Staged Concurrent Program Analysis

Nishant Sinha, Chao Wang
NEC Labs America, Princeton, NJ, USA.
{nishants,chaowang}@nec-labs.com

ABSTRACT

Concurrent program verification is challenging becausevitlves
exploring a large number of possible thread interleavinggther
with complex sequential reasoning. As a result, concurpeot
gram verifiers resort to bi-modal reasoning, which altergdie-
tween reasoning over intra-thread (sequential) semaatidsnter-
thread (concurrent) semantics. Such reasoning oftenviesale-
peated intra-thread reasoning for exploring each inteieg(inter-
thread reasoning) and leads to inefficiency. In this papepmesent
a new two-stage analysis which completely separates iatnd-
inter-thread reasoning. The first stage uses sequentigigrose-

mantics to obtain a precise summary of each thread in terms of
the global accesses made by the thread. The second stage pe

forms inter-thread reasoning by composing these threadiitan
summaries using the notion of sequential consistency. risse
violations and other concurrency errors are then checketiign
composition with the help of an off-the-shelf SMT solver. Waeve
implemented our approach in the FUSION framework for check-
ing concurrent C programs shows that avoiding redundamtduial
reasoning makes the analysis more scalable.

Categories, Subject Descriptors:D.2.4 [Software/Program Veri-
fication]: Model Checking, Formal Methods.

General Terms: Algorithms, Verification.

Keywords: Thread-modular Summarization, Interference Abstrac-
tion, Interference Skeleton, Staged Analysis, Sequeftalsis-
tency, Axiomatic Composition, SMT solvers.

1. INTRODUCTION

The threadl’; contains an assertidh > 4); to check this assertion,
various interleavings df; andT> must be considered (inter-thread
reasoning), based on when the staterrfent= 5) in 1> is exe-
cuted. Once the value afis obtained £ € {3,5}), the statements
(t := z;a := t+ 1;b := a + 3) in T} are composed via intra-
thread reasoning to check the assertion. Bi-modal reagafithis
form is inherently wasteful because the analysis enginerisefl
to perform reasoning over similar intra-thread programareg) re-
peatedly. Intra-thread (or thread-modular) program surizag@on
is a possible solution to this problem. However, classicagmm
summarization methods [31, 30] designed for sequentiagrpros
are not applicable in a concurrent setting because of erentes
on shared locations from concurrent threads.

In this paper, we present stagedconcurrent analysis, which
avoids redundant bi-modal reasoning. The first stage (suipara
tion) consists of a new algorithm to summarize the indivigura-
gram threads in the presence of concurrency. The summagp-s r
resented in form of ainterference skeletgrwhich is a partially-
ordered set of all global read and write accesses of prodreeads.
The second stage performs composition symbolically by @éingo
feasiblelinearizationsof the above partial order using a sequen-
tial consistency (SC) criterion [1] on the global accesd&nally,
we check property violations by using an SMT solver [9, 8] ethi
searches for a linearization that violates the propertyeliwat be-
cause the two stages perform either intra- or inter-threagon-
ing, we achieve a complete separation between intra- aed- int
thread reasoning, and thus avoid costly bi-modal altesnalie-
tween them.

The key idea behind summarization in the first stage is that of

Checking properties of shared memory based concurrent pro_interference abstractianany read access to a shared memory lo-

grams statically with model checking is expensive becawsadounts
to exploring large number of interleavings of the concurtereads.
Methods often ameliorate this cost by using partial ordehéjues [5,
14, 11] and causal orderings imposed by synchronizatiom-pri
itives, e.g., locks. Unfortunately, most of the methodsethier
explicit [5, 14, 11] or symbolic [29, 13, 21, 20, 34], resatredun-
dantbi-modalreasoning: the analysidternatesbetween reasoning
over theintra-thread and thénter-thread semantics. For example,
consider two concurrent threads and7> as follows:

Ty :(z:=3;t:=z;a:=t+1;b:= a+ 3;assert(b > 4);)

T : (x:=5;)

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

FSE-18November 7-11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

cation (global read) in the program is abstracted by a frgsh s
bolic variable. These fresh variables (linear in the nundfeeads)

model arbitrary interference to the shared location videsrin the

same or a concurrent thread. Interference abstractiofffeicteen-

ables thread-local summarization, while assuring us tietnter-

ferences due to concurrent writes can be taken into accaaihy |
and precisely in the subsequent composition stage.

The second stage linearizes the skeletottiking the read ac-
cesses with appropriate write accesses in the skelégimmatic
composition (AC) provides a natural way to do this (as opdose
to introducing an explicit scheduler), i.e., we can use #musn-
tial consistency (SC) axioms [1], specified in first-ordegito to
enforce that the linearization corresponds to a feasibhewoent
program trace. AC has been employed to check consistency of
concurrent data structures under relaxed hardware memody m
els (e.g., [2]). In contrast, we propose to employ AC in thevne
setting of high-level static analysis of concurrent progsaIn this
setting, it is sufficient to consider only the SC model of examn
for performing high-level static analysis (as opposed taene-
laxed models). The central problem is how to encode SC «ftigie
to obtain a scalable analysis. To this goal, we propose aadeth

to pruneredundant SC constraints by analyzing the interference performance by an order of magnitude. Although summaomati

skeleton computed in the first stage.

Our staged analysis handles arbitrary concurrent C pragi(arg.,
usingPt hr ead libraries) using pointers and arrays with the help
of a precise memory representation [4]. As opposed to mast co
current analyses, program threads need not be demarcdurd-be
hand; our analysis handles thread creation and destrutaitrely.
Analysis of general recursive programs even with finite daltaown
to be undecidable. To analyze arbitrary C programs overiiafin
data types, we transform the input programs to ti&incturally
boundedversions, where loops and recursive functions in the in-
put program are unrolled to a fixed depth. Finite unrollingha$
form indirectly finitizes the number of threads, and alsodixee
size of heap that the bounded program may access. As a tésult,
analysis of bounded programs becomes decidable.

techniques are well-known for sequential program analf&ls

30], they cannot be directly employed here: because offarter
ence [26] on shared locations by concurrent threads, the vahd
from a shared location in a thread may not be the same as the pre
vious value written to the location in the same thread.

There exist technigues that ameliorate this problencdiiaps-
ing a set of intra-thread transitions into a single one, e.gth pa
reduction [36]. However, they can only collapse transgion-
sidetransactionsi.e., regions without any concurrent interference.
Given a transaction between locatidngndl., path reduction col-
lapses all the transitions betwe&nand !, to a single transition.
Unfortunately, these techniques are not effective acrdsisrary
program regions or transactions. In the above examplegrassi
ments to shared variables — 99 represent locations where inter-

We have implemented our approach in the FUSION framework [34erence may occur, which alternate with assignments t@abkes

for verification of concurrent C programs. Preliminary eslon
show that summarization and optimizations during commosare
essential for scalable symbolic analysis of concurrengaims.
The key contributions of this paper are as follows:

e A staged analysis algorithm for verifying concurrent pro-

grams consisting of (Stage 1) a precise thread-modular sum-

marization of individual threads, and (Stage 2) an optichize

composition step over the summary using sequential consis-

tency axioms, followed by checking assertion violations us
ing an SMT solver.

e A thread-modular data flow analysis based on interference

abstraction to summarize structurally-bounded conctipen
grams in form of an interference skeleton.

e Optimized composition of the interference skeleton by sys-

tematically pruning redundant SC constraints between the

global accesses by static analysis of the skeleton.

1.1 Redundant bi-modal reasoning

a99 =a98 + 1; z99 =a99y; 5 A: assert (x ==

al00 = a99 + 1; 6

S2: x = al0o;
Consider the fragments of concurrent threddsand7> shown
above; the variables) — a100 are local, and the rest(z1 — 299)
are shared; our goal is to check the assertiaat line 5.7 andT>
may interleave in many possible ways; an efficient analyaset
on say, partial order reduction [5, 11] will consider a rejergtative
set of such interleavings, and compute the value af the asser-
tion A. Analyzing each interleaving amounts to bi-modal reaspnin
which alternates between intra- and inter-thread reagoiar ex-
ample, consider the interleaving S3-S4-S1-S2-A: the amaljrst
considersT?, settingz to 3 and5 at S3 and S4 successively (intra-
thread reasoning), and then switche&tdinter-thread reasoning),
successively computingd — a100, z1 — 299 andz (intra-thread),
and finally, switches back t@> to checkA using the computed
value ofz. This form of bi-modal reasoning i®dundant since
similar intra-thread reasoning is repeated for each isd®ihg con-
sidered. For example, note that00 = (a0 + 100) irrespective
of the interleaving ofl} andT>, considered. However, to analyze
another interleaving, say S3-S1-S4-S2-A, the values- a100
must berecomputedbecause:0 = 0 now as opposed ta0 = 5
in the previous interleaving. Redundant intra-threadaeig (or
composition) takes its toll on both explicit [5, 14, 11, 3@dssym-
bolic [13, 21, 20, 34] analysis techniques, often decreptieir

[x >=105);

Thread 171) Thread 2 %)
1 ..
2 S1:. a0 =x; 1 S3:x=0;
3 al=a0+1; z1 =al; 2 ..
4 a2=al+1; z2 =a2; 3 S4:.x=05;
5 4 .
6
7
8

a0 — a100. Therefore, path reduction methods cannot collapse the
assignments to infer thatl00 = (a0 + 100).

