Predictive Analysis for Detecting Serializability Violations through Trace
Segmentation

Arnab Sinha, Sharad Malik
Princeton University

Abstract—We address the problem of detecting serializability
violations in a concurrent program using predictive analysis,
where a violation is detected either in an observed trace or
in an alternate interleaving of events in that trace. Under the
widely used notion of conflict-serializability, checking whether
a given execution is serializable can be done in polynomial
time. However, when all possible interleavings are considered,
the problem becomes intractable. We address this in practice
through a graph-based method, which for a given atomic block
and trace, derives a smaller segment of the trace, referred to
as the Trace Atomicity Segment (TAS), for further systematic
exploration. We use the observed write-read pairs of events
in the given trace to consider a set of events that guarantee
feasibility, i.e., each interleaving of these events corresponds
to some real execution of the program. We call this set of
interleavings the almost view-preserving (AVP) interleavings.
We show that the TAS is sufficient for finding serializability
violations among all AVP interleavings. Further, the TAS
enables a simple static check that can prove the absence of
a violation. This check often succeeds in practice. If it fails,
we perform a systematic exploration over events in the TAS,
where we use dynamic partial order reduction with additional
pruning to reduce the number of interleavings considered.
Unlike previous efforts that are less precise, when our method
reports a serializability violation, the reported interleaving
is guaranteed to correspond to an actual execution of the
program. We report experimental results that demonstrate the
effectiveness of our method in detecting serializability violations
for Java and C/C++ benchmark programs.

I. INTRODUCTION

The atomicity of a set of operations is a desired correct-
ness condition for concurrent programs. Informally, atomic-
ity refers to the non-interference between shared accesses
residing outside and inside an atomic region. A recent
study shows that 69% of concurrency bugs are atomicity
violations [1] and there is significant interest in the research
community to address this problem [2-5].

There are different correctness notions associated with
atomicity such as conflict-serializability and linearizabil-
ity. Informally, an execution is conflict-serializable if it is
equivalent, in some sense, to a serial execution where the
individual atomic regions are executed sequentially [6, 7].
Consider the program execution shown in Figure 1. It has
two concurrent threads 7 and 75, a globally visible pointer
variable p and two thread-local variables a and b. The
relevant events of interest are the read/writes to the shared
variable p. Let p=0 initially. The three statements in thread
Ty should be executed atomically as they belong to a user
transaction indicated by atomic{...}. Note that this is

Chao Wang, Aarti Gupta
NEC Laboratories America

Time/ init:p = 0 \ Threlad T, Thr(lead T,
ThreadT, ThreadT, —— : e;: WR (p)
e,:p = &a;| e,;: RD (p) OZ
atomic{ '
e, b:=p; :
if (b % 0) i
e *(p):=10; if (b# 0) g
v |} es:RD(p) | O f
\ €p = y —?— ,\Qe4: WR (p)

Figure 1. The program execution trace on the left can be graphically
abstracted as a sequence of reads (RD) and writes (WR) of global variables
on the right.

Threaq T, Thrgade
Time . ‘ :
e,:RD (p)
O ey WR (p)
if (b 0) E
e:RD(p) | O . ;
— — OesWr(p)
@ (b)

Figure 2. Two alternative, unserializable, interleavings of the same events
as in Figure 1. The interleaving in (a) is guaranteed to be possible, hence it
is a real violation, while the one in (b) is not guaranteed and thus a bogus
violation.

a serial execution, since the shared pointer p is accessed
atomically by 7) between events e; and es. However,
Figure 2(a) shows another execution order where event ey
is interfering with the atomic block and hence breaks the
conflict-serializability. Henceforth, we interchangeably refer
to this kind of violation as a conflict-serializability violation
or an atomicity violation.

Checking conflict-serializability of a given trace can be
done in polynomial-time [5, 7, 8]. This problem is referred to
as the monitoring problem [4, 8]. For concurrent programs,
one may also be interested in checking conflict-serializability
for all possible interleavings of a given trace. This is
referred to as the prediction problem. In predictive analysis,
a violation is detected either in the observed trace or in an

alternate interleaving of events in that trace.

Broadly speaking, existing predictive analysis methods
can be classified into two categories based on their precision.
Methods in the first category detect must-violations, i.e.
the reported violation must be a real violation. Methods in
the second category detect may-violations, i.e. the reported
violation may be a real violation. They also differ in the
coverage they target when exploring alternate interleavings,
as shown in Figure 3.

Methods in the first category often use under-
approximated analysis, e.g. based on Lamport’s happens-
before causality relation and its extensions [9—11], the max-
imal causal model [12], SideTrack [13], and our proposed
method TAS. A notable exception, which uses precise rather
than under-approximated analysis, is the concurrent trace
program (CTP) model [14]. However, achieving the best pre-
cision and high coverage is costly. Furthermore, in practical
situations, it is not always possible to heavily instrument the
program to extract a precise predictive model.

Methods in the second category often use over-
approximated analysis, e.g. the Eraser-style lockset analy-
sis [15], the meta-analysis based on lock acquisition histo-
ries [16], and the UCG analysis based on universal causality
graph [17]. Note that in both the meta-analysis and the UCG-
analysis, a reported erroneous schedule is not guaranteed to
appear in some program execution, i.e. the reported violation
may be bogus. The reason is that these methods track only
the control flow and synchronizations while ignoring the data
flow. This is in sharp contrast to our proposed method, which
tracks data flow.

N
Increased _ original original
Precision ~ trace program
CTP[14] ;
nofalse Bla e e e p gee g ¥
positives $ + ! LN . TAS
Lamport _' o i [this work]
HB[9] SideTrack [13] '-‘.'
Sen03 [10] Maximal
y C: | Model [12.
Sliced causality [11] ausal Model [12]
fewer UcG[17]
false (university causality graph) ~~">®
positives . e
Meta-analysis[16] ...
(lock acquisition history) °
(]
more Eraser [15]
false (lockset)
positives >
fewer real traces more real traces Increased
Coverage

Figure 3. Classification of predictive analysis techniques based on
precision and coverage.

