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ABSTRACT
Concurrent program verification is challenging because it involves
exploring a large number of possible thread interleavings together
with complex sequential reasoning. As a result, concurrentpro-
gram verifiers resort to bi-modal reasoning, which alternates be-
tween reasoning over intra-thread (sequential) semanticsand inter-
thread (concurrent) semantics. Such reasoning often involves re-
peated intra-thread reasoning for exploring each interleaving (inter-
thread reasoning) and leads to inefficiency. In this paper, we present
a new two-stage analysis which completely separates intra-and
inter-thread reasoning. The first stage uses sequential program se-
mantics to obtain a precise summary of each thread in terms of
the global accesses made by the thread. The second stage per-
forms inter-thread reasoning by composing these thread-modular
summaries using the notion of sequential consistency. Assertion
violations and other concurrency errors are then checked inthis
composition with the help of an off-the-shelf SMT solver. Wehave
implemented our approach in the FUSION framework for check-
ing concurrent C programs shows that avoiding redundant bi-modal
reasoning makes the analysis more scalable.
Categories, Subject Descriptors:D.2.4 [Software/Program Veri-
fication]: Model Checking, Formal Methods.
General Terms: Algorithms, Verification.
Keywords: Thread-modular Summarization, Interference Abstrac-
tion, Interference Skeleton, Staged Analysis, SequentialConsis-
tency, Axiomatic Composition, SMT solvers.

1. INTRODUCTION
Checking properties of shared memory based concurrent pro-

grams statically with model checking is expensive because it amounts
to exploring large number of interleavings of the concurrent threads.
Methods often ameliorate this cost by using partial order techniques [5,
14, 11] and causal orderings imposed by synchronization prim-
itives, e.g., locks. Unfortunately, most of the methods, whether
explicit [5, 14, 11] or symbolic [29, 13, 21, 20, 34], resort to redun-
dantbi-modalreasoning: the analysisalternatesbetween reasoning
over theintra-thread and theinter-thread semantics. For example,
consider two concurrent threadsT1 andT2 as follows:
T1 : (x := 3; t := x;a := t+ 1; b := a+ 3; assert(b > 4); )
T2 : (x := 5; )
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The threadT1 contains an assertion(b > 4); to check this assertion,
various interleavings ofT1 andT2 must be considered (inter-thread
reasoning), based on when the statement(x := 5) in T2 is exe-
cuted. Once the value ofx is obtained (x ∈ {3, 5}), the statements
(t := x; a := t + 1; b := a + 3) in T1 are composed via intra-
thread reasoning to check the assertion. Bi-modal reasoning of this
form is inherently wasteful because the analysis engine is forced
to perform reasoning over similar intra-thread program regions re-
peatedly. Intra-thread (or thread-modular) program summarization
is a possible solution to this problem. However, classical program
summarization methods [31, 30] designed for sequential programs
are not applicable in a concurrent setting because of interferences
on shared locations from concurrent threads.

In this paper, we present astagedconcurrent analysis, which
avoids redundant bi-modal reasoning. The first stage (summariza-
tion) consists of a new algorithm to summarize the individual pro-
gram threads in the presence of concurrency. The summary is rep-
resented in form of aninterference skeleton, which is a partially-
ordered set of all global read and write accesses of program threads.
The second stage performs composition symbolically by encoding
feasiblelinearizationsof the above partial order using a sequen-
tial consistency (SC) criterion [1] on the global accesses.Finally,
we check property violations by using an SMT solver [9, 8] which
searches for a linearization that violates the property. Note that be-
cause the two stages perform either intra- or inter-thread reason-
ing, we achieve a complete separation between intra- and inter-
thread reasoning, and thus avoid costly bi-modal alternation be-
tween them.

The key idea behind summarization in the first stage is that of
interference abstraction: any read access to a shared memory lo-
cation (global read) in the program is abstracted by a fresh sym-
bolic variable. These fresh variables (linear in the numberof reads)
model arbitrary interference to the shared location via writes in the
same or a concurrent thread. Interference abstraction, in effect, en-
ables thread-local summarization, while assuring us that the inter-
ferences due to concurrent writes can be taken into account lazily
and precisely in the subsequent composition stage.

The second stage linearizes the skeleton bylinking the read ac-
cesses with appropriate write accesses in the skeleton.Axiomatic
composition (AC) provides a natural way to do this (as opposed
to introducing an explicit scheduler), i.e., we can use the sequen-
tial consistency (SC) axioms [1], specified in first-order logic, to
enforce that the linearization corresponds to a feasible concurrent
program trace. AC has been employed to check consistency of
concurrent data structures under relaxed hardware memory mod-
els (e.g., [2]). In contrast, we propose to employ AC in the new
setting of high-level static analysis of concurrent programs. In this
setting, it is sufficient to consider only the SC model of execution
for performing high-level static analysis (as opposed to more re-
laxed models). The central problem is how to encode SC efficiently
to obtain a scalable analysis. To this goal, we propose a method



to prune redundant SC constraints by analyzing the interference
skeleton computed in the first stage.

Our staged analysis handles arbitrary concurrent C programs (e.g.,
usingPthread libraries) using pointers and arrays with the help
of a precise memory representation [4]. As opposed to most con-
current analyses, program threads need not be demarcated before-
hand; our analysis handles thread creation and destructionnatively.
Analysis of general recursive programs even with finite datais known
to be undecidable. To analyze arbitrary C programs over infinite
data types, we transform the input programs to theirstructurally
boundedversions, where loops and recursive functions in the in-
put program are unrolled to a fixed depth. Finite unrolling ofthis
form indirectly finitizes the number of threads, and also fixes the
size of heap that the bounded program may access. As a result,the
analysis of bounded programs becomes decidable.

We have implemented our approach in the FUSION framework [34]
for verification of concurrent C programs. Preliminary evaluation
show that summarization and optimizations during composition are
essential for scalable symbolic analysis of concurrent programs.
The key contributions of this paper are as follows:

• A staged analysis algorithm for verifying concurrent pro-
grams consisting of (Stage 1) a precise thread-modular sum-
marization of individual threads, and (Stage 2) an optimized
composition step over the summary using sequential consis-
tency axioms, followed by checking assertion violations us-
ing an SMT solver.

• A thread-modular data flow analysis based on interference
abstraction to summarize structurally-bounded concurrent pro-
grams in form of an interference skeleton.

• Optimized composition of the interference skeleton by sys-
tematically pruning redundant SC constraints between the
global accesses by static analysis of the skeleton.

1.1 Redundant bi-modal reasoning
Thread 1 (T1) Thread 2 (T2)

1 ...
2 S1: a0 = x;
3 a1 = a0 + 1; z1 = a1;
4 a2 = a1 + 1; z2 = a2;
5 ...
6 a99 = a98 + 1; z99 = a99;
7 a100 = a99 + 1;
8 S2: x = a100;

1 S3: x = 0;
2 ...
3 S4: x = 5;
4 ...
5 A: assert (x == 5
6 || x >= 105);

Consider the fragments of concurrent threadsT1 andT2 shown
above; the variablesa0−a100 are local, and the rest (x, z1− z99)
are shared; our goal is to check the assertionA at line 5.T1 andT2

may interleave in many possible ways; an efficient analysis based
on say, partial order reduction [5, 11] will consider a representative
set of such interleavings, and compute the value ofx at the asser-
tionA. Analyzing each interleaving amounts to bi-modal reasoning
which alternates between intra- and inter-thread reasoning. For ex-
ample, consider the interleaving S3-S4-S1-S2-A: the analysis first
considersT2, settingx to 3 and5 at S3 and S4 successively (intra-
thread reasoning), and then switches toT1 (inter-thread reasoning),
successively computinga0− a100, z1− z99 andx (intra-thread),
and finally, switches back toT2 to checkA using the computed
value ofx. This form of bi-modal reasoning isredundant, since
similar intra-thread reasoning is repeated for each interleaving con-
sidered. For example, note thata100 = (a0 + 100) irrespective
of the interleaving ofT1 andT2 considered. However, to analyze
another interleaving, say S3-S1-S4-S2-A, the valuesa1 − a100
must berecomputedbecausea0 = 0 now as opposed toa0 = 5
in the previous interleaving. Redundant intra-thread reasoning (or
composition) takes its toll on both explicit [5, 14, 11, 36] and sym-
bolic [13, 21, 20, 34] analysis techniques, often decreasing their

performance by an order of magnitude. Although summarization
techniques are well-known for sequential program analysis[31,
30], they cannot be directly employed here: because of interfer-
ence [26] on shared locations by concurrent threads, the value read
from a shared location in a thread may not be the same as the pre-
vious value written to the location in the same thread.