Our method avoids this problem by using the idea of interfer-
ence abstraction, which, in turn, enables data-flow baseusu
rization. First, the value of shared variahteead at line2 in T
is abstracted by a fresh symbolic variable, $ay Since the as-
signments to variablesl — 100 are not influenced by any other
interferences, our data-flow propagation successfullypgas that
al00 = r¢ + 100. Further, our method precisely summarizes all
local control and data flow in terms of global accesses, asgign-
ment toz1 atline3 in Ty gives rise to a global access evefit with
valueval(Z1) = ro + 1. Similarly, global accesseg2 — Z99 are
computed with their relative orde#Z(l < Z2 < Z3...).

Lal and Reps [21] present address this problem in the satfing
context-bounded analysis (CBA) of programs with finite-@am
variables (extended to C programs in [20]). In CBA, a concur-
rent program is analyzed assuming only a fixed number of gbnte
switches occur between threads. Context-bounding allowsfa
set of context switch (CS) locations and model the interfeeeat
the CS locations only. This is done gyessingor abstracting) the
value of the global state at each CS location. Since no erente
is possible between each pair of CS locations in a threadtand t
number of CS locations is finite, sequential summarizatim twe
applied between each CS location pair. Guessing the gltdiaiss
however, involvesuinnecessary duplicatioof the shared state at
each CS location. This is because each program location rady m
ify only a few shared variables, and hence it is extremelificient
to duplicate all shared variables at every location.

For example, the method [21] will duplicate all the globativa
ables ¢1 — 299, z) at all locations in thread, and compute
summaries between all pairs of locations. This summadgas
quadratic in the number of thread locations and the globet va
ables and incurs a high overhead. Further, in the improved la
algorithm [21], the summaries cannot be reused acrosspteuiti-
terleavings if the global state at a CS location is differacttoss
interleavings, which causes redundant bi-modal reasomgpn-
trast, our method avoids bi-modal reasoning and the nunfiibeo
global access events as well as the fresh variables inteodinc
our summaries is linear in the number of shared variablessese
thus enabling a practical analysis. Moreover, it is posditlobtain
CBA as a special case by fixing the context bounds in our aisalys

2. OVERVIEW

CCFGs. We represent concurrent programs in form of concurrent
control flow graphs (CCFGs), which can be viewed as an exiansi
of control flow graphs (CFGs) for sequential programs to conc
rent programs. A CCFG €V, E), consists of a set of nodé&s and

a set of edge#’. Each edge irF is labeled by a guard condition

g and a (possibly empty) set of assignments of f¢ths := rhs).
Intuitively, the assignments are executed iff the guarddid@n

holds. The set of nodelg contains two special nodes FORK and
JOIN, to model thread creation and termination, respdgtiva
FORK (JOIN) node has a single incoming (outgoing) edge, and
multiple outgoing (incoming) edges. Individual progrannetids
are modeled as sub-graphs of the CCFG. Function calls are mod
eled in the standard way [31] with call and return edges &bbly
assignments to parameters and return variables resggctive
Synchronization constructs, e.g., mutex, condition \des, etc.,
are modeled using shared variables. For example, acqlitkdk
in threadT; is modeled as an edge with gugi#¢==0) and assign-
ment(lk :=). Instantaneoutest-and-seprimitives are modeled
by marking the corresponding sub-graphs of the CCF@tasic
which are referred to as atomic regions. The assertionziottiy-
inal program are transformed ingsror nodeswhile constructing
the CCFG; assertion checking reduces to checking if thastsex
feasible interleaving of concurrent thread paths in the GGlrat
terminates at the error node. We distinguish the two kindsiaf
locations in the CCFG: théntra-thread joins occur due to path
merging inside a thread, while tleter-thread join corresponds to
the JOIN nodes. An example is presented in the next section.
Read and Write Accesses.We refer to each read or write to a
memory location as a read or write access respectively. Agngm

path enumeration in the CCFG. At the intra-thread join mo{of.
Sec. 2), e.g., node 9, the path conditions disggunctedfollow-

ing the standard sequential semantics, while at the ihteat join
node (node JOIN), the path conditions a@njunctedto ensure
simultaneous reachability of the node by all threads. Taklzes-
sertion violations, we computrror conditionsat the error nodes,
which correspond to the computed path conditions at the,reode

¢ = (r4+ # 3) at ERR node. These error conditions are checked
during the second stage. The analysis also computes al gartia
der <s (see Fig. 1(c)) denoting the relative order of events. Note
that I.S abstracts away all the thread-local control and data flow
from the CCFG and only contains the global access informatio
Computing the interference skeleton is non-trivial foriaewy C
programs (with pointers and complex data types); we prehent
full algorithm in Sec. 4.

Stage 2.The second stage of our analysis explores the feasible con-
current behaviors of the CCFG by performing inter-threathgo-
sition. Note that in the skeletohS computed above, the values of
the global reads are unconstrained symbolic variables. cohe
position step constrains these valuedihiting them to the global
writes (cf. Sec. 5). Note that we cannot link reads with verite
arbitrarily, because we only desire feasible program biehswdur-

locationl is said to be shared if more than one thread reads or writes ing composition, e.g., the read accd® cannot be linked té12

to [. In the following, we will mainly concern with accesses to
shared memory locations, callgtbbal accessesEach global ac-
cesse is represented using a symbolic tuglec, val, occ), where
loc(e) andval(e) correspond to the memory location and the value
that is read/written during the accessandocc(e) is the neces-
sary condition fore to occur. A global access,; is said tointer-
fere with another global access if one of them is a write and
loc(er) loc(e2) is satisfiable. Note that every usage of the
phrase ‘global access’ in this paper is implicitly identifigith this
tuple representatiofioc, val, occ).

A Motivating Example. Consider the multi-threaded C program
based on thé&t hr ead library shown in Fig. 1(a) . The program
contains a single shared variahle Two threads are created from
the main thread, which read and write Fig. 1(b) shows the cor-
responding concurrent control flow graph (CCFG). In the CCFG
FORK and JOIN represent thread creation and terminatiomtgoi
The CCFG consists of sub-graphs for three threads, maireébd
FORK, Join,10, ERR),¢; (nodes:2- 9) andt, (nodes:2’ - 9").

For brevity, we have merged multiple consecutive FORK andNJO
nodes into a single node. Moreover, new assignments have bee
added to ensure that each statement makesost oneglobal ac-
cess. Fig. 1(b) also shows the global accesses in the CBFG:
W2, W3, W2' W3’ are the global writes, whil&1, R2, R3, R1/,
R2', R3', R4 are the global reads. Let us see how our staged anal-
ysis works on the given CCFG.

Stage 1. The first stage performs a data flow analysis (Sec. 4) on
the CCFG is used to compute a summary in form ohtarfer-
ence skeletoif/ S = (S, <s)). TheIS summarizes the CCFG
in terms of global accessesand their partial ordexs. Starting
from the entry node of CCFG, the analysis iteratively corepand
propagates symbolic data consisting gah conditionand alo-

which follows R2 in the program order. The notion eéquential
consistencySC) [1] enables us to find a suitable relation between
the reads and writes systematically: SC constraints eaftivat
each read acceg® must link withsomewrite access, sal/, such
that both access the same memory location, the value whit&V

is the value read byz, andIW" must be the last such write that hap-
pens beforer in an execution trace. In order to capture the feasible
executions during composition, we add SC constraints batree
reads and writes idS (Sec. 5). For example, the SC constraints
relating R2 (loc = Qz, val = ra, occ = (r1 < 1)) to W2’
(loc = Qx,val = (r5 + 1), occ = (r] < 1)) are of form:

copy(R2,W2") = (ro =r5 + 1) A (ry < 1) A HB(W2', R2)

where the predicateopy(R2, W2') denotes thaR?2 is linked to

W2 and HB(W?2', R2) denotes that¥’2’ must happen before
R2. Constraints enforcing that no other write happens between
and W2’ and thatR2 must link with some write are also added
(see Sec. 5). In Sec. 6 we show how to add SC constraints in an
optimized way toprune redundant constraints. Finally, the error
conditiong = (r4 # 3) is checked for feasibility, together with the
encoding of/.S and SC constraints by an SMT solver [9, 8]. If the
constraints are satisfiable, then a sequence of accest8ssrob-
tained, e.g., W1, R1, R1’, R2, W2, R2', W2', R4) for the above
example. This sequence is then mapped to the CCFG to obtain a
violation witness. By separating the intra-thread sumnaaion in
Stage 1 with inter-thread composition in Stage 2, our aislgs
able to avoid redundant bi-modal reasoning completely.

