
On Interference Abstractions

Nishant Sinha
NEC Laboratories America
nishants@nec-labs.com

Chao Wang
NEC Laboratories America
chaowang@nec-labs.com

Abstract
Interference is the bane of both concurrent programming and anal-
ysis. To avoid considering all possible interferences between con-
current threads, most automated static analysis employ techniques
to approximate interference, e.g., by restricting the thread sched-
uler choices or by approximating the transition relations or reach-
able states of the program. However, none of these methods are
able to reason about interference directly. In this paper, we intro-
duce the notion ofinterference abstractions(IAs), based on the
models of shared memory consistency, to reason about interference
efficiently. IAs differ from the known abstractions for concurrent
programs and cannot be directly modeled by these abstractions.
Concurrency bugs typically involve a small number of unexpected
interferences and therefore can be captured by small IAs. We show
how IAs, in the form of both over- and under-approximations of
interference, can be obtained syntactically from the axioms of se-
quential consistency. Further, we present an automatic method to
synthesize IAs suitable for checking safety properties. Our exper-
imental results show that small IAs are often sufficient to check
properties in realistic applications, and drastically improve the scal-
ability of concurrent program analysis in these applications.
Categories, Subject Descriptors:D.2.4 [Software/Program Veri-
fication]: Model Checking, Formal Methods.
General Terms:Algorithms, Verification.

1. Introduction
Analyzing shared memory concurrent programs is difficult due to
the fact that constituent program threads mayinterferewith each
other via shared variables. Multiple formalisms have been devel-
oped to model and reason about interference, e.g., the Mazurkiewicz
traces [1] model the program behaviors as a partial order over
events while thecontext-switchingmodel utilizes a scheduler to
generate all possible thread interleavings. Because analyzing all
possible interferences is intractable in practice, these models em-
ploy reduction techniques to focus on a subset of interferences,
e.g., partial-order reduction [2–6] or context-bounding [7–9].

In this paper, we develop a new formalism based onmem-
ory consistencymodels [10] for analyzing shared memory concur-
rent programs efficiently. A memory consistency (MC) model pre-
scribes rules on when a read to a shared location may observe some
write to the same location, and hence determines the set of feasible
executions of a concurrent program. Concurrent program analysis

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

based on MC models has received considerable attention recently,
both for therelaxedMC models which allow instruction reorder-
ings [11, 12] by the compiler or hardware, as well as for high-level
static analysis [13]. Using a MC model is particularly attractive be-
cause it allows us to reason about correlations between reads and
writes of program threads directly, inside a reasoning framework
for partially-ordered events, similar to Mazurkiewicz traces.

In this work, we focus on the well-known MC model ofsequen-
tial consistency(SC) [10, 14], which is both intuitive as well as
simpler to analyze. The SC model prescribes the following rules
(more formally, axioms in first-order logic) of interference for cor-
rect program executions: (i) each read must observe some write to
the same shared location (interfering write), and (ii) a read may
only observe thelastsuch write in the causal order. Note, however,
that enforcing these rules for all reads and corresponding interfer-
ing writes in a program, again leads to an intractable analysis.

To obtain a scalable analysis, we introduceinterference abstrac-
tion (IA), a new concurrency abstraction to reason about thread
interference using the memory consistency models. One way to
obtain an IA is byweakeningthe SC rules, e.g., by permitting a
read to not observe any interfering write. In other words, we allow
program executions where the read may obtain any value indepen-
dent of the values of the interfering writes. This form of weaken-
ing leads to anover-approximation of interference (denoted as an
OIA). Alternatively, we maystrengthenthe SC rules, e.g., by forc-
ing a read to observe only asubsetof all possible interfering writes.
Consequently, executions where the read may observe writes out-
side the subset are ruled out. Such strengthening leads to anunder-
approximation of interference (denoted as an UIA). Employing ei-
ther of these approximations (obtained by weakening or strengthen-
ing the SC rules) makes analysis more tractable. Intuitively, an IA
enforcesfewerdependency relationships among reads and writes
than ordained by the SC rules. Many concurrent safety errors, e.g.,
data races, deadlocks and atomicity violations, typically occur due
to a small amount of unexpected interference between threads [15].
This fact is captured formally by IAs, i.e., there often existsmall
IAs sufficient to detect these errors.

We present a formal framework to characterize IAs in an uni-
form manner by exploiting the axiomatic formulation of SC rules.
More precisely, we show how to obtain a wide variety of IAs in a
syntacticmanner by selectively instantiating the SC axioms. The
framework models not only OIA ’s and UIA ’s but also mixed IAs
(M IA ’s) containing both over- and under-approximations of inter-
ference, in a seamless manner. Further, we show how several in-
formal notions of concurrency abstractions for checking properties
can be formally captured in the uniform framework of IAs.

Given our unified framework of IAs, the key problem is to
synthesize IAs suitable for checking a property. To this goal, we
present an iterative refinement scheme which starts from a coarse
IA and gradually refines it in a property-driven manner. Most tradi-
tional abstraction/refinement schemes (e.g. [4, 16–19]) work with
either over- or under-approximations to obtain proofs or witnesses

respectively. In contrast, our algorithm works directly on a mixed
approximation, i.e., mixed IAs, and iteratively steers the mixed IA
to an OIA (if a proof exists) or an UIA (if a witness exists).

We implemented our approach in the FUSION platform, which
is a collection of tools for concurrent program verification (e.g. [13,
20–23]). We evaluated the effectiveness of IAs for checking embed-
ded assertions and data races on medium sized programs. Our re-
sults show that small IAs are sufficient to decide many of the prop-
erties, and our iterative refinement procedure enables drastically
improved analysis of these benchmarks. Further, we have been able
to check larger benchmarks that were intractable without using IAs.

To sum up, this paper makes the following contributions:

• We introduce the notion ofinterference abstractionto rea-
son about interferences based on memory consistency models.
These IAs may over- or under-approximate the thread interfer-
ence, or represent their combination. (Sec. 5). We show that
these IAs formally capture common concurrency bug patterns
and as well as correctness proofs (Sec. 5.3).

• We present a unified framework for obtaining these IAs from
the axioms of sequential consistency [10, 14] (Sec. 4, 5). The
framework of IAs provides a flexible mechanism for approx-
imating interference among reads and writes, guided by the
memory consistency axioms.

• We formalize the set of IAs as a complete lattice and present
an iterative approach to synthesize IAs for checking proper-
ties based on a symbiotic combination of over- and under-
approximate IAs (Sec. 6). A set of focusing heuristics are also
presented to make the iterative algorithm practical.

2. Preliminaries
We start with formalizing concurrent programs.

2.1 Concurrent Programs

A concurrent programconsists of a finite set ofthreadsT0, . . . , Tk

communicating via a setSV of shared variables. Each threadTi

has a set of local variablesLV i and is represented by a control flow
graph (defined below). Threads are allowed to fork other threads in
a bounded manner, i.e., the total number of threads is finite. Let
T0 denote the main thread andVi = SV ∪ LV i denote the set of
variables accessible to threadTi.

We represent a concurrent program using a concurrent con-
trol flow graph (CCFG), which may be viewed as an extension
of control flow graphs (CFGs) for sequential programs. A CCFG
C=(N, E) consists of a set of nodesN and a set of edgesE. We
use two special types of nodesfork and join to model thread
creation and thread join respectively. A program threadTi corre-
sponds to a sub-graph(Ni, Ei) of the CCFG, whereNi consists
of nodes representing program locations in threadTi andEi con-
sists of edges representing the program statements. Assume thatNi

contains uniqueentryandexit nodes ofTi. For eachTi (i 6= 0) the
entry node has a single incoming edge from afork node and the
exit node has a single outgoing edge to ajoin node.

Each edge inEi is labeled by one of the following actions:

• guarded assignment(assume(c), asgn), wherec is a condition
over Vi, andasgn = {w := exp} is a set of parallel assign-
ments, wherew ∈ Vi andexp is an expression overVi. Intu-
itively, the assignments proceed iff conditionc is true.

• fork(j), where0 < j ≤ k andj 6= i, starts the execution of
child threadTj .

• join(j), where0 < j ≤ k andj 6= i, waits for child threadTj

to terminate.

• assert(c), wherec is a condition overVi, assertsc.

ThreadT0

int x = 0;
int y = 0;
pthreadt t1, t2;
main(){

t1 pthreadcreate(&t1,0,foo,0);
t2 pthreadcreate(&t2,0,bar,0);
t3 pthreadjoin(t2,0);
t4 pthreadjoin(t1,0);
t5 assert(x != y);

}

ThreadT1

foo() {
int a;

t11 a=y;
t12 if (a==0){
t13 x=1;
t14 a=x+1;
t15 x=a;
t16 }else
t17 x=0;
t18 }

ThreadT2

bar(){
int b;

t21 b=x;
t22 if (b==1) {
t23 y=1;
t24 b=y+1;
t25 y=b;
t26 }else
t27 y=0;
t28 }

Figure 1. A multi-threaded C program with an assertion.

By defining expressions suitably and using code transformations,
the above formulation can model all statements in standard pro-
gramming languages like Java and multi-threaded C. The details on
modeling generic language constructs such as pointers and struc-
tures are omitted since they are not directly related to concurrency.
For more information on language modeling, please refer to recent
efforts including [24–26].

The guarded assignment action(assume(c), asgn) may have
the following variants: (1) whenc = true, it represents normal
assignments; (2) when the setasgn is empty,assume(c) itself
can represent thethen-branch of anif(c)-then-else statement,
while assume(¬c) can represent theelse-branch; and (3) with
both guard and assignments, it represents an atomiccheck-and-set,
which can be used as the foundation of all kinds of synchroniza-
tion primitives. For example, acquiring the locklk in threadTi is
modeled as(assume(lk = ⊥), {lk := i}) and releasing the lock
is modeled as(assume(lk = i){lk := ⊥}). Here the value of
lk indicates the lock owner’s thread index (⊥ means the lock is
free). Similarly, acquiring the counting semaphorese is modeled
as(assume(se > 0), {se := se − 1}).