A. Motivation

The motivation for our current work is to explore a
different trade off point in this space of coverage and
precision. We want to design a predictive model that admits
interleavings likely to exhibit errors, while sticking with
feasible interleavings and using scalable analysis. In some
sense, we want to explore the limits of coverage one can

achieve with feasible traces extracted from the observed
trace. In particular, we want to avoid the post-analysis
runtime check for feasibility. While other methods [12, 13]
also have similar goals, the key ingredients of our method
are different — the predictive model, the target set of inter-
leavings, and the reductions we use.

We target general conflict-serializability violations, since
they are very challenging and involve reasoning over all
possible shared variables over all threads. Most previous
efforts do not address such violations for more than two
threads. Indeed, our predictive model and techniques can
be easily adapted for detection of simpler concurrency
violations (e.g. serializability violations for a single variables
in two threads, or dataraces, etc.).

Consider the example shown in Figure 2 which motivates
our approach. Although both executions (a) and (b) are
unserializable interleavings of events in the trace shown
in Figure 1, the violation in (a) is real, while (b) is not
guaranteed to be real. In execution (b), event ey precedes
e1, assigning a different value to the shared variable p than
in the original trace. This leads to the local variable b in
T7 being assigned a different value, thereby affecting its
control flow. Specifically, when b equals zero, the program
cannot execute event ez, and thus there is no real atomicity
violation.

B. Overview of our Approach

We use a graph-based predictive model with clock vectors
to track events in the observed trace, where events corre-
spond to visible operations in the program, i.e. read/write
accesses on shared variables and synchronization operations.
The clock vectors capture the causality (happen-before)
constraints in the usual way [9]. In particular, we couple
each read event on a shared variable with the last write
event on the same variable that happened before in the
trace. Note that this coupling may be inter-thread or intra-
thread. Assume that during our exploration of alternate
interleavings, all synchronizing constraints are respected
(details provided later). Now, consider an interleaving of
thread events, where the read events respect their coupling.
Clearly this interleaving is guaranteed to correspond to a
real execution. This is related to the well-known notions of
view equivalence and view serializability [7].

However, if we explore complete view-preserving in-
terleavings only, then we cannot hope to find view-
serializability violations, and hence no conflict-serializability
violations either. The idea is to consider interleavings where
any thread is allowed to break its read-coupling, i.e. read
from a different write event, but then to skip all subsequent
events in this thread and its dependent events in other threads
since they can no longer be guaranteed. We call this set
of interleavings the almost view-preserving (AVP) set, since
within each thread we preserve the view upto the broken
read-coupling i.e. maintain the view preserving prefix.

In most practical cases, the program traces are very large
with an even larger number of interleavings. We address this
by designing a graph-based algorithm that focuses on a given

atomic block (at a time), to derive a smaller segment of the
trace for exploration. We show that the segment we derive
is sufficient to detect serializability violations for the given
atomic block under all AVP interleavings. We refer to this
algorithm as Trace Segmentation and the segment as a Trace
Atomicity Segment (TAS). We can further refine the TAS by
shrinking it iteratively, depending on the access patterns in
the given atomic block. The TAS also allows us to perform a
simple static check before performing a search over all AVP
interleavings. If the static check passes, then no violation is
possible among the AVP set. If the static check fails, i.e. a
violation is possible, we perform systematic exploration on
events in the TAS, where we use known techniques such
as dynamic partial order reduction (DPOR) [18, 19], with
additional pruning and heuristics optimized for our setting,
to reduce the number of interleavings to be checked. For
each interleaving, the final step involves checking whether it
violates conflict-serializability. We adopt the approach of [5],
which builds a conflict (DSR) graph [7] for the interleaving
and checks for a cycle in the graph.

We have implemented our method to work on traces
generated from C/C++ and Java benchmark programs. The
results show that our TAS-based method is effective at
finding real violations in practice, while the TAS reduction
and static check greatly help to improve performance (in
comparison to a systematic search over all feasible traces).

This work makes the following contributions.

o« We focus on finding real violations. Therefore, we
explore a set of almost view-preserving (AVP) interleav-
ings, where violations consist only of those thread-local
prefixes that are guaranteed to correspond to some real
program execution.

e We use a graph-based model for predictive analysis,
where we derive a smaller segment of the trace called
a trace atomicity segment (TAS). We prove that the TAS
we derive is sufficient for finding conflict-serializability
violations among all AVP interleavings.

o The TAS also enables a quick static check, to prove
easy cases where no violations are possible among the
target set of interleavings. This check often succeeds in
practice.

« We propose a systematic exploration of the TAS when
the static check fails. This utilizes dynamic partial
order reduction and additional search pruning to further
reduce the number of interleavings to be checked.

o We have implemented our TAS-based method and
show promising results on C/C++ and Java benchmark
programs.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider a concurrent program as consisting of a
set of threads Ti,...,T; and a set of shared variables.
Let tid = {1,...,k} be the set of thread indices. The
remaining aspects of the program, including the control flow
and the expression syntax, are intentionally left unspecified
for generality.

A. Program Trace Model

An execution trace p = ej, e2,...€, is a sequence of
events, each of which is an instance of a visible operation
during the execution of the concurrent program. For Java
programs as well as C/C++ programs using POSIX Threads,
the read/write accesses to shared variables and the syn-
chronization operations are regarded as visible operations.
All other operations are regarded as thread-local and are
omitted in the execution trace. An event is represented
as a 5-tuple (tid, eid, type,var,child), where tid is the
thread index, eid is the event index (that starts from 1 and
increases sequentially within a thread), type is the event
type, var is either a shared variable (in read/write) or a
synchronization object, child is the child thread index (in
thread creation/join). The event type is one of {read, write,
fork, join, acquire, release, wait, notify, notifyall,
atomic_begin, atomic_end}. They can be classified into
four categories:

1) read and write denote the read and write accesses to
a shared variable var;

2) fork and join denote the creation and termination of
a child thread, where event (tid, eid, fork, -, child)
creates a child thread whose index is child, and event
(tid, eid, join, -, child) joins the child thread back;

3) atomic_begin and atomic_end denote the beginning
and end of an atomic block, respectively. The marker
events (atomic_begin and atomic_end) may come
from manual annotation of the program source code,
or may be mined automatically [2, 20].

4) The rest correspond to synchronization operations over
locks and condition variables. The synchronized
keyword in Java is translated into a pair of acquire
and release events over the lock implicitly associated
with an object.

An execution trace p provides a total order on the events
appearing in p. We derive a partial order by retaining only
the set of must-happen-before constraints, which collectively
are sufficient to guarantee feasibility of the serializations of
this partial order.