3. MODELING C PROGRAMS

We first describe how to transform an arbitrary concurrentds p

cal state During propagation, each global read access is assigned agram to a simplified intermediate program by adopting a mgmor

fresh symbolic value (interference abstraction), and tbleaj write
accesses are computed in terms of these symbolic valuesl Fig
shows the details of the global accesses in the skelefonThe
accesse®1, R2, R3 are assigned symbolic values r2, rs. Note
that even thougl1 and R2 are consecutive accessestahey are
assigned different symbolic valuesandrz. This allows us to take
arbitrary interference (writes) from concurrent threate account
during composition. The analysis also collects the patluitimms
under which the global accesses happen, &I, occurs if the
conditionocc(W2) = (r1 < 1) holds.

The analysis merges the propagated data ajdimepoints in
a precisepath-sensitivenanner, to avoid (potentially exponential)

representation which consists of a global memory map tegeth
with local memory maps for each program thread. The simglifie
program is then structurally bounded and representedasraded
CCFG, which is used in our analysis.

3.1 Program Transformation

In order to handle C program constructs like pointers, arsmd
structures uniformly, we fix a memory representation foramaly-
sis in a manner similar to the HAVOC tool [7, 20]. Indirect mam
accesses are handled using a memory NMap which models the
program heap by mapping a memory location (address) to a sym-
bolic value. All variables and objects whose address carakent

int x;

voi d add_gl obal ()
t
if
els
}

int main (int argc,

X + 1;

1A

(x 1) x
e X X + 2;

char *argv[])

pthread_t t1,

X = 0;

pthread_create(& 1, NULL, NULL,
add_gl obal) ;

pthread_create(& 2, NULL, NULL,
add_gl obal) ;

t2;

pthread_join(tl);
pthread_join(t2);

assert(x == 3);

@

RY1’

/R N P
R2 R3 Rf’ R3’
w2 Wi VVT

R4
(c)

Access| loc val occ
w1 Qx 0 true
R1 Qx 1 true
R2 Qx [r <1
w2 Qr | ro+1 | rm <1
R3 Qx 3 ro > 1
w3 Qr | r3+2 | ro>1
R4 Qx T4 true

(d)

(b)

Figure 1: Example: (a) A multi-threaded C program with two th reads, (b) its concurrent control flow graph (CCFG), and its dobal
summary consisting of (c) the relative order of global acceses and (d) the values of the global accesses. The values folyainprimed
accesses are shown: primed access values are similar. Themmey location for variable x is denoted by@z.

are allocated on the heap. The address of a varialiea fixed
value denoted byawv. Letof fs (f) denote the integer offset of
the location of a fieldf inside its enclosing structure. Using the
above map, we can transform the program statements (debpted
operator7) as follows: (i)7 (e — f) =Men{7 (e)+of£s(f)], (ii)

T (xe) = Mem[7 (e)], (i) T (&e — f) = T (e) + offs(f), (iv)

T (e[i]) = Mem[7 (e) + i * stride(e)], wherestride(e) denotes
the size of array’s type. All C program statements with indirect
accesses can be transformed using the above rules [7, 20].

Shared variables. To detect shared variable accesses in con-
current programs with pointers, we use a conservative flow- a
context-insensitive pointer analysis algorithm by Stegeasd [32].
All the variables that are declared as globals in the prograbe-
long to an Steensgaard equivalence class [32] containithepat
one globally declared variable, are said tcshared Based on this,
we partition the single memory magem above into (i) ashared
memory mayg, to denote the map containing the shared variables,
and map<;, to denote the local memory map for thread with iden-
tifier k. The domains of7 and £r maps are disjoint from each
other (contain different memory locations), thus creatingalid
partition. In contrast to previous approaches which partithe
memory maps based on type- or field safety [7, 20], the abate pa
tion is more fine-grained and therefore improves the stagelysis
by reducing the number of conflicting memory accesses.

All program statements are rewritten in terms of the above pa
tition, e.g., a statement of forln = (*p); wherel andp are
local and shared respectively, is re-writtenlass d p] ;. As a
result, we can now identify all global accesses in the progsgn-
tactically. Variables whose address is not taken in thenaragare
referred to by their names, as before. Moreover, we rewrégto-
gram statements so that no statement may perform more thean on
global read or write, i.e., no statement may contain more tre
occurrence of G. For example, suppose a thiEadntains a state-
mentx (*p); where bothp andz are shared variables; this
isrewritenasp = g &p]; ap = d1p]; d&] = ap;
wherel p andap are fresh variables local tB.

3.2 Structural Bounding

Analyzing concurrent programs with recursion is undedielatd/e,

therefore, obtain decidability bstructurally boundinghe concur-

rent program by unrolling loops and recursive functions hitdi
depth. Structural bounding ensures finite number of threads
heap size; we refer to the CCFG of the bounded programasded
CCFGs.Our method then analyzes these bounded CCFGs for con-
current reachability properties (e.g., assertion violadi or data
races). The presented analysis is sound and complete &jtece

to these bounded CCFGs. Note that although we only consider
bounded CCFGs, the CCFG representation is essential foelmod
ing real-world programs since it allows specifying threagation

and destruction, and the relative order between threadFi@f1).

Both these aspects are not handled by most concurrent analys

4. THREAD-MODULAR SUMMARIZATION

The first stage of our analysis computes a thread-modular sum
marization of the CCFG: summarization gets rid of both |azal-
trol and data flow in each thread and represents them predisel
terms of global accesses.

Global Skeleton. The analysis summarizes the CCFG in form of
a interference skeletohS = (S, <s), whereS consists of the set
of global accesses in the CCFG aRg¢ denotes a partial order on
elements ofS. Recall that each accesdn S contains the corre-
sponding symbolic locatiotvc(e), valueval(e), and the occurring
conditionocc(e). Each accessin S is global; hence, théoc(e)
values correspond to memory locations in G.

Thread-modular summarization is done using a precise data fl
analysis that explores the CCFG in the standard reverseopast [24]
of the nodes while computing tleymbolic datdacts at each node
of the CCFG and propagating the facts to the successors.
Symbolic Data. The data computed at a nodss a tuple of form
(¥, L, E), where (i) is the path condition formula for the set of
paths reaching, (ii) £ is the local memory map for the thread that
n belongs to, and (iii)y denotes the set of global accesses which
happen immediately before (reach) the current location. udée
program expressions (or terms) to represent fotimd £ precisely
during the analysis. Intuitively) captures the reachability condi-
tion for the noden, £ captures the local state (map from memory
locations to their symbolic values) atand E' is used to compute

the interference skeleton iteratively. We also refer toaheve tu-
ple as thesymbolic state, and its fields as.y, s.£ ands.E.
Symbolic Summary. Given a fragment+' of the CCFG (e.g., a
function) having unique entry and exit nodes, the threadutay
summary ofF’ consists of (i) a interference skeletdf = (S, <s)
over global accessesin F', and (ii) a symbolic statéy, £, E) at
the exit node ofF’, wherev, £ and E denote the path condition,
local map and the reaching accesses at the exit node, in tdfrms
the input state map at the entry Bf Note that in the case where
the fragment?’ (e.g., a function body) contains no global accesses,
the function summary reduces to the traditional sequefutietion
summary [31, 30] of form(x, £), which represents the function
outputs in terms of its inputs. For ease of presentation, v fi
describe the analysis assuming that all function callsrdireeid in
the CCFG. Subsequently, we discuss the general inter-guoaie
summarization algorithm.
Error Conditions. Recall that assertions are transformed to error
node monitors in the CCFG. Our analysis retains these nodes i
skeletonl/ S and computes the symbolic statat these nodes. The
corresponding path condition is used to check precise reacha-
bility of the nodes during the composition stage.
Data-flow analysis. A well-known technique for precise program
exploration is symbolic execution [19], which assumes syiinb
values for program inputs and propagates the state (repiessas
program expressions) along all feasible program paths. daia-
flow analysis may be viewed as a form of symbolic execution for
concurrent programs, with two key differences. First, weidv
costly path enumeration (as in symbolic execution) by nmergi
symbolic data at the join locations (intra- and inter-tiorgains,
see Sec. 2) in a precise path-sensitive manner. Second,oig av
exploring exponential number of thread interleavings bsfqren-
ing interference abstraction: each global read accessigres a
fresh symbolic variable (placeholder). These placehsldeodel
arbitrary concurrent writes to the read location; propaggthese
placeholders enables sequential (thread-modular) suizatian in
the presence of concurrency. The analysis propagates lumlpt
cal state through the CCFG; the computed global accessemtre
propagated but are used to construct the interferencetskdls.
Figure 2 presents the rules for propagating data throughRGCC
fragment to be summarized. They consist of rules for initélon
(INIT) at the entry node of the CCFG, propagating data through
guarded edgesSUARD), assignments with only local accesseRSEGN-
LOC), assignments with global access&SGN-GLB-R, ASGN-GLB-
W), splitting data at the FORK node-@QRK), and merging data
at intra-thread INTRA-JOIN) and inter-threadITER-JOIN) joins.
The incoming data at a nodeis denoted by, ((¢, £, E)); read-
/write accesses are represented as tuplgsc(e), val(e), occ(e)).
The summary of the fragmert consists of the skeletohS to-
gether with the data computed at the exit staté'of et us consider
these rules in more detail.
Assignments. Recall that CCFG assignments (cf. Sec. 3) either
perform global accesses via shared raapr local accesses via the
map L. Since no statement accesggsnore than once, we con-
sider three kinds of assignments: (globdly := Gle], Gle] :=
rhs, and (local)lhs := rhs. Let us assume that a procedure
eval(e, L) evaluates expression in the local memory map:
this is done by employing the standard first-order logic apmes
select(L,1) andstore(L,l,v) for manipulating arrays (cf. [23]),
wherel ranges over memory locations anaver values stored at
these locations. To handle a local assignniént:= rhs (ASGN-
LOC), the analysis first obtains the location by evaluatihgin £
(eval(lhs, L)), followed by evaluating ks to obtain the new value
v, and finally computing the updateore(L, [, v) which is propa-
gated. An assignment accessing the shared map (contaitilp
is handled differently since it creates a global accesstev@ap-
pose a node with assignmen&|e] := rhs has the incoming data
I.({(¢, L, E)). The ruleASGN-GLB-W handles this by creating a

global write acces$V = (I, r,) with location! = eval(e, L),
valuer = eval(rhs, £) and the occuring conditior (path condi-
tion atn). Moreover, the skeletohS is updated by adding” and
partial orders between the reaching accessds andW. Simi-
larly, the ruleASGN-GLB-Rfor handlinglhs := G[e] updates! S
with a global readR, where the value of? is a fresh symbolic
variabler (interference abstraction).