2.2 Bounded Concurrent Programs

Static analysis of concurrent programs with loops and/or recursion
is known to be undecidable even with finite data. Our goal, how-
ever, is to analyze real-life programs where data structures are pre-
cisely modeled. We, therefore, focus on analyzingboundedcon-
current programs, whose analysis is decidable. Intuitively, astruc-
turally bounded program is obtained by finitely unwinding the
loops and recursion in an arbitrary real-life concurrent program.
Bounded programs are also obtained in the context of symbolic
predictive analysis (e.g., [21, 22]), by generalizing from the se-
quence of program statements executed in a particular trace. This
form of bounding finitizes the number of program threads and
the heap. Further, if the underlying program theory is decidable,
then the analysis becomes decidable. A bounded program under-
approximates the sets of paths of the original program and hence
the violations found by the analysis are real. However, the proofs
(absence of violations) found may not generalize to the original
program.

We represent bounded programs using CCFGs. For ease of
presentation, we assume that all function calls in the program have
been inlined. However, the presented technique can be directly
extended to handle function calls modularly [13].

Example. Fig. 1 shows an example of a multi-threaded C program
with two shared variablesx and y. The main threadT0 creates
threadsT1 andT2, which in turn execute functionsfoo andbar,
respectively. ThreadT0 waits forT1, T2 to terminate and join back,
before asserting(x 6= y). Herepthread create andpthread join

are routines inPThreadslibrary, directly corresponding tofork/join
in our model. (Since this particular example does not have loops
and recursion, the bounded and the original programs are same.)

The assertion att5 defines the correctness property, which holds in
some, but not in all, execution traces of the program. In particular,
the execution traceρ = (t1t2)({t11–t15}t18)(t21t26t27t28){t3–
t5} does not violate the assertion (x = 2, y = 0 at t5), whereas the
execution traceρ′ = (t1t2)({t11-t14})(t21 − t25t28)(t15t18){t3-
t5} violates the assertion (x = 2, y = 2 at t5).

2.3 Gated Single Static Assignment

Recall that a sequential program can be encoded in a standard
manner using the gated single static assignment (GSA) form [27],
which combines the classic single static assignment (SSA) form
(each variable is defined exactly once) with conditions under which
a particular definition of a variable may reach ajoin node. For
example, consider the following C code:

l1 : if (c1) { z = 1;} // z1

l2 : else z = 2; //z2

l3 : y = z + 3; //y1

The SSA form renames the writes toz at l1 andl2 in terms of new
definitionsof z1 and z2, respectively. Theuseof z in l3 is then
rewritten using theφ function asφ(z1, z2), which, by definition,
may evaluate to eitherz1 or z2. Consequently,l3 is rewritten as
y1 = φ(z1, z2) + 3, wherey1 is a fresh definition ofy. Note that
the φ operator does not contain information about the conditions
under which definitionz1 or z2 may be chosen, and therefore
cannot be used for precise encoding of the bounded program. The
GSA representation solves the problem by replacingφ(z1, z2) with
ite(c1, z1, z2) whereite stands for theif-then-elseoperator. That
is, y1 = z1 + 3 when conditionc1 is true; otherwisey1 = z2 + 3.

3. Symbolic Analysis of Bounded Programs
We say that two memory accesses⁀interfere if both access the same
memory location and at least one of them is a write. To avoid
worrying about whether the accesses are concurrent or not, we use
the terminterferencein a generic manner, both for access pairs
occurring in the same thread or occurring concurrently.

In order to check properties of a bounded CCFGC, we encode
it as a first-order logic formula in a step-wise manner. First the pro-
gram statements inC are encoded in aninterference-modularman-
ner by ignoring the interference between all reads and writes (de-
notedΦC). The read-write interference inC is then encoded using
sequential consistency axioms (denotedΠ), which corresponds to
composing the program threads. The property, e.g., existence of an
assertion violation, data race, or atomicity violation, is encoded as
a formulaΦPRP . The combined formula

Φ := ΦC ∧ Π ∧ ΦPRP

is then checked for satisfiability using an off-the-shelf constraint
solver, e.g., an SMT solver [28, 29]. The formulaΦ is satisfiable iff
there exists an execution of the program that violates the property.

3.1 Interference-Modular Encoding

We show how to encode all the edges of the CCFGC without
modeling the interference between the global reads and writes. The
encoding in this section is similar to our previous works [13, 21];
we review the main details here. Although the GSA form can
encode sequential programs (cf. Sec. 2.3), it cannot directly encode
a program thread in a concurrent context. This is due to possibility
of interferenceon shared variables by concurrent threads, i.e., a
read of a shared variable (a global read, in short) must take into
account all possible interferences from concurrent writes. To ignore
modeling such interferences, each global read of variablez is
assigned a fresh symbolic valuerz (also called aplaceholder).

Using these fresh values, we can now encode the threads in the
CCFG using the standard GSA encoding1.

We say that a program edge isglobal if it accesses a shared vari-
able; otherwise it islocal. Both local and global edges participate
in the data flow inside a thread; however, only global edges partic-
ipate in data flow across the threads. Hence, we encode the local
and global edges separately: this enables us to only consider global
edges for encoding the thread interleavings, or more precisely, the
interference between threads. Our encoding, denoted byΦC , con-
sists of a local componentΦL and a global componentΦG:

ΦC := ΦL ∧ ΦG

We now discuss howΦL andΦG are obtained.

3.1.1 Encoding Local Edges (ΦL)

Given the program in the GSA form together with placeholders
for global reads, we can encode each program assignment of form
w := exp on a local edge as a formula(w = exp). The local
encodingΦL is obtained by conjoining the formula obtained from
local edges. Fig. 2 (left) shows the GSA encoding of the running
example in Fig. 1. The local variablea is defined int11 andt14. At
t18 the value ofa is eithera1 (defined int11) or a2 (defined int14),
depending on the condition(a1 6= 0).

3.1.2 Encoding Global Edges(ΦG)

We first compute the enabling condition for each edge.

Path conditions.The path condition for an edgeti in the CCFG
C is denoted byg(ti): ti executes iffg(ti) is satisfiable. Lettfirst

andtlast be the unique first and last edge inC respectively. Start-
ing with g(tfirst) := true, the path conditions are computed iter-
atively for eachti via CCFG traversal as follows. We distinguish
between CCFG nodes having multiple predecessors: if the prede-
cessors are in the same thread, the node is said to be anintra-thread
join; otherwise it is aninter-threadjoin.

• If the source ofti is an intra-thread joinnode with incoming
edgestj andtk, theng(ti) = g(tj) ∨ g(tk).

• If the source ofti is an inter-thread joinnode with incoming
edgestj andtk, theng(ti) = g(tj) ∧ g(tk).

• If ti is a branching statement with conditionc andtj precedes
ti, theng(ti) = g(tj) ∧ c.

• In all other cases, the source ofti has a single incoming edgetj

andg(ti) = g(tj).

Fig. 2 (center) shows the path conditions in the example CCFG.

Global accesses.Each global edge is encoded using the notion
of a global access. The global accessa for an edgee is a tu-
ple (Addr, V al, En), whereAddr(a) is the memory location ac-
cessed,V al(a) is the value read or written, andEn(a) is the con-
dition under whiche is enabled. For example, edget11 (cf. Fig. 2)
is encoded as an accessr11 = (y, ry1, g(t11)). Similarly, edget15
is encoded as a global accessw15 = (x, a1, g(t15)). The global
accessa captures all the information about the execution of the
corresponding global edgee succinctly.

Interference Skeleton.Observe that to model all interferences in
the CCFGC precisely, we not only need the values of global
accesses, but also their relative order inC. Let ⊏ denote the partial
order among global accesses induced by the CCFG (calledprogram
order). For accessesa1 anda2, if a1 ⊏ a2 holds, thena1 must
happen beforea2 in all program executions. The set of global
accesses inC, sayRW , together with their program order, denoted

1 We will later see that introducing such placeholders is, in fact, an instance
of interference abstraction (Sec.5).

GSA Form:

t0 : x0=0 ∧ y0=0 [w00, w01]
t1 :
t2 :
t11 : a1 = ry1 [r11] t21 : b1 = rx2 [r21]
t12 : t22 :
t13 : x1 = 1 [w13] t23 : y1 = 1 [w23]
t14 : a2 = rx1 + 1 [r14] t24 : b2 = ry2 + 1 [r24]
t15 : x2 = a2 [w15] t25 : y2 = b2 [w25]
t16 : t26 :
t17 : x3 = 0 [w17] t27 : y3 = 0 [w27]
t18 : a3 = ite(a1 6= 0, a1, a2) t28 : b3 = ite(b1 6= 1, b1, b2)
t3 :
t4 :
t5 : assert(rx3 6= ry3) [r50, r51]

Path Conditions of all Edges:

g(t1) = true

g(t2) = g(t1)
g(t11) = g(t1) g(t21) = g(t2)
g(t12) = g(t11) ∧ (a1 = 0) g(t22) = g(t21 ∧ (b1 = 1)
g(t13) = g(t12) g(t23) = g(t22)
g(t14) = g(t13) g(t24) = g(t23)
g(t15) = g(t14) g(t25) = g(t24)
g(t16) = g(t11) ∧ (a1 6= 0) g(t26) = g(t21) ∧ (b1 6= 1)
g(t17) = g(t16) g(t27) = g(t26)
g(t18) = g(t15) ∨ g(t17) g(t28) = g(t25) ∨ g(t27)
g(t3) = g(t2) ∧ g(t28)
g(t4) = g(t3) ∧ g(t18)
g(t5) = g(t4)

Interference Skeleton:

r11

w17

r50

w00

r21

w23

w25w15

w13

w01

r51

w27

r14 r24

Figure 2. The symbolic encoding of the bounded program in Fig. 1. The global edges are labeled by the corresponding global accesses (e.g.,
t11 by [r11]). Edgest0 is labeled by write accesses onx (w00)andy (w01) respectively. Edget5 is labeled similarly.

(RW, ⊏), is called theinterference skeleton(IS) of C. Fig. 2
(right) shows the IS (as a graph) for the running example: each
node corresponds to an accessa = (Addr, V al, En) modeling
the location, value and the enabling condition respectively, and the
edges model the program order. Note that the IS models all the
global accesses and their mutual ordering precisely.