There exist techniques that ameliorate this problem bycollaps-
ing a set of intra-thread transitions into a single one, e.g., path
reduction [36]. However, they can only collapse transitions in-
sidetransactions, i.e., regions without any concurrent interference.
Given a transaction between locationsl1 andl2, path reduction col-
lapses all the transitions betweenl1 and l2 to a single transition.
Unfortunately, these techniques are not effective across arbitrary
program regions or transactions. In the above example, assign-
ments to shared variablesz1 − 99 represent locations where inter-
ference may occur, which alternate with assignments to variables
a0− a100. Therefore, path reduction methods cannot collapse the
assignments to infer thata100 = (a0 + 100).

Our method avoids this problem by using the idea of interfer-
ence abstraction, which, in turn, enables data-flow based summa-
rization. First, the value of shared variablex read at line2 in T1

is abstracted by a fresh symbolic variable, sayr0. Since the as-
signments to variablesa1 − a100 are not influenced by any other
interferences, our data-flow propagation successfully computes that
a100 = r0 + 100. Further, our method precisely summarizes all
local control and data flow in terms of global accesses, e.g.,assign-
ment toz1 at line3 in T1 gives rise to a global access eventZ1 with
valueval(Z1) = r0 + 1. Similarly, global accessesZ2−Z99 are
computed with their relative order (Z1 ≺ Z2 ≺ Z3 . . .).

Lal and Reps [21] present address this problem in the settingof
context-bounded analysis (CBA) of programs with finite-domain
variables (extended to C programs in [20]). In CBA, a concur-
rent program is analyzed assuming only a fixed number of context
switches occur between threads. Context-bounding allows fixing a
set of context switch (CS) locations and model the interference at
the CS locations only. This is done byguessing(or abstracting) the
value of the global state at each CS location. Since no interference
is possible between each pair of CS locations in a thread and the
number of CS locations is finite, sequential summarization can be
applied between each CS location pair. Guessing the global states,
however, involvesunnecessary duplicationof the shared state at
each CS location. This is because each program location may mod-
ify only a few shared variables, and hence it is extremely inefficient
to duplicate all shared variables at every location.

For example, the method [21] will duplicate all the global vari-
ables (z1 − z99, x) at all locations in threadT1 and compute
summaries between all pairs of locations. This summarization is
quadratic in the number of thread locations and the global vari-
ables and incurs a high overhead. Further, in the improved lazy
algorithm [21], the summaries cannot be reused across multiple in-
terleavings if the global state at a CS location is differentacross
interleavings, which causes redundant bi-modal reasoning. In con-
trast, our method avoids bi-modal reasoning and the number of the
global access events as well as the fresh variables introduced in
our summaries is linear in the number of shared variable accesses,
thus enabling a practical analysis. Moreover, it is possible to obtain
CBA as a special case by fixing the context bounds in our analysis.

2. OVERVIEW
CCFGs. We represent concurrent programs in form of concurrent
control flow graphs (CCFGs), which can be viewed as an extension
of control flow graphs (CFGs) for sequential programs to concur-
rent programs. A CCFG =(V,E), consists of a set of nodesV and
a set of edgesE. Each edge inE is labeled by a guard condition
g and a (possibly empty) set of assignments of form(lhs := rhs).
Intuitively, the assignments are executed iff the guard condition



holds. The set of nodesV contains two special nodes FORK and
JOIN, to model thread creation and termination, respectively: a
FORK (JOIN) node has a single incoming (outgoing) edge, and
multiple outgoing (incoming) edges. Individual program threads
are modeled as sub-graphs of the CCFG. Function calls are mod-
eled in the standard way [31] with call and return edges labeled by
assignments to parameters and return variables respectively.

Synchronization constructs, e.g., mutex, condition variables, etc.,
are modeled using shared variables. For example, acquiringlock lk
in threadTi is modeled as an edge with guard(lk==0) and assign-
ment(lk := i). Instantaneoustest-and-setprimitives are modeled
by marking the corresponding sub-graphs of the CCFG asatomic,
which are referred to as atomic regions. The assertions in the orig-
inal program are transformed intoerror nodeswhile constructing
the CCFG; assertion checking reduces to checking if there exists a
feasible interleaving of concurrent thread paths in the CCFG that
terminates at the error node. We distinguish the two kinds ofjoin
locations in the CCFG: theintra-thread joins occur due to path
merging inside a thread, while theinter-thread join corresponds to
the JOIN nodes. An example is presented in the next section.
Read and Write Accesses.We refer to each read or write to a
memory location as a read or write access respectively. A memory
locationl is said to be shared if more than one thread reads or writes
to l. In the following, we will mainly concern with accesses to
shared memory locations, calledglobal accesses. Each global ac-
cesse is represented using a symbolic tuple(loc, val, occ), where
loc(e) andval(e) correspond to the memory location and the value
that is read/written during the accesse, andocc(e) is the neces-
sary condition fore to occur. A global accesse1 is said tointer-
fere with another global accesse2 if one of them is a write and
loc(e1) = loc(e2) is satisfiable. Note that every usage of the
phrase ‘global access’ in this paper is implicitly identified with this
tuple representation(loc, val, occ).
A Motivating Example. Consider the multi-threaded C program
based on thePthread library shown in Fig. 1(a) . The program
contains a single shared variablex. Two threads are created from
the main thread, which read and writex. Fig. 1(b) shows the cor-
responding concurrent control flow graph (CCFG). In the CCFG,
FORK and JOIN represent thread creation and termination points.
The CCFG consists of sub-graphs for three threads, main (nodes:1,
FORK, Join,10, ERR),t1 (nodes:2-9) andt2 (nodes:2’-9’).
For brevity, we have merged multiple consecutive FORK and JOIN
nodes into a single node. Moreover, new assignments have been
added to ensure that each statement makesat most oneglobal ac-
cess. Fig. 1(b) also shows the global accesses in the CCFG:W1,
W2,W3,W2′,W3′ are the global writes, whileR1, R2, R3,R1′,
R2′, R3′, R4 are the global reads. Let us see how our staged anal-
ysis works on the given CCFG.
Stage 1.The first stage performs a data flow analysis (Sec. 4) on
the CCFG is used to compute a summary in form of ainterfer-
ence skeleton(IS = (S,≺S)). The IS summarizes the CCFG
in terms of global accessesS and their partial order≺S . Starting
from the entry node of CCFG, the analysis iteratively computes and
propagates symbolic data consisting of apath conditionand alo-
cal state. During propagation, each global read access is assigned a
fresh symbolic value (interference abstraction), and the global write
accesses are computed in terms of these symbolic values. Fig. 1
shows the details of the global accesses in the skeletonIS. The
accessesR1, R2, R3 are assigned symbolic valuesr1, r2, r3. Note
that even thoughR1 andR2 are consecutive accesses tox, they are
assigned different symbolic valuesr1 andr2. This allows us to take
arbitrary interference (writes) from concurrent threads into account
during composition. The analysis also collects the path conditions
under which the global accesses happen, e.g.,W2 occurs if the
conditionocc(W2) = (r1 < 1) holds.

The analysis merges the propagated data at thejoin points in
a precisepath-sensitivemanner, to avoid (potentially exponential)

path enumeration in the CCFG. At the intra-thread join points (cf.
Sec. 2), e.g., node 9, the path conditions aredisjunctedfollow-
ing the standard sequential semantics, while at the inter-thread join
node (node JOIN), the path conditions areconjunctedto ensure
simultaneous reachability of the node by all threads. To check as-
sertion violations, we computeerror conditionsat the error nodes,
which correspond to the computed path conditions at the node, e.g.,
φ = (r4 6= 3) at ERR node. These error conditions are checked
during the second stage. The analysis also computes a partial or-
der≺S (see Fig. 1(c)) denoting the relative order of events. Note
that IS abstracts away all the thread-local control and data flow
from the CCFG and only contains the global access information.
Computing the interference skeleton is non-trivial for arbitrary C
programs (with pointers and complex data types); we presentthe
full algorithm in Sec. 4.
Stage 2.The second stage of our analysis explores the feasible con-
current behaviors of the CCFG by performing inter-thread compo-
sition. Note that in the skeletonIS computed above, the values of
the global reads are unconstrained symbolic variables. Thecom-
position step constrains these values bylinking them to the global
writes (cf. Sec. 5). Note that we cannot link reads with writes
arbitrarily, because we only desire feasible program behaviors dur-
ing composition, e.g., the read accessR2 cannot be linked toW2
which followsR2 in the program order. The notion ofsequential
consistency(SC) [1] enables us to find a suitable relation between
the reads and writes systematically: SC constraints enforce that
each read accessR must link withsomewrite access, sayW , such
that both access the same memory location, the value writtenbyW
is the value read byR, andW must be the last such write that hap-
pens beforeR in an execution trace. In order to capture the feasible
executions during composition, we add SC constraints between the
reads and writes inIS (Sec. 5). For example, the SC constraints
relatingR2 (loc = @x, val = r2, occ = (r1 < 1)) to W2′

(loc = @x, val = (r′2 + 1), occ = (r′1 < 1)) are of form:

copy(R2,W2′) ⇒ (r2 = r
′

2 + 1) ∧ (r′1 < 1) ∧HB(W2′

, R2)

where the predicatecopy(R2,W2′) denotes thatR2 is linked to
W2′ andHB(W2′, R2) denotes thatW2′ must happen before
R2. Constraints enforcing that no other write happens betweenR2
andW2′ and thatR2 must link with some write are also added
(see Sec. 5). In Sec. 6 we show how to add SC constraints in an
optimized way toprune redundant constraints. Finally, the error
conditionφ = (r4 6= 3) is checked for feasibility, together with the
encoding ofIS and SC constraints by an SMT solver [9, 8]. If the
constraints are satisfiable, then a sequence of accesses inIS is ob-
tained, e.g., (W1, R1, R1′, R2,W2,R2′,W2′, R4) for the above
example. This sequence is then mapped to the CCFG to obtain a
violation witness. By separating the intra-thread summarization in
Stage 1 with inter-thread composition in Stage 2, our analysis is
able to avoid redundant bi-modal reasoning completely.