Handling Pointers. Recall that we model indirect accesses via
pointers in an uniform manner by employing a precise memepy r
resentation using mags and £ (cf. Sec. 3). Note that by using
select andstore operators for manipulating symbolic data, we can
handle arbitrary indirect memory accesse%teia pointers or ar-
rays, in an implicit manner, without explicitly computiniget alias
sets of these pointers. Indirect memory accesses to thedshaap

G are captured by the location expresslog(e) for each global ac-
cesse; the subsequent composition stage employ$e) to check
for interfering accesses.

Forks and Joins. The analysis merges the data at join locations in
the CCFG in a precise path-sensitive manner. At intra-thjeias
(INTRA-JOIN), the incoming map£; and£, are merged using an
if-then-elseoperator to retain path-sensitivity while the path con-
ditions)1 and+ are disjuncted. At inter-thread joins, the local
map for the child threadd.) is discarded and the path conditions
1p and . conjuncted: this models the fact that both the parent
and the child threads must execute the join location togehhate
that the analysis creates a new local nfapfor the child thread at
the thread creation nod€@®RK), which is discarded at the thread
destruction node (JOIN).

By handling statements, forks and joins precisely during-da
flow analysis and using interference abstraction for globabs,
the algorithm gets rid of all local control and data flow in @€FG:
they are summarized to precise relations between globdlard
write accesses. Together with precise composition in tkestage,
our analysis becomes sound and complete with respect totimelbd
CCFG. Note that for the example in Sec. 1.1, summarizatidh wi
be able to infer that100 = (a0 + 100) and hence repeated intra-
thread reasoning is avoided during composition.

Example. The analysis of CCFG in Fig. 1 proceeds as follows.
First, create a write acce$¥1 = (Qz,0, true) at nodel. At
the FORK node, initialize the local maps for thretid and t2,

L1 and L2, to M; and M, respectively. Consider the propaga-
tion along the threadl, for example. At node, create accesB1

= (Qz,ry,true), add R1 to 1S and updater to { R1}; At node

3, update the path conditiopt to (r1 < 1), add acces$2 =
(Qz,rqe, (r1 < 1))to IS, add(R1, R2) to <5, updateE to { R2},
and update mag, to store(Mi, @tmp,r2). At node5, add
W2 = (Qz,V,(r < 1))toISwhereV = (1+select(L1, Qtmp)),
i.e.,V = (14 r2), and so on. At the intra-thread join no@e
the incoming states are merged to obtdin= (r1 < 1V ry >

1) = true and L1 = store(M1, @tmp,ite(r1 < 1,r2,73)) and

E = {W2,W3}. Atinter-thread join nodeJO N, the incom-
ing path conditions are conjuncted (triviatyue) and E merged.
Finally, the error condition is obtained from the path coiodi
(ra < 3) forthe ERR node. The complete summary of the CCFG is
givenin Fig. 1 (c) and (d). Note that we do not propagate aogal
read or writes during CCFG exploration: all the global asessare
captured in/S. Although the data-flow analysis algorithm works
on the complete CCFG, the analysis is thread-modular,aaeh
thread is analyzed independently using interference atisin.
Function Summaries. The above algorithm can summarize arbi-
trary (bounded) concurrent programs assuming that funetare
inlined. However, inlining causes blow up of the analyzeotjpam
and makes it difficult to exploit the modular sequential perg
structure. We can extend the above algorithm to performralara
interprocedural analysis [31, 30] based on computing sumesa
at function boundaries and reusing these summaries at tirggca
contexts. A function summary consists of a interferencéesie

n € entry(CCFQ)

INIT I, ({true, Lo, {}))

g9 /
n-—mn

GUARD 1/19 :eva’l(g?‘c)

In((4, L, E))

lhs:=rhs ’
_—

(¢ Apg, L, E))

lhs:=G|e] ,
n—mn

I = eval(lhs, L)

n n' In((¢, L, E))
ASGN-LOCl = evaf(lhs,[l) v = eval(rhs, L)
I, (¢, store(L, 1, v), E))
In(<w7£7E>) IS = (Sv '<S)
! = eval(e, L) R=(,r1) r is fresh

ASGN-GLB-R

I ((h, store(L,1,7), {R}))

IS = (SU{R}, <s U{(e,R)|e € E})

! %3" e W) T o o o e By
= evall(e, r = eval(rhs, =(,r, m (Y1, L1, E1)) I, ((2, L2, E2
ASGN-GLB-W INTRA-JOIN
L, £,{W})) 1S =(SU{W}, <s U{(e,W)|e € E}) In((1 V 92, ite(y1, L1, L2), B1 U Ea))
FdOR[—((n()l n—p n£—> c JOIN (n) p£—> n c—on ti[t:i(p) = tid(n)
FORK tid(p) = tid(n) In({t, 7E>) INTER-JOIN Ip(($p, Lp, Ep)) Lc((te, Le, Ec))
In((, £, E)) Ie({$, Le, E)) Lcisfresh In((¥p A e, Lp, Ep U Ec))

Figure 2: Transformation rules for thread-modular summari zation of a CCFG fragment. For a noden, I,({¢, £, E)) denotes the
incoming symbolic state atn; tid(n) is the numeric identifier of the thread containingn; ite represents theif-then-elseoperator. The
summary consists of the interference skeletoiS = (S, <s) and I., computed at exit nodeez of the fragment.

(global accesses made in the function), together with tbed Eym-
bolic statel at the exit node of the function. Here, the exit state
L is computed using a fresh symbolic input stateat the func-
tion input. In contrast to explicit summarization approgghvhich
depend on detecting transaction boundaries [28, 36], otinade
can compute symbolic summaries for arbitrary program regio
across multiple transactions. The key problem is how toegus-
computed summaries: given a calling context sttehe interfer-
ence skeleton of the summary is duplicated and all globassas
evaluated in the incoming stat¥ by substitutingC’ for £Z;.

THEOREM 1. The interference skeletdit = (S, <s) is a pre-
cise thread-modular summary of the finite CCFG. Moreowes,
respects the program ordér

5. AXIOMATIC COMPOSITION

We now describe the second stage of our analysis which com-
putes the inter-thread composition by using sequentiadistency
axioms that link the read and write accesses in the threatiilao
summaryl S correctly.

5.1 Linearization of the Global Skeleton

A linearization L of a interference skeletohS = (S, <s) is a
tuple(S’, <s/), where (i)S’ C S, (ii) <s- is a total order, and (iii)
for all rw, rwa € 8, rw1 <s rwe = rwi1 <g rws. In other
words, a linearization of S is obtained by selecting a subset of
accesses fromS and imposing a total order among them such that
the total order respects the partial ordef 5 A linearizationL is
said to begorogram path-consisteritits projectionon to the CCFG
corresponds to a single path for each program thread in tHe&3CC
and L should contain all the accesses in each path on which it is
projected. Program path-consistency allows us to obtaicrete
CCFG program paths from a linearization that leads to arr.efro
linearizationL of IS is said to befeasibleif there exists a concrete
interleaved execution of the program CCFG corresponding.to
Note that a feasible linearization is always program pathsistent
but not vice-versa.

Although each concrete execution corresponds to someithaea
tion 1S’ of the skeletor/ S, all linearizations may not be feasible
program traces. Infeasible linearizatioh§’ occur, because the
reads in/.S’” may not be linked to appropriate writes. In order to
derive these constraints systematically, we definedpg relation.