To encode the IS(RW, ⊏) in first-order logic, we introduce a
new type calledAcc, and the following operators over the type:
a must-happen-beforepredicateHB over pairs ofAcc elements
and operatorsaddr, val, and en which map anAcc element to
its location, value and enabling condition, respectively. NowIS
is encoded asΦG:

ΦG = ΦAcc ∧ ΦPO

whereΦAcc encodes the set of accessesRW ,

ΦAcc :=
V

a∈RW
(addr(a) = Addr(a) ∧ en(a) = En(a)∧
val(a) = V al(a))

andΦPO encodes⊏:

ΦPO :=
^

(ai,aj)∈⊏

(HB(ai, aj))

We also refer toΦPO asprogram order constraints.

3.2 Encoding Properties

Generic programming errors may be modeled as embedded asser-
tions in the CCFG. The formulaΦPRP then captures the condi-
tion under which a given assertion is violated. For an assertion
assert(c) in transitiont, ΦPRP is defined as

ΦPRP := g(t) ∧ ¬c

denoting that the conditionc must hold ift is executed. In our run-
ning example in Fig. 2, fresh variablesrx1, rx2, rx3, ry1, ry2, ry3

are added to denote the values of the six global reads, and the prop-
erty sub-formula is defined asΦPRP := g(t5) ∧ ¬(rx3 6= ry3)

Besides assertion violations, we can encode standard concur-
rency errors such as data races and atomicity violations directly as
a set of happens-before constraints. Suppose we want to check the
three-access atomicity violation [30, 31] involving global accesses
c, c′ andr, wherec andc′ are in the same thread and are intended
to execute atomically,r is executed in another thread and interferes
with bothc andc′. (An example of such violation is given later in
Fig. 7.) The property formula is defined as follows:

ΦPRP := en(c) ∧ en(r) ∧ en(c′) ∧ HB(c, r) ∧ HB(r, c′)

4. Axiomatic Composition
Given the skeleton IS =(RW, ⊏) obtained from the interference-
modular encoding of the CCFGC, we can now encode the interfer-

ence (both intra- and inter-thread) using the axioms for sequential
consistency (SC) over the set of global accessesRW in C. Intu-
itively, the SC axiomslink the read accesses inRW to appropriate
write accesses inRW to obtain feasible program executions. The
basis of axiomatic composition is thelink relation.

DEFINITION 1 (Link Relation).The predicatelink(r, w) denotes
that the readr observes writew, i.e., the value retrieved by the read
accessr is the same as the value set by the write accessw. Thelink
relation isexclusive, i.e.,link(r, w) ⇒ ∀w′ 6= w. ¬link(r, w′).

The SC axioms [11, 13, 32], denoted asΠ, can be modeled in
typed first order logic using operatorsHB, addr, val anden and
quantified variablesr, w andw′ over typeAcc (cf. Sec. 3.1). The
formulaΠ := Π1 ∧ Π2 ∧ Π3, where

Π1 := ∀r . ∃w . en(r) ⇔ (en(w) ∧ link(r, w))
Π2 := ∀r . ∀w . link(r, w) ⇒ HB(w, r)∧

(addr(r) = addr(w)) ∧ (val(r) = val(w))
Π3 := ∀r . ∀w . ∀w′ . (link(r, w) ⇒

(en(w′) ∧ ¬HB(w′, w) ∧ ¬HB(r, w′) ⇒
addr(r) 6= addr(w′))

FormulaΠ1 models that if a readr is enabled, thenr must be linked
to some enabled writew, and vice versa. FormulaΠ2 models the
data flow and relative order betweenr andw whenr links with w,
i.e., both the value and address ofr andw must be same andw
executes beforer. FormulaΠ3 says that ifr links with w then no
other writew′ to thesame addressasr should be executed between
w andr, i.e.,w′ executes either beforew or afterr.

Fig. 3 shows the hierarchical encoding ofΦ. When checking
properties, theΠ axioms interact subtly with the property violation
conditionΦPRP : the conditionΦPRP identifies well-formed paths
in the CCFG that lead to a property violation and enables the reads
and writes along those paths; the axiomsΠ then make sure that
reads and writes along those paths can be appropriately linked to
obtain a feasible thread interleaving.

Φ

ΦC ΠΦPRP

Π1 Π2 Π3ΦL ΦG

Figure 3. Hierarchical Encoding of the CCFG.

4.1 Full instantiation of SC axioms

Let R andW denote the set of all reads and writes inRW respec-
tively. Given R andW, Π can be encoded directly by instantiat-
ing the quantifiers for all reads inR and writes inW. Recall from

Sec. 3.1 that the values ofaddr(a), val(a) and en(a) for each
accessa are already encoded inΦG. Additional constraints are re-
quired to encode the exclusivity oflink and thatHB is a strict
partial order. Here, we exploit the theory of uninterpreted functions:
rewritelink(r, w) asId(r)=Id(w), whereId is an indexing func-
tion which maps each access to an unique integer. All writesw are
initialized with uniqueId(w) values. Similarly, rewriteHB(a, b)
asClk(a) < Clk(b), where theClk function assigns an integer
time-stamp to each access and the operator< encodes the partial
order over integer time-stamps.

Example. The SC constraints for the running example (with sub-
stituted values foren, val, addr andHB in Π2 andΠ3) are

Π1 := (en(r14) ⇔
W

j∈{00,13,15,17}(en(wj) ∧ link(r14, wj))∧

(en(r5) ⇔
W

j∈{01,23,25,27}(en(wj) ∧ link(r′
5
, wj))∧

. . .

Π2 := link(r14, w00) ⇒ Clk(w00) < Clk(r14) ∧ rx1 = 0)∧
link(r14, w13) ⇒ Clk(t13) < Clk(t14) ∧ rx1 = 1)∧
link(r14, w15) ⇒ Clk(t15) < Clk(t14) ∧ rx1 = a1)∧
. . .

Π3 := link(r14, w00) ⇒
¬(g(t13) ∧ Clk(w00) < Clk(w13) < Clk(r14))∧
¬(g(t15) ∧ Clk(w00) < Clk(w15) < Clk(r14))∧
¬(g(t17) ∧ Clk(w00) < Clk(w17) < Clk(r14))∧

. . .

Let bΠ denote the quantifier-free formula obtained by instantiating
Π for all accesses inR andW. Note that the number of constraints
in the worst case is cubic in the sizes ofR andW.

The following theorem captures the idea that the solutions ofbΠ
correspond to the feasible executions of the program that violate
the checked property.

THEOREM 1. [13] Suppose we have an encodingΦC of a bounded
CCFG C and a property encodingΦPRP . The formulaΦ :=
ΦC ∧ bΠ ∧ ΦPRP is satisfiable iff there exists a feasible execution
of C which violates the property.

For convenience, ifΦ is satisfiable then we say that a witness exists;
otherwise we say that a (unsatisfiability) proof exists. Instead of
always referring toΦ for a given CCFG and a property, we saybΠ
is satisfiable (has a witness) or is unsatisfiable (has a proof).

We now characterize the satisfying models ofΠ using the notion
of a read-write matchand aninterference relation.

DEFINITION 2 (Read-Write Match).Given set of readsR and
writesW, a read-write match(match, in short) is a partial function
M : R → W.

DEFINITION 3 (Interference Relation (IR)).An interference rela-
tion is a tuple(RI , WI , M, ⊏) whereRI ⊆ R, WI ⊆ W, M
is a match and⊏ is a partial order over the setR ∪ W.

DEFINITION 4 (IR SatisfyingbΠ). If bΠ is satisfiable with a model
Θ, then there exists an unique IRI = (RI , WI , M, ⊏) satisfying
bΠ defined as follows:

• RI andWI are respectively the enabled reads and writes inΘ,
i.e., (r ∈ RI ⇔ en(r)) and (w ∈ WI ⇔ en(w)).

• M : RI → WI is well-defined for allr ∈ RI with co-domain
WI . Moreover,M(r) = w iff link(r, w) holds inΘ.

• ⊏= {(a, b) |a, b ∈ (RI ∪ WI) ∧ HB(a, b) holds inΘ }.

Intuitively, if bΠ is satisfiable, then we can extract a matchM by
recording which of thelink(r, w) predicates hold in the current
solution and the partial order⊏ induced by theHB predicate. Note
that the exclusivity of thelink constraints ensures thatM is a well-
defined function.

For the running example in Fig. 2,bΠ has a satisfying IRI
= (RI , WI , M, ⊏) where RI = {r11, r14, r50, r51, r21, r24},

WI = {w00,w01,w13,w15,w23,w25}, M = {(r11, w01),(r14, w13),
(r50, w15), (r21, w13), (r24, w23),(r51, w25)} and ⊏ consists
of program order constraints (ΦPO in Sec. 3.1) together with
(w13 ⊏ r21) and (r21 ⊏ w15). Note thatw17 andw27 are dis-
abled and hence not inWI . An execution traceρ = (t1t2)({t11 −
t14})(t21 − t25 t28)(t15t18){t3-t5} corresponds toI and violates
the assertion.

4.2 Redundant Instantiation of SC axioms

As mentioned earlier,Π may give rise to a large number (cubic in
the reads/writes) of constraints; in practice, many of these are re-
dundant. For example, if a readr precedes writew in the program
order, instantiatingΠ for link(r, w) is wasteful and can be avoided.
Redundant constraints also occur in a more obscure manner, e.g.,
suppose the given property can be violated by executing the pro-
gram threads sequentially without interleaving them. In this case,
most constraints linking reads in one thread to concurrent writes in
another thread are unnecessary for checking the property. Pruning
redundant constraints is the key to making our problem tractable.

Interestingly, the syntactic formulation ofΠ offers insights on
how to prune redundant constraints. Let us consider a few pruning
methods. Suppose, for example, we pick a subset of reads and
writes, sayR ⊆ R andW ⊆ W respectively, and instantiateΠ2

only for R andW to obtain, say,Π+. Note thatΠ+ is anover-
approximationof bΠ becausebΠ = Π+∧F , whereF corresponds to
the pruned constraints. Hence, a witness toΠ+ may not correspond
to any feasible program execution; however, a proof forΠ+ implies
that the property is never violated inP . On pruning constraints
as above, we are able toover-approximatethe interference, and
hence the program behaviors axiomatically. Clearly, such an over-
approximation is cheaper to check if we can discover smallR and
W sets, which are sufficient for proving the absence of violation.