B. The Partial Order Graph

Let G(V,E) be the partial order graph which is con-
structed from an execution trace as follows. V(G) is the
set of vertices, each of which represents an event in the
trace (we use vertices and events interchangeably when the
context is clear). The directed edge (u,v)€ E(G), the set of
edges, if and only if at least one of the following conditions
1S true:

1) Program Order edge: when u.tid = v.tid and u.etd =
v.eid — 1, i.e. event u immediately precedes event v
in program order.

2) Read-After-Write edge: when v reads the value of a
shared variable written by u in the given trace p. This
may be an intra- or an inter-thread edge.

3) Sync. edge: We consider the following sync. events.

e u is a fork event and v is the first event in the
child thread.

e u is terminating event for a thread and v is the
corresponding join event.

e u iS a wait event and v is the corresponding
noti fy event.

The PO (program order) edges enforce the program order
within each thread. (For ease of exposition, we assume a
sequential consistency memory model; other weaker mem-
ory models can be handled by relaxing these constraints.)
The RAW (read-after-write) edges are needed to explore the
AVP interleavings, which guarantee that the interleavings
are feasible. Note that there are no WAW (write-after-write)
and WAR (write-after-read) edges in G itself, but these
edges are tracked while detecting atomicity violations in
the interleavings. Sync. edges are also used for generating
feasible interleavings. Note there are no edges for lock
events - lock semantics are guaranteed during the exploration
of interleavings.

Definition of a read-couple: If there is a RAW edge
from a to b in G, then the pair (a,b) is a read-couple. If in
a different interleaving, b reads from a different event ¢, we
say that the read-couple for b in G is broken.

Definition of vector: Each vertex v in G(V,E) has a
vector vec, of k integers, where the ith integer denotes the
eid of the latest event in thread ¢ that must occur before
v [9]. (We claim no novelty in defining the vector but provide
our definition for clarity.) The vectors are computed in a
topological order on the vertices. The vector of a vertex is
defined as follows:

, {v.eid —1 if (i = v.tid)
vecy|i] = :
otherwise.

max(set; Useta U {0}))

where,

set; = {vecy[i] | (w.tid # i) A (u,v) € E(G)}, and,

sety = {u.eid | (u.tid = i) A (u,v) € E(G)}

Example: An example of a partial order graph with 3
threads is shown in Figure 4. The rectangular block in this
figure represents an atomic block. The number inside each
vertex is the eid. The vectors are shown in square brackets
next to the vertices. For convenience, we shall refer to vertex
1 in the 2"¢ thread as vertex 2.1.

Whether two vertices u and v in graph G(V, E) may
happen in parallel (MHP) can be conveniently checked by
comparing their vectors. Formally, we define the following
event precedence relations based on the vectors. For two
vertices © and v,

« MHB: u must happen before v, denoted v < wv, iff
vecy|u.tid] > u.eid.
o MHP: u may happen in parallel with v, denoted u | v,
iff vec,[u.tid] < u.eid, and vecy[v.tid] < v.eid.
In our example (Figure 4), note that vertex 2.4 may
happen in parallel with vertex 1.4 because, based on the
two vectors vecy 4 = [3,3,0] and veco 4 = [0,3,4], neither

Time @ (0,001 [0,0,0]
ool (D '
[1,0,0]
[2,3,0] [0,2,3]

4
33,0 CM [0,2,4]

[5,3,5]

¥ 635 (;5 .

@ [6,3,6]

1
U
===> Program order edge

y . @ [6,5,5]
——> Read-After-Write/Sync. edge

Figure 4. The partial order graph with vectors (computed according to
Eq. 1). Each vertex is an event from the execution trace. The dashed edges
are PO edges, and the solid edges are RAW/Sync. edges. Note that RAW
edges can both be inter- and intra-thread edges.

et ¢rontie

[4.4,61@) (wry)

Figure 5. The TAS in a partial order graph G, with respect to the atomic
block (shaded rectangular region). The upper and lower frontiers of the
TAS are given by {8,5,6} and {17,11,11}, respectively.

vertex must happen before the other. In contrast, vertex 2.2
(with vector [0,1,0]) must happen before vertex 1.4 (with
vector [3,3,0]).

Definition of atomic block: An atomic block A is a
subgraph of G such that V' (A) is the set of events between
the special marker events atomic_begin and atomic_end,
all within the same thread that includes the marker events.
The edge set is defined as E(A) = {(u,v) | u,v € V(A) &
u.eid = v.eid —1}. Let, T'4 be thread containing the atomic
block and T 4.tid denote the thread index of vertices in
V' (A). In a concurrent execution trace, there may be multiple
atomic blocks in different threads. Our method performs
violation detection on a single atomic block at a time.

C. Almost View Preserving (AVP) Interleavings

Let p be the given trace. We are targeting AV P(p) as
the maximal set of interleavings that are guaranteed feasible
without interpreting the data values, and without a post-
analysis/runtime check. This makes it an interesting trade-off
point between search complexity and coverage. It is derived
as follows. Let G’ be a partial order graph derived from p
similar to G except it contains only the program order and
sync. edges. Let ¢t € T, the set of all interleavings consistent
with G’. Let v be a read event in ¢. For each read event v in
t if the read couple for v in p is broken in ¢ then all vertices
w for which v must-happens-before w in G are deleted from
t resulting in . AV P(p) is the set of all ¢/ s.t. t € T.

In Figure 1, p = ey,es,e3,e4. Therefore, AVP(p) =
{(e1,€2,e3,€4), (€1,€2,€4,€3), (€1,€4,€2), (€2,€1,€4)}. As
shown in our experimental results, the AVP set constitutes
a large number of interleavings in practice. Serbdnutd et
al. [12] also proposed a maximal model based on actual
observed values, but they allow only one value mismatch.
Thus their set of interleavings and the AVP set are incom-
parable.

D. A Violation Path

It is well-known that there is a conflict-serializability
violation if there exists a cycle in the D-serializable (DSR)
graph [5, 7]. In our setting, for any alternate interleaving we
conceptually construct a conflict graph G, (similar to DSR
graph) where vertices are the read/write events and edges
represent conflicting accesses and program order. There is
an atomicity violation if we can find a path that starts and
terminates within the atomic block, and visits at least one
vertex outside the atomic block. For example, for the trace
in Figure 1, es — e4 — e3 is such a path in the alternate
interleaving {ej, es, eq, e3}. Next we formalize this notion.