LAll proofs are available in the extended version of this pape

Copy Relation. Let » andw be a read and write access in a
read/write (total-ordered) sequense We say that copiesw, or
copy(r,w) holds, if (a)r andw interfere, i.e.(loc(r) = loc(w))

(b) the value read by is the same as the value written
(val(r) = val(w)) and, (c) there are no interfering write accesses
w’ to loc(w) in S, such thatw <s w’ andw’ <s r. The main
goal of composition, therefore, is to find a suitable writéor each
readr so thatr can copyw. The notion of sequential consistency
(SC) [1] can be used to formally characterize this problentinA
earization] S’ = (9, <s) is said to besequentially consisterit
the following axioms hold:

e SC.1(Program Order) Letw; and rw2 be read/write ac-
cesses to the same locatibm the sequenceé. If rw- fol-
lows rw in the execution order of prograf, i.e.,rwi <p
rws, thenrwi <s rws.

e SC.2(Copy Someg Each read to locatiéiin .S must copy
somewrite in S to 1.

Axiomatic composition (AC) using the above SC axioms guar-
antees the feasibility of linearizations bf.

THEOREM 2. A program path-consistent linearizatiahS’ of
1S is feasible iff it is sequentially consistent.

Axiomatic composition (AC) has been previously used tofyeri
properties of concurrent data structures [2] executing adem
out-of-order processors. Here, AC was primarily used taipety
model various (intra-thread) read/write reorderingsvedid by the
processor. In contrast, we employ AC in an entirely new rsgiti
i.e., static analysis of high-level programs. Here, thebfemm re-
duces to encoding only the SC constraints between reatisgwri
However, the central challenge is to obtain an efficient dimgp
that enables a scalable analysis.

5.2 Copy Constraints

Note that by Theorem 1, any linearization of the interfeeenc
skeletonl.S must obey the program ord&C.1 However, ad-
ditional constraints must be imposed on a linearizationatisfy
SC.2 We refer to such constraints aspy constraintsdenoted
by ®-. These constraints capture thepy relation and are mod-
eled by a set of first-order logic formula quantified over seadd
writes, consisting o, % and®%..

2The initial value of locatior is also represented by a write access
with a fresh symbolic value.

L : Vr. oce(r) = Fw. copy(r,w

)
L @ Vr,w. copy(r,w) = occ(r) A occ(w)A
, (val(r) = val(w)) A (loc(r) = loc(w)) A HB(w, 1)
O, 2 Vr,w. copy(r, wl)

V(w' # w). (oce(w

Do =BL A DL A DY

) AHBet(w, w’, 7)) = loc(w) # loc(w")

The constraint®}, capture the conditionSC.2(Sec. 5), i.e., each
read (if it occurs) must copy some write access. The formigla
captures the data-flow constraints on the copy, i.e., thiewrmust
occur pce(w)), the values/locations of both and w should be
same andv must happen before in the linearization. The pred-
icateHB(e1, e2) models astrict partial order relation that denotes
that access; must happen befoke in every linearization. In other
words, if a linearization contains both ande. thene; must pre-
cedee,. The formula®?, captures the fact that no interfering write
w’ may happen between the writeand a read- that copies from
w. The predicateHBet(w w’,r) denotes thaty’ may—happen-
betweernw andr, and is defined as-HB(w', w) A —|HB(T w')).
Details of encodingHB are presented in the next sectid, mod-
els that eithery’ does not happen betweemandr, or does not
interfere withw (loc(w') # loc(w)) if w’ occurs in between.
Example. Recall the example and ifsS in Fig. 1. A linearization
Lo = (W1, R1, R3, R2, W2, R1’, R2', W2, Rdf the .S is not
program path-consistent, since it does not project to desipath
for thread¢1. On removingR3 from Lo, we obtain a lineariza-
tion (say, L1) which is path-consistent; howevek; is not feasi-
ble. To see this, note that because the rdatisand B2’ immedi-
ately follow the writelV 2 in the linearization, copy constrainis,
and®?, imply that bothcopy(R1’, W2) andcopy(R2', W2) must
hold. Now, sinceval(W?2) = 1, the constraintsb?, imply that
val(R1") = r] = val(R2") = ry = val(W2) = 1. This, how-
ever, implies thabcc(R2') = (17 < 1) = false, which violates
®Z,. HenceR2' should not occur in the execution (and therefore in
L,1). Onreplacindr2’, W2'by R3’, W3'’in L1, we obtain a feasible
linearization W1, R1, R2, W2, R1’, R3’, W3', R4

5.3 Encoding the Composition

We encode the set of sequentially consistent linearizatafra
interference skeletoS as a formula in quantifier-free first-order
logic: the skeletord S = (S, <s) is encoded as a formutb; s, and
the copy constraints aB¢. The set of feasible linearizations bf
is then represented as a formda= ®;s5 A . Finally, given
an error location with the path conditiap, we can check if the
error location is reachable via a feasible linearizatiorchgcking
the satisfiability of the formul@ A 1) using an SMT solver.
Encoding ®;s and HB. Both ;s and®~ depend on the strict
partial order relationHB between read/write accesses. To obtain
an efficient encoding that avoids quantifiers, we encode elge r
tion using the integer theory with the strict partial ordeemtor
<. More precisely, we assign an integdock variableT, to each
access:. Now, HB(e1, ez2) is simply encoded a$., < T.,. The
accesses il S are encoded in a straightforward manner: for each
read/write access, we create three varialdes, val. and occ.
and add constraints that equate each variable to the conéisyy
value. To model arbitrary initial values for locations iretmap G
lazily, we add a finite set of initial symbolic writes if5 as many
as the number of reads i6. Finally, we encode the partial order
<5 using the must-happen-before predicats,

Encoding ®¢. The quantified constraints in Sec. 5.2 can directly
serve as input to an SMT solver that supports quantifiersigusi
interpreted functions fotoc, val andocc. In practice, however,
SMT solvers have difficulty in instantiating quantifiers eifintly.

Therefore, we instantiate the copy constraints expli¢dhall pos-
sible read and writes idiS using the correspondinc, val and
occ variables for each access. Modeliagpy(r, w) directly will
introduce Boolean variables of foraapy r_w, quadratic in num-
ber of reads/writes, which we want to avoid. Therefore, veats
an integer identifier variablé D. for each access, and assign a
unique constant té D., for each write access. Now, copy(r, w)

is encoded asI(D, = ID,,), which holds when the identifier to
r is same as that faw. This encoding takes advantage of the fact
that a read can only copy a single write.

Still, this explicit instantiation ofb¢ for all reads/writes is too ea-
ger and may result in a formula that is cubic in size of the ieeite
access set. The next section discusses optimizations toame
the bottlenecks due to this eager encoding.

THEOREM 3. Suppose we have an sequentially consistent en-
coding® for a CCFGC and a path conditior for an error loca-
tione. If (P A ¢) is satisfiable, then there exists a feasible inter-
leaved execution df' to the locatiore.

Example. Recall the program and its skeletdf in Fig. 1. Check-

ing the path conditioifrs # 3) for theERRnode together witkbr 5

and copy constraint® leads to a solution with & B relation that
refines<g (cf. Fig. 1) by adding pairéR1, R1’), (R1’, R2) and
(W2, R2'). The accesseR3, W3, R3', W3’ do not occur, i.e.,
their occ evaluates to false, and they can be ignored. As a result,
we obtain a linearizatioiW'1, R1, R1’, R2, W2, R2', W2’ R4)

that witness the assertion violation.

6. INTERFERENCE PRUNING

Eager instantiation of the copy constrairdtg: for all pairs of
reads and writes in large programs proves to be a signifiaant b
den on the SMT solver during satisfiability check. Moreover,
case of indirect accesses, it is not clear upfront if a reaennot
interfere with a writew, i.e.,loc(r) = loc(w) is unsatisfiable, thus
making the search more complex. However, many of these copy
constraints may beedundant i.e., —copy(r, w) holds. For exam-
ple, note that the constraints correspondingbfe may reduce to
—copy(r, w) if the right hand side (RHS) of the formula is unsat-
isfiable for somer andw. This may happen due to a number of
reasons. For example, a readannot copy a writev that follows
r in the program &2, W2 in Fig. 1), or a read in a child thread
cannot copy a writew that occurs in the parent thread after the child
thread terminates. Alsa, can only copy fromw if r andw may
interfere, i.e.Joc(r) = loc(w) is satisfiable. In other words, each
read may copy from only a restricted set of writes, and it istera
ful to add copy constraints for the writes not in the set. Ayéar
number of these redundant constraints can be detectechdiialiy
analyzing the interference skeletbf and removed to optimize the
composition (cf. Sec. 7). We now present a systematic method
prunethese copy constraints, based on the following notions.
MHP and Kill Set. Given an interference skeletdit = (5, <s
), let <% denote the transitive closure efs. We say that two
accesses; ande; may-happen-in-paralleli.e., M HP(eq, e2) if
bothe; <5 e2 andez <% e1 do not hold. If a writew follows
another writew’ in the same thread, and interferes withw’ (i.e.,
loc(w) = loc(w")) in all program executions, then we say that
kills w’. More formally, the set of writegilled by w is given by
Kill(w) = {w' | w" <% w Aloc(w") = loc(w)}. Note that for
symbolic valuegoc(w) andloc(w’), loc(w') = loc(w) must hold
if w kills w’ in all executions.