Consider another form of pruning, again based on the syntactic
structure of the axioms. Observe that instantiatingΠ1 leads to a
disjunction oflink(r, w) formula for each readr ∈ R and write
w ∈ W. If W is large, we must explore a large number of choices
to find an appropriate read-write match. This naturally leads to
another approximation: pick a subset of writesW ⊆ W for each
read r and instantiateΠ1 (similarly Π2 and Π3) only for pairs
(r, w) wherew ∈ W . By pruning the disjunctions, we obtain an
under-approximationof the interference (denoted byΠ−) which is
cheaper to analyze. This under-approximation preserves witnesses,
i.e., a witness found usingΠ− corresponds to a concrete witness in
the programP . Again, the usefulness ofΠ− depends on obtaining
a smallW sufficient for computing a witness.

Each of the approximations above relies on either weakening or
strengthening the SC axioms bydecouplingreads and writes; hence
we refer to them asinterference abstractions(IAs). The above
two examples show how the syntactic structure of the SC axioms
may be exploited to obtain approximations (under- or over-) of
thread interference. In fact, the abundance of quantifiers inΠ allows
us to build a complex array of abstractions systematically, where
the under- and over-approximations of interference are intricately
combined. We now define interference abstractions obtained in this
manner formally.

5. Interference Abstractions
To formally represent the interference abstractions, we first define
the link setfor a read.

DEFINITION 5 (Link Set).Given a set of readsR ⊆ R, let W :
R → 2W map each readr ∈ R to a set of writes whichr may link
with. We say thatW(r) is the link set ofr.

Let cW denote the default link set such thatcW(r) contains all pos-
sible writes thatr may link with statically. For example, in Fig. 2,

cW(r14) = {w00, w13, w15, w17} becauser14 reads variablex. Let
Λ andΣ denote the(r, w) pairs and(r, w, w′) triplets for whichΠ2

andΠ3 are instantiated respectively. Now, we can reformulate the
SC axiomsΠ as follows.

Π1 := ∀r ∈ R . ∃w ∈ W(r) . φ1(r, w)
Π2 := ∀(r, w) ∈ Λ . φ2(r, w)
Π3 := ∀(r, w, w′) ∈ Σ . φ3(r, w, w′)
Π := Π1 ∧ Π2 ∧ Π3

where

φ1(r, w) := en(r) ⇔ (en(w) ∧ link(r, w))
φ2(r, w) := link(r, w) ⇒ (HB(w, r)∧

addr(r) = addr(w) ∧ val(r) = val(w))
φ3(r, w, w′) := link(r, w) ⇒

(en(w′) ∧ ¬HB(w′, w) ∧ ¬HB(r, w′)
⇒ addr(r) 6= addr(w′))

To modelΛ andΣ, we introduce functionsλ andσ as follows.

λ(R,W) = {(r, w) | r ∈ R, w ∈ W(r)}

σ(R,W,W ′) = {(r, w, w
′) | r ∈ R, w ∈ W(r), w′ ∈ W ′(r)}

Given R, W andW ′ the functionsλ andσ model the set of
(r, w) pairs and(r, w, w′) triples thatΠ2 andΠ3 are instantiated
for, respectively. The complete instantiationbΠ of Π corresponds to
R = R, W = cW, Λ = λ(R, cW) andΣ = σ(R, cW, cW).

5.1 Syntactic IAs

An interference abstraction (IA) is characterized by anincomplete
instantiation ofΠ axioms. We say that the IAs thus obtained are
syntacticbecause they are obtained by restricting the instantiations
of SC axioms syntactically.

DEFINITION 6 (Syntactic Interference Abstraction (IA)).Given
Π as above and the set of all global readsR, an interference ab-
stractionα is defined to be a tuple〈R,W, Λ, Σ〉 such that: (i)R ⊆

R, (ii) W ⊆ cW, (iii) Λ ⊆ λ(R, cW), and (iv)Σ ⊆ σ(R, cW, cW).

We say thatα is a proper IA if at least one ofR, W, Λ or Σ is
a proper subset. We refer toR, W, Λ and Σ as components or
dimensions ofα. Thesizeof α is defined to be the sum of the sizes
of components ofα.

Each IAα = (R,W, Λ, Σ) corresponds to an instantiation of
Π, denoted byΠα, consisting of sub-formulasΠα

1 , Πα
2 andΠα

3 .
Intuitively, an IA corresponds to first fixing a set of readsR and
the set of writesW(r) that each readr ∈ R may link to, and
then instantiatingΠ1 for each(r, w) in λ(R,W), andΠ2 andΠ3

for subsets ofλ(R, cW) andσ(R, cW, cW) respectively. Note that
replacing read values by placeholders (during interference-modular
encoding, cf. Sec. 3.1) is the coarsest IA, where a read does not link
with any write, i.e., may assume an arbitrary value.

An IA α is said to beunder-approximate (UIA) iff Πα ⇒ bΠ.
Similarly, α is said to beover-approximate (OIA) iff bΠ ⇒ Πα.
Otherwise we say thatα is amixedIA (M IA). As expected, an UIA
is useful for obtaining witnesses while an OIA helps obtain proofs.
We now show how the OIA and UIA as defined above in a semantic
manner can be obtainedsyntactically.

DEFINITION 7 (Syntactic OIA). An IA α = (R,W, Λ, Σ) is an
OIA iff W = cW.

In other words, an OIA is obtained ifΠ1 is instantiated for all writes
in the default link setcW(r) of each readr ∈ R. However,Π1 need
not be instantiated for all reads andΠ2/Π3 may not be instantiated
for all reads and writes. The following lemma shows that a syntactic
OIA is also asemanticOIA and hence preserves proofs.

LEMMA 1. Given a syntacticOIA α, bΠ ⇒ Πα.

Syntactic UIA ’s are more tricky to define.

DEFINITION 8 (Syntactic UIA). An IA α = (R,W, Λ, Σ) is an
UIA iff (i) R = R, (ii) Λ = λ(R,W) and (iii) Σ = σ(R,W, cW).

Intuitively, an UIA is obtained ifΠ1 is instantiated for all reads
r ∈ R but only for a subsetW of the default link set of each read.
Moreover,Π2 must be instantiated for all pairs(r, w) ∈ λ(R,W)
andΣ consists of all triples(r, w, w′) wherew is drawn fromW(r)

but w′ ranges over the default setcW(r). All the above constraints
are critical for constructing an UIA which preserves witnesses.

LEMMA 2. Given a syntacticUIA α = (R,W, Λ, Σ), Πα ⇒ bΠ.

A subtle difference between an OIA α = (R,W, Λ, Σ) and an
UIA β = (R′,W ′, Λ′, Σ′) must be noted. Suppose for somer ∈ R,
r 6∈ R in α. In the UIA β, R′ = R and hencer ∈ R′; however,
let W ′(r) be empty. Although these two cases appear similar, they
correspond to different instantiations ofΠ. For the OIA α, Π1 will
not be instantiated forr at all; however, for the UIA β, Π1 will be
instantiated as¬en(r). In other words, not including a readr in an
OIA allows r to be enabled in any witness ofΠα without linking
to any write; in contrast, settingW ′(r) = ∅ in an UIA amounts to
disablingr in all witnesses ofΠβ .

A full instantiation bΠ of Π corresponds to both an OIA and an
UIA . Also, an IAα = (R,W, Λ, Σ) is an mixed IA (MIA), if α is
neither an OIA nor an UIA . In particular, ifR 6= R andW 6= cW,
thenα is an MIA . Intuitively, in an MIA , some reads may not be
linked to any writes while other reads may link to a restricted set of
writes. We next discuss how to visualize the set of syntactic IAs.

5.2 Visualizing Syntactic IAs

As mentioned above, an IAα corresponds to instantiatingΠ only
for a subset of all possible reads and/or writes. Note that even
thoughΠ1 is instantiated forλ(R,W), Π2 and Π3 may be in-
stantiated independent ofΠ1, for different subsets of reads and
writes fromR andW. The possible choice of read and write sub-
sets gives rise to a complex space of IAs. To better visualize this
space, consider Fig. 4 which shows the components as four inde-
pendent dimensions,R, W, Λ andΣ. Intuitively, theW dimension
corresponds to an under-approximation, while the other dimensions
correspond to over-approximations. Moving away from the center
along any dimension corresponds toreducing the approximation
corresponding to that dimension. Note also that the dimensions are
somewhat inter-dependent, i.e., it makes sense to select values for
Λ andΣ only after we finish selecting the values forR andW.

The IA space shown in Fig. 4 is, in fact, even more complex,
e.g., we may instantiate only the order constraintsHB(w, r) in
Π2 without instantiating the data flow constraintsval(r)=val(w).
Consequently, we may obtain even more fine-grained OIA ’s, cor-
responding to sub-dimensions of theΛ-axis in the figure. We show
later that the space of syntactic IAs directly corresponds to a com-
plete lattice. We now show that these syntactic IAs indeed have a
practical significance, i.e., they correspond to some common se-
mantic notions useful for reasoning about concurrent programs.

5.3 Useful Semantic Interference Abstractions

Many popular techniques for reasoning about concurrent programs
incorporate some form ofsemanticinterference abstraction. Many
of these abstractions can be readily modeled by our syntactic IAs.

Let us first examine the meaning of instantiatingΠ incom-
pletely. Not instantiatingΠ1 for some readr and writew disallows
linking r with w in any execution. FormulaΠ2 corresponds tolo-
cal consistency: not instantiatingΠ2 for some(r, w) implies that

R

W

ΛΣ

{(r, w)}{(r, w, w
′)}

r 7→ {w1, w2, ...}

= {r1, r2, ...}

Figure 4. The Space of Syntactic Interference Abstractions.

ThreadT1

t1 lock(A)
t2 x = 1;
t3 lock(B)
t4 y = 1;
t5 unlock(B)
t6 z = 1;
t7 unlock(A)

ThreadT2

t11 lock(B)
t12 a = y;
t13 lock(A)
t14 b = x;
t15 unlock(A)
t16 z = 2;
t17 unlock(B)

no
interleaving
can reacht6
andt16 si-

multaneously

...
...

t6 t16
...