3. MODELING C PROGRAMS
We first describe how to transform an arbitrary concurrent C pro-

gram to a simplified intermediate program by adopting a memory
representation which consists of a global memory map together
with local memory maps for each program thread. The simplified
program is then structurally bounded and represented as abounded
CCFG, which is used in our analysis.

3.1 Program Transformation
In order to handle C program constructs like pointers, arrays and

structures uniformly, we fix a memory representation for ouranaly-
sis in a manner similar to the HAVOC tool [7, 20]. Indirect memory
accesses are handled using a memory mapMem, which models the
program heap by mapping a memory location (address) to a sym-
bolic value. All variables and objects whose address can be taken



int x;

void add_global ()
{

if ( x < 1 ) x = x + 1;
else x = x + 2;

}

int main (int argc, char *argv[])
{

pthread_t t1, t2;
x = 0;
pthread_create(&t1, NULL, NULL,

add_global);
pthread_create(&t2, NULL, NULL,

add_global);

pthread_join(t1);
pthread_join(t2);

assert(x == 3);
}

FORK

JOIN

x < 1 x ≥ 1

tmp = x

x = tmp + 1 x = tmp + 2

tmp = x

x < 1 x ≥ 1

tmp = x

x = tmp + 1 x = tmp + 2

tmp = x

ERR

x 6= 3x == 3

x = 0
W1

W2 W3
W2’ W3’

R1 R1’

R2 R3 R2’ R3’

R4

1

2

3 4

5 6

7 8

9

2’

3’ 4’

5’ 6’

7’ 8’

9’

10

W1

R1 R1’

R2 R3 R2’ R3’

W2 W3 W2’ W3’

R4

(c)

Access loc val occ

W1 @x 0 true

R1 @x r1 true

R2 @x r2 r1 < 1

W2 @x r2 + 1 r1 < 1

R3 @x r3 r2 ≥ 1

W3 @x r3 + 2 r2 ≥ 1

R4 @x r4 true

(d)
(a) (b)

Figure 1: Example: (a) A multi-threaded C program with two th reads, (b) its concurrent control flow graph (CCFG), and its global
summary consisting of (c) the relative order of global accesses and (d) the values of the global accesses. The values for only unprimed
accesses are shown: primed access values are similar. The memory location for variable x is denoted by@x.

are allocated on the heap. The address of a variablev is a fixed
value denoted by@v. Let offs (f) denote the integer offset of
the location of a fieldf inside its enclosing structure. Using the
above map, we can transform the program statements (denotedby
operatorT ) as follows: (i)T (e→ f ) = Mem[T (e)+offs(f)], (ii)
T (∗e) = Mem[T (e)], (iii) T (&e → f) = T (e) + offs(f), (iv)
T (e[i]) = Mem[T (e) + i ∗ stride(e)], wherestride(e) denotes
the size of arraye’s type. All C program statements with indirect
accesses can be transformed using the above rules [7, 20].

Shared variables.To detect shared variable accesses in con-
current programs with pointers, we use a conservative flow- and
context-insensitive pointer analysis algorithm by Steensgaard [32].
All the variables that are declared as globals in the programor be-
long to an Steensgaard equivalence class [32] containing atleast
one globally declared variable, are said to beshared. Based on this,
we partition the single memory mapMem above into (i) ashared
memory mapG, to denote the map containing the shared variables,
and mapsLk to denote the local memory map for thread with iden-
tifier k. The domains ofG andLk maps are disjoint from each
other (contain different memory locations), thus creatinga valid
partition. In contrast to previous approaches which partition the
memory maps based on type- or field safety [7, 20], the above parti-
tion is more fine-grained and therefore improves the staged analysis
by reducing the number of conflicting memory accesses.

All program statements are rewritten in terms of the above par-
tition, e.g., a statement of forml = (*p); where l andp are
local and shared respectively, is re-written asl = G[p];. As a
result, we can now identify all global accesses in the program syn-
tactically. Variables whose address is not taken in the program are
referred to by their names, as before. Moreover, we rewrite the pro-
gram statements so that no statement may perform more than one
global read or write, i.e., no statement may contain more than one
occurrence of G. For example, suppose a threadT contains a state-
mentx = (*p); where bothp andx are shared variables; this
is rewritten aslp = G[&p]; ap = G[lp]; G[&x] = ap;
wherelp andap are fresh variables local toT .

3.2 Structural Bounding
Analyzing concurrent programs with recursion is undecidable. We,

therefore, obtain decidability bystructurally boundingthe concur-
rent program by unrolling loops and recursive functions to finite
depth. Structural bounding ensures finite number of threadsand
heap size; we refer to the CCFG of the bounded program asbounded
CCFGs.Our method then analyzes these bounded CCFGs for con-
current reachability properties (e.g., assertion violations or data
races). The presented analysis is sound and complete with respect
to these bounded CCFGs. Note that although we only consider
bounded CCFGs, the CCFG representation is essential for model-
ing real-world programs since it allows specifying thread creation
and destruction, and the relative order between threads (cf. Fig. 1).
Both these aspects are not handled by most concurrent analyses.

4. THREAD-MODULAR SUMMARIZATION
The first stage of our analysis computes a thread-modular sum-

marization of the CCFG: summarization gets rid of both localcon-
trol and data flow in each thread and represents them precisely in
terms of global accesses.
Global Skeleton. The analysis summarizes the CCFG in form of
a interference skeletonIS = (S,≺S), whereS consists of the set
of global accesses in the CCFG and≺S denotes a partial order on
elements ofS. Recall that each accesse in S contains the corre-
sponding symbolic locationloc(e), valueval(e), and the occurring
conditionocc(e). Each accesse in S is global; hence, theloc(e)
values correspond to memory locations in G.

Thread-modular summarization is done using a precise data flow
analysis that explores the CCFG in the standard reverse post-order [24]
of the nodes while computing thesymbolic datafacts at each node
of the CCFG and propagating the facts to the successors.
Symbolic Data. The data computed at a noden is a tuple of form
〈ψ,L, E〉, where (i)ψ is the path condition formula for the set of
paths reachingn, (ii) L is the local memory map for the thread that
n belongs to, and (iii)E denotes the set of global accesses which
happen immediately before (reach) the current location. Weuse
program expressions (or terms) to represent bothψ andL precisely
during the analysis. Intuitively,ψ captures the reachability condi-
tion for the noden, L captures the local state (map from memory
locations to their symbolic values) atn andE is used to compute



the interference skeleton iteratively. We also refer to theabove tu-
ple as thesymbolic states, and its fields ass.ψ, s.L ands.E.
Symbolic Summary. Given a fragmentF of the CCFG (e.g., a
function) having unique entry and exit nodes, the thread-modular
summary ofF consists of (i) a interference skeletonIS = (S,≺S)
over global accessesS in F , and (ii) a symbolic state〈ψ,L, E〉 at
the exit node ofF , whereψ, L andE denote the path condition,
local map and the reaching accesses at the exit node, in termsof
the input state map at the entry ofF . Note that in the case where
the fragmentF (e.g., a function body) contains no global accesses,
the function summary reduces to the traditional sequentialfunction
summary [31, 30] of form〈ψ,L〉, which represents the function
outputs in terms of its inputs. For ease of presentation, we first
describe the analysis assuming that all function calls are inlined in
the CCFG. Subsequently, we discuss the general inter-procedural
summarization algorithm.
Error Conditions. Recall that assertions are transformed to error
node monitors in the CCFG. Our analysis retains these nodes in the
skeletonIS and computes the symbolic states at these nodes. The
corresponding path conditions.ψ is used to check precise reacha-
bility of the nodes during the composition stage.
Data-flow analysis.A well-known technique for precise program
exploration is symbolic execution [19], which assumes symbolic
values for program inputs and propagates the state (represented as
program expressions) along all feasible program paths. Ourdata-
flow analysis may be viewed as a form of symbolic execution for
concurrent programs, with two key differences. First, we avoid
costly path enumeration (as in symbolic execution) by merging
symbolic data at the join locations (intra- and inter-thread joins,
see Sec. 2) in a precise path-sensitive manner. Second, we avoid
exploring exponential number of thread interleavings by perform-
ing interference abstraction: each global read access is assigned a
fresh symbolic variable (placeholder). These placeholders model
arbitrary concurrent writes to the read location; propagating these
placeholders enables sequential (thread-modular) summarization in
the presence of concurrency. The analysis propagates only the lo-
cal state through the CCFG; the computed global accesses arenot
propagated but are used to construct the interference skeleton IS.