Reaching writes. We say that a writev may reach a read, if

(i) MHP(r,w), or (ii) w happens before and for allw’ <% r
(w" # w), w ¢ Kill(w") holds. We denote the set of writes that
may reachr by I1(r). We computdI(r) for each read as follows.
First, we compute the transitive closukg; for the given skeleton
1S. Computing ()M H P(r,w) requires checking if botltr, w)

or (w,r) do not belong to<s. In order to compute the writes that
are not killed, we perform a light-weigl@en-Kill [24] analysis
of the partial order graph foxks (cf. Fig. 1). Starting from the
node corresponding to the initial write, the analysis cotepand
propagates the set of reaching writes to each location igriugh
(i.e., for each access ifS): each location that generates a write
may kill the incoming writesy’ that belong taK’ill(w). Note that
checkingloc(w’) = loc(w) precisely is expensive if bottoc(w)
andloc(w') are symbolic values. So, we estimate the kill set con-
servatively by checking ifoc(w) andloc(w’) are exactly the same.
May-Copy Set. In order to prune the redundant constraint®in,
we define thenay-copysetC(r) for eachr by restrictingII(r) to
interferingwritesw that can occur, i.eG(r) = {w | w € II(r) A
(loc(r) = loc(w)) A occ(w)}. Again, computing(r) precisely is
expensive: we syntactically checkdéc(w) or (loc(r) = loc(w))

is unsatisfiable. Finally, we instantiadg, 2 and ®Z only for
pairsr andw, wherew € C(r).

Instantiating the inner quantifier i®2, for all possible writes
w’ may still produce redundant constraints. We prune such con-
straints by checking if (a) the write’ cannot occur-(occ(w’),
or (b) cannot happen betweanandr, —=(HBet(w, w’,r)), or (c)
loc(w') = loc(w) is unsatisfiable. We check (a) and (c) syntac-
tically. To check (b), we use th&7g relation computed above,
i.e., w’ cannot happen between andr if either w’ <jg w or
r <js w’. Our encoding can be further optimized to haratiemic
regionsand to perform a context-bounded [27, 21] analysis (see full
version of the paper). Our experiments in the next secti@wsh
that pruning redundant constraints as above leads to signifim-
provement of solver run times.

7. EXPERIMENTS

model joins and interference. Due to the presence of conipdek
control and data flow, the approach performs repeated fhtesd
reasoning for each interleaving of the program threadsori8kave
evaluated the efficiency of optimizations when encoding posi
tion using sequential consistency. More precisely, out gaa to
estimate the impact of pruning redundant interferences.

We evaluated our approach using the following benchmarks ob
tained from the public domain. The first set of benchmarks con
sist of the C implementation of thevdexer example [11] using
Pt hr ead library, parametrized by the number of threads. In this
example, multiple threads read and write to a hash table 1@t
entries. As the number of threads increases beyond 12, thbetu
of shared accesses also increases rapidly due to haslhocllisVe
check the property that no collision happens on a partianty of
the hash table. We evaluated the effectiveness of our agipifoa
handling increasing number of threads as compared to thédCSS
based implementation which does not perform summarizatié
experimented with CCFGs with up to 32 threads to evaluate the
scalability of our approach. The second set of benchmaskslar
tained from traces of a bank account program (account) agd-a s
chronization based module (SynchBench). Both these beadism
were checked symbolically for existence of data races. Enelp-
marks are marked in theame-(#T)format where#T denotes the
number of threads.

Fig. 3 shows the comparison of various modes of our tool with-
/without summarization and optimized composition. The sod
Old(+0) denotes an implementation of the symbolic checlsetha
on CSSA encoding [34]. This implementation has been opé&thiz
extensively to reduce the number of redundant constrasimtslar
to Sec. 6), but does not use summarization. In the next mdge (+
0), we perform summarization but composition is done egdsrl
instantiating copy constraints for all pairs of reads aniesr This

We implemented the staged analysis approach in the FUSION eager instantiation leads to a large number of redundaistiznts.

verification system [34] for concurrent C programs baseB Bhreads
The FUSION system combines dynamic and symbolic verificatio
techniques in order to verify properties of concurrent paogs. In
the first step of its execution, FUSION instruments the given-
current program and then runs the progrBrto obtain a slice of.
The slice is represented as a CCFG [34] and contains thedthrea
created and the original program statements that eachdttmea
ecuted during the run. The slices themselves can grow carige |
depending on the number of statements executétldand the num-
ber of threads created, and are suitable for preliminarjuatian

of our approach.

In order to evaluate our approach, our implementation fedus
on checking assertions as well as data races in the contpnen
gram slices obtained from benchmarks using FUSION. We first
performed data flow analysis on the slices to obtain an ieterf
ence skeleton and computed a pruned set of sequential woTis
constraints over this skeleton. To check assertion vinhatiat an
error location, we add the feasibility path condition foe térror
location and employ the Yices SMT solver [9] to check if the se
of constraints can be satisfied. To check data races betwedn-t
cations, we add constraints modeling that the correspgrglobal
accesses are simultaneously reachable, and again chesatior
fiability using the solver. All experiments are conductedaoRC
with 2.4Ghz Intel Core2Quad processor with 2GB memory limit
running Fedora 10.

Our evaluation consists of two parts. First, we compared our
staged analysis with a previous approach that uses contsingle-
static assignments (CSSA) (cf. [34]) for encoding conaurpro-
grams. CSSA is an extension of single static assignmentsrto ¢
current programs to handle both intra-thread data flow (¥adh
able must be assigned only once) as well interference (vadfie
all concurrent writes are propagated to each read). The GESA
resentation retains all the local control and data flow; meee a
large number of fresh variables are introduced (in eactathreo

Finally, (+S+0) denotes our approach with both summainedind
optimized composition. We do not present results for the enod
without summarization or optimization (-S-O) because sfpbor
performance.

Our experiments show that mode (+S+0) outperforms all other
modes on our benchmarks. For example, as the number of thread
in the indexzer example is increased successively from 20 to 31,
both Old(+0O) and (+S-0) modes scale much worse than (+S+0O)
mode. The mode (+S-O) without optimizations performs veryrfy
since the eager instantiation of sequential consisten®) (®n-
straints allows each global read to link with all global wst e.g.,
intheindexer(32) example, each read can copy frag8b6 writes.

The SMT solver is not able to handle such a large number of copy
constraints effectively and timeouts in (+S-O) mode for hore
threads. This shows that a naive encoding of SC constraimtsti
useful for analyzing real-life benchmarks; an optimizedasting

that avoids redundant constraints is needed. Similary,ntiode
with optimized composition but without summarization GI@)
timeouts for 31 and 32 threads. In contrast, the mode with bot
summarization and optimized composition (+S+0) finishedyam

ing indexer(32) in only 104s.

For theaccount benchmark (similarly for the SynchBench ex-
ample), we again observe that summarization (+S+0O) leddstier
run times as the number of threads increase ftdnto 21. This
supports the fact that performing repeated intra-threadaming
when exploring large number of thread interleavings takagif-
icant toll on the overall efficiency of the solver. We obsehteat
the average number of writes that a read may copy (cf. Seftes) a
optimized composition in (+S+0) models— 3 for all the bench-
marks (maximum varies betwedf — 20). The results show that
both summarization and optimized composition are indispble
for scaling up the analysis, and summarization can makéiceeri
tion tractable in cases where optimized composition is ofi-s
cient. Moreover, note that the encoding used in contextded

Bm [N] E| |R] W] Old(+0) +S-0 +S+0
SynchBench(2) 108 107 6 19 1 1 1
SynchBench(13 723 722 270 289 9 711 3
indexer(20) 1312 1439 110 291 0.1 355 0.1
indexer(27) 2142 2355 284 707 23 >1800 0.3
indexer(28) 2294 2523 322 797 97 >1800 4
indexer(29) 2446 2691 360 887 129 >1800 6
indexer(30) 2859 3149 468 1104 517 >1800 7
indexer(31) 3398 3747 594 1332 >1800 >1800 13
indexer(32) 4585 5065 888 1856 >1800 >1800 104
accountl (11) 906 905 134 372 1 121 1
account2 (21) 1748 1747 260 708 25 >1800 10

Figure 3: Experiments comparing (a) CSSA-based algorithm 34], without summarization, with optimizations (Old+0O) (b) with
summarization, no optimization (+S-0O) (c) our method with simmarization and optimization (+S+0O).|N| (| E|) = total number of
nodes(edges) in the CCFG analyzedR)| (|W|) = total number of global reads (writes). All run-times are in seconds.

methods [21, 20] roughly corresponds to the (+S-O) mode &her
each global read may link with all possible shared variabfiées.
Therefore, the previous encoding is impractical for largggpams.