Let, Vew(G) € V(G) be the set of vertices which
read/write global variables. Similarly, Vrw (A) = V(A) N
Vew (G). Let, p/ € AVP(p). In the conflict-graph
Ge(V(Ge), E(Ge)), V(Ge) is the set of read/write events
in p’ and E(G¢) consists of program order edges between
the vertices in V(G¢) and conflicting accesses: read-after-
write (RAW), write-after-read (WAR) and write-after-write
(WAW).

A violation path P(p') is a sequence of alternating ver-
tices and edges in G¢ such that it originates from A, visits
at least one vertex outside A and terminates within A, with
no repetition of vertices. The vertices and edges in P(p’) are
denoted by V(P(p)) € V(G¢) and E(P(p’)) C E(Ge),
respectively. There exists an atomicity violation for the
atomic block A in p iff there exist a violation path P(p’).
The vertex at which the path leaves (enters) the atomic block
is referred to as s(P(p')) (¢t(P(p’))). A violation path P(p’),
if it exists, is characterized as follows:

e s(P(p)).eid < t(P(p')).eid where, s(P(p')),

HP(p')) € Viw (A)

e V(P(p')) N Vew(A) # {}, where Ve (A) is the
set of read/write vertices outside A, i.e., Ve (A) =
V(Ge)\Vrw (A).

The predictive analysis problem considered here is to detect
the existence of a violation path P(p’) for all p’ € AV P(p).

III. THE TRACE ATOMICITY SEGMENT (TAS)

For an atomic block .4, we identify the TAS, i.e. a sub-
graph Z 4 C G that is sufficient for the purpose of detecting
the serializability violations among AV P(p). Intuitively, the
TAS captures the events that may happen in parallel with
events in A till any broken reads are encountered. Next, we
define the boundaries of this TAS referred to as the frontiers.

A. The Frontiers

Let vertices ug and u., be the ‘first” and ‘last’
read/write vertices in Vzw (A) respectively. Therefore,
ug.etd=minf{v.eid | v € Vegw (A)} and u.cid= max{v.eid
| ve Vrw(A) }.

A frontier is a k-tuple, i.e. a vector, where the ith integer
represents the eid of some event in i*" thread. A TAS is
bounded by two frontiers (upper and lower with respect to
Q) defined as follows (see Figure 5):

o Upper Frontier: UF, is a frontier such that UF4

= vecy,,. Any coupled read that has its writer (wr)

below the upper frontier (i.e. wr.eid > UF g[wr.tid])

is referred to as read coupled below UF 4.
o Lower Frontier: LF, is a frontier such that
Uoso-€1d + 1 if i = T g.ted
min{v.eid |v € F} ifi# Ta.tid and F # {},
where, F' = {v | v € V(G),
v.tid = 1, vecy [T a.tid] >
Uso.€td, and v is not read
coupled below U F 4}
if i # Ta.tid and F = {}.

(2)

where ¢ denotes a special terminating event, added to every
thread at the end.

The subgraph of GG between the upper frontier and the
lower frontier is called the TAS Z 4. Formally,

¢.eid

V(Za)= {ulueV(G) A (u.eid > UF4lu.tid])
A (u.eid < LF s[u.tid])}
E(Za) = {(w,v)]|u,veV(Z4) and (u,v) € E(G)}

A vertex v is said to be ‘on the LF 4’ (‘below the LF'4’)

iff LEg[v.tid] = v.eid (LF g[v.tid] < v.eid). Similarly, a
vertex v is said to be ‘on the UF,’ (‘above the UF4’)
iff UF 4[v.tid] = v.eid (v.eid < UF 4[v.tid]). The intuition
behind the frontiers is that no vertex above the upper frontier
(below lower frontier) may appear after (before) any vertex
v € Veaw(A) C V(Z4) in any interleaving in AV P(p).
Also, note that a read coupled below UF 4 is not allowed
to be on the LF4, since a read couple can be broken in an
alternate interleaving in AV P(p).

Example: Figure 5 shows an example of a TAS for the
atomic region in a partial order graph with three threads.
The upper frontier is U F4={8,5,6}. The lower frontier is
LF4={17,11,11}. Note that the vertices 1.8, 2.5 and 3.6 are
on the U F 4. Similarly, vertices 1.17, 2.11 and 3.11 are on
the LF 4. The subgraph in between the frontiers is the TAS
Z 4. Note that Vrw (A) C V(Z4). Although, the frontiers
are simple vectors, they are represented as cuts in Figure 5
as the frontiers demarcate the boundaries of the TAS. Next,
we show the sufficiency of TAS for detecting the existence
of a violation path for a given atomic block.

B. Sufficiency of TAS

Theorem I: [TAS THEOREM] Let, v,v" € Vrw (G) such
that v.eid < UFg[v.tid], v'.eid > LEF [V .tid). ¥p' €
AV P(p), there does not exist a violation path P(p’) s.t.
P(p’) goes through v or v’.

O

v

.

°
D)

Figure 6. Case 1 of Theorem 1: v lies above UF4. Let, (z,y) be the
broken read-couple on path connecting v and ug in G, such that s(P(p’))
precedes v in P(p’).

Proof Sketch: If a violation path goes through v or v’ then

(a) s(P(p')) precedes v in P(p’), or (b) t(P(p’)) follows v’
in P(p’). We consider both cases separately.
Case 1: Let there be a violation path P(p’) such that
s(P(p')) precedes v in P(p'). Since v lies above U F 4, there
must exist at least one path in G' connecting v and uo and
in all those paths ug follows v (see Figure 6). Moreover,
ug precedes (or is the same as) s(P(p’)) in G. Therefore,
at least one RAW edge in all paths in G connecting v and
up must be broken in p’, otherwise we would have a cycle
connecting ug, s(P(p’)) and v in p’. Let, (z,y) be a broken
read-couple in G which lies on a path (say 7) connecting v
and ug in G. Consider the cases for y.

