
Generating Data Race Witnesses by an
SMT-based Analysis ?

Mahmoud Said1, Chao Wang2, Zijiang Yang1, and Karem Sakallah3

1 Department of Computer Science, Western Michigan Univerisity,
Kalamazoo, MI 49008

2 NEC Laboratories America, 4 Independence Way, Suite 200, Princeton, NJ 08540
3 Department of Electrical Engineering and Computer Science,

University of Michigan, Ann Arbor, Michigan 48109

Abstract. Data race is one of the most dangerous errors in multi-
threaded programming, and despite intensive studies, it remains a no-
torious cause of failures in concurrent systems. Detecting data races is
already a hard problem, and yet it is even harder for a programmer to
decide whether or how a reported data race can appear in the actual
program execution. In this paper we propose an algorithm for generat-
ing debugging aid information called witnesses, which are concrete thread
schedules that can deterministically trigger the data races. More specifi-
cally, given a concrete execution trace, e.g. non-erroneous one which may
have triggered a warning in Eraser-style data race detectors, we use a
symbolic analysis based on SMT solvers to search for a data race witness
among alternative interleavings of events of that trace. Our symbolic
analysis precisely encodes the sequential consistency semantics using a
scalable predictive model to ensure that the reported witness is always
feasible.

Keywords: Data Race, Debug, SMT, Concurrent Programs

1 Introduction

A data race occurs in a multithreaded program when two threads access the
same memory location with no ordering constraints enforced in between, and at
least one of the accesses is a write. Programs containing data races are difficult
to debug because they may exhibit different behaviors under the same input.
In practice, a single synchronization error caused by data race can take weeks
for programmers to identify [3, 21]. For the Java Memory Model (JMM) and
other relaxed memory models, it is absolutely crucial to remove all data races in
user applications even if they do not appear to cause logic errors, because these
models guarantee sequential consistency only to race-free programs [15].

Stateful model checking is one of the approaches for finding bugs in con-
current programs [10, 11, 23]. As more scalable exhaustive techniques, statelss
model chekers [2, 16] have been developed. Being exhaustive in nature, model

? The work was supported in part by NSF Grants CCF-0811287, CCF-0810865 and
ONR Grant N000140910740.

2 M. Said, C. Wang, Z. Yang, K. Sakallah

checkers in principle can be used to provide counter-examples. Unfortunately,
most existing model checking tools do not scale.

The numerous static and dynamic techniques that have been developed to
detect data races [8, 1, 6, 18, 17, 13, 24, 5, 9], except for exhaustive techniques, can
only report data race warnings, often in the form of pairs of program locations.
None of these methods provide witnesses to help the programmers determinis-
tically reproduce the reported data race during actual program executions. By
witness, we mean a concrete thread schedule of the program execution that leads
to a program state in which two concurrent events with data conflict are both
enabled. It is essential debugging information for programmers to decide whether
the race is benign, and subsequently figure out how to fix it.

The problem of generating witnesses is orthogonal to detecting data races.
The latter problem, which have been studied extensively, ends with a set of data
race warnings. The witness generation starts from where the data race detec-
tion ends, with the goal of providing a concrete thread schedule to reproduce
each data race during execution. The witness generation problem is significantly
harder, since it has to concern with the feasibility (or existence) of particular
concrete executions. It is also a practically important problem with no satisfying
solution yet.

In this paper we present an algorithm to generate data race witnesses in
multithreaded Java programs based on analyzing a single execution trace. The
key idea is to perform a postmortem analysis on a log of the access events. Here
we can use any of the existing data race detection algorithms [8, 1, 6, 18, 17, 13,
24, 5, 9] to compute a set of potential data races, which then act as input to our
witness generation algorithm. Given a trace and a set of potential data races,
we model the access events of that trace using suitable classes of constraints and
formulating the witnesses generation problem as constraint solving. What these
constraints represent is not just the given trace itself, but a maximal set of inter-
leavings of events of that trace, and all these alternative traces are guaranteed
to be actual program executions. The constraints generated by our algorithm
are in a quantifier-free first-order logic. They can be decided by off-the-shelf
Satisfiability Modulo Theory (SMT) solvers, and therefore can benefit from the
significant performance advances in recent SMT solvers (e.g. [4]).

Our symbolic predictive model improves over the maximal causal model
(MCM) proposed by Serbănută, Chen and Rosu [22]. We improve over the MCM
based method in the following aspects. First, the MCM considers semaphores as
the only synchronization primitives, whereas in this paper, we precisely model
a wide range of synchronization primitives in Java, including wait, notify, and
notifyall. Second, the search algorithm used in [22] is based on explicitly enu-
merating the feasible interleavings, which may become a bottleneck for practical
uses; in our method, we conduct the search symbolically using an SMT solver.

To further reduce the overhead of the symbolic search, we pre-simplify the
SMT formulas by applying a trace-based conservative analysis [14]. Our anal-
ysis is based on computing lock acquisition histories and a must-happen-before
relation defined by thread creation/join and matching wait/ notify/notifyall.
The goal is to reduce the cost of the more precise, but also expensive, symbolic
analysis, by quickly weeding out (bogus) data races that do not have concrete

Generating Data Race Witnesses by an SMT-based Analysis 3

witnesses. The constraints derived from this analysis can also be added as hints
to speed up the SMT search.

We have implemented the proposed method for multithreaded Java programs.
Our trace logging is implemented using an agent interface that captures the Java
Virtual Machine Execution events, and our symbolic analysis uses the Yices
SMT solver [4]. Our preliminary results on public benchmarks show that the
witness generation algorithm is scalable enough as a post-mortem analysis, to
help programmers better understand the data races.