8. RELATED WORK

Context-bounded Analysis.A number of approaches check con-
current software under a fixed context bound [27] since thdive
cation problem is both decidable and practically usefu].[Both
symbolic [29, 21, 20] and explicit [25] approaches have hgen
posed for CBA. A recent approach [21] transforms a conctinen
cursive Boolean program (with finite data) under a contextiocto
a sequential program, which is then analyzed using sequamitil-
ysis. [20] extend the method to perform context-boundedyarsa
of concurrent C programs by unrolling loops and recursioitefiyr
to obtain decidability and employing a precise memory regmne
tation for C programs. In contrast, our goal is to verify rkfal
concurrent C programs where both (i) variable domains mag-be
finite and (ii) arbitrary context switches are allowed,)(iithout
any redundant bi-modal reasoning. To achieve the cond{ijon
we need to structurally bound the loops and recursion in oot p
grams, similar to [20]. Although [21] can be extended to acéi
(ii) and avoid bi-modal reasoning, such an extension is &
cal. More precisely, the extension will have to (a) dupkcanhd
abstract all global state variableseschpotential context switch
location and (b) compute summaries for each pair of intrastt
locations [22], resulting in an extremely inefficient medholIn
contrast, our staged analysis abstracts interferencettdircing
fresh variables at global read locations only. Furtherthycsurally
bounding the program (which is unavoidable due to decidglis-
sues), we not only avoid redundant bi-modal reasoning,rbfatdt,
separate the intra- and inter-thread reasoning completely

tween global accesses in each thread. If the compositioneskt
abstractions is not suitably precise to prove the given gntgpthe
methods refine the abstractions iteratively, e.g., basedonterex-
amples [17, 6] from the property check. Interference abtta
also makes our thread-modular summaries over-approxjmate
ever, because our summaries contain the exact relationebatw
non-concurrent reads and writes, we can obtain the fullgipee
system in one step by linking the reads to the writes during-co
position. This is in contrast to the previous methods wheesge
number of iterations may be required before the abstrastion
made suitably precise for proving a property. Instead ofqoer-
ing rely-guarantee reasoning [18] as in [12, 17, 6], our foiswon
compositional minimization [5, 16]: we use summaries tcesafe
intra- and inter-thread analysis and obtain a compact septation
of threads before composition.

Concurrent Data Flow Analysis. Most concurrent data flow anal-
yses (cf. [10]) employ a finite-height data domain and penfoe-
dundant bi-modal reasoning by repeated intra-thread padjmn
of new symbolic domain values while exploring all relevant i
terleavingsexplicitly. In contrast, our staged analysis performs
summarization over infinite domains using program expoessi
(terms), followed bysymbolicexploration of interleavings inside
an SMT solver [9, 8].

Other Symbolic Encodings.Another set of methods use SAT/SMT
solvers to check concurrent programs with an encoding tbes d
not employ an explicit scheduler [13, 34]. None of these aagines
employ thread-modular summarization and therefore perfia-
dundant bi-modal reasoning: the solver must reason overucen
rent interleavings as well as complex local transitionsratitely.
The encoding presented in FSE 2009 [34] is based on tranisfgrm
a (bounded) program into a concurrent single static assgtsn

Thread-modular summarization. Path compression techniques [36] (CSSA) form and is restricted to handling simple integegpams,

rely on identifying interference-freieansactionsand are unable to
summarize data facts across multiple transactions, aqusfun-
dant bi-modal reasoning. The Zing model checker employs-fun
tion summarization [28] in presence of interference by fiifen
ing transactions during path-enumeration basgglicit-stateex-
ploration. In contrast, our method performs precise sunmagon

in contrast to ours, which handles arbitrary C programs ard p
forms summarization. The idea of interference abstradiam-
ployed implicitly in the CSSA representation, but not exigd to
compute summaries.

Verification of concurrent data structures under relaxedlevel
hardware memory models [2] employ axioms specifying the al-

Symbo”ca”ybased on Symbolic memory accesses as Opposed toIOWed load/store event Orderings to the hardware memorw-in

potentially infinite number of concrete-valued accessestther,
we do not need to identify transactions and avoid path-eratioa
by merging symbolic data facts at progrgom locations.
Thread-modular verification. Thread-modular or rely-guarantee
techniques for software include the initial deductive noelth[26,
18] followed by more recent methods that employ iterativen€o
positional refinement [12, 17, 3, 6] or methods for handlieg
manipulating programs [15, 33]. lterative refinement téghes
first abstract the transition relation [12] or the reachaibéges [6]
of the individual threads, bypver-approximatinghe relation be-

der to precisely model the concurrent interleavings. Outhod
instead targets high-level static analysis of C programshigh-
level analysis, it is sufficient to consider only sequehtiabnsis-
tent (SC) orderings of reads and writes, as opposed to miapesce
memory orderings considered in [2]. As a result of this festr
tion, our method focuses on encoding SC efficiently insid& s
solver, which is not considered in [2].

9. CONCLUSIONS

We presented a staged analysis for verifying concurrentoc pr
grams which separates intra- and inter-thread reasonidgean
ploits sequential summarization to solve the pervasivélpro of
redundant bi-modal reasoning. The key contribution is aatif
modular program summarization algorithm which abstrasctaya
all the local control and data flow in terms of global acces3é®
summarized interference skeleton is then used for interathanal-
ysis by employing sequential consistency axioms over theail
accesses. Experimental results on benchmarks show owaabpr
is more scalable than previous bi-modal methods becauseidsa
repeated intra-thread reasoning. Future work will focusecaling
our approach to larger concurrent systems: the key probdetm i
further minimize the set of quantifier instantiations, whare cu-
bic in the size of reads and theiray-copysets, which causes blow
up on larger benchmarks. Another approach is to avoid ekplic
stantiation by using quantified SC axioms inside the solv@ur
method can also be extended to perform data flow analysisssn le
precise domains than terms, e.g., polyhedra.
Acknowledgements We would like to thank the Verification group
at NEC and the anonymous reviewers for their invaluablelfaekl

10. REFERENCES

[1] S. V. Adve and K. Gharachorloo. Shared memory
consistency models: A tutoridEEE Computer
29(12):66-76, 1996.

S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence:

checking consistency of concurrent data types on relaxed

memory models. IPLDI, pages 12-21, 2007.

S. Chaki, J. Ouaknine, K. Yorav, and E. M. Clarke.

Automated compositional abstraction refinement for

concurrent C programs: A two-level approachSoftMG

2003.

Shaunak Chatterjee, Shuvendu K. Lahiri, and Shaz Qadeer

A reachability predicate for analyzing low-level softwahe

TACAS Springer, 2007.

E. M. Clarke, O. Grumberg, and D. Pelddodel Checking

MIT Press, Cambridge, 2000.

[6] A. Cohen and K. S. Namjoshi. Local proofs for global sgfet
propertiesFormal Methods in System Design
34(2):104-125, 2009.

[7] J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifyi
type checking and property checking for low-level code. In
POPL, pages 302-314, 2009.

[8] L. de Moura and N. Bjgrner. Z3: An efficient smt solver. In
TACAS pages 337-340, 2008.

[9] Bruno Dutertre and Leonardo de Moura. A fast
linear-arithmetic solver for DPLL(T). ICAV, pages 81-94,
2006.

[10] A. Farzan and P. Madhusudan. Causal dataflow analysis fo
concurrent programs. [MACAS pages 102-116, 2007.

[11] C. Flanagan and P. Godefroid. Dynamic partial-order

reduction for model checking software. ROPL, pages

110-121, 2005.

C. Flanagan and S. Qadeer. Thread-modular model afgcki

In SPIN pages 213-224, 2003.

M. K. Ganai and A. Gupta. Efficient modeling of concurtren

systems in BMC. IrSPIN pages 114-133, 2008.

P. Godefroid Partial-Order Methods for the Verification of

Concurrent Systems: An Approach to the State-Explosion

Problem Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 1996.

[15] Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly
Sagiv. Thread-modular shape analysisPLDI, pages
266-277, 2007.

[16] S. Graf and B. Steffen. Compositional minimization ofitié

(2]

(3]

[4]

[5]

[12]
[13]

[14]

state systems. IBAV '90, pages 186-196, London, UK,
1991. Springer-Verlag.

[17] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
Race checking by context inferen&GPLAN Not.
39(6):1-13, 2004.

[18] CIiff B. Jones. Tentative steps toward a developmerthiog:
for interfering programsACM Trans. Program. Lang. Syst.
5(4):596-619, 1983.

[19] James C. King. Symbolic execution and program testing.
Commun. ACM19(7):385-394, 1976.

[20] S. K. Lahiri, S. Qadeer, and Z. Rakamaric. Static andipee
detection of concurrency errors in systems code using smt
solvers. INCAV, pages 509-524, 2009.

[21] A.Lal and T. W. Reps. Reducing concurrent analysis uiade
context bound to sequential analysisAAV, pages 37-51,
2008.

[22] A. Lal, T. Touili, N. Kidd, and T. W. Reps. Interprocedur

analysis of concurrent programs under a context bound. In

TACAS pages 282-298, 2008.

John McCarthy. A Basis for a Mathematical Theory of

Computation. In P. Braffort and D. Hirschberg, editors,

Computer Programming and Formal Systempages 33-70.

North-Holland, Amsterdam, 1963.

S. S. MuchnickAdvanced Compiler Design and

ImplementationM. Kaufmann, 1997.

M. Musuvathi and S. Qadeer. Iterative context boundorg

systematic testing of multithreaded programsPLDI,

pages 446-455, 2007.

[26] S. S. Owicki and D. Gries. Verifying properties of padeal
programs: An axiomatic approacGommun. ACM
19(5):279-285, 1976.