Figure 5. A control-state reachability analysis can prove the ab-
sence of data race (betweent6 andt16).

in any execution,r may link withw irrespective of their values, ad-
dresses and execution order. The formulaΠ3 corresponds toglobal
consistency: not instantiatingΠ3 for some(r, w, w′) implies that
in any execution wherer links with w, any other interferingw′ is
allowed to interleave in betweenr andw.

5.3.1 Control-State Reachability

Sometimes we can prove a property using a control-state reach-
ability analysis [23, 31] where the control flow structure and the
synchronization operations (such aslock-unlockand signal-wait)
are modeled precisely, whereas the other data flow is ignored. This
reasoning corresponds to asemanticIA defined as follows: parti-
tion the set of all readsR on shared variablesSV in the program
into two disjoint subsets:Rsync and(R\Rsync). The subsetRsync

consists of all the variables modeling the synchronization primi-
tives. The subset(R\Rsync) consists of the remaining global vari-
ables, which will be ignored in the IA. Given a default write map
cW for the reads in the program, this semantic IA can be obtained
syntactically as

α = 〈Rsync, cW, λ(Rsync, cW), σ(Rsync, cW, cW)〉

The IA α is an OIA by definition (W = cW andRsync ⊆ R) and
hence a proof obtained withα still holds when the SC axioms are
fully enforced.

Consider Fig. 5 as an example. The two concurrent threads
T1, T2 communicate through locksA, B and shared variables
x, y, z. The property of interest is that whether the writes toz
att6 andt16 cause a data race. We can show that no data race exists
by using a control-state reachability analysis based on locksA and
B only; the rest of the variablesx, y andz may be ignored because
of the following reason. Transitionst6 andt16 cannot be enabled at
the same time, because threadT1 must acquireA in order to reach
t6, but if A is held byT1, then threadT2 cannot reacht16 because
it cannot acquireA at t13. We can capture this reasoning precisely
by including reads on onlyA andB variables inRsync in the IA α
above and therefore can prove the absence of data race withα.

5.3.2 Serial or Largely Serial Execution

Sometimes program bugs are insensitive to thread scheduling, i.e.,
they appear even in executions where the threads execute serially

ThreadTi

t1 lock(A)
t2 if (x == 0)
t3 unlock(A)
t4 y = 1;
t5 unlock(A)

ThreadTi

t1 → t2 assert(A6= i)
assume (A= ⊥) { A := i; }

t2 → t3 assume (x= 1)
t2 → t4 assume (x6= 1)
t3 → t4 assert(A= i) { A: = ⊥; }
t4 → t5 { y = 1;}
t5 → t6 assert(A= i) { A: = ⊥; }

Figure 6. The assertion failure att5, caused by double unlock, can
be detected in a serial execution.

ThreadT1 ThreadT2

t1 : p := &a;
{
t2 : if (p 6= 0)
t3 : ∗ (p) := 10
}

t4 : p := 0;
t5 : a := 0;

a feasible
interleaving

...
t1
t2

t4
t5

t3
...

Figure 7. Any serial execution of blockt2, t3 is non-erroneous.

or interleave sporadically [7, 9]. Thread-local bugs fall in this
category, e.g., as in Fig. 6 (left), wherex = 0 initially. Here lock
A may be released twice. Recall (cf. Sec. 2) that we encode locks
using guarded assignments to shared variables as in Fig. 6 (right).
Additional assertions are added tot1 for checking double-locking
errors, and tot3, t5 for checking double-unlocking errors. The
assertion att5 is violated due to double unlocking. We can detect
this violation by only considering a serial execution of threadsTi.

This form of reasoning can be captured by an UIA α =
(R,W, Λ, Σ), whereR contains reads onx which are only linked
with writes inside the same thread or an initial write. More pre-
cisely, the read ofx at t2 links with the initial writex = 0, the
read ofA at t5 links with the write at eithert1 or t3, and so on.
Note that restricting the set of writes to link makesW(r) ⊂ cW(r)
for r ∈ R, and hence results in an UIA . Checking this UIA for
satisfiability corresponds to checking only serial executions.

Sometimes all the serial executions are good, but an interleaved
execution involving only a small amount of interference may lead
to a bug. Fig. 7 shows one such bug due to atomicity violation2.
The transitionst2, t3 in threadT1 are intended to be executed
atomically; however, the programmer fails to enforce it. Ift4 is
interleaved in betweent2 and t3, a NULL dereference occurs.
Again, an UIA α is sufficient to detect such bugs. Note that if
we force each global read to copy from the preceding intra-thread
write, we will not be able to detect the bug. Therefore, the UIA
should allow the read ofp att3 to link with t4 (besidest1). Inferring
such reduced set of writes (W) automatically is, however, the prime
challenge.

6. Exploring the IA Space
We now focus on finding an efficient exploration strategy over the
IA space to discover IAs of small size, which are precise enough
for checking the given property. LetA denote the set containing all
possible IAs. We define an order relation onA as follows.

DEFINITION 9 (Order of IAs).Given two IAsα = (R,W, Λ, Σ)
and β = (R′,W ′, Λ′, Σ′), we say thatα ≺ β if R ⊆ R′,
W ⊆ W ′, Λ ⊆ Λ′, Σ ⊆ Σ′, and at least one ofR,W, Λ is a
proper subset of the correspondingR,W ′, Λ′.

2 For modeling pointers/structures, please refer to our previous work [13].

Oia
Uia Mia

Figure 8. Semantic Interpretation of IAs. The bold circle denotes
the full instantiation ofΠ.
If α ≺ β, then we say thatβ refinesα. The poset(A,≺) is a
complete lattice with component-wise set union and intersection
as the join and meet operators. The top element of the lattice
(R, cW, λ(R, cW), σ(R, cW, cW)) corresponds to a full instantiation
(Πα = bΠ) while the bottom element(∅, ∅, ∅, ∅) corresponds to not
instantiatingΠ at all (Πα = true).

6.1 Exploring the Lattice

Given a propertyP , we say that anα is minimal for P if α is an
OIA (UIA) which proves (falsifies)P , and there exists noβ ≺ α
such thatβ proves(falsifies)P . Since computing a minimal IA is at
least as hard as checking the property itself, we are only interested
in practically efficient algorithms to computesmall IAs.

The formulation of syntactic IAs suggests two naive strategies
to obtain small IAs. Starting with a UIA α, one may iteratively
augment the setsW, Λ andΣ until an actual witness is obtained.
Similarly, one may start with an OIA α and iteratively instantiate
constraints until a proof is obtained. Both these refinement strate-
gies introduce new constraints in alazymanner. Semantically, this
form of refinement corresponds to increasing coupling or interfer-
ence between threads and checking if a witness or a proof persists
as the coupling increases.

The two refinement strategies presented above have a number of
issues. First, these strategies are suitable either for finding proofs
(using OIA ’s) or witnesses (using UIA ’s), but not both. Second,
since the two IAs are disjoint, the proof-directed strategy does not
gain from the witness-directed strategy, and vice versa. Ideally, we
desire of a refinement method where both OIA ’s and UIA ’s could
work in unison and assist each other. A natural way to combine
OIA ’s and UIA ’s is via an MIA .

Fig. 8 depicts and compares the semantics of OIA ’s, UIA ’s and
M IA ’s in a visual manner. Recall that the full instantiationbΠ mod-
els sequential consistency precisely and hence corresponds to all
feasible thread interleavings. An OIA removes interference con-
straints frombΠ and therefore leads to more interleavings (infeasible
ones) than allowed bybΠ. In contrast, an UIA adds interference con-
straints tobΠ, leading to fewer interleavings than allowed bybΠ. An
M IA contains both an OIA and an UIA , and therefore omits some
interleavings frombΠ while allowing some infeasible ones.

Although MIA ’s combine the advantages of both OIA ’s and
UIA ’s, neither models nor proofs of MIA ’s may provide conclusive
results because of combined over- and under-approximation in an
M IA . We now examine the sufficient conditions under which a
model (proof) of an MIA may be an actual model (proof) forbΠ.

6.2 Models and Proofs of (Mixed) IAs

Given an MIA α, we define the interference relation (IR)I satisfy-
ing Πα (model of the MIA) in a manner similar to Defn. 4: in the
solution ofΠα, RI andWI are enabled reads and writes respec-
tively, M(r) = w iff link(r, w) holds and⊏ consists of(r, w)-
pairs satisfyingHB relation. Each IRI, in turn, corresponds to an
induced IA defined as follows. Intuitively, if an IRI satisfiesΠα,
then the induced IA, IA(I), models the subset of SC constraints
relevant toI. The hope is that IA(I) is an UIA ; in that case,I is a
true witness.

ThreadT1 ThreadT2

r1 : assume(l = ⊥); r2 : assume(l = ⊥);
w1 : l := 1; w2 : l := 2;

... ...

w′
1

: l := ⊥; w′
2

: l := ⊥;

Figure 9. Example with concurrent lock/unlock.

DEFINITION 10 (IR-induced IA).Given an interference relation
I = (RI , WI , M, ⊏), the IAβ = (R,W, Λ, Σ) induced byI,
denoted by IA(I), is defined as follows.

• (i) R = RI ,
• (ii) W(r) = {M(r)} if M(r) is defined, elseW(r) = ∅,
• (iii) Λ = M ,
• (iv) Σ = {(r, w, w′) | (r, w) ∈ M ∧w′ ∈ WI∧w ⊏ w′

⊏ r}.

However, in general,I may not correspond to a true witness of
bΠ because of approximation in MIA : all the constraints IA(I)
relevant to theI may not be enforced by (contained in) the current
M IA . On enforcing the missing constraints (from the set IA(I)), if
I is no longer a witness, then we say thatI is Π-inconsistent.

DEFINITION 11 (Π-inconsistent IR).Suppose an IRI induces IA
β = IA(I). We say thatI is Π-inconsistent ifΠβ is unsatisfiable.

An IR I = (RI , WI , M, ⊏) may beΠ-inconsistent (invalid wit-
ness) due to multiple reasons. For example,M may not be defined
for some enabledr ∈ RI . InstantiatingΠ1 for suchr is unsatis-
fiable because antecedenten(r) is true but the consequent is false.
We say thatI is Π1-inconsistent here. Similarly, instantiatingΠ2

for a subset ofr-w pairs inM may be unsatisfiable. In this case,
we sayI is Π2-inconsistent. We defineΠ3-inconsistent similarly.
Note that, in general, we may need to instantiate a combination of
Π1, Π2 andΠ3 constraints forI to detect ifI is Π-inconsistent.