2 Multithreaded Trace

2.1 Execution Traces

We consider a multithreaded Java program as a set of concurrently running
threads, and use Tid = {1, . . . , n} to denote the set of thread indices. The oper-
ations on global or shared variables are called visible operations, while those on
thread-local variables are called invisible operations. In particular, synchroniza-
tion primitives such as operations on locks and condition variables are regarded
as visible operations. An execution trace π is a sequence of instances of visible
operations in a concrete execution of the multithreaded program. Each instance
is called an event. For Java programs, both read/write accesses to shared vari-
ables and the synchronization operations are recorded as events, while invisible
operations are ignored. An event is represented as a tuple (tid, type, var, val),
where tid is the thread index, type is the event type, var is either a shared vari-
able (in read/write) or a synchronization object, val is either a concrete value (in
read/write) or the child thread index (in thread creation/join). The event type
is one of {read, write, fork, join, acquire, release, wait, notify, notifyAll}.
They can be classified into three categories:

1. read and write denote the read and write access to a shared variable, where
var is the variable and val is the concrete value;

2. fork and join denote the creation and termination of a child thread, where
(tid, fork,−, val) creates a child thread whose index is val, and (tid, join,−
, val) joins the child thread back;

3. the rest correspond to synchronization operations over locks and condition
variables. The synchronized keyword is translated into a pair of acquire
and release events over the lock implicitly associated with an object.

For an event e and its attribute a, we will use e.a. In addition, given an
execution π and an event e in it, e.idx denote the unique index of event e
in π. For example, in event ei : (1, fork,−, 2), we have ei.tid = 1, ei.type =
fork, ei.val = 2, and ei.idx = i.

2.2 Partial Order and Linearizations

Let π = e1 . . . en be a concrete execution. The trace can be viewed as a total
order of the set {e1, . . . , en} of events. To capture all the alternative and yet
feasible interleavings of the events in π, we define a partially ordered set, denoted
Tπ = (T,v), such that

4 M. Said, C. Wang, Z. Yang, K. Sakallah

– T = {e | e is an event in Tπ}.
– v is a partial order such that
• if ei.tid = ej .tid and ei appears before ej in π, then ei v ej ,
• if ei = (tid1, fork,−, tid2) and ej is the first event of thread tid2 in π,

then ei v ej ,
• if ei = (tid1, join,−, tid2) and ej is the last event of thread tid2 in π,

then ej v ei.
• v is transitively closed.

That is, Tπ orders events from the same thread based on their execution order
in π, but does not order events from different threads except for fork and join.

In the presence of shared variables and synchronization primitives, not all
linearizations (total orders) of Tπ correspond to actual program executions. We
define a sequentially consistent linearization τπ of Tπ as one that satisfies v as
well as the following requirements:

– Write-Read Consistency: the value read by an event is always written by the
most recent write in τπ, and

– Synchronization Consistency: τπ does not violate the semantics of the syn-
chronization events.

The set of all linearizations of Tπ forms the search space of our witness generation
algorithm. That is, we search for a sequentially consistent linearization that leads
to a state in which two data-conflict events are both enabled.

Our notion of sequentially consistent linearization is inspired by the maximal
causal model in [22]. However, the maximal causal model considers semaphore
as the only synchronization primitive, and does not explicitly model thread cre-
ation and join (fork and join), whereas we precisely model a wide range of Java
synchronization primitives. Our symbolic method for searching sequentially con-
sistent linearizations is also related to the symbolic predictive analysis [25] based
on concurrent trace programs (CTPs). However, in CTPs each event is not a con-
crete read or write (as in our case) but a symbolic statement derived from the
program source code. The concurrent trace program in general captures more
feasible interleavings, but it is also more expensive to check.

class Value {
1 private int x = 1;
2 public synchronized void add(Value v) {
3 x = x+v.get();
4 }
5 public int get() {
6 return x;
7 }}
class Task extends Thread {
8 Value v1; Value v2;
9 public Task(Value v1, Value v2) {
10 this.v1 = v1;
11 this.v2 = v2;
12 }

13 public void run() {
14 v1.add(v2);
15 }}
class Main {
16 public static void main (String[] args) {
17 Value a = new Value();
18 Value b = new Value();
19 Thread t2 = new Thread (new Task(a, b));
20 Thread t3 = new Thread (new Task(b, a));
21 t2.start();
22 t3.start();
23 }}

Fig. 1. A Java program with data races.

As an example, consider the Java program in Figure 1. Inside the main
method, thread t1 creates threads t2 and t3, which execute methods t1.run()

Generating Data Race Witnesses by an SMT-based Analysis 5

and t2.run(), respectively. The shared variables are a.x and b.x. Note that, ac-
cording to the Java execution semantics, a.x is aliased to t2.v1.x and t3.v2.x,
and b.x is aliased to t2.v2.x and t3.v1.x.