Case 1.1: y=uq. All the events following ug in A will be
skipped in G¢ for p’. Hence, the violation path cannot

Figure 7. Case 2 of Theorem 1: v’ lies below LF 4. Let, (z’,y’) be the
broken read-couple on path connecting uoo and v’ in G, such that t(P(p’))
follows v" in P(p’).

terminate in A leading to contradiction.
Case 1.2: y # ug. Since, y is a read-event there cannot
be an outgoing inter-thread edge from y in G. Therefore,
(z,y) must be immediately followed by a program order
edge (y,w) in 7. However, if (x,y) is a broken read-
couple, then w must be skipped (as w follows y in
program order) in G¢ for p'. Therefore 7 discontinues
after y in G¢. Thus ug and all following vertices
including s(P(p')) and ¢(P(p)) in V(A) ¢ V(G¢) and
thus P(p’) cannot be a violation path.
Case 2: Let there be a violation path P(p’) such that
t(P(p')) follows v" in P(p’). Since v’ lies below LF 4, there
must exist at least one path in G connecting ., and v’ and
in all those paths u., precedes v’ (see Figure 7). Moreover,
Uso follows t(P(p')) in G. Therefore, at least one RAW edge
in all paths in G connecting u., and v’ must be broken in
p', otherwise we would have a cycle connecting t(P(p')),
Uso and v’ in p’. Let, (2’,3y") be the broken read-couple in
G which lies on a path (say 7') connecting 1., and v’ in G.
Consider the cases on y/'.

Case 2.1: y/ = /. From the premise, v'.eid >

LF4[v'.tid]. There are two possibilities.

Case 2.1.1: v'.eid = LF4[v'.tid]. The RAW edge
(2',v") in E(G) implies that &’ < v'. If v’ is on the
LFy, then ' must be within Z4. But, then v’ is a
read coupled below UF 4. Therefore, by Eq. 2, v’
cannot be on the LFy.

Case 2.1.2: v'.eid > LF4[v’.tid]. There must exist
w such that w.eid = LF4[v'.tid] (ie. w is on
LF,). Therefore, there must exist at least one path
connecting u., and w in G and in all those paths
Uso precedes w. Moreover, w precedes v’ in all
interleavings in AV P(p) since both events belong
to the same thread. Therefore, in all interleavings in
AV P(p), us must precede v’ and this precludes a
path from v’ to t(P(p)).

Case 2.2: 3/ # o' (shown in Figure 7). Let, (3/,w’)
be the program order edge which follows (z’,y) in 7’.
Therefore, if (2’,y") is the broken read-couple in p’, then
w’ must be skipped. Thus, 7’ discontinues after y" in p’

and v’ is not present in P(p’). Hence the contradiction.

Corollary 1: [LOCALITY COROLLARY] The serializabil-

ity of atomic block A over all AV P interleavings cannot be
violated due to any vertex v ¢ V(Z4).
From Theorem 1, we infer that, for any vertices v and v’
outside Z 4 (defined in the context of Theorem 1), no vio-
lation path is possible where v follows source(P(p')) or v’
precedes target(P(p'))), where p' € AV P(p). Therefore,
a violation path P originating from and terminating into .4
can neither cross UF 4 nor cross LF 4. Hence, there exists
no violation path that includes vertices outside Z 4.

C. Static Checking of TAS

Once the TAS Z 4 is identified, it is often possible to
statically determine the absence of any AVP interleaving
that violates atomicity. For a violation path, there must exist
at least two events within the atomic block that conflict
with other access(es) outside the atomic block. Formally, the
necessary condition for existence of a violation path P is:
there exist e, ea € Vrw (A) such that Jei, e} € Vrw (A),
and ey (ez) conflicts (RAW, WAR, WAW) with ¢} (e5).

If such events e; and es do not exist, then no violation is
possible. Note that the conflicting accesses {e], e5} outside
the atomic block may or may not correspond to the same
event. It is important to note that the TAS frequently makes
this check succeed, whereas it would typically fail for the
full trace since it is likely that a shared variable (that is
accessed within A) is accessed outside the TAS. While the
static check is straight-forward, it is this beneficial result of
the TAS that we would like to highlight.

D. Exploration of TAS

If the static check fails for a TAS, i.e. an atomicity
violation is possible, we systematically explore events in the
TAS to generate the AVP interleavings. These interleavings
are then checked for existence of a violation path. The
exploration of TAS can be performed by any systematic
search method (explicit or symbolic). In our current imple-
mentation, we employ explicit search inspired by dynamic
partial order reduction [18, 19]. Interleavings with the same
relative order between the conflicting events are defined
as conflict-equivalent interleavings. The DPOR algorithm
avoids generation of conflict-equivalent interleavings. How-
ever, off-the-shelf application of DPOR cannot generate AVP
interleavings efficiently and several heuristics need to be
used in our context. These have been omitted here for
brevity.

E. Complexity

Let, |V(G)| = N, |E(G)] = M. The vertices in G
needs to be topologically sorted for the task of vector
assignment (O(N + M)). Once the vectors are assigned,
derivation of TAS requires identification of upper (O(1))
and lower (O(N)) frontiers. Next, the static check requires
a scanning of the vertices in the TAS (O(N)). Therefore, the
total time complexity of deriving the TAS is O(N + M).
The complexity of search-space exploration depends on the

method chosen, in our case this is the complexity of DPOR
based search.

Traces

(#total 15 (45653)
events)
ThriftTracell

(25237)
ThriftTrace6 (11357)

Elevator2 (5001)
DaisyTest1 (2998)
SynchBench (1510)
philo (1141)
accountl (902)
Barrierl (653)

conpool (97)

- - S— L]
I- iy z

1 -
o

95}

| g
—

w2

20 40 60 80 100

o

% of all events

@ Avg TAS size (% of all events)

Figure 8. The relative TAS size tends to be significantly smaller than the
trace size for the larger traces.

We have implemented our AVP predictive analysis tech-
nique in a prototype tool. This tool is capable of log-
ging/analyzing execution traces generated by both Java pro-
grams and multithreaded C/C++ programs using Pthreads.
The C++ benchmark used is available online [21]. All the
Java benchmarks are also publicly available [22-26].

