On Interference Abstractions

Nishant Sinha Chao Wang
NEC Laboratories America NEC Laboratories America
nishants@nec-labs.com chaowang@nec-labs.com
Abstract based on MC models has received considerable attention recently,

Interference is the bane of both concurrent programming and anal-bOth for therelaxedMC models which allow instruction reorder-

ysis. To avoid considering all possible interferences between con-N9S [11, 12] by the compiler or hardware, as well as for high-level

current threads, most automated static analysis employ techniquesStatic a.?alﬁ’ SIS [13].tUsmg a M%mc;del IS Pa:ytlculgrl¥ attractlvedbe— g
to approximate interference, e.g., by restricting the thread sched-8US€ It allows us 10 reason about correlations between reads an

uler choices or by approximating the transition relations or reach- W/ites Of program threads directly, inside a reasoning framework

able states of the program. However, none of these methods arefor parti_ally-ordered events, similar to Mazurkiewicz traces.

able to reason about interference directly. In this paper, we intro- . I this work, we focus on the well-known MC model séquen-
duce the notion ofnterference abstractiondlAs), based on the  Ual consistencySC) [10, 14], which is both intuitive as well as
models of shared memory consistency, to reason about interferencéIrnpler to a”a'yz‘?- The_ S.C model pre_scrlbgs the following rules
efficiently. 1As differ from the known abstractions for concurrent (more formally, axioms in fl_rst-order logic) of interference for cor-
programs and cannot be directly modeled by these abstractions F€Ct program executions: (|)_each rt_ead must observ_t_a some write o
Concurrency bugs typically involve a small number of unexpected el satr)‘ne Sh?{%‘: Itocat;]on (;nt.erftﬁrlng Wr'tf)'c?nd'\f")t arzead may
interferences and therefore can be captured by small 1As. We showO"Y ODSEIVE (neastsuch write in the causar oraer. Note, however,
how IAs, in the form of both over- and under-approximations of that enforcing these rules for all reads and corresponding interfer-
interference, can be obtained syntactically from the axioms of se- |ng1\_/v ”tgf ina pro?rz:n, agalun_leads _tot ar:j&;a?table anfglytss.
quential consistency. Further, we present an automatic method to, OIX ain a scalable ana yS|s,bwte '“tFO ) r erences Str?ﬁ' g
synthesize IAs suitable for checking safety properties. Our exper- .'9[“ ]S ), & new co?hcurrency abstrac I(t)n o reazor|1 aoou reat
imental results show that small IAs are often sufficient to check |nb?r_erencl'eA qs'gg ekme_mor:y gcz:nssl ency mobe S- r']t?' way to
properties in realistic applications, and drastically improve the scal- ©°tain an IA is byweakeninghe SC rules, e.g., by permitting a
ability of concurrent program analysis in these applications. read to not observe any interfering write. In other words, we allow

. . . . program executions where the read may obtain any value indepen-
f(_:ate_gor.li'/ls, gulbjeth Ilj(gscrllg)torsi?.’aAgngtware/ Program Veri-  gent of the values of the interfering writes. This form of weaken-
ication]: Model Checking, Formal Methods. ing leads to aroverapproximation of interference (denoted as an

General Terms: Algorithms, Verification. OIA). Alternatively, we maystrengtherthe SC rules, e.g., by forc-
ing a read to observe onlysaibsetf all possible interfering writes.
1. Introduction Consequently, executions where the read may observe writes out-

side the subset are ruled out. Such strengthening leadsuoczs
approximation of interference (denoted as an JJEmploying ei-

ther of these approximations (obtained by weakening or strengthen-
ing the SC rules) makes analysis more tractable. Intuitively, an IA
enforcesfewer dependency relationships among reads and writes