Let Tid = {1, 2, 3}. Executing the program may result in the following partial
trace, i.e. a subsequence of events from threads t2 and t3 as follows: . . . (2,13-14),
(2,2-3), (2,5-7), (2,4), (2,15), (3,13-14), (3,2-3), (3,5-7), (3,4), (3,15), where each
event is denoted as a pair of the thread index and the line number(s). During
this execution, the shared variable b.x is read by thread t2 at line 6 (aliased as
t2.v1.x) and written by thread t3 at line 3 (aliased as t3.v2.x). However, this
trace is not a witness of data race because the two aforementioned accesses to
b.x are never simultaneously enabled. There exists an alternative interleaving of
the same set of events: . . . (2,13-14), (2,2-3), (2,5), (3,13-14), (3,2), (2,6), (3,3),
(3,5-7), (3,4),(3,15), (2,7), (2,4), (2,15). It is a data race witness because there
exists a state in which the read access by event (2,6) and the write access by
event (3,3) are both enabled. It is guaranteed to be an actual program execution
because both write-read consistency and synchronization consistency

The goal of our symbolic analysis is to search for witnesses among all se-
quentially consistent linearizations of Tπ derived from the concrete execution π.
We formulate the data race witness generation problem as a satisfiability prob-
lem. That is, we construct a quantifier-free first-order logic formula ψπ such that
the formula is satisfiable if and only if there exists a sequentially consistent lin-
earization of Tπ that leads to a state in which two data-conflict events are both
enabled. The formula ψπ is a conjunction of the following subformulas

ψπ := απ ∧ βπ ∧ γπ ∧ ρπ

In Section 3 we present algorithms to encode the partial order (απ), write-read
consistency (βπ), and data race property (ρπ) in first-order logic (FOL) formulas.
In Section 4 we discuss the encoding of synchronization consistency (γπ).

3 Symbolic Encoding of The Write-Read Consistency

3.1 Encoding the Partial Order

Given a multithreaded trace π, let π|t = 〈et1, . . . , etn〉 be a sub-sequence that is a
projection of π onto the thread t. Let t.first and t.last be the first and last event
of thread t in π,i.e., et1 and etn, respectively. For each event e, we introduce an
event order (EO) variable whose value represents its position in a linearization
of Tπ. To ease our presentation, we assume that an EO variable shares the same
unique index with the corresponding event. Therefore oe.idx is the EO variable
for e. Let the number of events be |π|. The domain of oi, where 1 ≤ i ≤ |π|, is
[1..|π|]. Furthermore, we have oi 6= oj if i 6= j.

Equation 1 encodes the partial order requirement of sequentially consistent
linearizations of Tπ. It enforces a total order within each thread-local sequence
π|t(1 ≤ t ≤ N), and enforces the order between the first (or last) event of
a thread and the corresponding fork (or join) event, if such event exists. In
Equation 1 FORK and JOIN denote the set of fork and join events in Tπ. For

6 M. Said, C. Wang, Z. Yang, K. Sakallah

an event e ∈ FORK, e.val gives the child thread index, thus (te.val).first.idx
is the index of the first event in the child thread.

απ ≡


T∧
t=1

(
oet1.idx

< · · · < oetn.idx

)
∧

∧
e∈FORK

(
oe.idx < o(te.val).first.idx

)
∧∧

e∈JOIN

(
o(te.val).last.idx < oe.idx

)
 (1)

βπ ≡
∧

e∈π∧e.type=read


(
(e.tiwp = null) ∧ (e.val = e.var.init) ∧

∧
e1∈e.pws

(oe.idx < oe1.idx)

)
∨

∨
e1∈e.pwsv

(
(oe1.idx < oe.idx)∧∧
e2∈e.pws∧e26=e1

(oe.idx < oe2.idx ∨ oe2.idx < oe1.idx)

)

(2)

ρπ ≡
∨

(e1,e2)∈PDR

((oe1′.idx < oe2.idx < oe1′′.idx) ∧ (oe2′.idx < oe1.idx < oe2′′.idx)) (3)

Figure 2 show an execution trace π with 11 events e0, . . . , e10 generated by
two threads. The last column in Figure 2 lists the partial order constraints: α1

and α2 enforces a total order on the events from thread 1 and 2, respectively;
α3 ensures that the fork of thread 2 happens before the first event in thread 2.

e0 : (1, fork,−, 2)
e1 : (1, write, x, 1)
e2 : (1, acquire, o,−)
e3 : (1, write, x, 0)
e4 : (1, wait, o,−)
e5 : (2, acquire, o,−)

e6 : (2, read, x, 0)
e7 : (2, notifyAll, o,−)
e8 : (2, release, o,−)
e9 : (2, read, x, 0)
e10 : (1, release, o,−)

partial order:
α1 : o0 < o1 < o2 < o3 < o4 < o10
α2 : o5 < o6 < o7 < o8 < o9
α3 : o0 < o5

write-read consistency:
β : (o6 < o1 ∨ o3 < o6)
∧(o9 < o1 ∨ o3 < o9)

Fig. 2. An execution with initial value x = 0.

3.2 Encoding Write-Read Consistency

Given a linearization l, we use e1 ≺l e2 to denote that event e1 happens before
e2 in l. Similarly, we use e1 ≺t e2 to denote that e1 happens before e2 within
the same thread t.

Definition 1. Linearization Immediate Write Predecessor: Given a read
event e in a linearization l, we define its linearization immediate write prede-
cessor , denoted as e.liwp, to be a write event e′ ≺l e such that e.var = e′.var
and there does not exist another write event e′′ such that e′ ≺l e′′ ≺l e and
e′′.var = e.var.

Definition 2. Thread Immediate Write Predecessor: Let π|t be the pro-
jection of execution π onto thread t. The thread immediate write predecessor
to a read event e, denoted as e.tiwp, is a write event e′ ≺t e in π|t such
that e.var = e′.var and there does not exist another write event e′′ such that
e′ ≺t e′′ ≺t e and e′′.var = e.var.

Generating Data Race Witnesses by an SMT-based Analysis 7

Definition 3. Write-Read Consistency: A linearization l is write-read con-
sistent iff for any read event e (1) if there exists a write event e′ such that
e′ = e.liwp, then e.val = e′.val; (2) if e′ does not exist, then e.val = e.var.init.
Here e.var.init is the initial value of variable e.var.