Figure 2 presents the rules for propagating data through a CCFG
fragment to be summarized. They consist of rules for initialization
(INIT ) at the entry node of the CCFG, propagating data through
guarded edges (GUARD), assignments with only local accesses (ASGN-
LOC), assignments with global accesses (ASGN-GLB-R, ASGN-GLB-
W), splitting data at the FORK node (FORK), and merging data
at intra-thread (INTRA-JOIN) and inter-thread (INTER-JOIN) joins.
The incoming data at a noden is denoted byIn(〈ψ,L, E〉); read-
/write accessese are represented as tuples(loc(e), val(e), occ(e)).
The summary of the fragmentF consists of the skeletonIS to-
gether with the data computed at the exit state ofF . Let us consider
these rules in more detail.
Assignments. Recall that CCFG assignments (cf. Sec. 3) either
perform global accesses via shared mapG, or local accesses via the
mapL. Since no statement accessesG more than once, we con-
sider three kinds of assignments: (global)lhs := G[e], G[e] :=
rhs, and (local)lhs := rhs. Let us assume that a procedure
eval(e,L) evaluates expressione in the local memory mapL:
this is done by employing the standard first-order logic operators
select(L, l) andstore(L, l, v) for manipulating arrays (cf. [23]),
wherel ranges over memory locations andv over values stored at
these locations. To handle a local assignmentlhs := rhs (ASGN-
LOC), the analysis first obtains the location by evaluatinglhs in L
(eval(lhs,L)), followed by evaluatingrhs to obtain the new value
v, and finally computing the updatestore(L, l, v) which is propa-
gated. An assignment accessing the shared map (containingG[e])
is handled differently since it creates a global access event. Sup-
pose a noden with assignmentG[e] := rhs has the incoming data
In(〈ψ,L, E〉). The ruleASGN-GLB-W handles this by creating a

global write accessW = (l, r, ψ) with location l = eval(e,L),
valuer = eval(rhs,L) and the occuring conditionψ (path condi-
tion atn). Moreover, the skeletonIS is updated by addingW and
partial orders between the reaching accesses inE andW . Simi-
larly, the ruleASGN-GLB-R for handlinglhs := G[e] updatesIS
with a global readR, where the value ofR is a fresh symbolic
variabler (interference abstraction).
Handling Pointers. Recall that we model indirect accesses via
pointers in an uniform manner by employing a precise memory rep-
resentation using mapsG andL (cf. Sec. 3). Note that by using
select andstore operators for manipulating symbolic data, we can
handle arbitrary indirect memory accesses toL via pointers or ar-
rays, in an implicit manner, without explicitly computing the alias
sets of these pointers. Indirect memory accesses to the shared map
G are captured by the location expressionloc(e) for each global ac-
cesse; the subsequent composition stage employsloc(e) to check
for interfering accesses.
Forks and Joins. The analysis merges the data at join locations in
the CCFG in a precise path-sensitive manner. At intra-thread joins
(INTRA-JOIN), the incoming mapsL1 andL2 are merged using an
if-then-elseoperator to retain path-sensitivity while the path con-
ditionsψ1 andψ2 are disjuncted. At inter-thread joins, the local
map for the child thread (Lc) is discarded and the path conditions
ψp andψc conjuncted: this models the fact that both the parent
and the child threads must execute the join location together. Note
that the analysis creates a new local mapLc for the child thread at
the thread creation node (FORK), which is discarded at the thread
destruction node (JOIN).

By handling statements, forks and joins precisely during data-
flow analysis and using interference abstraction for globalreads,
the algorithm gets rid of all local control and data flow in theCCFG:
they are summarized to precise relations between global read and
write accesses. Together with precise composition in the next stage,
our analysis becomes sound and complete with respect to the bounded
CCFG. Note that for the example in Sec. 1.1, summarization will
be able to infer thata100 = (a0 + 100) and hence repeated intra-
thread reasoning is avoided during composition.
Example. The analysis of CCFG in Fig. 1 proceeds as follows.
First, create a write accessW1 = (@x, 0, true) at node1. At
the FORK node, initialize the local maps for threadt1 and t2,
L1 andL2, to M1 andM2 respectively. Consider the propaga-
tion along the threadt1, for example. At node2, create accessR1
= (@x, r1, true), addR1 to IS and updateE to {R1}; At node
3, update the path conditionψ to (r1 < 1), add accessR2 =
(@x, r2, (r1 < 1)) to IS, add(R1, R2) to≺S , updateE to {R2},
and update mapL1 to store(M1,@tmp, r2). At node 5, add
W2 = (@x, V, (r1 < 1)) to IS whereV = (1+select(L1,@tmp)),
i.e., V = (1 + r2), and so on. At the intra-thread join node9,
the incoming states are merged to obtainψ = (r1 < 1 ∨ r1 ≥
1) = true andL1 = store(M1,@tmp, ite(r1 < 1, r2, r3)) and
E = {W2,W3}. At inter-thread join nodeJOIN, the incom-
ing path conditions are conjuncted (triviallytrue) andE merged.
Finally, the error condition is obtained from the path condition
(r4 < 3) for the ERR node. The complete summary of the CCFG is
given in Fig. 1 (c) and (d). Note that we do not propagate any global
read or writes during CCFG exploration: all the global accesses are
captured inIS. Although the data-flow analysis algorithm works
on the complete CCFG, the analysis is thread-modular, i.e.,each
thread is analyzed independently using interference abstraction.
Function Summaries. The above algorithm can summarize arbi-
trary (bounded) concurrent programs assuming that functions are
inlined. However, inlining causes blow up of the analyzed program
and makes it difficult to exploit the modular sequential program
structure. We can extend the above algorithm to perform a standard
interprocedural analysis [31, 30] based on computing summaries
at function boundaries and reusing these summaries at the calling
contexts. A function summary consists of a interference skeleton



INIT
n ∈ entry(CCFG)

In(〈true, L0, {}〉)
GUARD

n
g
−→ n′ In(〈ψ,L, E〉)
ψg = eval(g,L)

I′n(〈ψ ∧ ψg,L, E〉)
ASGN-LOC

n
lhs:=rhs
−−−−−−→ n′ In(〈ψ,L, E〉)

l = eval(lhs,L) v = eval(rhs,L)

I′n(〈ψ, store(L, l, v), E〉)

ASGN-GLB-R

n
lhs:=G[e]
−−−−−−−→ n′ In(〈ψ,L,E〉) IS = (S,≺S)

l = eval(lhs,L) l′ = eval(e,L) R = (l′, r, ψ) r is fresh

I′n(〈ψ, store(L, l, r), {R}〉) IS = (S ∪ {R},≺S ∪{(e, R)|e ∈ E})

ASGN-GLB-W

n
G[e]:=rhs
−−−−−−−→ n′ In(〈ψ,L, E〉) IS = (S,≺S)

l = eval(e,L) r = eval(rhs,L) W = (l, r, ψ)

I′n(〈ψ,L, {W}〉) IS = (S ∪ {W},≺S ∪{(e,W )|e ∈ E})
INTRA-JOIN

m→ n m′ → n (tid(m) = tid(m′) = tid(n))
Im(〈ψ1,L1, E1〉) I

′

m(〈ψ2,L2, E2〉)

In(〈ψ1 ∨ ψ2, ite(ψ1,L1,L2), E1 ∪E2〉)

FORK

FORK(n) n→ p n → c
tid(p) = tid(n) In(〈ψ,L, E〉)

Ip(〈ψ,L, E〉) Ic(〈ψ,Lc, E〉) Lc is fresh
INTER-JOIN

JOIN(n) p → n c→ n tid(p) = tid(n)
Ip(〈ψp ,Lp, Ep〉) Ic(〈ψc,Lc, Ec〉)

In(〈ψp ∧ ψc,Lp, Ep ∪Ec〉)

Figure 2: Transformation rules for thread-modular summari zation of a CCFG fragment. For a noden, In(〈ψ,L, E〉) denotes the
incoming symbolic state atn; tid(n) is the numeric identifier of the thread containingn; ite represents theif-then-elseoperator. The
summary consists of the interference skeletonIS = (S,≺S) and Iex computed at exit nodeex of the fragment.