Analyzing shared memory concurrent programs is difficult due to
the fact that constituent program threads niratgrfere with each

other via shared variables. Multiple formalisms have been devel-
oped to model and reason about interference, e.g., the Mazurkiewic

ter\?gr?tss [v:l-/]hi?e]ot(:]itl:(grrltee)?tg\?\/ri?cmhinbeh(?(\ille?rlsjtifilieas gasrtc'ﬂlegﬂ?‘;r tgver than ordained by the SC rules. Many concurrent safety errors, e.g.
gn data races, deadlocks and atomicity violations, typically occur due

gene_rate_all possible t_hr(_ead |nterlea_1vmgs. I_3ecause analyzing a”toasmall amount of unexpected interference between threads [15].
possible interferences is intractable in practice, these models eM-r s fact is captured formally by IAs, i.e., there often existall
ploy reductiontechniques to focus on a subset of interferences, IAs sufficient to detect these errors.

e.g., partial-order reduction [2-6] or context-bounding [7-9)]. We present a formal framework to characterize IAs in an uni-

In th|§ paper, we develop a new formalism basednoem- form manner by exploiting the axiomatic formulation of SC rules.
ory consistencynodels [10] for analyzing shared memory concur- More precisely, we show how to obtain a wide variety of IAs in a

rent programs efficiently. A memory consistency (MC) model pre- : : - o .
scrib%s ?ules on when ayread to asr{ared Iocatio¥1 (may)observepsom yntacticmanner by selectively instantiating the SC axioms. The
ramework models not only @’s and UA’s but also mixed |IAs

write to the same location, and hence determines the set of feasible ; . . h .
executions of a concurreﬁt rogram. Concurrent program dealys (Mia’s) containing both over- and under-approximations of inter-
prog ' Prog Y ference, in a seamless manner. Further, we show how several in-

formal notions of concurrency abstractions for checking properties
can be formally captured in the uniform framework of IAs.
Given our unified framework of IAs, the key problem is to
Permission to make digital or hard copies of all or part of this work for personal synthesize |As suitable for checking a property. To this goal, we

classroom use is granted without fee provided that copies are not made owutkstrib ; ; . :
for profit or commercial advantage and that copies bear this notice and the fubiritati present an Iterative refinement scheme which starts from a coarse

on the first page. To copy otherwise, to republish, to post on servers or ttritedis |_A and gradual_ly reﬁnes itin a property-driven manner. Most trad_i-
to lists, requires prior specific permission and/or a fee. tional abstraction/refinement schemes (e.g. [4, 16—-19]) work with
POPL'11, January 26-28, 2011, Austin, Texas, USA. either over- or under-approximations to obtain proofs or witnesses
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respectively. In contrast, our algorithm works directly on a mixed | ThreadT, ThreadT ThreadT,
approximation, i.e., mixed IAs, and iteratively steers the mixed IA
to an QA (if a proof exists) or an W (if a witness exists). intx =0 foo() { bar() {

We implemented our approach in the FUSION platform, which inty=0; inta; int b;
is a collection of tools for concurrent program verification (e.g. [13, g}glfﬁg%‘ t,12; in ff‘z(g?__o) ( 32} :?:(é;——l) (
20-23]). We evaluated the effectiveness of IAs for checking embed |, "5ine i eate (11,0 £00.0)] ti; =1 tij y=1:
ded assertions and data races on medium sized programs. Our re1 ¢, pthreadcreate(&t2,0,bar,0)] |t14 a=x+1; | |tay b=y+1;
sults show that small IAs are sufficient to decide many of the prop- | ¢ts  pthreadjoin(t2,0); t15 x=a; tas y=b;
erties, and our iterative refinement procedure enables drastically | ¢4 pthreadioin(t1,0); tie  Jelse t26  Jelse
improved analysis of these benchmarks. Further, we have been able| } assert(x=y); 2; ) *=0; 2; ! y=0;
to check larger benchmarks that were intractable without using IAs.

To sum up, this paper makes the following contributions: Figure 1. A multi-threaded C program with an assertion.

e We introduce the notion ointerference abstractiorio rea-
son about interferences based on memory consistency models. o . . ) )
These IAs may over- or under-approximate the thread interfer- By defining expressions suitably and using code transformations,
ence, or represent their Combination_ (Sec_ 5) We ShOW tha’[ the abqve formulatlon. can mOdel a” St.atements n Standard_pro-
these 1As formally capture common concurrency bug patterns 9ramming languages like Java and multi-threaded C. The details on
and as well as correctness proofs (Sec. 5.3). modeling generic language constructs such as pointers and struc-
tures are omitted since they are not directly related to concurrency.