Definition 4. Predecessor Write Set: Given an execution π, the predecessor
write set of a read event e, denoted as e.pws is a set that includes any write
event e′ such that e′.var = e.var and (1) e′.tid 6= e.tid, or (2) e′.tid = e.tid
and e′ = e.tiwp. The predecessor write of the same value set to a read event
e, denoted as e.pwsv, is a subset of e.pws, where for any e′ ∈ e.pwsv, we have
e′.val = e.val.

Equation 2 considers all the possible linearizations that satisfy the write-read
consistency requirement. For each read event e in π, there are two possible cases:

1. e has no thread immediate write predecessor (e.tiwp = null), its read value is
the same as the variable’s initial value (e.val = e.var.init), and all the write
events in the predecessor write set of e happen after e (oe.idx < oe1.idx).
Note that the two equality constraints evaluate to either true or false stati-
cally, and therefore will not be added in the SMT formula.

2. e follows a write event e1 in its predecessor write of the same value set
(oe.idx < oe1.idx), and all other writes to e.var happens either before e1
(oe2.idx < oe1.idx), or after e (oe.idx < oe2.idx). This constraint guarantees
that e reads the value written by e1 and no other writes can interfere with
this write-read pair.

If all the read events satisfy the above constraints, as specified in Equation 2,
the linearizations are write-read consistent. Consider the example in Figure 2.
Column 3 shows the write-read constraints, along with some implementation
optimizations, described as follows:

1. o6 < o1 requires that the read event e6 appears before any write to x.
Note that although o6 < o3 is also required as in Equation 2, it is removed
(constant true) because it is implied by (o6 < o1) together with α1.

2. o3 < o6 requires that the read event e6 happens after e3. Although the full
constraint as in Equation 2 is (o3 < o6)∧ (o1 < o3 ∨ o6 < o1), we remove the
second conjunct because o1 < o3 is implied by α1.

3.3 Encoding the Data Race

Definition 5. Data Race Witness:An execution π = π1e1e2π2, where π1 and
π2 are the trace prefix and suffix, respectively, has a data race on e1 and e2 if
the two events belong to different threads, access the same shared variable and
at least one access is a write.

Let PDR be the set of potential data races in Tπ, where each data race is
represented as a pair (e1, e2) of events that belong to different thread (e1.tid 6=
e2.tid), access the same variable (e1.var = e2.var), and at least one access is a
write (e1.type = write ∨ e2.type = write).

8 M. Said, C. Wang, Z. Yang, K. Sakallah

Given every event pair (e1, e2) ∈ PDR, let e1′ and e1′′ be the events imme-
diately before and after e1 in the same thread, and e2′ and e2′′ be the events
immediately before and after e2 in the same thread. Equation 3 captures the
existence of a witness in which e1 and e2 are simultaneously reachable.

We can further reduce the number of data race constraints (currently 4)
into 3 by adding oe1.idx < oe2.idx, since it implies the two existing constraints
oe1′.idx < oe2.idx and oe1.idx < oe2′′.idx. A data race exists in an execution π if
e1 is immediately followed by e2 in π. We do not need to consider the dual case
that e1 immediately follows e2 because if such linearization exists, since it is
guaranteed that the linearization in which e2 follows e1 exists as well.

4 Symbolic Encoding of The Synchronization Consistency

4.1 Synchronization Interpretation

The interpretation of the synchronization operations involves replacing object
variables with simple-type variables available to SMT solvers, and map the syn-
chronization operations on objects to logic operations on simple-type variables.
Although Java allows recursive locks, they happen rarely in executions. An ex-
ecution π has a recursive lock if there exist two events ei and ej in π such that
ei = ej = (t, acquire, o,−) and there is no event (t, release, o,−) in between;
otherwise π is called recursive-lock-free. If an execution π is recursive-lock-free,
then any sequentially consistent linearization of Tπ is also recursive-lock-free (a
reorder of events within the same thread is not allowed). In this section we dis-
cuss the interpretation for recursive-lock-free executions and defer the discussion
for executions with recursive locks until Section 4.3.

We introduce the following simple-type shared variables for each object o.

– An integer variable oo with domain [0..N], where N is the number of threads.
Object o is free if oo is 0. Otherwise oo is the thread index that owns object
o.

– N Boolean variables ow t(1 ≤ t ≤ N). The value of ow t is true iff thread t
is in object o’s wait set.

In the following we list the interpretation of the synchronization operations.
For each variable v, we use the normal form v to indicate its current value, and
use the primed version v′ to indicate its value at the next step.

– Event (t, acquire, o,−) is interpreted as oo = 0 → o′o = t. It requires that
the object is free, and then set the owner of object o to thread t.

– Event (t, release, o,−) is interpreted as oo = t → o′o = 0. It requires that
the owner of object o is thread t, and then set object o to be free.

– Event (t, wait, o,−) is converted into two consecutive atomic events. The
first atomic event is interpreted as (oo = t→ o′w t ∧ oo = 0), which requires
that the owner of thread o is thread t, and then sets object o to free and the
flag o′w t to true. The second atomic event is interpreted as (oo = 0∧¬ow t)→
o′o = t, which requires that object o is free and thread t is no longer waiting.
For the wait event to complete, a notify or notifyAll event from another
thread needs to interleave in between to reset ow t.

Generating Data Race Witnesses by an SMT-based Analysis 9

– Event (t, notifyAll, o,−) is interpreted as oo = t→
∧
t1∈o.wait ¬o′w t1, where

o.wait is the set of threads waiting on object o. It requires that the owner
of o is thread t, and then reset ow t1 for any waiting thread t1.

