that introduce approximation errors, however there

are efficiency vs. accuracy tradeoffs when introducing these sym-

bolic variables. One consideration is how to deal with intermediate

variables referencing other intermediate variables. For example,

if we decide to introduce a variable x4 for n2,1, then x4 will have
an x3 term in its equation. Then, when we are evaluating a sym-

bolic bound that contains an x4 term, which will be the case for
n3,1, we will have to recursively substitute the bounds of the pre-
vious intermediate variables, such as x3. This becomes expensive,
especially when it is used together with our bisection-based refine-

ment [33, 48]. Thus, in practice, we first remove any back-references

to intermediate variables by substituting in their lower bounds and

upper bounds into the new intermediate variable’s lower and upper

bounds, respectively.

Given that we do not allow back-references, there are two ad-

ditional considerations. First, we must consider that introducing

a new intermediate variable wipes out all the other intermediate

variables. For example, introducing a new variable at n2,1 wipes
out references to x3, thus preventing any x3 terms from canceling

at n3,1. Second, the runtime cost of introducing symbolic variables
is not negligible. The bulk of computation time in NeuroDiff is

spent multiplying the network’s weight matrices by the neuron’s

symbolic bound equations, which is implemented using matrix mul-

tiplication. Since adding variables increases the matrix size, this

increases the matrix multiplication cost.

Based on these considerations, we have developed heuristics for

adding new variables judiciously. First, since the errors introduced

by unstable neurons in the earliest layers are the most prone to

explode, and hence benefit the most when we create variables for

them, we rank them higher when choosing where to add symbolic

variables. Second, we bound the total number of symbolic variables

that may be added, since our experience shows that introducing

symbolic variables for the earliest N unstable neurons gives drastic

improvements in both run time and accuracy. In practice, N is set

to a number proportional to the weighted sum of unstable neurons

in all layers. Formally, N = ΣL
k=1

γk × Nk , where Nk is the number

of unstable neurons in layer k and γk = 1
k
is the discount factor.

5 EXPERIMENTS

We have implemented NeuroDiff and compared it with ReluD-

iff [33], the state-of-the-art tool for differential verification of

neural networks. NeuroDiff builds upon the codebase of ReluD-

iff [32], which was also used by single-network verification tools

such as ReluVal [48] and Neurify [47]. All use OpenBLAS [55] to

optimize the symbolic interval arithmetic (namely in applying the

weight matrices to the symbolic intervals). We note that NeuroDiff

uses the algorithm from Neurify to compute S(nk, j) and S(n
′
k, j
),

whereas ReluDiff uses the algorithm of ReluVal. Since Neurify is

known to compute tighter bounds than ReluVal [47], we compare

to both ReluDiff, and an upgraded version of ReluDiff which

uses the bounds from Neurify to ensure that any performance gain

is due to our optimizations and not due to using Neurify’s bounds.

We use the name ReluDiff+ to refer to ReluDiff upgraded with

Neurify’s bounds.

5.1 Benchmarks

Our benchmarks consist of the 49 feed-forward neural networks

used by Paulsen et al. [33], taken from three applications: aircraft

collision avoidance, image classification, and human activity recog-

nition. We briefly describe them here. As in Paulsen et al. [33], the

second network f ′ is generated by truncating the edge weights of
f from 32 bit to 16 bit floats.

ACAS Xu [16]. ACAS (aircraft collision avoidance system) Xu

is a set of forty-five neural networks, each with five inputs, six

hidden layers of 50 units each, and five outputs, designed to advise

a pilot (the ownship) how to steer an aircraft in the presence of an

intruder aircraft. The inputs describe the position and speed of the

intruder relative to the ownship, and the outputs represent scores

for different actions that the ownship should take. The scores range

from [−0.5, 0.5]. We use the input regions defined by the properties

of previous work [17, 48].

MNIST [21]. MNIST is a standard image classification task, where

the goal is to correctly classify 28 × 28 pixel greyscale images of

handwritten digits. Neural networks trained for this task take 784

inputs (one for each pixel) each in the range [0, 255], and compute

ten outputs – one score for each of the ten possible digits. We use

three networks of size 3x100 (three hidden layers of 100 neurons

each), 2x512, and 4x1024 taken from Weng et al. [49] and Wang et

al.[47]. All achieve at least 95% accuracy on holdout test data.