We present a unified framework for obtaining these IAs from  gqr more information on language modeling, please refer to recent
the axioms of sequential consistency [10, 14] (Sec. 4, 5). The gfiorts including [24—26]

framework of 1As provides a flexible mechanism for approx-
imating interference among reads and writes, guided by the {he following variants: (1) whem = true, it represents normal
memory consistency axioms. assignments; (2) when the setgn is empty,assume(c) itself
We formalize the set of IAs as a complete lattice and present can represent thehen-branch of anif(c)-then-else statement,
an iterative approach to synthesize IAs for checking proper- while assume(—c) can represent thelse-branch; and (3) with
ties based on a symbiotic combination of over- and under- both guard and assignments, it represents an atcimeick-and-set
approximate IAs (Sec. 6). A set of focusing heuristics are also which can be used as the foundation of all kinds of synchroniza-
presented to make the iterative algorithm practical. tion primitives. For example, acquiring the lotk in threadT; is
modeled agassume(lk = 1), {lk := i}) and releasing the lock
PR is modeled agassume(lk = i){lk := L}). Here the value of
2. Preliminaries lk indicates the lock owner’s thread index (means the lock is
We start with formalizing concurrent programs. free). Similarly, acquiring the counting semaphateis modeled
as(assume(se > 0), {se := se — 1}).

The guarded assignment acti@mssume(c), asgn) may have

2.1 Concurrent Programs

A concurrent prograntonsists of a finite set ahreadsTy, . . . , Tk 2.2 Bounded Concurrent Programs

communicating via a setV' of shared variablesEach thread’; Static analysis of concurrent programs with loops and/or recursion

has a set of local variabldsl’; and is represented by a control flow is known to be undecidable even with finite data. Our goal, how-

graph (defined below). Threads are allowed to fork other threads in ever, is to analyze real-life programs where data structures are pre-

a bounded manner, i.e., the total number of threads is finite. Let cisely modeled. We, therefore, focus on analyzimyindedcon-

T, denote the main thread aig = SV U LV; denote the set of  current programs, whose analysis is decidable. Intuitivesyrc-

variables accessible to thre@i turally bounded program is obtained by finitely unwinding the
We represent a concurrent program using a concurrent con-loops and recursion in an arbitrary real-life concurrent program.

trol flow graph (CCFG), which may be viewed as an extension Bounded programs are also obtained in the context of symbolic

of control flow graphs (CFGs) for sequential programs. A CCFG predictive analysis (e.g., [21, 22]), by generalizing from the se-

C=(N, E) consists of a set of node§ and a set of edges. We guence of program statements executed in a particular trace. This
use two special types of nodg®rk and join to model thread form of bounding finitizes the number of program threads and
creation and thread join respectively. A program thréadorre- the heap. Further, if the underlying program theory is decidable,
sponds to a sub-graphiV;, E;) of the CCFG, wheréV; consists then the analysis becomes decidable. A bounded program under-
of nodes representing program locations in thréadnd E; con- approximates the sets of paths of the original program and hence
sists of edges representing the program statements. Assuni¢;that the violations found by the analysis are real. However, the proofs
contains uniquentryandexit nodes ofT;. For eachl; (i # 0) the (absence of violations) found may not generalize to the original
entry node has a single incoming edge frorfiek node and the program.
exit node has a single outgoing edge tfvan node. We represent bounded programs using CCFGs. For ease of
Each edge irF; is labeled by one of the following actions: presentation, we assume that all function calls in the program have

been inlined. However, the presented technique can be directly

* guarded assignmefdssume(c), asgn), wherecis a condition oo 4o 6 handle function calls modularly [13],

overV;, andasgn = {w := exp} is a set of parallel assign-

ments, wherev € V; andexp is an expression over;. Intu- Example. Fig. 1 shows an example of a multi-threaded C program
itively, the assignments proceed iff conditiefis true. with two shared variables andy. The main threadl}, creates