[27] S. Qadeer and J. Rehof. Context-bounded model chedfing
concurrent software. IRACAS pages 93-107, 2005.

[28] Shaz Qadeer, Sriram K. Rajamani, and Jakob Rehof.
Summarizing procedures in concurrent program®QPL,
pages 245-255, 2004.

[29] I. Rabinovitz and O. Grumberg. Bounded model checkihg o
concurrent programs. IBAV, pages 82—-97, 2005.

[30] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise

interprocedural dataflow analysis via graph reachability.

POPL, pages 49-61, New York, NY, USA, 1995. ACM.

M. Sharir and A. Pnueli. Two approaches to interprocedl

data flow analysis. IProgram Flow Analysis: Theory and

Applications volume 5, pages 189-234. Prentice Hall, 1981.

B. Steensgaard. Points-to analysis in almost lineaetin

POPL, 1996.

Viktor Vafeiadis and Matthew J. Parkinson. A marriade o

rely/guarantee and separation logicG®ONCUR pages

256-271, 2007.

[34] C. Wang, S. Chaudhuri, A. Gupta, and Y. Yang. Symbolic

pruning of concurrent program executions. In

ESEC/SIGSOFT FShpages 23-32, 2009.

C. Wang, S. Kundu, M. K. Ganai, and A. Gupta. Symbolic

predictive analysis for concurrent programsFM, pages

256-272, 2009.

K. Yorav and O. Grumberg. Static analysis for stateegpa

reductions preserving temporal logi€®rm. Methods Syst.

Des, 25(1):67-96, 2004.

(23]

[24]

[25]

[31]

[32]

[33]

[35]

[36]

Summarization. Fig. 4 (next page) presents the complete set
of rules for thread-modular summarization of a CCFG. For@eno
n, In({(¢, L, E)) denotes the incoming symbolic stateatid(n)
is the numeric identifier of the thread containingite represents
theif-then-elseoperator. On analyzing each functibnwe obtain
an interference skeletahs for f having global accesses contained
in f. Note that/S in the above rules denotes the skeleton for the
function containing the CCFG node being analyzed.

Remove the global accesses that don’t occur, ee(e) is false,
and those that happen afterfrom H B. Collapse the partial or-
der H B into a linearizationl arbitrarily. Sinced is satisfied, so
L is sequentially consistent. K is program path consistent also,
then by Theorem abovd, is feasible, and there exists a feasible
execution ofC' that ends at access, i.e., locationl. It remains
to show thatl is program path consistent. We show ttiatorre-
sponds to exactly one path for each thread sub-graph in batae

Most rules are same as those in the Fig. 2 except the new rules:FORK-JOIN node pair. We can concatenate such paths to odotain

INIT-F, MK-SUMMARY and FUNC-CALL. At the entry location
entry(f) of each functionf, the INIT rule initializes the local
memory toﬁg and the interference skeletdi$ for f to an empty
set. The rule MK-SUMMARY is used to construct the summary
xy for a functionf at its exit noden = exit(f) consisting of the
skeletonl S computed forf and the staté,,.

The rule FUNC-CALL is used to evaluate and reuse a previously
computed summary fdrat a call node: using the evaluation oper-
atorI". Suppose we have a summayy = (1.5, I5) for a function
fwherelSy = (S¢,<s,) andly = (Y, Ly, Ey) such that both
IS¢ andI; are represented in terms of the input local memory map
L§ tof. Given a partial ordex,, we useT (<) and_L(=<) to denote
the set ofmaximal(top) andminimal (bottom) elements ik. To
evaluatey s under the calling context represented by the nfap
the functionl substitutesL(} by £ in all components of¢;. Fur-
ther, all read placeholder values (due to interferenceradisin)
are substituted by fresh placeholders in all componensg; ofAf-
ter the above substitutions gry, we obtain a skeletoS’, <),
path conditiony)’ and memory mapC’. The data propagated to
function return node:’ in the FUNC-CALL rule is now given by

<1/} A 1//, [',7 T('<S’)>

where, the path condition is computed by conjoining the fnicg
path conditiomyy with ', the new local map i€’ and the set of
last events contains the set of top evehts<g/) in S’. Moreover,
the current interference skeletdf is updated to add partial orders
between all events i and setL (<) of bottom events ir5’.

THEOREM 1. The interference skeletdit = (S, <s) is a pre-
cise thread-modular summary of the finite CCFG. Moreowes,
respects the program order.

Proof. Follows by construction of the data flow analysis algorithm.
All the transformers and joins are precise. TheBehaintains the
program order and is used to construgs.

THEOREM 2. A program path-consistent linearizatiahS’ of
1S is feasible iff it is sequentially consistent.

Proof.

(«=) A sequential consistent linearizatidn by definition, always
corresponds to a set of concrete execution tracesI'betone such
trace. Sincd. is program path-consisterf,can be obtained by in-
terleaving paths from the individual threads in the CCFGhad¢d.
is feasible.

(=) By definition, if a linearization/ S’ is feasible then it corre-
sponds to a concrete interleaved execution of the CCFG.ohl ¢
crete executions are sequentially consistent. Hehgeis sequen-
tially consistent.

THEOREM 3. Suppose we have an sequentially consistent en-

coding® for a CCFGC and a path conditiorp for an error loca-
tionl. If (P A ¢) is satisfiable, then there exists a feasible execution
of C to the location.

Proof. Let® = ®;5 A ®¢. Let us associate a dummy global write
accesaw with location!, so thatocc(w) = ¢. If & A ¢ is satisfi-
able, then we get a partial order relatifiB on the accesses 5.

projection ofL on the full CCFGC'. Note that since path condition
¢ is satisfiable, and path conditions are conjuncted at JOli¢$10
for encoding®;s, L must correspond tat least onepath for each
thread in the sub-graph. It remains to show thatannot contain
accesses from multiple paths in a thread. Consider a basic co
ditional branch-join sub-graph in a thread and the outgqiaths
from the branch node. Due to the encodibgs, either all accesses
on these paths occur, or don't occur. So, exactly one ougguéth

is feasible. By concatenating such feasible paths at ezafcbr
node, we obtain exactly one feasible path through the thread
Context-bounded analysis. We can restrict the solver to search
for executions limited to a fixed context bound by adapting th
encoding in [35] to our setting. More precisely, we introelue
new predicateCtx(e) for each access; We setCtz(w) = 0
for all initial writes w. Given two accesses; andes, we set
Ctz(e1) < Ctz(e2) if e; andez belong to the same thread and
e1 <r1s e2. Otherwise, we add constraints of the form

copy(r,w) = (Ctz(r) < Ctx(w))

for each read- that may-copy writew and M H P(r,w) holds.

These constraints ensure that if a reacbpies a concurrent write
w, then at least one context switch must happen in between. Let
the global access; be such thate € S.(e <s ef) (if e; does not
exist, we create a new dummy access). Finally, to resteécsétarch
to a given bound:, we add the constrairtz(e;) < k. The proof
of correctness of this encoding is a straightforward extensf the
proof in [35] and is omitted. Note that our approach does optid
cate the complete global state at each context switch totas in
previous approaches [21], whose cost is proportional tdyrbof
the number of global variables and the number of thread itmesit
Instead, new placeholders are introduced lazily only alh egabal
read location, making the cost linear in the number of globadis.

try(£) n ' In((w, £, E)) n BERS w L((, £, B))
n € entry g = eval(g, L) l = eval(lhs, L) v = eval(rhs, L)
INIT-F GUARD ASGN-LOC
In((true, L}, {})) 1S = ({}.{}) (Y Ny, L, E)) I, ({4, store(L,1,v), E))
n S L, £, E) 1S = (5, <s)
i o L=ceval(lhs, L) ! = eval(e, L) R=,r1) r is fresh
RSN G B R (W store(C.1,7), (R) 18 = (S U{R}, <s Ul(e, A)le € B))
p SllZrhs (L, B)) IS = (S, <) m—n m —n (tidm) = tid(m') = tid(n))
l = eval(e, L) r = eval(rhs, L) W = (l,r,) I ({1, L1, E1)) I, ({2, L2, E2))
ASGN-GLB-W INTRA-JOIN
L, £,AWY) IS = (SU{W}, <5 U{(e, W)|e € E}) In((1 V 92, ite(y1, L1, L2), E1 U Ez))
FORK(@) n—p n-—oc JOIN(n) p—n c¢—n tid(p) =tid(n)
FORK tid(p) = tid(n) In(@/’vﬁvE»‘ INTER-JOIN Ip(($p, Lp, Ep)) Lc((te, Le, Ee))
(¢, L,E) I.((¢,Lc,E)) Lcisfresh In(($p N, Lp, Ep U Ec))

return ’
n

n = e:cit(f) I’rl((va?E»
Xf = (IS7 (¢7£7E>)

MK-SUMMARY =

n call £ n L({(¢,L,EY) I8=(S,<g) ((S/7 <S/),TZJ’,[,’) = F(vaﬁ)

N A T AW . T(=e))) IS =(SUS, <5 U{(e.d)le € EAC € L(<s)])

Figure 4: Complete set of summarization rules.