– Event (t, notify, o,−) requires that one and only one thread waiting on o, if
any, is waken up. We introduce N auxiliary variables Hwt with domain {0, 1},
one for each thread t ∈ Tid, such that (1)Hw t must have value 0 if thread t is
not waiting for on o and (2) exactly one Hw t has value 1 if the waiting set for
o is not empty. The requirement can be obtained by the following constraints:∧

1≤t≤N (¬ow t → ¬Hw t = 0) , (
∨

1≤t≤N ow t)→ (Σ1≤t≤NHw t = 1) Finally,

the notify event is interpreted as
∧
t∈Tid(Hw t = 1 → ¬o′w t ∧Hw t = 0 →

o′w t = ow t), which states that thread t is no longer waiting on object o if it
is chosen; otherwise its waiting status remains the same.

4.2 The Recursive-lock-free Encoding

Table 1. Recursive-lock-free synchronization consistency Interpretation

Synchronization Event Interpretation Predecessor Write Set Predecessor Write Set
with Same Value

e2 : (1, acquire, o,−) oo = 0→ o′o = 1 oo : {e5, e8} oo : {e8}
e4 : (1, wait, o,−) oo = 1→ o′w 1 ∧ o

′
o = 0 oo : {e2, e5, e8} oo : {e2}

e′4 oo = 0 ∧ ¬ow 1 → o′o = 1
oo : {e4, e8, e5}
ow 1 : {e4, e7}

oo : {e4, e8}, ow 1 : {e7}
e5 : (2, acquire, o,−) oo = 0→ o′o = 2 oo : {e2, e4, e′4, e10} oo : {e4, e10}
e7 : (2, notifyAll, o,−) oo = 2→ ¬o′w 1 oo : {e2, e4, e′4, e5, e10} oo : {e5}
e8 : (2, release, o,−) oo = 2→ o′o = 0 oo : {e2, e4, e′4, e5, e10} oo : {e5}
e10 : (1, release, o,−) oo = 1→ o′o = 0 oo : {e′4, e5, e8} oo : {e′4}

In this section we present the constraints that enforce synchronization con-
sistency for recursive-lock-free multithreaded traces. The first two columns in
Table 1 give the interpretation of the synchronization events in Figure 2. The
original wait event e3 is split into two new events: e3 and and its shadow event
e′3. Correspondingly we introduce an event order variable o′3 and adds partial
order constraint o3 < o′3 < o4.

Definition 6. Initial Value: The initial value v.iv, is defined as follows: (1)
the value for a variable oo that denotes the ownership of an object is 0, i.e.
oo.iv = 0, (2) the value for a variable that denotes whether thread t is waiting
for an object is false, i.e. ow t.iv = false for 1 ≤ t ≤ N .
Assumed Value: The assumed value of a variable v in a synchronization event
e in the format of assume→ update, denoted ve.av, is the value specified in the
sub-formula e.assume. Here v is called an assumed variable in e, and e.assume
is the set of assumed variables in e.
Written Value: The written value of a variable v in a synchronization event e
in the format of assume → update, denoted as ve.wv, is the value specified in
the sub-formula e.update. v is called an updated variable in e, and e.updated is
the set of updated variables in e.

10 M. Said, C. Wang, Z. Yang, K. Sakallah

γe ≡
∧

v∈e.assume


(
ve.av = v.iv ∧ ve.first ∧

∧
e1∈ve.pws

oe.idx < oe1.idx

)
∨

∨
e1∈ve.pwsv

(oe.idx < oe1.idx
)
∧∧

e2∈ve.pws∧e2 6=e1

(
oe.idx < oe2.idx ∨ oe2.idx < oe1.idx

)
 (4)

Given a synchronization event e, Equation 4 enforces a valid position in any
linearization for e with respect to other synchronization events. It considers each
assumed variable v in e, and adds constraints on the position of e based on the
v’s assumed value:

– If v’s assumed value in e, ve.av, is the same as v’s initial value v.iv, then e can
be in a position that is before any write to v. That is,

∧
e1∈ve.pws

oe.idx < oe1.idx.

Note that if there exist writes to v before e from the same thread, this
constraint contradicts the partial order constraint thus becomes false.

– Event e follows an event e1 ∈ ve.pwsv. In this case e happens after e1(oe1.idx <
oe.idx) so the assumed value at e can take updated value at e′, and other
events that write to v do not interfere by happening either before the write
at e1 or after the read at e.

Column 3 and 4 in Table 1 list the predecessor write set of the shared variables
oo and ow 1 and its subset, predecessor write with the same value set, respec-
tively. Table 2 gives the encoding based on Equation 4. Although in Equation 4

there is a constraint

(
ve.av = v.iv ∧

∧
e1∈ve.pws

oe.idx < oe1.idx

)
, the constraint

can be removed if ve’s value is not the same as the initial value, or be reduced
to

∧
e1∈ve.pws

oe.idx < oe1.idx if the values are the same. In addition, several other

straightforward optimizations can be applied. Column 3 gives more concise en-
coding than Column 2 due to the following optimizations:

– A sub-formula s that can be implied by partial order constraint. For example,
o6 < o9 in e1 and o1 < o3 in e3. This reduces s ∧ s′ to s, and s ∨ s′ to true.

– A sub-formulas s that contradicts partial order constraint. For example,
o′3 < o3 in e4 and o5 < o3 in e6. This reduces s ∨ s′ to s.

– A sub-formula s that is weaker than s′ in s∧s′. For example, in o1 < o6∧o1 <
o9 in e1, o1 < o9 can be removed because o6 < o9.

Finally the synchronization consistency constraint is specified by γπ ≡ ∧
e
γe,

where e is a synchronization event in π.