Human Activity Recognition (HAR) [1]. The goal for this task

is to classify the current activity of human (e.g. walking, sitting,

laying down) based on statistics from a smartphone’s gyroscopic

sensors. Networks trained on this task take 561 statistics computed

from the sensors and output six scores for six different activities.

We use a 1x500 network.

5.2 Experimental Setup

Our experiments aim to answer the following research questions:

(1) Is NeuroDiff significantly faster than state-of-the-art?

791

Figure 10: Comparing the execution times of NeuroDiff

and ReluDiff+ on all verification tasks.

(2) Is NeuroDiff’s forward pass significantly more accurate?

(3) Can NeuroDiff handle significantly larger input regions?

(4) How much does each technique contribute to the overall

improvement?

To answer these questions, we run both NeuroDiff and ReluD-

iff/ReluDiff+ on all benchmarks and compare their results. Both

NeuroDiff and ReluDiff/ReluDiff+ can be parallelized to use

multithreading, so we configure a maximum of 12 threads for all

experiments. Our experiments are run on a computer with an AMD

Ryzen Threadripper 2950X 16-core processor, with a 30-minute

timeout per differential verification task.

While we could try and adapt a single-network verification tool

to our task as done previously [33], we note that ReluDiff has been

shown to significantly outperform (by several orders of magnitude)

this naive approach.

5.3 Results

In the remainder of this section, we present our experimental results

in two steps. First, we present the overall verification results on all

benchmarks. Then, we focus on the detailed verification results on

the more difficult verification tasks.

5.3.1 Summary of Results on All Benchmarks. Our experimental

results show that, on all benchmarks, the improved ReluDiff+

slightly but consistently outperforms the original ReluDiff due to

its use of the more accurate component from Neurify instead of

ReluVal for bounding the absolute values of individual neurons.

Thus, to save space, we will only show the results that compare

NeuroDiff (our method) and ReluDiff+.

We summarize the comparison between NeuroDiff and ReluD-

iff+ using a scatter plot in Figure 10, where each point represents

a differential verification task: the x-axis is the execution time of

NeuroDiff in seconds, and the y-axis the execution time of ReluD-

iff+ in seconds. Thus, points on the diagonal line are ties, while

points above the diagonal line are wins for NeuroDiff.

The results show that NeuroDiff outperformed ReluDiff+ for

most verification tasks. Since the execution time is in logrithmic

scale the speedups of NeuroDiff are more than 1000X for many

of these verification tasks. While there are cases where NeuroDiff

is slower than ReluDiff+, due to the overhead of adding symbolic

variables, the differences are on the order of seconds. Since they

Table 1: Results for ACAS networks with ϵ = 0.05.

Property
NeuroDiff (new) ReluDiff+

Speedup
proved undet. time (s) proved undet. time (s)

φ1 45 0 522.6 44 1 4800.6 9.2

φ3 42 0 2.3 42 0 4.1 1.8

φ4 42 0 1.7 42 0 2.8 1.7

φ5 1 0 0.2 1 0 0.2 1.4

φ6 2 0 0.6 2 0 0.4 0.7

φ7 1 0 1404.4 0 1 1800.0 1.3

φ8 1 0 132.2 1 0 361.8 2.7

φ9 1 0 0.6 1 0 2.3 3.7

φ10 1 0 0.9 1 0 0.7 0.8

φ11 1 0 0.2 1 0 0.3 1.6

φ12 1 0 2.8 1 0 360.9 129.4

φ13 1 0 5.8 1 0 5.1 0.9

φ14 2 0 0.5 2 0 95.9 196.2

φ15 2 0 0.6 2 0 65.0 113.2

Table 2: Results for ACAS networks with ϵ = 0.01.

Property
NeuroDiff (new) ReluDiff+

Speedup
proved undet. time (s) proved undet. time (s)

φ1 41 4 11400.1 15 30 55778.6 4.9

φ3 42 0 14.3 35 7 13642.2 957.2

φ4 42 0 3.8 37 5 9115.0 2390.1

φ5 1 0 0.3 0 1 1800.0 5520.5

φ16 2 0 1.0 2 0 0.8 0.8

φ7 0 1 1800.0 0 1 1800.0 1.0

φ8 1 0 1115.9 0 1 1800.0 1.6

φ9 1 0 2.4 0 1 1800.0 738.2

φ10 1 0 1.6 1 0 1.1 0.7

φ11 1 0 0.3 0 1 1800.0 5673.8

φ12 1 0 132.2 0 1 1800.0 13.6

φ13 1 0 15.9 1 0 14.8 0.9

φ14 2 0 1589.3 0 2 3600.0 2.3

φ15 2 0 579.4 0 2 3600.0 6.2

are all on the small MNIST networks and the HAR network that

are very easy for both tools, we omit an in-depth analysis of them.