Next, we describe how the tool logs execution traces
and analyzes those traces. The tool logs execution traces
at runtime from C++ source code instrumented using the
commercial front end from Edison Design Group (EDG).
For Java programs, we use execution traces logged at
runtime by a modified Java Virtual Machine (JVM). For
each test case, we first execute the program using the default
OS thread scheduling and log the execution trace. Next we
apply our algorithm to detect the serializability violations.
For Java traces, we assume that all synchronized blocks are
intended to be atomic, unless the synchronized block has
a wait. For the C++ application, we assume that all blocks
using scoped locks (monitors implemented using Pthreads
locks and condition variables) are intended to be atomic.

All our experiments were conducted on an Intel Xeon
machine with a 2.8 GHz Intel processor and 1GB memory
running Linux. We want to answer the following questions
through experimentation.

« How large is the TAS relative to the trace?

« How often does the static check on the TAS succeed?

o What is the computation time needed to detect the
violations?

We considered the following scenarios.

o “no TAS”: This shows the results of experiments where
plain DPOR (without our heuristics) is applied to the
entire trace for checking each atomic block.

Traces
i .
(zllltol?'uc 0 (5) R \Jpper bar:
ocks) no TAS case
ThriftTracell (703) EEET———— | oWwer bar:
. TAS, SP, CS = o0
ThriftTrace6 (363)
Elevator2 (231)
VZ7777777777777772727277272277220 22200 22222222 2222 7
Daisy Texst 1 (142) 50T
I W #Static Proofs
SynchBench (1.2.4) |5 SR (SP)
N 7777777777777 7777777727777 227777778
philo (28) [7772727722272222222222 2222777777777 7 #No violation
P found in (NV)
accountl (61) DPOR phase
) B #Violations
Barrierl (11) found (V)
[(PZ777777777277777777777 227777277 2772777722772 27227777772
conpool (4) O #Timeouts in
0 20 40 60 80 100 DPOR phase
% of #atomic blocks (T0

Figure 9.
increasingly succeed.

o “TAS, no SP”’: TAS and search heuristics but no static
check.

o “TAS, SP, CS,q = 5”: Alongwith TAS, static check
and our optimized DPOR search technique we have
considered context switch bounding [27] to 5 context
switches (CS;qz = H) to reduce the number of
interleavings considered).

o “TAS, SP, CS,,0: = o0”: TAS, static check, search
heuristics with no bound on context switches.

Note that since the previous research on these Java
benchmarks, including Fusion [14], are limited by their
ability to check serializability violations involving at most 1
variable and 2 threads, we cannot provide an experimental
comparison against them.

For ease of representation, we present the experimental
results for a sample of traces in Figures 8, 9 and 10 for ‘no
TAS’ and ‘TAS, SP, C'S;,4: = o0’ experiments. Henceforth,
for brevity we refer to the ‘TAS, SP, C'S,,qc = 00’ case
as the ‘“TAS’ case. Additional details for these traces are
presented in the Table I. The remaining traces in the
benchmark set show similar characteristics. These figures
support the claims we make next.

In Figure 8, the average TAS size (X-axis) is shown
as a percentage of the total number of events. The Y-axis
depicts the traces with the number of events shown within
parenthesis (in increasing order of the number of events).
Note that, the average TAS size of Tsp is 0.2% of the total
events and hence the corresponding bar is virtually absent
in the figure. Moreover, observe that the relative TAS size
is significantly smaller than the trace size, and tends to be
more so for the larger traces for this set of benchmarks.

For the same traces, Figure 9 shows that the static checks
using the TAS often succeed which results in fewer timeouts.
A timeout of 10 minutes per atomic block is chosen for
the search phase. There are two horizontal bars per trace.
The upper and the lower bar show the results of ‘no
TAS’ and ‘TAS’ cases respectively. In the ‘no TAS’ case,

In larger traces, the timeouts decrease as the static checks

Tsp

ThriftTracell

No int. explored. _
All blocks passed e

static check.

ThriftTrace6

Elevator2
B Normalized

DaisyTest1 ﬁ #interleavings
explored w.rt.
SynchBench no TAS case
oo
t1 @ Normalized
accoun Time w.rt. no
. TAS case
Barrierl q
conpool d

1.00E-09
1.00€-08
1.00€-07
1.00€-06
1.00E-05
1.00€-04
1.00E-03
1.00€-02
1.00€-01
1.00E+00

Figure 10. Our method catches violations exploring much fewer interleavings
in significantly less time.

there are three possible outcomes for each atomic block
- ‘no violation possible’ (NV), ‘violation found” (V) or
‘timeout’ (TO). We show the distribution of NV-V-TO for
the ‘no TAS’ case in the upper bar. Similarly, in the ‘TAS’
case, the possible outcomes are: ‘static check passed’ (SP),
NV, V, TO. The distribution of SP-NV-V-TO is shown for
the ‘TAS’ case in the lower bar. Observe that in traces
philo, SynchBench, Elevator2, ThriftTracell
the timeouts in the ‘TAS’ case disappear. Moreover, in
traces accountl and Barrierl the number of timeouts
decreased significantly. This is due to the large number of
static checks that succeed in the ‘TAS’ case, which effectively
bring down the number of timeouts.

Figure 10 compares the execution time and the number
of interleavings explored in the ‘TAS’ case normalized with
respect to the ‘no TAS’ case. In all the traces, ‘TAS’
case outperformed ‘no TAS’ case in terms of number of
interleavings explored and time taken. For instance in traces
SynchBench and Tsp, all the TAS-es passed the quick
static check in negligible time, demonstrating the efficiency
of our static check. Moreover, we also found that for all
these experiments, the time needed to compute the TAS
was insignificant (less than 1 sec). Hence, we find that
our method catches violations in significantly less time by
exploring much fewer interleavings.

Discussion:

o In our ‘TAS Search w/ Static Check’ experiments, we
detect 23 atomicity violations in 26 traces. This un-
derscores our intuition that the predictive search-space
of AVP interleavings has value in detecting atomicity
violations.