The following lemma is crucial to finding actual witnesses using
IAs: it shows that to find an actual witness, i.e., an IR satisfyingbΠ,
it is sufficient to compute aΠ-consistent IR.

LEMMA 3. If an IRI is Π-consistent, thenI satisfiesbΠ.

Example. Consider the example in Fig. 9 with two threadsT1

and T2, each containing a pair of lock/unlock statements on the
lock l. The lock/unlock statements are transformed into guarded
statements (cf. Sec. 2) and note that each lock/unlock pair is
associated with a triple of lock accesses, e.g., (r1, w1, w

′
1) for

T1. Here, the link set ofr1 is W(r1) = {w2, w
′
2}. Similarly,

W(r2) = {w1, w
′
1}. Consider an IRI = (RI , WI , M, ⊏),

where RI and WI contain all reads and writes respectively,
M = {(r1, w

′
2), (r2, w

′
1)} and⊏ contains program order relation,

i.e., r1 ⊏ w1 ⊏ w′
1 andr2 ⊏ w2 ⊏ w′

2. Clearly, matchM vio-
lates lock semantics. More precisely,M is Π2-inconsistent, i.e., on
instantiatingΠ2 for pairs inM , the IRI becomes unsatisfiable be-
cause the transitivity ofHB relation is violated. Consider another
IR I′ with ordering:r1 ⊏ w1 ⊏ w′

1 ⊏ r2 ⊏ w2 ⊏ w′
2. Suppose

the matchM ′ links r2 with w1. The IRI′ is Π3-inconsistent: if
r2 links with w1 then the interfering writew′

2 should not occur in
between, and henceI′ violatesΠ3.

Dual to the notion of aΠ-consistent IR (a valid witness) is the
idea of avalid proof, i.e. a subset of constraints ofΠα, which does
not mention any reads whose link sets are under-approximated.

DEFINITION 12 (Valid Proof).Suppose the instantiationΠα for
an IA α = (R,W, Λ, Σ) is unsatisfiable andP is a proof of
unsatisfiability. We say thatP is valid if P contains nor such that
W(r) ⊂ cW(r).

We say that a readr invalidatesa proofP , if P containsr and
W(r) ⊂ cW(r). The following lemma shows that to prove absence
of errors, it is sufficient to find an IA having a valid proofP .

LEMMA 4. Let the instantiationΠα of an IA α = (R,W, Λ, Σ)

have a valid proofP . ThenP is also a proof forbΠ.

6.3 Refinement of Mixed IA’s

We now present our refinement procedure REF which tries to au-
tomatically compute an IA precise enough for either proving the
property or finding a violating witness. REF works directly on an
mixed IA (MIA) and iteratively refines the MIA to obtain either a
valid proof or aΠ-consistent IR (cf. Sec. 6.2). Fig. 10 provides an
overview of our refinement procedure. The procedure starts with
an initial IA α = (R,W, Λ, Σ) by choosing setsR, W, Λ andΣ.
Then, REF checks ifΠα conjoined with the CCFG and property
encodings,ΦC andΦPRP respectively (cf. Sec. 3.1), is satisfiable.
If Πα is satisfiable and the IRI obtained from the solution isΠ-
consistent, the algorithm terminates with a valid witness. IfI is
not Π-consistent, thenα must contain an over-approximation due
to eitherR, Λ or Σ (cf. Sec. 6.2). Therefore,Πα is refined to re-
duce the over-approximation (using procedure RED-O). Otherwise
Πα is unsatisfiable: ifΠα has a valid proofP , the algorithm ter-
minates. IfP is not valid, i.e., it contains an under-approximation
due toW(r) for somer, thenΠα is refined to reduce the under-
approximation (using procedure RED-U).

Note the advantage of working with an MIA : upon termination,
the final IA may not be an OIA or an UIA ; obtaining aΠ-consistent
IR or a valid proof is sufficient to obtain a conclusive result. We
now describe the details of the RED-O and RED-U steps. The
pseudo code is listed as follows.

RED-O :
Let α = (R,W, Λ, Σ). Let the Π-inconsistent IR beI =
(RI , WI , M, ⊏). Refineα by performing one of the following oper-
ations to reduce the over-approximation inα:

• Pick r ∈ RI \ R and W ⊆ cW(r). Set R := R ∪ {r} and
W(r) := W .

• SetΛ := Λ ∪ M

• SetΣ := Σ ∪ {(r, w, w′) | (r, w) ∈ M ∧ w ⊏ w′
⊏ r}

RED-U :
SinceΠα is unsatisfiable, obtain the set of invalidating readsR′ ⊆ R in
the proof of unsatisfiability ofΠα. Refineα by settingW(r) = cW(r)
for eachr ∈ R′ to reduce the under-approximation inα.

In words, RED-O analyzes the IRI and then chooses to refine
α by updating one or more ofR or Λ or Σ depending on the
reason ofΠ-inconsistency (cf. Sec. 6.2). Similarly, RED-U checks
if Πα is unsatisfiable due to under-approximation inW(r) for
somer; in that case, RED-U removes the approximation by setting
W(r) := cW(r).

Checking if the IRI is Π-inconsistent is done by adding
constraints IA(I) related to I incrementally and checking if
the result is satisfiable. Note that both RED-O and checking
Π-consistency involve adding constraints to reduce the over-
approximation. Therefore, we combine them in practice using a
layered instantiation strategy (Sec. 7.2). Besides disambiguating
the choices in RED-O as presented above, the strategy also avoids
adding irrelevant constraints.

Note how REF exploits the uniform representation of IAs in
form of MIA ’s to check properties using a symbiotic combination
of OIA ’s and UIA ’s. Also, the refinement is guided both by unsat-
isfiability proofs and witnesses obtained at intermediate iterations

SAT UNSAT

Initialize IA α

Is P Valid?

(Reduce Over-approximation in α)

YESYES

NO NO

Is (ΦC ∧ Πα
∧ ΦPRP)

Witness Proof

Red-O Red-U

(Reduce Under-approximation in α)

(IR I)

I is Π-consistent?

satisfiable?

(Proof P)

Figure 10. Flow diagram for the refinement procedure REF.

and hence is property-directed. The algorithm REF terminates in
finite number of steps because the height of the IA lattice is finite
and each iteration of REF ascends the lattice by one or more steps.

The refinement procedure can be implemented efficiently using
an incremental SMT solver [28, 29] by iteratively adding new
constraints. Moreover, using an MIA during refinement enables
sharing the learned information between the constituent OIA ’s and
UIA ’s inside the MIA , thus allowing the OIA ’s and UIA ’s to assist
each other for computing both proofs and witnesses.

For the example in Fig. 2, we initialize MIA α = (R,W, Λ, Σ)
as follows.R includes all readsr11, r14, r21, r24, r50, r51. W is
initialized so that the link set of each read contains no concurrent
writes: W(r11) = {w01}, W(r14) = {w13, w17}, W(r50) =
{w15, w17} and so on. Suppose we instantiateΛ = λ(R,W), i.e.,
for all writes in the link set of each read. LetΣ = ∅. The IAα is an
M IA because, e.g.,W(r14) ⊂ cW(r14) (under-approximation) and
Σ = ∅ (over-approximation).

On checkingΠα (with ΦC andΦPRP), the result is unsatis-
fiable becauser11 links with w01 and r21 links w00. Hence, the
thenbranch inT1 executes while theelsebranch inT2 executes.
Therefore,r50 gets value2 andr51 gets value0 so that the asser-
tion is never violated. The proof of unsatisfiability mentionsr11

andr21. Suppose the procedure RED-U then expandsW for r21 to
cW(r21) = {w00, w13, w15, w17} andΛ is updated with the cor-
responding pairs. In the next iteration, suppose we obtain an IRI
which linksr21 with w13, butI hasw13 ⊏ w15 ⊏ r21 in I. Here,
I is not Π-consistent because it violatesΠ3. Therefore, REF up-
datesΣ = {(r21, w15, w13)} using RED-O, which finally results
in aΠ-consistent IR withw13 ⊏ r21 ⊏ w15.

Note how a combination of over- and under-approximation
was exploited by REF to arrive at aΠ-consistent IR. Further,
even though we check bounded programs (where paths in each
thread or number of threads have been under-approximated), over-
approximating interference is orthogonal and does not work against
the previous under-approximation. In fact, it may assist in finding
the bug quickly in many cases (cf. above example) or obtaining a
proof early by avoiding redundant constraints.

7. Focused Refinement
The procedure REF proceeds iteratively by ascending the lattice
of IAs based on the current satisfying solution or an infeasibility
proof. Since the size of the lattice is exponential in the number of
reads and writes, the basic refinement strategy may not converge
quickly to a desirable small IA on its own. In particular, it may
add redundant constraints guided by the model from the solver,
thus making the intermediate IA larger and the subsequent itera-

tions more expensive. We propose a set of heuristics to focus the
refinement on relevant constraints.

7.1 Static Focusing

We first describe heuristics to guide REF by removing redundant
constraints or adding useful lemmas statically.

(S0) Interference Pruning. For each readr, compute a small
cW(r), not containing any writes thatr may never link with. For
example, ar cannot link withw if HB(r, w) holds statically, or
if HB(w, r) and there exist interfering writesw′ along each path
from w to r. Such writes may be detected by performing a static
analysis on the interference skeleton (IS) (cf. Sec. 3.1).

(S1) Biased Initialization. To obtain IAs with lesser concurrent
interference, we initializeW(r) for eachr with only writes in
the same thread or initial writes. This ensures that if a serial or
largely serial execution (cf. Sec. 5.3) violates the property, then
few refinement iterations will be sufficient. We also bias the initial
IA to couple reads and writes on synchronization variables only.
This forces REF to start with only those IAs where the above
interference conditions must hold.