In the remainder of this section, we present an in-depth analysis

of the more difficult verification tasks.

5.3.2 Results on ACAS Networks. For ACAS networks, we consider

two different sets of properties, namely the original properties from

Paulsen et al. [33] where ϵ = 0.05, and the same properties but with
ϵ = 0.01. We emphasize that, while verifying ϵ = 0.05 is useful, this
means that the output value can vary by up to 10%. Considering

ϵ = 0.01 means that the output value can vary by up to 2%, which
is much more useful.

Our results are shown in Tables 1 and 2, where the first column

shows the property, which defines the input space considered. The

next three columns show the results for NeuroDiff, specifically the

number of verified networks (out of the 45 networks), the number

of unverified networks, and the total run time across all networks.

The next three show the same results, but for ReluDiff+. The final

column shows the average speed up of NeuroDiff.

The results show that NeuroDiff makes significant gains in

both speed and accuracy. Specifically, the speedups are up to two

and three orders of magnitude for ϵ = 0.05 and 0.01, respectively. In
addition, at the more accurate ϵ = 0.01 level, NeuroDiff is able to
complete 53 more verification tasks, out of the total 142 verification

tasks.

792

Figure 11: Percentage of verification tasks completed on

the MNIST 4x1024 network for various perturbations.

Figure 12:Accuracy comparison for a single forward pass

on the MNIST 4x1024 network with perturbation of 8.

5.3.3 Results on MNIST Networks. For MNIST, we focus on the

4x1024 network, which is the largest network considered by Paulsen

et al. [33]. In contrast, since the smaller networks, namely 3x100

and 2x512 networks, were handled easily by both tools, we omit

their results. In the MNIST-related verification tasks, the goal is to

verify ϵ = 1 for the given input region. We consider the two types of
input regions from the previous work, namely global perturbations

and targeted pixel perturbations, however we use input regions

that are hundreds of orders of magnitude larger.

First, we look at the global perturbation. For these, the input

space is created by taking an input image and then allowing a per-

turbation of +/- p greyscale units to all of its pixels. In the previous
work, the largest perturbation was p = 3. Figure 11 compares Neu-
roDiff and ReluDiff+ on p = 3 all the way up to 8, where the

x-axis is the perturbation applied, and the y-axis is the percentage

of verification tasks (out of 100) that each can handle.

The results show that NeuroDiff can handle perturbations up

to +/- 6 units, whereas ReluDiff+ begins to struggle at 4. While the

difference between 4 and 6, may seem small, the volume of input

space for a perturbation of 6 is 6784/4784 ≈ 1.1 × 10138 times larger

than 4, or in other words, 138 orders of magnitude larger.

Next, we show a comparison of the epsilon verified by a single

forward pass for a perturbation of 8 on the MNIST 4x1024 network

in Figure 12. Points above the blue line indicate NeuroDiff per-

formed better. Overall, NeuroDiff is between two and three times

more accurate than ReluDiff+.

Finally, we look at the targeted pixel perturbation properties.

For these, the input space is created by taking an image, randomly

choosing n pixels, and setting there bounds to [0, 255], i.e., allowing
arbitrary changes to the chosen pixels. We again use the 4x1024

MNIST network. The results are summarized in Table 3. The first

column shows the number of randomly perturbed pixels. We can

again see very large speedups, and a significant increase in the size

of the input region that NeuroDiff can handle.

5.3.4 Contribution of Each Technique. Here, we analyze the con-

tribution of individual techniques, namely convex approximations

and symbolic variables, to the overall performance improvement.

In Table 4, we present the average ϵ that was able to be verified
after a single forward pass on the 4x1024 MNIST network for each

of the four techniques: ReluDiff+ (baseline), NeuroDiff with

Table 3: Results of the MNIST 4x1024 pixel experiment.

Num.

Pixels

NeuroDiff (new) ReluDiff+
Speedup

proved undet. time (s) proved undet. time (s)

15 100 0 236.5 100 0 1610.2 6.8

18 100 0 540.8 88 12 34505.8 63.8

21 100 0 1004.0 30 70 145064.5 144.5

24 99 1 7860.1 1 99 179715.9 22.9

27 83 17 49824.0 0 100 180000.0 3.6

Table 4: Evaluating the individual contributions of convex

approximation and symbolic variables using the MNIST

4x1024 global perturbation experiment.