« We find that the static check on TAS is very effective.
For example, in the ThriftTrace benchmarks, more
than 90% of the atomic blocks are statically determined
not to have a violation. This drastically reduces the total
time, which is dominated by the time spent in search.
On average, 81.75% of the atomic blocks pass this test.

o Usually the ‘no TAS’ experiments run longer compared
to experiments involving TAS. This shows that the trace
reduction enabled by TAS is effective. On average only
23.88% (best case 0.2%) of the entire trace is included
in a TAS. Moreover, the TAS enables us to handle
non-terminating/streaming applications, which cannot
be analyzed by any technique that needs a complete
trace.

e The results indicate less than 1% timeouts over all
checks in ‘TAS, SP, C'S,,qa = oo’. This is due to an
effective combination of TAS with DPOR. Specifically,
we observe that TAS size of traces with mostly de-
coupled threads (i.e. insignificant inter-thread interac-
tion) are bigger. However, fortunately, in such cases,
the DPOR-based search explores only a very few inter-
leavings e.g. in almost all the Thrift traces, although
the absolute TAS sizes are fairly large, less than 20
interleavings were explored. Similar observation can
be made regarding Elevator traces. Thus, combining
TAS with DPOR works well for both tightly as well as
loosely coupled threads on this set of benchmarks.

V. RELATED WORK

We have already discussed the broadly related efforts on
predictive analysis. More specifically, the maximal causal
model proposed by Serbanutd et al. [12] captures a related
but incomparable set of interleavings. They record the actual
values read and written in the trace, and allow only a
single mismatch among the values read. In contrast, our
predictive model does not interpret the values (and could
handle nondeterministic values, e.g. in the initial state), and
we allow multiple mismatches (in different threads) among
the AVP interleavings explored. Farzan and Madhusudan
use the notion of causal atomicity [6], which also relies on
conflict-equivalence and hence is closely related to conflict-
serializability. (A causal atomicity violation is a violation
of conflict-serializability; but the reverse is not always true.)
Besides this difference, as mentioned earlier, their predictive
model does not guarantee feasible traces, i.e. may have false
positives [16]. Their predictive analysis has been recently
used to guide runtime testing [28].

Among other related techniques, Lu et al. [2] used access
interleaving invariants to capture patterns of test runs and
then monitor production runs for detecting three-access
atomicity violations. Xu et al. [20] used a variant of the two-
phase locking algorithm to monitor and detect serializability
violations. Both methods were aimed at detecting, not pre-
dicting, violations in the given trace. Wang and Stoller [29]
also studied the prediction of serializability violations under
the assumptions of deadlock-freedom and nested locking;
their algorithms are precise for checking violations involving
one or two transactions but incomplete for checking arbitrary
runs.

VI. CONCLUSIONS

We have proposed a graph-based predictive analysis
method for detecting serializability violations in concurrent

programs. Our method is precise in that when it reports a
serializability violation, the reported interleaving is guaran-
teed to be feasible in the actual program execution (hence no
false positives). We directly address the performance issues
inherent in exploring a large number of interleavings by
first deriving a smaller segment (TAS) of the given trace
for checking a given atomic block. We prove that it is
sufficient for exploring all interleavings in our target set
(AVP interleavings). We also use the TAS to provide a quick
static check for proving the absence of violations, which
very often succeeds in practice. For the systematic search
over all interleavings, we employ dynamic partial order
reduction and other pruning techniques to reduce the number
of interleavings to be checked. Our experimental results
demonstrate the effectiveness of our TAS-based approach
on several C and Java benchmark programs.

REFERENCES

[1] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mis-
takes: a comprehensive study on real world concurrency bug
characteristics,” in ASPLOS. ACM, 2008, pp. 329-339.

[2] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “AVIO: detecting
atomicity violations via access interleaving invariants,” in
ASPLOS, 2006, pp. 37-48.

[3] F. Chen, T. Serbanuta, and G. Rosu, “jPredictor: a predictive
runtime analysis tool for java,” in ICSE, 2008, pp. 221-230.

[4] A. Farzan and P. Madhusudan, “The complexity of predicting
atomicity violations,” in TACAS, 2009, pp. 155-169.

[5] A. Sinha and S. Malik, “Runtime checking of serializability
in software transactional memory,” in /PDPS, 2010, pp. 1-12.

[6] A. Farzan and P. Madhusudan, “Causal atomicity,” in CAV,
2006, pp. 315-328.

[7] C. H. Papadimitriou, “The serializability of concurrent
database updates,” J. ACM, vol. 26, no. 4, pp. 631-653, 1979.

[8] A. Farzan and P. Madhusudan, “Monitoring atomicity in
concurrent programs,” in CAV, 2008, pp. 52-65.

[9] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558-
565, 1978.

[10] K. Sen, G. Rosu, and G. Agha, “Runtime safety analysis of
multithreaded programs,” in Foundations of Software Engi-
neering (FSE’03). ACM, 2003, pp. 337-346.

[11] E Chen and G. Rosu, “Parametric and sliced causality,” in
CAV. Springer, 2007, pp. 240-253, LNCS 4590.

[12] T. E Serbanutid, F. Chen, and G. Rosu, “Maximal causal
models for multithreaded systems,” Tech. Rep.

[13] J. Yi, C. Sadowski, and C. Flanagan, “Sidetrack: generalizing
dynamic atomicity analysis,” in PADTAD, 2009, pp. 1-10.

[14] C. Wang, R. Limaye, M. Ganai, and A. Gupta, “Trace-based
symbolic analysis for atomicity violations,” in TACAS, 2010,
pp- 328-342.

[15] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson, “Eraser: A dynamic data race detector for
multithreaded programs,” ACM Trans. Comput. Syst., vol. 15,
no. 4, pp. 391-411, 1997.

[16] A. Farzan and P. Madhusudan, “Meta-analysis for atomicity
violations under nested locking,” in CAV, 2009, pp. 248-262.

[17] V. Kahlon and C. Wang, “Universal Causality Graphs: A
precise happens-before model for detecting bugs in concurrent
programs,” in CAV. Springer, 2010, pp. 434-449.

[18] C. Flanagan and P. Godefroid, “Dynamic partial-order reduc-
tion for model checking software,” SIGPLAN Not., vol. 40,
no. 1, pp. 110-121, 2005.