4.3 Encoding with Recursive Locks

If an execution π has recursive locks, we define a variable depthto that denotes the
depth of object o that has been locked by thread t. The initial value of depthto
is 0. For each sequence π|t that is a projection of π on thread t, we increase
the value of depthto by 1 for each (t, acquire, o,−), and decrease the value by 1
for each (t, release, o,−). Depending on the value of depthto, acquire and release
events are encoded differently as the following:

Generating Data Race Witnesses by an SMT-based Analysis 11

Table 2. Recursive-lock-free synchronization consistency encoding

Event Encoding Encoding with Optimization
e2 (o2 < o5 ∧ o2 < o8) ∨ ((o8 < o2) ∧ (o5 < o8 ∨ o2 < o5)) (o2 < o5) ∨ (o8 < o2)
e4 (o2 < o4) ∧ (o5 < o2 ∨ o4 < o5) ∧ (o8 < o2 ∨ o4 < o8) (o5 < o2 ∨ o4 < o5) ∧ (o8 < o2 ∨ o4 < o8)

e′4

 (o4 < o
4′
)

∧
(
o5 < o4 ∨ o

4′ < o5

)
∧
(
o8 < o4 ∨ o

4′ < o8

) ∨ (o8 < o
4′
)

∧
(
o4 < o8 ∨ o

4′ < o4

)
∧
(
o5 < o8 ∨ o

4′ < o5

) 
 (o4 < o

4′
)

∧
(
o5 < o4 ∨ o

4′ < o5

)
∧
(
o8 < o4 ∨ o

4′ < o8

) ∨((
o8 < o

4′
)

∧ (o4 < o8)
)

(o7 < o′4) ∧ (o4 < o7 ∨ o′4 < o4) (o7 < o′4) ∧ (o4 < o7)

e5

(
o5 < o2 ∧ o5 < o4 ∧ o5 < o′4 ∧ o5 < o10

)
∨(

(o4 < o5) ∧ (o2 < o4 ∨ o5 < o2)∧(
o′4 < o4 ∨ o5 < o′4

)
∧ (o10 < o4 ∨ o5 < o10)

)
∨(

(o10 < o5) ∧ (o2 < o10 ∨ o5 < o2)∧(
o′4 < o10 ∨ o5 < o′4

)
∧ (o4 < o10 ∨ o5 < o4)

) (o5 < o2) ∨ (o10 < o5)∨(
o4 < o5 ∧ o5 < o′4 ∧ o5 < o10

)

e7
(o5 < o7) ∧ (o2 < o5 ∨ o7 < o2) ∧ (o4 < o5 ∨ o7 < o4)∧(
o′4 < o5 ∨ o7 < o′4

)
∧ (o10 < o5 ∨ o7 < o10)

(o2 < o5 ∨ o7 < o2) ∧ (o4 < o5 ∨ o7 < o4)∧(
o′4 < o5 ∨ o7 < o′4

)
∧ (o10 < o5 ∨ o7 < o10)

e8
(o5 < o8) ∧ (o2 < o5 ∨ o8 < o2) ∧ (o4 < o5 ∨ o8 < o4)∧(
o′4 < o5 ∨ o8 < o′4

)
∧ (o10 < o5 ∨ o8 < o10)

(o2 < o5 ∨ o8 < o2) ∧ (o4 < o5 ∨ o8 < o4)∧(
o′4 < o5 ∨ o8 < o′4

)
∧ (o10 < o5 ∨ o8 < o10)

e10 (o′4 < o10) ∧ (o5 < o′4 ∨ o10 < o5) ∧ (o8 < o′4 ∨ o10 < o8) (o5 < o′4 ∨ o10 < o5) ∧ (o8 < o′4 ∨ o10 < o8)

– An event e : (t, acquire, o,−) is called the first acquire event if e.depthto = 0.
Its corresponding constraint is oo = 0→ o′o = t.

– For event e : (t, acquire, o,−) that is not a first acquire event, its correspond-
ing constraint is oo = t→ o′o = t.

– An event e : (t, release, o,−) is called the last release event if e.depthto = 0.
Its corresponding constraint is oo = t→ o′o = 0.

– For event e : (t, release, o,−) that is not a last release event, its correspond-
ing constraint is oo = t→ o′o = t.

We do not need to explicitly record the depth of recursive locks. It is based on
the observation that (1) π is a valid execution, thus the number of acquire and
release events must be balanced; and (2) The depths of recursive locks associated
with an acquire or release event (a thread-local property) will not be changed
by thread interleavings.

4.4 Correctness and Complexity

Theorem 1. Let π be the given multithreaded trace. There exists a data race
witness in a sequentially consistent linearization of Tπ iff ψπ is satisfiable:

ψπ ≡ απ ∧ βπ ∧ γπ ∧ ρπ

According to the definitions of partial order constraint απ, write-read consistency
constraint βπ, and synchronization consistency constraint γπ, a linearization of
Tπ that satisfies απ ∧ βπ ∧ γπ is sequentially consistent. Since the events are all
from a real execution, a sequentially consistent linearization represents events
from a valid execution as well. In addition, the definition of data race property
enforces that in the linearization there are two adjacent events (at least one is a
write event) from different threads accessing the same variable.

Our approach eliminates the bogus warnings reported by typical data race
detection algorithms, e.g. those based on lock-set analysis. Consider the execu-
tion shown in Figure 3 where x, y are shared variables with initial value 0. A
lock-set analysis will reports a data race warning between the two write events to
y as one of them is not protected by any lock. Our approach will not produce a

12 M. Said, C. Wang, Z. Yang, K. Sakallah

(1, acquire, l, -);
(1, write, x, 10);
(1, release , l, -);

(1, acquire, l, -);
(1, write, x, 20);
(1, release , l, -);
(1, write, y, 30);

(2, acquire, l, -);
(2, read, x, 10);
(2, write, y, 20);
(2, release , l, -);

Fig. 3. An execution with shared variables x, y.

data race witness because write-read consistency enforces the read event of x in
thread 2 must happen between the two write events to x in thread 1. In addition,
each corresponding acquire-release pair is atomic according the synchronization
constraints. Therefore the two write events are never enabled at the same time.