(S2) Lock Lemmas.A number of optimizations are possible for
locks. (S2a) Consider the program shown in Fig. 9 again. The
read in the initial assume statement (r1) may link with eitherw2

or w′
2. However note that iflink(r1, w2) holds thenval(r1) =

val(w2) = 2, making the guard(l = ⊥) as false, which in
turn blocks the execution ofT1. Therefore, we reduce the link set
cW(r1) by removingw2 from it. (S2b) Let L denote the set of
matching lock/unlock statements in the whole program and the
accesses to the lock variable for eachLi ∈ L be (ri, wi, w

′
i).

For eachL1, L2 ∈ L, either the statement block denoted byL1

executes before the block denoted byL2 or vice-versa. This fact can
be captured by the constraints∀i.∀j. (HB(w′

i, rj)∨HB(w′
j , ri)),

which are quadratic in the size ofL (better than the original cubic
size).

(S3)Although instantiatingΠ2 eagerly for all pairs of reads/writes
Λ = λ(R, cW) is expensive, instantiating only a portion ofΠ2

for Λ incurs lesser cost both in terms of constraints size and solv-
ing times. We can therefore instantiate only a portion ofΠ2, e.g.,
link(r, w) ⇒ HB(w, r) for all (r, w) ∈ Λ eagerly. This is espe-
cially useful if the ordering constraints are sufficient for checking
the property. Formally, this form of instantiation corresponds to fur-
ther partitioning the components of anα and instantiating some of
those partitions eagerly.

7.2 Layered Instantiation

Note that in RED-O, updatingΣ adds far more (quadratic in num-
ber of reads and writes) constraints than updatingΛ (linear in
size of readsR). We, therefore, perform a layered refinement to-
wards the goal of adding fewer redundant constraints. Given an
IR I = (R, W, M, ⊏) satisfyingΠα, we first check ifI is Π2-
consistent (cf. Sec. 6.2). IfI is notΠ2-consistent, we updateΛ and
continue to the next iteration. Only when we find aΠ2-consistent
IR, we check ifI is Π3-consistent. In this way, we bias the re-
finement towardsΛ. Similarly, we update the setR only when the
current matchM is bothΠ2- andΠ3-consistent.

8. Experiments
We implemented the algorithm REF and evaluated it on concur-
rent benchmarks in the FUSION framework [20, 21]. Although
our method can be applied to arbitrary bounded concurrent pro-
grams, in these experiments, we focus on analyzing concurrent pro-
gram slices obtained by run-time analysis of the FUSION tool. Our
benchmarks consist of Java program slices obtained from the vari-

ous publicly available programs [33–35]. We check for errors such
as assertion violations and data races. Many of these program slices
are difficult to analyze, because they contain multiple threads (with
forks and joins), each having a large number of global accesses,
together withassumestatements containing guards for branches
taken during run-time. Our goal was to investigate if the hardest
subset of available benchmarks could be checked using small IAs.

We initialize the refinement scheme with an IA containing all
reads in the CCFG and the link set of each read with only writes
which are non-concurrent with the read. Lock lemmas were also
added to improve refinement. We observed that lemmaS2ahad a
much larger impact than lemmaS2b, althoughS2balso helped re-
duce run-times in a few cases. Further, we used biased refinement
(7.2) strategy for reducing over-approximation. We focus on show-
ing the effectiveness of IAs and that MIA ’s can perform better than
OIA ’s or UIA ’s. All experiments were conducted on 2.33GHz Intel
Xeon machine with 16GB memory.

Fig. 11 compares the full instantiation with the refinement
(REF) procedure on a set of properties of the hard benchmarks.
In this table, Columns 1-3 show the name of each test case, the
number of threads, and whether there is a bug (T) or a proof (F).
Columns 4-6 show the number of reads, the number of writes, and
the average size of the link sets. The remaining columns compare
the run-times and the IA sizes obtained with and without interfer-
ence abstraction. The IAs computed by REF are drastically smaller
than full instantiation both for satisfiable and unsatisfiable bench-
marks. This confirms the belief that only a small amount of inter-
ference need be considered for checking many properties. More-
over, small IAs lead to much lesser run-times than with the full
instantiation. We observed that for obtaining proofs, REF needed
to instantiateΠ2 only a few times for eachr-w pair in the initial
IA. Finding witnesses is more challenging than finding proofs: REF
goes through a number of iterations for reducing both the under-
and over-approximation present in the initial IA.

Fig. 12 shows the advantage of using combined MIA ’s in REF
vs using only OIA ’s or only UIA ’s. These are scatter plots where the
x-axis is the run-time with only OIA ’s or only UIA ’s, and the y-axis
is the run-time with MIA ’s. The data points correspond to checking
several data race properties in benchmark (syncBench.1119). We
observe that MIA ’s clearly outperform OIA ’s implying that under-
approximated IAs are essential for efficiency. In contrast, MIA ’s
may not be always better than only UIA ’s: however, the over-
approximation in MIA ’s improves the performance in most cases.

The procedure REF for finding small IAs may be viewed as an
automated quantifier instantiation (AQI) technique specific to the
domain of SC axioms where the variables are quantified over fi-
nite domains. Although a number of SMT solvers support asserting
quantified formula and include generic AQI heuristics, we found
that such approach did not perform well even on small bench-
marks (we used Yices [28] with default settings). We believe it
is due to the following reasons: first, the solver must be provided
with large number (at least quadratic in the number of reads and
writes) of non-interference constraints derived from static pruning
(cf. Sec. 7.1), without which these benchmarks become intractable.
Secondly, generic AQI heuristics often lead to eager redundant in-
stantiation which severely hurts performance. Most importantly, it
is difficult for generic heuristics to infer a biased initialization of the
M IA ’s: the initialization exploits knowledge about the typical be-
haviors of concurrent programs, which is unavailable to the solver.

We are aware that a number of improved AQI heuristics have
been implemented in Z3 [36]. We believe that these recent im-
provements are complementary, and, if exploited correctly, could
assist REF in converging faster. Note that an SMT solver also uses
a combination of under- and over-approximations internally during
constraint solving, which is unfortunately ineffective in handling
the full instantiation directly. In other words, the solver is unable

Bm N SAT R W Avg. |W| Full Instantiation With IAs (REF)
T(s) IA Size T (s) IA Size

barrierB.653 13 F 285 269 9 29 2.7K / 2.7K / 91K 2 249 / 285 / 0
barrierB.653 13 T 285 269 9 30 2.7K / 2.7K / 91K 22 350 / 382 / 3.2K

syncBench.722 13 F 270 289 3 4 891 / 891 / 8.5K 2 259 / 270 / 0
syncBench.722 13 T 270 289 3 4 891 / 891 / 8.5K 2 254 / 270 / 55
syncBench.1119 16 F 496 457 24 902 12K / 12K / 1M 3 477 / 496 / 0
syncBench.1119 16 T 496 457 24 741 12K / 12K / 1M 149 533 / 498 / 12K
syncBench.1954 19 F 1012 856 48 >1hr 49K / 49K / 8M 15 989 / 1012 / 0
syncBench.1954 19 T 1012 856 48 >1hr 49K / 49K / 8M 258 1056 / 1023 / 20K

daisy1 3 F 496 798 19 117 10K / 10K / 0.4M 5 370 / 495 / 0
daisy1 3 T 496 798 19 681 10K / 10K / 0.4M 396 370 / 30 / 850

elevator1 4 F 829 615 3 202 3K / 3K / 29K 38 824 / 0 / 0
elevator1 4 T 829 615 3 82 3K / 3K / 29K 23 824 / 30 / 0
elevator2 4 F 2259 1491 10 >1hr 24K / 24K / 0.7M 15 2204 / 0 / 0
elevator2 4 T 2259 1491 10 >1hr 24K / 24K / 0.7M 14 2204 / 39 / 215

Figure 11. Experimental Results. R (W) = number of reads (writes). IA size denotes the size of the IAα = (R′,W, Λ, Σ) when the check
terminates, in form (A/B/C) where A =

P

r
|W(r)|, B = |Λ| and C =|Σ|. nK and nM are shorthand forn ∗ 103 andn ∗ 106 respectively.

Figure 12. Run-times using MIA ’s vs. only OIA ’s or only UIA ’s on benchmark syncBench.1119.

to focus on the concurrent facts relevant to the property by itself;
the presented refinement scheme, in contrast, has the concurrency-
specific knowledge (e.g., to compute an initial biased IA) and is
able to steer the solver towards the relevant facts.

9. Related Work
Automated reasoning about concurrent programs with shared
memory has been traditionally done by systematically restricting
the thread scheduler [2, 4, 5, 37, 38] based on partially-ordered
traces [1] with dependency relation (Mazurkiewicz (M-) traces). In
particular, the work in [4] uses iterative enlargements of scheduler
under-approximations to find bugs based on proofs from a SAT
solver. Automated compositional methods have also employed ab-
stractions of both transition relations [39, 40] and state spaces [41]
of individual threads. IAs, in contrast, build upon the axioms of
memory consistency instead of M-traces (cf. [42]). Note that the
notion of IAs is orthogonal to abstractions of transition relations:
IAs abstract only the correlations between reads and writes without
modifying the transition relations of individual threads. The no-
tion of field abstractionintroduced in [26] for removing reads and
writes to selected structure fields may be viewed as a form of OIA .
However, field refinement links each field read withall possible
writes, thus hampering its scalability. As our experiments show,
the combination of OIA ’s with UIA ’s is important.

Iterative abstraction-refinement methods [16, 17] for sequential
software using predicate abstraction [18, 19] have been investigated
widely. Mixed abstractions of transition systems containing both
mayandmusttransitions to preserve universal and existential prop-
erties respectively have also been studied and applied to sequential
software (cf. [43] for a nice overview). Recent work has also com-

bined may- and must-summaries of procedures to obtain a more
scalable analysis of sequential software [44]. Decision procedures
for bit-vectors [45] also employ mixed abstractions of formula.

Automatic quantifier instantiation (AQI) inside SMT solvers
is an active research topic. The most prevalent AQI strategy [28,
29], introduced in Simplify [46], employstriggers [36, 46]: to
enable QI, subterms (triggers) of quantified assertions are matched
(unified) with the ground terms in the partial model of the solver.
However, such heuristics are in general incomplete and often cause
a large number of redundant instantiations. Leinoet al. proposed
to handle quantified assertions via a separate module [47] similar
to a theory module in an SMT solver. However, lack of tight
integration between the quantifier module and the main solver leads
to duplicate theory reasoning as well as restrained learning.