Perturb
Average ϵ Verified

ReluDiff+ Conv. Approx. Int. Vars. NeuroDiff

3 0.59 0.42 (+1.39x) 0.43 (+1.38x) 0.20 (+2.93x)

4 1.02 0.70 (+1.46x) 0.87 (+1.18x) 0.36 (+2.85x)

5 1.60 1.06 (+1.52x) 1.47 (+1.09x) 0.56 (+2.87x)

6 2.29 1.47 (+1.55x) 2.19 (+1.04x) 0.79 (+2.90x)

7 3.02 1.92 (+1.58x) 2.96 (+1.02x) 1.04 (+2.91x)

8 3.80 2.39 (+1.59x) 3.77 (+1.01x) 1.30 (+2.93x)

only convex approximations, NeuroDiff with only intermediate

variables, and the full NeuroDiff.

Overall, the individual benefits of the two proposed approxima-

tion techniques are obvious. While convex approximation (alone)

consistently provides benefit as perturbation increases, the ben-

efit of symbolic variables (alone) tends to decrease. In addition,

combining the two provides much greater benefit than the sum of

their individual contributions. With perturbation of 8, for example,

convex approximations alone are 1.59 times more accurate than

ReluDiff+, and intermediate variables alone are 1.01 times more

accurate. However, together they are 2.93 times more accurate.

The results suggest two things. First, intermediate symbolic vari-

ables perform well when a significant portion of the network is

already in the stable state. We confirm, by manually inspecting the

experimental results, that it is indeed the case when we use a per-

turbation of 3 and 8 in the MNIST experiments. Second, the convex

approximations provide the most benefit when the pre-ReLU delta

intervals are (1) significantly wide, and (2) still contain a significant

793

amount of symbolic information. This is also confirmed by man-

ually inspecting our MNIST results: increasing the perturbation

increases the overall width of the delta intervals.

6 RELATEDWORK

Aside from ReluDiff [33], the most closely related to our work

are those that focus on verifying properties of single networks as

opposed to two or more networks. These verification approaches

can be broadly categorized into those that use exact, constraint

solving-based techniques and those that use approximations.

On the constraint solving side, several works have adapted off-

the-shelf solvers [2–4, 7, 45], or even implemented solvers specif-

ically for neural networks [17, 18]. On the approximation side,

many use techniques that fit into the framework of abstract inter-

pretation [5]. For example, many works have leveraged abstract

domains such as intervals [16, 48, 49, 54], polyhedra [39, 40], and

zonotopes [9, 41].

In addition, these verification techniques have also been com-

bined [15, 41, 47], or entirely different approaches [6, 12, 38], such as

bounding a network’s lipschitz constant, have been studied. These

verification techniques can also be integrated into the training

process to produce more robust and easier to verify networks [8,

25, 26, 50]. These works are orthogonal, though we believe their

techniques can be adapted to our domain.

A related but tangential line of work focuses on discovering

interesting behaviors of neural networks, though without any guar-

antees. Most closely related to our work are differential testing

techniques [23, 34, 52], which focus on finding disagreements be-

tween a set of networks. However, these techniques do not attempt

to prove the equivalence or similarity of multiple networks.

Other works are more geared towards single network testing,

and use white-box testing techniques [22, 31, 42, 44, 51], such as

neuron coverage statistics, to assess how well a network has been

tested, and also report interesting behaviors. Both of these can be

thought of as adapting software engineering techniques to machine

learning.

In addition, many works use machine learning techniques, such

as gradient optimization, to find interesting behaviors, such as

adversarial examples[19, 24, 28, 29, 53]. These interesting behaviors

can then be used to retrain the network to improve robustness [11,

36]. Again, these techniques do not provide guarantees, though we

believe they could be integrated into NeuroDiff to quickly find

counterexamples.

Finally, our work draws inspiration from classic software en-

gineering techniques, such as regression testing [37], differential

assertion checking [20], differential fuzzing [30], and incremental

symbolic execution [13, 35], where one version of a program is used

as an “oracle”, to more efficiently test or verify a new version of the

same program. In our case, f can be thought of as the oracle, while
f ′ is the new version.