For most Java executions the number of synchronization events is very small
compared with the number of total events. Since the majority of the constraints
are generated from encoding read, write events and data race properties, their
complexity determines the scalability of our approach. We note that these con-
straints are in pure integer difference logic (IDL) – an efficiently decidable subset
of FOL where each IDL constraint is of the form (x− y ≤ c), where x and y are
integer variables and c is 0.

5 Static Optimizations

In the implementation, we use the incremental feature of the Yices SMT solver [4].
We divide the constraints in ψπ into two parts: ψπ = (απ ∧ βπ ∧ γπ)∧ ρπ, where
the first part encodes all the sequentially consistent linearizations, and the sec-
ond part states that a data race exists. Let ρπ be a conjunction of subformulas
ρπ(ei, ej), each of which states the simultaneous reachability of an event pair
(ei, ej) ∈ PDR. Instead of building and checking ρπ in one step (same as com-
bining all potential data races in one check), we check each individual event pair
in isolation. The incremental SAT procedure is as follows.

1. Within the SMT solver, we first construct the subformula (απ ∧ βπ ∧ γπ).

2. Then for the first data race event pair we construct ρπ(ei, ej) and add this
subformula as a retractable assertion. The retractable assertion can be re-
moved after satisfiability checking, while allowing the SMT solver to retain
the lemmas (clauses) learned during the process. If the result is satisfiable,
then the SMT solver returns a satisfying assignment (witness); otherwise,
such witness does not exists.

3. After retracting the first assertion ρπ(ei, ej), we construct ρπ(e′i, e
′
j) for the

second event pair (e′i, e
′
j) and add it to the SMT solver.

We keep repeating steps 2 and 3 till all the event pairs in PDR are checked. The
benefit of using incremental SAT is reducing the overall runtime by sharing the
cost of checking different data races. Although it might appear to be costly to

Generating Data Race Witnesses by an SMT-based Analysis 13

call the SMT solver once for each potential data race in PDR, the entire process
turns out to be efficient because of incremental SAT1.

Typical data race detection algorithms (e.g. those based on locksets) have
false alarms—sometimes many of them, which means the input to our witness
generation algorithm, the set PDR of (potential) data races, may have event
pair (ei, ej) such that ei, ej are not simultaneously reachable. Therefore, it is
often advantageous to check, before calling the precise SMT analysis, whether
(ei, ej) simultaneously reachable by using a conservative analysis. Our analysis
is based on statically computing the following information: (1) lock acquisition
histories [14]; (2) must-happen-before constraints, where event e1 must happen
before e2 iff that is the case in every linearization of Tπ. This analysis is in general
comparable to and sometimes more precise than standard data race detectors
(e.g. [8, 1, 6, 18, 17, 13, 24, 5, 9]).

6 Experiments

We have implemented the proposed method and conducted experiments on some
public benchmarks. We collected traces using a Java agent interface that cap-
tures the Java Virtual Machine Execution events. Our symbolic analysis is im-
plemented using the Yices SMT solver [4]. All benchmark programs are accom-
panied by test cases to facilitate the concrete execution. Our experiments were
conducted on a workstation with 2.8 GHz processor and 2GB memory.

Table 3. Performance of the symbolic data race witness generation algorithm

Test Program Given Trace (events) Shared Variables Witness Generation
name threads length lk-evs wn-evs rw lk wn lsa mhb wtns time (s)

Example run1 3 25 4 0 6 2 0 8 2 1 0.01
Example run2 3 29 8 0 6 2 0 6 0 0 0.01
Remote Agent 3 45 12 5 6 3 4 12 4 2 0.01
connectionpool 4 85 16 5 5 1 3 21 0 0 0.01
liveness.BugGen 7 241 44 6 12 9 6 138 10 1 0.36
account #1 6 336 82 10 17 11 5 125 45 4 0.09
account #2 11 651 162 20 32 21 10 250 90 9 0.28
account #3 21 1281 322 40 62 41 20 500 180 19 0.79
SyncBench #1 2 107 22 0 3 2 0 8 2 1 0.01
SyncBench #2 13 722 156 0 16 3 0 805 333 40 18.3
BarrierBench #1 7 407 80 14 10 2 7 229 12 0 0.7
BarrierBench #2 13 653 136 28 16 2 7 361 38 0 2.04
philo 6 1050 126 41 23 6 22 563 0 0 0.0
hedc 10 1457 234 0 85 23 0 508 164 40 57.7
Daisy 3 1998 330 14 34 9 12 328 16 7 5.65
elevator 4 8000 1298 0 121 12 0 12 0 0 0.0
tsp 4 45637 20 5 42 5 3 83 4 3 0.05

Table 3 shows the experimental results. Among the benchmarks, Example
(run 1) is the simple example illustrated in Figure 1, Example (run 2) is the
same example except that the get method is synchronized. All other benchmarks
are publicly available in [12, 20, 10, 19, 7]. The first two columns show the statis-
tics of the test program, including the name and the number of threads. The

1 Often the first few SAT calls take a significant portion of the total runtime; after
that, the “learned clauses” make the subsequent SAT calls extremely fast.