(global accesses made in the function), together with the local sym-
bolic stateL at the exit node of the function. Here, the exit state
L is computed using a fresh symbolic input stateLi at the func-
tion input. In contrast to explicit summarization approaches which
depend on detecting transaction boundaries [28, 36], our method
can compute symbolic summaries for arbitrary program regions
across multiple transactions. The key problem is how to reuse pre-
computed summaries: given a calling context stateL′, the interfer-
ence skeleton of the summary is duplicated and all global accesses
evaluated in the incoming stateL′ by substitutingL′ for Li.

THEOREM 1. The interference skeletonIS = (S,≺S) is a pre-
cise thread-modular summary of the finite CCFG. Moreover,≺S

respects the program order1.

5. AXIOMATIC COMPOSITION
We now describe the second stage of our analysis which com-

putes the inter-thread composition by using sequential consistency
axioms that link the read and write accesses in the thread-modular
summaryIS correctly.

5.1 Linearization of the Global Skeleton
A linearizationL of a interference skeletonIS = (S,≺S) is a
tuple(S′, <S′), where (i)S′ ⊆ S, (ii) <S′ is a total order, and (iii)
for all rw1, rw2 ∈ S′, rw1 ≺S rw2 ⇒ rw1 <S′ rw2. In other
words, a linearization ofIS is obtained by selecting a subset of
accesses fromIS and imposing a total order among them such that
the total order respects the partial order inIS. A linearizationL is
said to beprogram path-consistentif its projectionon to the CCFG
corresponds to a single path for each program thread in the CCFG,
andL should contain all the accesses in each path on which it is
projected. Program path-consistency allows us to obtain concrete
CCFG program paths from a linearization that leads to an error. A
linearizationL of IS is said to befeasibleif there exists a concrete
interleaved execution of the program CCFG corresponding toL.
Note that a feasible linearization is always program path-consistent
but not vice-versa.

Although each concrete execution corresponds to some lineariza-
tion IS′ of the skeletonIS, all linearizations may not be feasible
program traces. Infeasible linearizationsIS′ occur, because the
reads inIS′ may not be linked to appropriate writes. In order to
derive these constraints systematically, we define thecopy relation.

1All proofs are available in the extended version of this paper.

Copy Relation. Let r and w be a read and write access in a
read/write (total-ordered) sequenceS. We say thatr copiesw, or
copy(r,w) holds, if (a)r andw interfere, i.e.,(loc(r) = loc(w))
(b) the value read byr is the same as the value written byw,
(val(r) = val(w)) and, (c) there are no interfering write accesses
w′ to loc(w) in S, such thatw <S w′ andw′ <S r. The main
goal of composition, therefore, is to find a suitable writew for each
readr so thatr can copyw. The notion of sequential consistency
(SC) [1] can be used to formally characterize this problem. Alin-
earizationIS′ = (S,<S) is said to besequentially consistentif
the following axioms hold:

• SC.1 (Program Order) Letrw1 and rw2 be read/write ac-
cesses to the same locationl in the sequenceS. If rw2 fol-
lowsrw1 in the execution order of programP , i.e.,rw1 ≺P

rw2, thenrw1 <S rw2.

• SC.2 (Copy Some) Each read to locationl in S must copy
somewrite in S to l2.

Axiomatic composition (AC) using the above SC axioms guar-
antees the feasibility of linearizations ofIS.

THEOREM 2. A program path-consistent linearizationIS′ of
IS is feasible iff it is sequentially consistent.

Axiomatic composition (AC) has been previously used to verify
properties of concurrent data structures [2] executing on modern
out-of-order processors. Here, AC was primarily used to precisely
model various (intra-thread) read/write reorderings allowed by the
processor. In contrast, we employ AC in an entirely new setting,
i.e., static analysis of high-level programs. Here, the problem re-
duces to encoding only the SC constraints between reads/writes.
However, the central challenge is to obtain an efficient encoding
that enables a scalable analysis.

5.2 Copy Constraints
Note that by Theorem 1, any linearization of the interference

skeletonIS must obey the program orderSC.1. However, ad-
ditional constraints must be imposed on a linearization to satisfy
SC.2. We refer to such constraints ascopy constraints, denoted
by ΦC . These constraints capture thecopy relation and are mod-
eled by a set of first-order logic formula quantified over reads and
writes, consisting ofΦ1

C , Φ2
C andΦ3

C .
2The initial value of locationl is also represented by a write access
with a fresh symbolic value.



Φ1
C : ∀r. occ(r) ⇒ ∃w. copy(r,w)

Φ2
C : ∀r,w. copy(r,w) ⇒ occ(r) ∧ occ(w)∧

(val(r) = val(w)) ∧ (loc(r) = loc(w)) ∧ HB(w, r)
Φ3

C : ∀r,w. copy(r,w) ⇒
∀(w′ 6= w). (occ(w′) ∧ HBet(w,w′, r)) ⇒ loc(w) 6= loc(w′)

ΦC = Φ1
C ∧ Φ2

C ∧ Φ3
C .

The constraintsΦ1
C capture the conditionsSC.2(Sec. 5), i.e., each

read (if it occurs) must copy some write access. The formulaΦ2
C

captures the data-flow constraints on the copy, i.e., the writew must
occur (occ(w)), the values/locations of bothr andw should be
same andw must happen beforer in the linearization. The pred-
icateHB(e1, e2) models astrict partial order relation that denotes
that accesse1 must happen beforee2 in every linearization. In other
words, if a linearization contains bothe1 ande2 thene1 must pre-
cedee2. The formulaΦ3

C captures the fact that no interfering write
w′ may happen between the writew and a readr that copies from
w. The predicateHBet(w,w′, r) denotes thatw′ may-happen-
betweenw andr, and is defined as (¬HB(w′, w) ∧ ¬HB(r, w′)).
Details of encodingHB are presented in the next section.Φ3

C mod-
els that eitherw′ does not happen betweenw andr, or does not
interfere withw (loc(w′) 6= loc(w)) if w′ occurs in between.
Example. Recall the example and itsIS in Fig. 1. A linearization
L0 = (W1, R1, R3, R2, W2, R1’, R2’, W2’, R4) of the IS is not
program path-consistent, since it does not project to a single path
for threadt1. On removingR3 from L0, we obtain a lineariza-
tion (say,L1) which is path-consistent; however,L1 is not feasi-
ble. To see this, note that because the readsR1′ andR2′ immedi-
ately follow the writeW2 in the linearization, copy constraintsΦ1

C

andΦ3
C imply that bothcopy(R1′,W2) andcopy(R2′,W2) must

hold. Now, sinceval(W2) = 1, the constraintsΦ2
C imply that

val(R1′) = r′1 = val(R2′) = r′2 = val(W2) = 1. This, how-
ever, implies thatocc(R2′) = (r′1 < 1) = false, which violates
Φ2

C . HenceR2′ should not occur in the execution (and therefore in
L1). On replacingR2’, W2’by R3’, W3’ inL1, we obtain a feasible
linearization (W1, R1, R2, W2, R1’, R3’, W3’, R4).

5.3 Encoding the Composition
We encode the set of sequentially consistent linearizations of a

interference skeletonIS as a formula in quantifier-free first-order
logic: the skeletonIS = (S,≺S) is encoded as a formulaΦIS , and
the copy constraints asΦC . The set of feasible linearizations ofIS
is then represented as a formulaΦ = ΦIS ∧ ΦC . Finally, given
an error location with the path conditionψ, we can check if the
error location is reachable via a feasible linearization bychecking
the satisfiability of the formulaΦ ∧ ψ using an SMT solver.
Encoding ΦIS and HB. Both ΦIS andΦC depend on the strict
partial order relation,HB between read/write accesses. To obtain
an efficient encoding that avoids quantifiers, we encode the rela-
tion using the integer theory with the strict partial order operator
<. More precisely, we assign an integerclockvariableTe to each
accesse. Now, HB(e1, e2) is simply encoded asTe1

< Te2
. The

accesses inIS are encoded in a straightforward manner: for each
read/write access, we create three variablesloce, vale and occe
and add constraints that equate each variable to the corresponding
value. To model arbitrary initial values for locations in the map G
lazily, we add a finite set of initial symbolic writes inIS as many
as the number of reads inIS. Finally, we encode the partial order
≺S using the must-happen-before predicate,HB.
Encoding ΦC . The quantified constraints in Sec. 5.2 can directly
serve as input to an SMT solver that supports quantifiers, using
interpreted functions forloc, val andocc. In practice, however,
SMT solvers have difficulty in instantiating quantifiers efficiently.