7 CONCLUSIONS

We have presented NeuroDiff, a scalable differential verification

technique for soundly bounding the difference between two feed-

forward neural networks. NeuroDiff leverages novel convex ap-

proximations, which reduce the overall approximation error, and

intermediate symbolic variables, which control the error explosion,

to significantly improve efficiency and accuracy of the analysis.

Our experimental evaluation shows that NeuroDiff can achieve

up to 1000X speedup and is up to five times as accurate.

ACKNOWLEDGMENTS

This work was partially funded by the U.S. Office of Naval Research

(ONR) under the grant N00014-17-1-2896.

794

REFERENCES
[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-

Ortiz. 2013. A Public Domain Dataset for Human Activity Recognition Using
Smartphones. 21st European Symposium on Artificial Neural Networks, Computa-
tional Intelligence and Machine Learning (2013).

[2] Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S Meel, and Prateek Saxena.
2019. Quantitative verification of neural networks and its security applications. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 1249–1264.

[3] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya V. Nori, and Antonio Criminisi. 2016. Measuring Neural Net Robustness
with Constraints. In Annual Conference on Neural Information Processing Systems.
2613–2621.

[4] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. In IEEE Symposium on Security and Privacy. 39–57.

[5] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. 238–252.

[6] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A. Mann,
and Pushmeet Kohli. 2018. A Dual Approach to Scalable Verification of Deep
Networks. In International Conference on Uncertainty in Artificial Intelligence.
550–559.

[7] Rüdiger Ehlers. 2017. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In Automated Technology for Verification and Analysis - 15th
International Symposium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings.
269–286.

[8] Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang,
and Martin T. Vechev. 2019. DL2: Training and Querying Neural Networks with
Logic. In International Conference on Machine Learning. 1931–1941.

[9] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin T. Vechev. 2018. AI2: Safety and Robustness Certification
of Neural Networks with Abstract Interpretation. In IEEE Symposium on Security
and Privacy. 3–18.

[10] Sumathi Gokulanathan, Alexander Feldsher, Adi Malca, Clark Barrett, and Guy
Katz. 2019. Simplifying Neural Networks with the Marabou Verification Engine.
arXiv preprint arXiv:1910.12396 (2019).

[11] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and Harnessing Adversarial Examples. In International Conference on Learning
Representations.

[12] Divya Gopinath, Guy Katz, Corina S. Pasareanu, and Clark W. Barrett. 2018.
DeepSafe: A Data-Driven Approach for Assessing Robustness of Neural Net-
works. In Automated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings.
3–19.

[13] Shengjian Guo, Markus Kusano, and Chao Wang. 2016. Conc-iSE: Incremental
Symbolic Execution of Concurrent Software. In IEEE/ACM International Confer-
ence On Automated Software Engineering.

[14] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. In International Conference on Learning Representations.

[15] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety
Verification of Deep Neural Networks. In International Conference on Computer
Aided Verification. 3–29.

[16] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. 2018. Deep Neu-
ral Network Compression for Aircraft Collision Avoidance Systems. CoRR
abs/1810.04240 (2018). arXiv:1810.04240 http://arxiv.org/abs/1810.04240

[17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In
International Conference on Computer Aided Verification. 97–117.

[18] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, HaozeWu, Aleksandar Zeljic, David L.
Dill, Mykel J. Kochenderfer, and Clark W. Barrett. 2019. The Marabou Frame-
work for Verification and Analysis of Deep Neural Networks. In International
Conference on Computer Aided Verification. 443–452.

[19] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial examples
in the physical world. In International Conference on Learning Representations.

[20] Shuvendu K Lahiri, Kenneth L McMillan, Rahul Sharma, and Chris Hawblitzel.
2013. Differential assertion checking. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 345–355.

[21] Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[22] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity testing
criteria for deep learning systems. In IEEE/ACM International Conference On
Automated Software Engineering. ACM, 120–131.

[23] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018. 175–186.

[24] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards deep learningmodels resistant to adversarial attacks.
International Conference on Learning Representations (2018).

[25] Matthew Mirman, Timon Gehr, and Martin T. Vechev. 2018. Differentiable
Abstract Interpretation for Provably Robust Neural Networks. In International
Conference on Machine Learning. 3575–3583.

[26] Martin Vechev Mislav Balunovic. 2020. Adversarial Training and Provable De-
fenses: Bridging the Gap. International Conference on Learning Representations.