10. Conclusions
We presented a new form of concurrency abstraction for shared
memory programs called interference abstractions (IAs) based on
the axioms of sequential consistency. The framework of IAs pro-
vides an automated and flexible mechanism for approximating in-
terference. An iterative algorithm to synthesize IAs for checking
concurrent properties was presented and shown to yield small IAs
for practical benchmarks. IAs may be extended in multiple ways,
e.g., we canclustermultiple reads and/or writes into a single ac-
cess and reason about these access sets simultaneously. These ex-
tensions, in contrast to pure IAs, may also violate the program or-
der. Extending the notion of IAs to relaxed memory models is also
an interesting direction. We also plan to compare with automated
quantifier instantiation inside constraint solvers, handle unbounded

programs, and investigate rely-guarantee reasoning using interfer-
ence abstractions.

Acknowledgments.We thank the anonymous reviewers for their
careful reading and valuable suggestions. We are also indebted to
Yeting Ge and Cesare Tinelli for useful discussions.

References
[1] Mazurkiewicz, A.W.: Trace theory. In: Advances in PetriNets. (1986)

279–324

[2] Godefroid, P.: Partial-Order Methods for the Verification of Concur-
rent Systems: An Approach to the State-Explosion Problem. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (1996)

[3] Peled, D.: Partial order reduction: Model-checking using representa-
tives. In: MFCS. (1996) 93–112

[4] Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided
underapproximation-widening for multi-process systems. In:POPL.
(2005) 122–131

[5] Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar,P.A., Neamtiu,
I.: Finding and reproducing heisenbugs in concurrent programs. In:
OSDI. (2008) 267–280

[6] Kahlon, V., Wang, C., Gupta, A.: Monotonic partial orderreduction:
An optimal symbolic partial order reduction technique. In: CAV.
(2009) 398–413

[7] Qadeer, S., Rehof, J.: Context-bounded model checking ofconcurrent
software. In: TACAS. (2005) 93–107

[8] Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic
testing of multithreaded programs. In: PLDI. (2007) 446–455

[9] Lal, A., Touili, T., Kidd, N., Reps, T.W.: Interprocedural analysis of
concurrent programs under a context bound. In: TACAS. (2008)282–
298

[10] Adve, S.V., Gharachorloo, K.: Shared memory consistencymodels: A
tutorial. IEEE Computer29(12) (1996) 66–76

[11] Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence:checking
consistency of concurrent data types on relaxed memory models.In:
PLDI. (2007) 12–21

[12] Torlak, E., Vaziri, M., Dolby, J.: Memsat: checking axiomatic specifi-
cations of memory models. In: PLDI. (2010) 341–350

[13] Sinha, N., Wang, C.: Staged concurrent program analysis, FSE 2010

[14] Lamport, L.: How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Computers28(9) (1979)
690–691

[15] Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics.
SIGARCH Comput. Archit. News36(1) (2008) 329–339

[16] Kurshan, R.P.: Computer-aided verification of coordinating processes:
the automata-theoretic approach. Princeton University Press (1994)

[17] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.:
Counterexample-guided abstraction refinement for symbolic model
checking. Journal of the ACM (JACM)50(5) (2003) 752–794

[18] Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.:Automatic
predicate abstraction of C programs. In: PLDI. Volume 36(5).,ACM
Press (June 2001) 203–213

[19] Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstrac-
tions from proofs. In: POPL. (2004) 232–244

[20] Wang, C., Chaudhuri, S., Gupta, A., Yang, Y.: Symbolic pruning of
concurrent program executions. In: FSE 2009. 23–32

[21] Wang, C., Kundu, S., Ganai, M.K., Gupta, A.: Symbolic predictive
analysis for concurrent programs. In: FM. (2009) 256–272

[22] Wang, C., Limaye, R., Ganai, M., Gupta, A.: Trace-based symbolic
analysis for atomicity violations. In: TACAS, Springer (2010) 328–
342

[23] Kahlon, V., Wang, C.: Universal Causality Graphs: A precise happens-
before model for detecting bugs in concurrent programs. In: CAV,
Springer (2010) 434–445

[24] Clarke, E., Kroening, D., Lerda, F.: A tool for checkingANSI-C
programs. In Jensen, K., Podelski, A., eds.: TACAS. Volume 2988
of LNCS., Springer (2004) 168–176

[25] Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.:
F-soft: Software verification platform. In: CAV. (2005) 301–306

[26] Lahiri, S.K., Qadeer, S., Rakamaric, Z.: Static and precise detection of
concurrency errors in systems code using smt solvers. In: CAV.(2009)
509–524

[27] Ballance, R.A., Maccabe, A.B., Ottenstein, K.J.: The program depen-
dence web: A representation supporting control, data, and demand-
driven interpretation of imperative languages. In: PLDI’90. 257–271

[28] Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for
DPLL(T). In: CAV. (2006) 81–94

[29] de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In:TACAS.
(2008) 337–340

[30] Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: detecting atomicity viola-
tions via access interleaving invariants. In: ASPLOS. (2006) 37–48

[31] Farzan, A., Madhusudan, P., Sorrentino, F.: Meta-analysis for atomic-
ity violations under nested locking. In: CAV. (2009) 248–262

[32] Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.:Nemos: A
framework for axiomatic and executable specifications of memory
consistency models. In: IPDPS. (2004)

[33] http://www.javagrande.org/: The Java Grande Forum Bench-
mark Suite.

[34] Havelund, K., Pressburger, T.: Model checking Java programs using
Java PathFinder. International Journal on Software Tools for Technol-
ogy Transfer (STTT)2(4) (2000)

[35] von Praun, C., Gross, T.R.: Static detection of atomicity violations in
object-oriented programs. Object Technology3(6) (2004)

[36] de Moura, L.M., Bjørner, N.: Efficient e-matching for smt solvers. In:
CADE. (2007) 183–198

[37] Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for
model checking software. In: POPL. (2005) 110–121

[38] Clarke, E., Grumberg, O., Peled, D.: Model Checking. MITPress.

[39] Flanagan, C., Qadeer, S.: Thread-modular model checking. In: SPIN.
(2003) 213–224

[40] Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread-modular
abstraction refinement. In: CAV. Volume 2725., Springer-Verlag
(2003) 262–274

[41] Cohen, A., Namjoshi, K.S.: Local proofs for global safety properties.
Formal Methods in System Design34(2) (2009) 104–125

[42] Şerb̆anuţ̆a, T.F., Chen, F., Roşu, G.: Maximal causal models for se-
quentially consistent multithreaded systems. Technical report, Uni-
versity of Illinois (2010)

[43] Wei, O., Gurfinkel, A., Chechik, M.: Mixed transition systems revis-
ited. In: VMCAI. (2009) 349–365

[44] Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional
may-must program analysis: unleashing the power of alternation. In:
POPL. (2010) 43–56

[45] Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O.,
Brady, B.A.: An abstraction-based decision procedure for bit-vector
arithmetic. STTT11(2) (2009) 95–104

[46] Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theoremprover for
program checking. J. ACM52(3) (2005) 365–473

[47] Leino, K.R.M., Musuvathi, M., Ou, X.: A two-tier technique for
supporting quantifiers in a lazily proof-explicating theorem prover. In:
TACAS. (2005) 334–348

Appendix

LEMMA 1. Given a syntacticOIA α, bΠ ⇒ Πα.

Proof. We can view bΠ as Πα conjoined with instantiations of
Π for r ∈ R \ R or (r, w) ∈ λ(R, cW) \ Λ or (r, w, w′) ∈

σ(R, cW, cW) \ Σ. Therefore,bΠ ⇒ Πα. ⋄

LEMMA 2. Given a syntacticUIA α = (R,W, Λ, Σ), Πα ⇒ bΠ.

Proof. Let the IR I = (M, ⊏) be the model forΠα where
M : R → W. SinceΠα is satisfiable, so areΠα

1 , Πα
2 andΠα

3 . We
now show that all ofcΠ1, cΠ2, cΠ3 are individually satisfiable, and
henceI satisfiesbΠ. Note thatcΠ1 only contains more disjunctions
thanΠα

1 , hencecΠ1 is satisfiable. We can partition the set of r-w
pairsλ(R,W) for cΠ2 into Λ1 = {(r, M(r)) |r ∈ R} and the rest,
sayΛ2. Note that sinceM contains(r, w) for each(r, w) ∈ Λ1,
solink(r, w) must hold. Sincelink is exclusive, so(link(r, w) =
false) for all (r, w) ∈ Λ2. Henceφ2(r, w) evaluates to true for
all (r, w) ∈ Λ2, and thereforecΠ2 is satisfiable. Similar reasoning
applies tocΠ3. ⋄

LEMMA 3. If an IRI is Π-consistent, thenI satisfiesbΠ.

Proof. Let I = (RI , WI , M, ⊏). The induced IAIA(I) =
(RI ,W ′, Λ′, Σ′) (cf. Defn. 10) can be extended to an UIA α =
(R,W, Λ, Σ) as follows. LetR consist ofRI together with all
disabled reads. Let theW = W ′. Let, Λ = λ(R,W). Let Σ =
Σ′ ∪ {(r, w, w′) | (r, w) ∈ M ∧ (w′

⊏ w ∨ r ⊏ w′)}. Note that
Σ = σ(R,W, cW) and henceα is an UIA . BecauseI also satisfies
UIA α, hence, by Lemma 2,I also satisfiesbΠ.

LEMMA 4. Let the instantiationΠα of an IA α = (R,W, Λ, Σ)

have a valid proofP . ThenP is also a proof forbΠ.

Proof. Let R′ ⊆ R consist of readsr with under-approximated
link set, i.e.,W(r) ⊂ cW(r). We can writeΠα asF ∧ G where
F = ∀r ∈ R′.∃w ∈ W(r). φ1(r, w) and G denotes the rest
of the formula. SinceP is an UNSAT proof forΠα and does not
mentionR′, thereforeP is a proof forG. Now bΠ may be written
asF ′ ∧ G ∧ G′, whereF ′ = ∀r ∈ R′∃w ∈ cW(r). φ1(r, w) and
G′ denotes the rest of the formula. Therefore,bΠ is also has a proof
P .