Therefore, we instantiate the copy constraints explicitlyfor all pos-
sible read and writes inIS using the correspondingloc, val and
occ variables for each access. Modelingcopy(r,w) directly will
introduce Boolean variables of formcopy_r_w, quadratic in num-
ber of reads/writes, which we want to avoid. Therefore, we create
an integer identifier variableIDe for each accesse, and assign a
unique constant toIDw for each write accessw. Now, copy(r,w)
is encoded as (IDr = IDw), which holds when the identifier to
r is same as that forw. This encoding takes advantage of the fact
that a read can only copy a single write.
Still, this explicit instantiation ofΦC for all reads/writes is too ea-
ger and may result in a formula that is cubic in size of the read/write
access set. The next section discusses optimizations to overcome
the bottlenecks due to this eager encoding.

THEOREM 3. Suppose we have an sequentially consistent en-
codingΦ for a CCFGC and a path conditionφ for an error loca-
tion e. If (Φ ∧ φ) is satisfiable, then there exists a feasible inter-
leaved execution ofC to the locatione.

Example. Recall the program and its skeletonIS in Fig. 1. Check-
ing the path condition(r4 6= 3) for theERR node together withΦIS

and copy constraintsΦC leads to a solution with aHB relation that
refines≺S (cf. Fig. 1) by adding pairs(R1, R1′), (R1′, R2) and
(W2, R2′). The accessesR3, W3, R3′, W3′ do not occur, i.e.,
their occ evaluates to false, and they can be ignored. As a result,
we obtain a linearization(W1, R1, R1′, R2,W2, R2′,W2′, R4)
that witness the assertion violation.

6. INTERFERENCE PRUNING
Eager instantiation of the copy constraintsΦC for all pairs of

reads and writes in large programs proves to be a significant bur-
den on the SMT solver during satisfiability check. Moreover,in
case of indirect accesses, it is not clear upfront if a readr cannot
interfere with a writew, i.e.,loc(r) = loc(w) is unsatisfiable, thus
making the search more complex. However, many of these copy
constraints may beredundant, i.e.,¬copy(r,w) holds. For exam-
ple, note that the constraints corresponding toΦ2

C may reduce to
¬copy(r,w) if the right hand side (RHS) of the formula is unsat-
isfiable for somer andw. This may happen due to a number of
reasons. For example, a readr cannot copy a writew that follows
r in the program (R2, W2 in Fig. 1), or a readr in a child thread
cannot copy a writew that occurs in the parent thread after the child
thread terminates. Also,r can only copy fromw if r andw may
interfere, i.e.,loc(r) = loc(w) is satisfiable. In other words, each
read may copy from only a restricted set of writes, and it is waste-
ful to add copy constraints for the writes not in the set. A large
number of these redundant constraints can be detected statically by
analyzing the interference skeletonIS and removed to optimize the
composition (cf. Sec. 7). We now present a systematic methodto
prunethese copy constraints, based on the following notions.
MHP and Kill Set. Given an interference skeletonIS = (S,≺S

), let ≺∗

S denote the transitive closure of≺S . We say that two
accessese1 ande2 may-happen-in-parallel, i.e.,MHP (e1, e2) if
both e1 ≺∗

S e2 ande2 ≺∗

S e1 do not hold. If a writew follows
another writew′ in the same thread, andw interferes withw′ (i.e.,
loc(w) = loc(w′)) in all program executions, then we say thatw
kills w′. More formally, the set of writeskilled by w is given by
Kill(w) = {w′ | w′ ≺∗

S w ∧ loc(w′) ⇒ loc(w)}. Note that for
symbolic valuesloc(w) andloc(w′), loc(w′) ⇒ loc(w) must hold
if w kills w′ in all executions.
Reaching writes. We say that a writew may reach a readr, if
(i) MHP (r,w), or (ii) w happens beforer and for allw′ ≺∗

S r
(w′ 6= w), w 6∈ Kill(w′) holds. We denote the set of writes that
may reachr by Π(r). We computeΠ(r) for each readr as follows.
First, we compute the transitive closure≺∗

S for the given skeleton
IS. Computing (i)MHP (r,w) requires checking if both(r, w)



or (w, r) do not belong to≺∗

S . In order to compute the writes that
are not killed, we perform a light-weightGen-Kill [24] analysis
of the partial order graph for≺S (cf. Fig. 1). Starting from the
node corresponding to the initial write, the analysis computes and
propagates the set of reaching writes to each location in thegraph
(i.e., for each access inIS): each location that generates a writew
may kill the incoming writesw′ that belong toKill(w). Note that
checkingloc(w′) ⇒ loc(w) precisely is expensive if bothloc(w)
andloc(w′) are symbolic values. So, we estimate the kill set con-
servatively by checking ifloc(w) andloc(w′) are exactly the same.
May-Copy Set. In order to prune the redundant constraints inΦC ,
we define themay-copysetC(r) for eachr by restrictingΠ(r) to
interferingwritesw that can occur, i.e.,C(r) = {w | w ∈ Π(r) ∧
(loc(r) = loc(w))∧ occ(w)}. Again, computingC(r) precisely is
expensive: we syntactically check ifocc(w) or (loc(r) = loc(w))
is unsatisfiable. Finally, we instantiateΦ1

C , Φ2
C andΦ3

C only for
pairsr andw, wherew ∈ C(r).

Instantiating the inner quantifier inΦ3
C for all possible writes

w′ may still produce redundant constraints. We prune such con-
straints by checking if (a) the writew′ cannot occur¬(occ(w′),
or (b) cannot happen betweenw andr, ¬(HBet(w,w′, r)), or (c)
loc(w′) = loc(w) is unsatisfiable. We check (a) and (c) syntac-
tically. To check (b), we use the≺∗

IS relation computed above,
i.e., w′ cannot happen betweenw and r if either w′ ≺∗

IS w or
r ≺∗

IS w
′. Our encoding can be further optimized to handleatomic

regionsand to perform a context-bounded [27, 21] analysis (see full
version of the paper). Our experiments in the next section show
that pruning redundant constraints as above leads to significant im-
provement of solver run times.

7. EXPERIMENTS
We implemented the staged analysis approach in the FUSION

verification system [34] for concurrent C programs based onPThreads.
The FUSION system combines dynamic and symbolic verification
techniques in order to verify properties of concurrent programs. In
the first step of its execution, FUSION instruments the givencon-
current program and then runs the programP to obtain a slice ofP .
The slice is represented as a CCFG [34] and contains the threads
created and the original program statements that each thread ex-
ecuted during the run. The slices themselves can grow quite large
depending on the number of statements executed inP and the num-
ber of threads created, and are suitable for preliminary evaluation
of our approach.

In order to evaluate our approach, our implementation focused
on checking assertions as well as data races in the concurrent pro-
gram slices obtained from benchmarks using FUSION. We first
performed data flow analysis on the slices to obtain an interfer-
ence skeleton and computed a pruned set of sequential consistency
constraints over this skeleton. To check assertion violations at an
error location, we add the feasibility path condition for the error
location and employ the Yices SMT solver [9] to check if the set
of constraints can be satisfied. To check data races between two lo-
cations, we add constraints modeling that the corresponding global
accesses are simultaneously reachable, and again check forsatis-
fiability using the solver. All experiments are conducted ona PC
with 2.4Ghz Intel Core2Quad processor with 2GB memory limit
running Fedora 10.

Our evaluation consists of two parts. First, we compared our
staged analysis with a previous approach that uses concurrent single-
static assignments (CSSA) (cf. [34]) for encoding concurrent pro-
grams. CSSA is an extension of single static assignments to con-
current programs to handle both intra-thread data flow (eachvari-
able must be assigned only once) as well interference (values of
all concurrent writes are propagated to each read). The CSSArep-
resentation retains all the local control and data flow; moreover, a
large number of fresh variables are introduced (in each thread) to

model joins and interference. Due to the presence of complexlocal
control and data flow, the approach performs repeated intra-thread
reasoning for each interleaving of the program threads. Second, we
evaluated the efficiency of optimizations when encoding composi-
tion using sequential consistency. More precisely, our goal was to
estimate the impact of pruning redundant interferences.

We evaluated our approach using the following benchmarks ob-
tained from the public domain. The first set of benchmarks con-
sist of the C implementation of theindexer example [11] using
Pthread library, parametrized by the number of threads. In this
example, multiple threads read and write to a hash table with128
entries. As the number of threads increases beyond 12, the number
of shared accesses also increases rapidly due to hash collisions. We
check the property that no collision happens on a particularentry of
the hash table. We evaluated the effectiveness of our approach for
handling increasing number of threads as compared to the CSSA
based implementation which does not perform summarization. We
experimented with CCFGs with up to 32 threads to evaluate the
scalability of our approach. The second set of benchmarks are ob-
tained from traces of a bank account program (account) and a syn-
chronization based module (SynchBench). Both these benchmarks
were checked symbolically for existence of data races. The bench-
marks are marked in thename-(#T)format where#T denotes the
number of threads.