[27] Ramon E Moore, R Baker Kearfott, and Michael J Cloud. 2009. Introduction to
interval analysis. Vol. 110. Siam.

[28] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In
IEEE Conference on Computer Vision and Pattern Recognition. 2574–2582.

[29] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images. In IEEE
Conference on Computer Vision and Pattern Recognition. 427–436.

[30] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. 2019. DifFuzz: differ-
ential fuzzing for side-channel analysis. In International Conference on Software
Engineering. 176–187.

[31] Augustus Odena and Ian Goodfellow. 2018. Tensorfuzz: Debugging neural net-
works with coverage-guided fuzzing. arXiv preprint arXiv:1807.10875 (2018).

[32] Brandon Paulsen. 2020. ReluDiff-ICSE2020-Artifact. https://github.com/pauls658/
ReluDiff-ICSE2020-Artifact.

[33] Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020. ReluDiff: Differential
Verification of Deep Neural Networks. International Conference on Software
Engineering (2020).

[34] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Au-
tomated Whitebox Testing of Deep Learning Systems. In ACM symposium on
Operating Systems Principles. 1–18.

[35] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. 2011. Directed
Incremental Symbolic Execution. In ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, New York, NY, USA, 504–515.

[36] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified Defenses
against Adversarial Examples. In International Conference on Learning Represen-
tations.

[37] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and Methodology
(TOSEM) 6, 2 (1997), 173–210.

[38] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. 2018. Reachability
Analysis of Deep Neural Networks with Provable Guarantees. In International
Joint Conference on Artificial Intelligence. 2651–2659.

[39] Gagandeep Singh, Rupanshu Ganvir, Markus PÃĳschel, and Martin Vechev. 2019.
Beyond the Single Neuron Convex Barrier for Neural Network Certification. In
Advances in Neural Information Processing Systems (NeurIPS).

[40] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. 2019.
An abstract domain for certifying neural networks. ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (2019), 41:1–41:30.

[41] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. 2019.
Boosting Robustness Certification of Neural Networks. In International Conference
on Learning Representations.

[42] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. 2018. Concolic testing for deep neural networks. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, September 3-7, 2018. 109–119.

[43] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[44] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Auto-
mated testing of deep-neural-network-driven autonomous cars. In International
Conference on Software Engineering. 303–314.

[45] Vincent Tjeng, Kai Xiao, and Russ Tedrake. 2019. Evaluating robustness of neural
networks with mixed integer programming. International Conference on Learning
Representations (2019).

[46] Liwei Wang, Lunjia Hu, Jiayuan Gu, Zhiqiang Hu, Yue Wu, Kun He, and John
Hopcroft. 2018. Towards understanding learning representations: To what extent
do different neural networks learn the same representation. In Advances in Neural
Information Processing Systems. 9584–9593.

[47] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Efficient Formal Safety Analysis of Neural Networks. In Annual Conference on
Neural Information Processing Systems. 6369–6379.

795

[48] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal Security Analysis of Neural Networks using Symbolic Intervals. InUSENIX
Security Symposium. 1599–1614.

[49] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca
Daniel, Duane S. Boning, and Inderjit S. Dhillon. 2018. Towards Fast Computa-
tion of Certified Robustness for ReLU Networks. In International Conference on
Machine Learning. 5273–5282.

[50] Eric Wong and J. Zico Kolter. 2018. Provable Defenses against Adversarial
Examples via the Convex Outer Adversarial Polytope. In International Conference
on Machine Learning. 5283–5292.

[51] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 146–157.

[52] Xiaofei Xie, Lei Ma, Haijun Wang, Yuekang Li, Yang Liu, and Xiaohong Li. 2019.
Diffchaser: Detecting disagreements for deep neural networks. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence. AAAI Press,
5772–5778.

[53] Weilin Xu, Yanjun Qi, and David Evans. 2016. Automatically Evading Classifiers:
A Case Study on PDF Malware Classifiers. In Network and Distributed System
Security Symposium.

[54] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel.
2018. Efficient neural network robustness certification with general activation
functions. In Advances in neural information processing systems. 4939–4948.

[55] Xianyi Zhang, QianWang, and Yunquan Zhang. 2012. Model-driven Level 3 BLAS
Performance Optimization on Loongson 3A Processor. In 18th IEEE International
Conference on Parallel and Distributed Systems, ICPADS 2012, Singapore, December
17-19, 2012. 684–691.

796