[19] Y. Yang, X. Chen, and G. Gopalakrishnan, “Inspect: A

1. 2. 3. 5. 6. 7. 8. 9. 10.
Avg. TAS
Traces AB size (% Scenarios SP (% NV | V| TO Int. Time
of all of all)
events) AB’s)
conpool no TAS - 4 0 0 56 0.2s
thrds: 4, evs: 97 TAS, no SP - 4 0 0 37 0.017s
l-evs: 16, l-vars: 1 4 34.5 TAS, SP, 2 0 0 33 0.02s
rw-evs: 53, rw-vars: 5 (35.56) CSmaz=5 2
wn-evs: 3 TAS, SP, (50) 4 0 0 33 0.02s
CSmaz = 0
Barrierl no TAS - 2 2 7 5.4M 1h17m
thrds: 10, evs: 653 TAS, no SP - 3 2 6 T.9M Thds
l-evs: 108, l-vars: 2 11 262.6 TAS, SP, 0 2 2 571K 23md4s
rw-evs: 262, rw-vars: 12 (40.2) CSmaz=5 0
wn-evs: 7 TAS, SP, 0) 3 2 6 I.OM Thés
CSmaz = 00
accountl no TAS - 12 0 49 16.8M S8hlim
thrds: 11, evs: 902 TAS, no SP - 47 0 14 ™M 2h20m
l-evs: 146, l-vars: 21 61 307.6 TAS, SP, 51 0 10 396K Th40m
rw-evs: 430, rw-vars: 42 (34.1) CSmaz=5 51
wn-evs: 10 TAS, SP, (83.6) 51 0 10 839K Th40m
CSmaz = 00
philo no TAS - 21 0 7 9.2M Th10m
thrds: 6, evs: 1141 TAS, no SP - 27 1 0 123K Tm3Ts
l-evs: 126, l-vars: 6 28 273.5 TAS, SP, 6 0 0 20K 18s
rw-evs: 857, rw-vars: 23 (23.9) C'Smaz=5 6
wn-evs: 22 TAS, SP, (21.43) 27 1 0 123K Tm30s
CSmaz = 00
SynchBench no TAS - 97 0] 27 33.6M 4h31m
thrds: 16, evs: 1510 TAS, no SP - 122 0 2 1.8M 20m14s
I-evs: 306, l-vars: 2 124 64.68 TAS, SP, 2470 0 0 0Os
rw-evs: 533, rw-vars: 15 4.2) C'Smaz=5 124
wn-evs: 0 TAS, SP, (100) 24170 0 0 0Os
CSmaz = 00
DaisyTest1 no TAS - 141 1 0 298 0.3s
thrds: 3, evs: 2998 TAS, no SP - 41 |1 0 241 0.17s
l-evs: 422, l-vars: 10 142 88.5 TAS, SP, 140 1 0 5 0.1s
rw-evs: 2003, rw-vars: 45 2.9) CSmaz=5 140
wn-evs: 15 TAS, SP, 986) [14T | T 0 5 0.1s
CSmaz =
Elevator2 no TAS - 161 0 70 1.8M 11h42m
thrds: 4, evs: 5001 TAS, no SP - 231 0 0 517 2m3s
l-evs: 610, l-vars: 11 231 1875.4 TAS, SP, 22510 0 124 Tm38s
rw-evs: 3668, rw-vars: 117 (37.5) CSmaz=5 225
wn-evs: 0 TAS, SP, 974) [23T] 0 0 125 Tm35s
CSmaz = 00
ThriftTrace6 no TAS - 358 1 4 2.8M 40m17s
thrds: 4, evs: 11357 TAS, no SP - 362 1 0 T9K 29s
l-evs: 1384, l-vars: 48 363 1191.36 TAS, SP, 351 [1 0 13 0.2s
rw-evs: 3184, rw-vars: 171 (10.5) CSmaz=5 351
wn-evs: 324 TAS, SP, (96.7) [362 [1 0 13 0.2s
CSmaz = 00
ThriftTracell no TAS - 393 1 0 [310 [126.8M [51h40m
thrds: 6, evs: 25237 TAS, no SP - 703 0 0 100T 2.9s
l-evs: 2522, l-vars: 158 703 32725 TAS, SP, 70210 0 I 0.9s
rw-evs: 9218, rw-vars: 519 (12.9) C'Smaz=5 702
wn-evs: 549 TAS, SP, (99.9) 703 0 0 T 0.9s
CSmaz = 00
Tsp no TAS - 5 0 0 76 0.2s
thrds: 4, evs: 45653 TAS, no SP - 5 0 0 5 0.012
l-evs: 20, I-vars: 5 5 97 TAS, SP, 5 0 0 0 0Os
rw-evs: 25366, rw-vars: 42 0.2) C'Smaz=5 5
wn-evs: 3 TAS, SP, (100) 5 0 0 0 0s
CSmaz = 00
Table 1

EXPERIMENTAL DATA OF THE SERIALIZABILITY VIOLATION DETECTION. (AB=ATOMIC BLOCKS, SP=STATIC PROOFS, NV=NO VIOLATION POSSIBLE,
V=VIOLATIONS FOUND, TO=TIMEOUTS, INT.=NO. OF INTERLEAVINGS GENERATED)

[20]

[21]
(22]
(23]

[24]

[25]

Runtime Model Checker for Multithreaded C Programs,”
University of Utah, Tech. Rep. UUCS-08-004, 2008.

M. Xu, R. Bodik, and M. D. Hill, “A serializability violation
detector for shared-memory server programs,” in PLDI, 2005,
pp. 1-14.

http://incubator.apache.org/thrift/.

E. Farchi, Y. Nir, and S. Ur, “Concurrent bug patterns and
how to test them,” in IPDPS, 2003, p. 286.

K. Havelund, “Using runtime analysis to guide model check-
ing of java programs,” in SPIN, 2000, pp. 245-264.
http://research.microsoft.com/qadeer/cav_issta.htm, “Joint
cav/issta special event on specification, verification, and
testing of concurrent software.”
http://www2.epcc.ed.ac.uk/computing/research_activities/
java_grande/index_1.html, “Java grande forum benchmark
suite.”

[26]

(27]

(28]

[29]

C. von Praun and T. R. Gross, “Static detection of atomicity
violations in object-oriented programs,” Object Technology,
vol. 3, no. 6, 2004.

M. Musuvathi and S. Qadeer, “Iterative context bounding
for systematic testing of multithreaded programs,” SIGPLAN
Not., vol. 42, no. 6, pp. 446455, 2007.

F. Sorrentino, A. Farzan, and P. Madhusudan, “Penelope:
Weaving threads to expose atomicity violations,” in FSE.
ACM, Nov, 2010.

L. Wang and S. D. Stoller, “Runtime analysis of atomicity for
multithreaded programs,” IEEE Trans. Software Eng., vol. 32,
no. 2, pp. 93-110, 2006.