Fig. 3 shows the comparison of various modes of our tool with-
/without summarization and optimized composition. The mode
Old(+O) denotes an implementation of the symbolic checks based
on CSSA encoding [34]. This implementation has been optimized
extensively to reduce the number of redundant constraints (similar
to Sec. 6), but does not use summarization. In the next mode (+S-
O), we perform summarization but composition is done eagerly by
instantiating copy constraints for all pairs of reads and writes. This
eager instantiation leads to a large number of redundant constraints.
Finally, (+S+O) denotes our approach with both summarization and
optimized composition. We do not present results for the mode
without summarization or optimization (-S-O) because of its poor
performance.

Our experiments show that mode (+S+O) outperforms all other
modes on our benchmarks. For example, as the number of threads
in the indexer example is increased successively from 20 to 31,
both Old(+O) and (+S-O) modes scale much worse than (+S+O)
mode. The mode (+S-O) without optimizations performs very poorly
since the eager instantiation of sequential consistency (SC) con-
straints allows each global read to link with all global writes, e.g.,
in theindexer(32) example, each read can copy from1856 writes.
The SMT solver is not able to handle such a large number of copy
constraints effectively and timeouts in (+S-O) mode for 25 or more
threads. This shows that a naive encoding of SC constraints is not
useful for analyzing real-life benchmarks; an optimized encoding
that avoids redundant constraints is needed. Similarly, the mode
with optimized composition but without summarization Old(+O)
timeouts for 31 and 32 threads. In contrast, the mode with both
summarization and optimized composition (+S+O) finishes analyz-
ing indexer(32) in only 104s.

For theaccount benchmark (similarly for the SynchBench ex-
ample), we again observe that summarization (+S+O) leads tofaster
run times as the number of threads increase from11 to 21. This
supports the fact that performing repeated intra-thread reasoning
when exploring large number of thread interleavings takes asignif-
icant toll on the overall efficiency of the solver. We observed that
the average number of writes that a read may copy (cf. Sec. 6) after
optimized composition in (+S+O) mode is2 − 3 for all the bench-
marks (maximum varies between10 − 20). The results show that
both summarization and optimized composition are indispensable
for scaling up the analysis, and summarization can make verifica-
tion tractable in cases where optimized composition is not suffi-
cient. Moreover, note that the encoding used in context-bounded



Bm |N| |E| |R| |W | Old(+O) +S-O +S+O
SynchBench(2) 108 107 6 19 1 1 1
SynchBench(13) 723 722 270 289 9 711 3

indexer(20) 1312 1439 110 291 0.1 355 0.1
indexer(27) 2142 2355 284 707 23 >1800 0.3
indexer(28) 2294 2523 322 797 97 >1800 4
indexer(29) 2446 2691 360 887 129 >1800 6
indexer(30) 2859 3149 468 1104 517 >1800 7
indexer(31) 3398 3747 594 1332 >1800 >1800 13
indexer(32) 4585 5065 888 1856 >1800 >1800 104

account1 (11) 906 905 134 372 1 121 1
account2 (21) 1748 1747 260 708 25 >1800 10

Figure 3: Experiments comparing (a) CSSA-based algorithm [34], without summarization, with optimizations (Old+O) (b) with
summarization, no optimization (+S-O) (c) our method with summarization and optimization (+S+O). |N | (|E |) = total number of
nodes(edges) in the CCFG analyzed.|R| (|W |) = total number of global reads (writes). All run-times are in seconds.

methods [21, 20] roughly corresponds to the (+S-O) mode where
each global read may link with all possible shared variable writes.
Therefore, the previous encoding is impractical for large programs.

8. RELATED WORK
Context-bounded Analysis.A number of approaches check con-
current software under a fixed context bound [27] since the verifi-
cation problem is both decidable and practically useful [25]. Both
symbolic [29, 21, 20] and explicit [25] approaches have beenpro-
posed for CBA. A recent approach [21] transforms a concurrent re-
cursive Boolean program (with finite data) under a context bound to
a sequential program, which is then analyzed using sequential anal-
ysis. [20] extend the method to perform context-bounded analysis
of concurrent C programs by unrolling loops and recursion finitely
to obtain decidability and employing a precise memory represen-
tation for C programs. In contrast, our goal is to verify real-life
concurrent C programs where both (i) variable domains may bein-
finite and (ii) arbitrary context switches are allowed, (iii) without
any redundant bi-modal reasoning. To achieve the condition(i)
we need to structurally bound the loops and recursion in our pro-
grams, similar to [20]. Although [21] can be extended to achieve
(ii) and avoid bi-modal reasoning, such an extension is impracti-
cal. More precisely, the extension will have to (a) duplicate and
abstract all global state variables ateachpotential context switch
location and (b) compute summaries for each pair of intra-thread
locations [22], resulting in an extremely inefficient method. In
contrast, our staged analysis abstracts interference by introducing
fresh variables at global read locations only. Further, by structurally
bounding the program (which is unavoidable due to decidability is-
sues), we not only avoid redundant bi-modal reasoning, but in fact,
separate the intra- and inter-thread reasoning completely.
Thread-modular summarization. Path compression techniques [36]
rely on identifying interference-freetransactionsand are unable to
summarize data facts across multiple transactions, causing redun-
dant bi-modal reasoning. The Zing model checker employs func-
tion summarization [28] in presence of interference by identify-
ing transactions during path-enumeration basedexplicit-stateex-
ploration. In contrast, our method performs precise summarization
symbolicallybased on symbolic memory accesses as opposed to
potentially infinite number of concrete-valued accesses. Further,
we do not need to identify transactions and avoid path-enumeration
by merging symbolic data facts at programjoin locations.
Thread-modular verification. Thread-modular or rely-guarantee
techniques for software include the initial deductive methods [26,
18] followed by more recent methods that employ iterative com-
positional refinement [12, 17, 3, 6] or methods for handling heap-
manipulating programs [15, 33]. Iterative refinement techniques
first abstract the transition relation [12] or the reachablestates [6]
of the individual threads, byover-approximatingthe relation be-

tween global accesses in each thread. If the composition of these
abstractions is not suitably precise to prove the given property, the
methods refine the abstractions iteratively, e.g., based oncounterex-
amples [17, 6] from the property check. Interference abstraction
also makes our thread-modular summaries over-approximate; how-
ever, because our summaries contain the exact relation between
non-concurrent reads and writes, we can obtain the fully precise
system in one step by linking the reads to the writes during com-
position. This is in contrast to the previous methods where alarge
number of iterations may be required before the abstractions are
made suitably precise for proving a property. Instead of perform-
ing rely-guarantee reasoning [18] as in [12, 17, 6], our focus is on
compositional minimization [5, 16]: we use summaries to separate
intra- and inter-thread analysis and obtain a compact representation
of threads before composition.
Concurrent Data Flow Analysis. Most concurrent data flow anal-
yses (cf. [10]) employ a finite-height data domain and perform re-
dundant bi-modal reasoning by repeated intra-thread propagation
of new symbolic domain values while exploring all relevant in-
terleavingsexplicitly. In contrast, our staged analysis performs
summarization over infinite domains using program expressions
(terms), followed bysymbolicexploration of interleavings inside
an SMT solver [9, 8].
Other Symbolic Encodings.Another set of methods use SAT/SMT
solvers to check concurrent programs with an encoding that does
not employ an explicit scheduler [13, 34]. None of these approaches
employ thread-modular summarization and therefore perform re-
dundant bi-modal reasoning: the solver must reason over concur-
rent interleavings as well as complex local transitions alternately.
The encoding presented in FSE 2009 [34] is based on transforming
a (bounded) program into a concurrent single static assignments
(CSSA) form and is restricted to handling simple integer programs,
in contrast to ours, which handles arbitrary C programs and per-
forms summarization. The idea of interference abstractionis em-
ployed implicitly in the CSSA representation, but not exploited to
compute summaries.

Verification of concurrent data structures under relaxed low-level
hardware memory models [2] employ axioms specifying the al-
lowed load/store event orderings to the hardware memory, inor-
der to precisely model the concurrent interleavings. Our method,
instead targets high-level static analysis of C programs; for high-
level analysis, it is sufficient to consider only sequentially consis-
tent (SC) orderings of reads and writes, as opposed to more relaxed
memory orderings considered in [2]. As a result of this restric-
tion, our method focuses on encoding SC efficiently inside anSMT
solver, which is not considered in [2].