14 M. Said, C. Wang, Z. Yang, K. Sakallah

next three columns show the statistics of the given trace, including the length
(visible events only), the number of acquire/release events, and the number of
wait/notify/notifyAll events. The next three columns show the number of data
variables (rw), the number of lock variables (lk) and the number of condition
variables (wn) in the trace. The last four columns show the statistics of the
symbolic witness generation algorithm, including the number of potential data
races after the lock acquisition history analysis (lsa), the number of potential
data races after the must-happen-before analysis (mhb), the number of witnesses
generated (wtns), and the runtime of our symbolic algorithm in seconds. During
symbolic witness generation, we call the SMT solver incrementally, one at a time,
only for the potential data races in the column mhb. The runtime in seconds is
the combined processing time for all these potential data races.

The runtime results show that our witness generation algorithm scale to
medium length traces, and is fast enough to be used as a postmortem analysis.
In almost all cases, our static pruning based on lock acquisition history and
must-happen-before constraints is able to reduce the number of potential data
races significantly, therefore reducing the burden on the symbolic algorithm. We
also note that, even after pruning, most of the potential data races do not have
concrete witnesses – they are likely to be bogus errors. This result highlights the
problem associated with many data race detection algorithms in the literatures.
Reporting such data races (warnings) directly to programmers could be counter-
productive in practice, since it imposes significant burden (manual effort) on the
programmers for deciding whether a reported data race is real.

7 Conclusion

Despite that numerous static and dynamic techniques exist to detect data races,
few are capable of providing witnesses to help programmers understand how a
data race can happen during program execution. In this paper we propose a
SMT-based symbolic method to produce concrete witnesses for data races in
concurrent programs. Our tool can be integrated seamlessly with traditional
testing procedure because of the following reasons: (1) the inputs to our tool are
ordinary program execution traces, (2) our approach amplifies the effectiveness
of each testing run by considering all the alternative event interleavings, (3) the
witnesses produced by our tool pinpoint data races and thus help programmers
better understanding the erroneous behaviors. Our experimental results show
that the proposed algorithm is scalable enough for a postmortem analysis.

References

1. Boyapati, C., Rinard, M.C.: A parameterized type system for race-free Java pro-
grams. In: OOPSLA2001. SIGPLAN Notices, vol. 36(11), pp. 56–69. ACM (Nov
2001)

2. Chao Wang, Mahmoud Said, A.G.: Coverage guided systematic concurrency test-
ing. In: International Conference on Software Engineering (ICSE’11) (2011)

3. Christey(editor), S.: Top 25 most dangerous programming errors. CWE/SANS
report (2009), http://cwe.mitre.org/top25/

Generating Data Race Witnesses by an SMT-based Analysis 15

4. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In:
Computer Aided Verification. pp. 81–94. Springer-Verlag (2006)

5. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: a race and transaction-aware Java
runtime. j-SIGPLAN 42(6), 245–255 (jun 2007)

6. Engler, D., Ashcraft, K.: RacerX: effective, static detection of race conditions and
deadlocks. In: ACM Symposium on Operating Systems Principles. pp. 237–252.
ACM (2003)

7. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In: Par-
allel and Distributed Processing. p. 286.2. IEEE Computer Society, Washington,
DC, USA (2003)

8. Flanagan, C., Freund, S.: Type-based race detection for Java. In: Programming
Language Design and Implementation. pp. 219–232. ACM (2000)

9. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection.
In: Programming Language Design and Implementation. pp. 121–133. ACM, New
York, NY, USA (2009)

10. Havelund, K.: Using runtime analysis to guide model checking of java programs.
In: SPIN. pp. 245–264. Springer-Verlag (2000)

11. Havelund, K., Pressburger, T.: Model checking JAVA programs using JAVA
PathFinder. International Journal on Software Tools for Technology Transfer
(STTT) 2(4), 366–381 (Mar 2000)

12. http://research.microsoft.com/qadeer/cav issta.htm: Joint cav/issta special even
on specification, verification, and testing of concurrent software

13. Kahlon, V., Yang, Y., Sankaranarayanan, S., Gupta, A.: Fast and accurate static
data-race detection for concurrent programs. In: Computer Aided Verification. pp.
226–239. Springer (2007)

14. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning about threads communicating via
locks. In: CAV. pp. 505–518 (2005)

15. Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: Principles of
Programming Languages (2005)

16. Musuvathi, M., Qadeer, S., Ball, T., Musuvathi, M., Qadeer, S., Ball, T.: Chess:
A systematic testing tool for concurrent software. Tech. Rep. MSR-TR-2007-149,
Microsoft Research (2007)

17. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
Principles of programming languages. ACM (2007)

18. Pratikakis, P., Foster, J., Hicks, M.: LOCKSMITH: context-sensitive correlation
analysis for race detection. In: Programming Language Design and Implementa-
tion. pp. 320–331. ACM (2006)

19. von Praun, C., Gross, T.R.: Static detection of atomicity violations in object-
oriented programs. Object Technology 3(6) (2004)

20. http://www2.epcc.ed.ac.uk/computing/ research activities/java grande/index 1.html:
The java grande forum benchmark suite

21. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: A
dynamic data race detector for multi-threaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (Nov 1997)

22. Serbănută, T.F., Chen, F., Rosu, G.: Maximal causal models for multithreaded
systems. Tech. Rep. UIUCDCS-R-2008-3017, University of Illinois at Urbana-
Champaign (2008)

23. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Using model checking with
symbolic execution to verify parallel numerical programs. In: ISSTA (2006)

24. Voung, J., Jhala, R., Lerner, S.: RELAY: static race detection on millions of lines
of code. In: Foundations of Software Engineering. pp. 205–214. ACM (2007)

25. Wang, C., Kundu, S., Ganai, M., Gupta, A.: Symbolic predictive analysis for con-
current programs. In: International Symposium on Formal Methods. ACM (2009)