9. CONCLUSIONS



We presented a staged analysis for verifying concurrent C pro-
grams which separates intra- and inter-thread reasoning and ex-
ploits sequential summarization to solve the pervasive problem of
redundant bi-modal reasoning. The key contribution is a thread-
modular program summarization algorithm which abstracts away
all the local control and data flow in terms of global accesses. The
summarized interference skeleton is then used for inter-thread anal-
ysis by employing sequential consistency axioms over the global
accesses. Experimental results on benchmarks show our approach
is more scalable than previous bi-modal methods because it avoids
repeated intra-thread reasoning. Future work will focus onscaling
our approach to larger concurrent systems: the key problem is to
further minimize the set of quantifier instantiations, which are cu-
bic in the size of reads and theirmay-copysets, which causes blow
up on larger benchmarks. Another approach is to avoid explicit in-
stantiation by using quantified SC axioms inside the solver.Our
method can also be extended to perform data flow analysis on less
precise domains than terms, e.g., polyhedra.
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Summarization. Fig. 4 (next page) presents the complete set
of rules for thread-modular summarization of a CCFG. For a node
n, In(〈ψ,L, E〉) denotes the incoming symbolic state atn; tid(n)
is the numeric identifier of the thread containingn; ite represents
the if-then-elseoperator. On analyzing each functionf, we obtain
an interference skeletonIS for f having global accesses contained
in f. Note thatIS in the above rules denotes the skeleton for the
function containing the CCFG node being analyzed.

Most rules are same as those in the Fig. 2 except the new rules:
INIT-F, MK-SUMMARY and FUNC-CALL. At the entry location
entry(f) of each functionf, the INIT rule initializes the local
memory toLf

0 and the interference skeletonIS for f to an empty
set. The rule MK-SUMMARY is used to construct the summary
χf for a functionf at its exit noden = exit(f) consisting of the
skeletonIS computed forf and the stateIn.

The rule FUNC-CALL is used to evaluate and reuse a previously
computed summary forf at a call noden using the evaluation oper-
atorΓ. Suppose we have a summaryχf = (ISf , If ) for a function
f whereISf = (Sf ,≺Sf

) andIf = 〈ψf ,Lf , Ef 〉 such that both
ISf andIf are represented in terms of the input local memory map
L0

f to f. Given a partial order≺, we use⊤(≺) and⊥(≺) to denote
the set ofmaximal(top) andminimal (bottom) elements in≺. To
evaluateχf under the calling context represented by the mapL,
the functionΓ substitutesL0

f by L in all components ofχf . Fur-
ther, all read placeholder values (due to interference abstraction)
are substituted by fresh placeholders in all components ofχf . Af-
ter the above substitutions onχf , we obtain a skeleton(S′,≺S′),
path conditionψ′ and memory mapL′. The data propagated to
function return noden′ in the FUNC-CALL rule is now given by

〈ψ ∧ ψ′

,L′

,⊤(≺S′)〉

where, the path condition is computed by conjoining the incoming
path conditionψ with ψ′, the new local map isL′ and the set of
last events contains the set of top events⊤(≺S′) in S′. Moreover,
the current interference skeletonIS is updated to add partial orders
between all events inE and set⊥(≺S′) of bottom events inS′.

THEOREM 1. The interference skeletonIS = (S,≺S) is a pre-
cise thread-modular summary of the finite CCFG. Moreover,≺S

respects the program order.

Proof. Follows by construction of the data flow analysis algorithm.
All the transformers and joins are precise. The setE maintains the
program order and is used to construct≺S .

THEOREM 2. A program path-consistent linearizationIS′ of
IS is feasible iff it is sequentially consistent.

Proof.
(⇐) A sequential consistent linearizationL, by definition, always
corresponds to a set of concrete execution traces. LetT be one such
trace. SinceL is program path-consistent,T can be obtained by in-
terleaving paths from the individual threads in the CCFG. HenceL
is feasible.
(⇒) By definition, if a linearizationIS′ is feasible then it corre-
sponds to a concrete interleaved execution of the CCFG. All con-
crete executions are sequentially consistent. Hence,IS′ is sequen-
tially consistent.

THEOREM 3. Suppose we have an sequentially consistent en-
codingΦ for a CCFGC and a path conditionφ for an error loca-
tion l. If (Φ∧φ) is satisfiable, then there exists a feasible execution
ofC to the locationl.

Proof. Let Φ = ΦIS ∧ ΦC . Let us associate a dummy global write
accessw with locationl, so thatocc(w) = φ. If Φ ∧ φ is satisfi-
able, then we get a partial order relationHB on the accesses inIS.

Remove the global accesses that don’t occur, i.e.,occ(e) is false,
and those that happen afterw from HB. Collapse the partial or-
derHB into a linearizationL arbitrarily. SinceΦC is satisfied, so
L is sequentially consistent. IfL is program path consistent also,
then by Theorem above,L is feasible, and there exists a feasible
execution ofC that ends at accessw, i.e., locationl. It remains
to show thatL is program path consistent. We show thatL corre-
sponds to exactly one path for each thread sub-graph in between a
FORK-JOIN node pair. We can concatenate such paths to obtaina
projection ofL on the full CCFGC. Note that since path condition
φ is satisfiable, and path conditions are conjuncted at JOIN nodes
for encodingΦIS , L must correspond toat least onepath for each
thread in the sub-graph. It remains to show thatL cannot contain
accesses from multiple paths in a thread. Consider a basic con-
ditional branch-join sub-graph in a thread and the outgoingpaths
from the branch node. Due to the encodingΦIS , either all accesses
on these paths occur, or don’t occur. So, exactly one outgoing path
is feasible. By concatenating such feasible paths at each branch
node, we obtain exactly one feasible path through the thread.
Context-bounded analysis. We can restrict the solver to search
for executions limited to a fixed context bound by adapting the
encoding in [35] to our setting. More precisely, we introduce a
new predicateCtx(e) for each accesse; We setCtx(w) = 0
for all initial writes w. Given two accessese1 and e2, we set
Ctx(e1) ≤ Ctx(e2) if e1 ande2 belong to the same thread and
e1 ≺IS e2. Otherwise, we add constraints of the form

copy(r,w) =⇒ (Ctx(r) < Ctx(w))

for each readr that may-copy writew andMHP (r,w) holds.
These constraints ensure that if a readr copies a concurrent write
w, then at least one context switch must happen in between. Let
the global accessef be such that∀e ∈ S.(e ≺S ef ) (if ef does not
exist, we create a new dummy access). Finally, to restrict the search
to a given boundk, we add the constraintCtx(ef ) ≤ k. The proof
of correctness of this encoding is a straightforward extension of the
proof in [35] and is omitted. Note that our approach does not dupli-
cate the complete global state at each context switch location as in
previous approaches [21], whose cost is proportional to product of
the number of global variables and the number of thread locations.
Instead, new placeholders are introduced lazily only at each global
read location, making the cost linear in the number of globalreads.



INIT-F
n ∈ entry(f)

In(〈true, L0
f , {}〉) IS = ({}, {})

GUARD

n
g
−→ n′ In(〈ψ,L, E〉)
ψg = eval(g,L)

I′n(〈ψ ∧ ψg,L, E〉)
ASGN-LOC

n
lhs:=rhs
−−−−−−→ n′ In(〈ψ,L,E〉)

l = eval(lhs,L) v = eval(rhs,L)

I′n(〈ψ, store(L, l, v), E〉)

ASGN-GLB-R

n
lhs:=G[e]
−−−−−−−→ n′ In(〈ψ,L,E〉) IS = (S,≺S)

l = eval(lhs,L) l′ = eval(e,L) R = (l′, r, ψ) r is fresh

I′n(〈ψ, store(L, l, r), {R}〉) IS = (S ∪ {R},≺S ∪{(e, R)|e ∈ E})

ASGN-GLB-W

n
G[e]:=rhs
−−−−−−−→ n′ In(〈ψ,L, E〉) IS = (S,≺S)

l = eval(e,L) r = eval(rhs,L) W = (l, r, ψ)

I′n(〈ψ,L, {W}〉) IS = (S ∪ {W},≺S ∪{(e,W )|e ∈ E})
INTRA-JOIN

m→ n m′ → n (tid(m) = tid(m′) = tid(n))
Im(〈ψ1,L1, E1〉) I

′

m(〈ψ2,L2, E2〉)

In(〈ψ1 ∨ ψ2, ite(ψ1,L1,L2), E1 ∪E2〉)

FORK

FORK(n) n→ p n → c
tid(p) = tid(n) In(〈ψ,L, E〉)

Ip(〈ψ,L, E〉) Ic(〈ψ,Lc, E〉) Lc is fresh
INTER-JOIN

JOIN(n) p → n c→ n tid(p) = tid(n)
Ip(〈ψp ,Lp, Ep〉) Ic(〈ψc,Lc, Ec〉)

In(〈ψp ∧ ψc,Lp, Ep ∪Ec〉)

MK-SUMMARY
n

return
−−−−−→ n′ n = exit(f) In(〈ψ,L, E〉)

χf = (IS, 〈ψ,L, E〉)

FUNC-CALL
n

call f
−−−−→ n′ In(〈ψ,L, E〉) IS = (S,≺S) ((S′,≺S′), ψ′,L′) = Γ(χf ,L)

I′n(〈ψ ∧ ψ′,L′,⊤(≺S′)〉) IS = (S ∪ S′,≺S ∪{(e, e′)|e ∈ E ∧ e′ ∈ ⊥(≺S′)})

Figure 4: Complete set of summarization rules.