° fO?”k(j), where0 < j < k andj # 1, starts the execution of threads’fl andTs, Wthhln turn execute fUr.]Ctionﬁ)O an.dbar,
child threadr’;. respectively. Thread), waits forT;, T» to terminate and join back,

before assertingr # v). Herepthread_create andpthread_join

are routines ilPThreaddibrary, directly corresponding timrk/join

in our model. (Since this particular example does not have loops
e assert(c), wherec is a condition oveWV;, asserts. and recursion, the bounded and the original programs are same.)

e join(j), where0 < j < k andj # i, waits for child thread’;
to terminate.



The assertion &t defines the correctness property, which holds in
some, but not in all, execution traces of the program. In particular,
the execution traca = (tltg)({tll—tls}tlg)(t21t26t27t28){t3—

t5} does not violate the assertian £ 2,y = 0 atts), whereas the
execution trace;’ = (tltg)({tll-tM})(tzl — t25t23)(t15t18){t3-

ts} violates the assertion:(= 2,y = 2 atts).

2.3 Gated Single Static Assignment

Recall that a sequential program can be encoded in a standard;

manner using the gated single static assignment (GSA) form [27],
which combines the classic single static assignment (SSA) form
(each variable is defined exactly once) with conditions under which
a particular definition of a variable may reachjain node. For
example, consider the following C code:

Iy :if(cl){z=1;} /Nl=
l> :elsez=2; Iz
l3:y=2+3; Iy1

The SSA form renames the writes4@tl; andis in terms of new
definitionsof z; and zs, respectively. Theiseof z in I3 is then
rewritten using thep function as¢(z1, 22), which, by definition,
may evaluate to either; or z». Consequentlyls is rewritten as

y1 = ¢(z1,22) + 3, wherey; is a fresh definition of;. Note that
the ¢ operator does not contain information about the conditions
under which definitionz; or z2 may be chosen, and therefore
cannot be used for precise encoding of the bounded program. Th
GSA representation solves the problem by replagifig , z2) with
ite(c1, z1, z2) Whereite stands for thef-then-elseoperator. That
is,y1 = z1 + 3 when conditior, is true; otherwise;, = z2 + 3.

3. Symbolic Analysis of Bounded Programs

We say that two memory accesserfere if both access the same
memory location and at least one of them is a write. To avoid

Using these fresh values, we can now encode the threads in the
CCFG using the standard GSA encoding

We say that a program edgeg®balif it accesses a shared vari-
able; otherwise it idocal. Both local and global edges participate
in the data flow inside a thread; however, only global edges partic-
ipate in data flow across the threads. Hence, we encode the local
and global edges separately: this enables us to only consider global
edges for encoding the thread interleavings, or more precisely, the
interference between threads. Our encoding, denotebdycon-
ists of a local componedt;, and a global compone#dt:

P =P, A D

We now discuss how; and® are obtained.

3.1.1 Encoding Local Edges®;.)

Given the program in the GSA form together with placeholders
for global reads, we can encode each program assignment of form
w := exp on a local edge as a formulaw = exp). The local
encoding®,, is obtained by conjoining the formula obtained from
local edges. Fig. 2 (left) shows the GSA encoding of the running
example in Fig. 1. The local variableis defined int;; and¢i4. At

t15 the value ofu is eithera; (defined int11) or as (defined int14),
depending on the conditiofa: # 0).

3.1.2 Encoding Global Edgest«)

SWe first compute the enabling condition for each edge.

Path conditions. The path condition for an edge in the CCFG

C'is denoted by (t;): t; executes iffg(¢;) is satisfiable. Let st
andt;.s: be the unique first and last edgedhrespectively. Start-

ing with g(tsirst) := true, the path conditions are computed iter-
atively for eacht; via CCFG traversal as follows. We distinguish
between CCFG nodes having multiple predecessors: if the prede-
cessors are in the same thread, the node is said toibgaithread

join; otherwise it is arinter-threadjoin.

worrying about whether the accesses are concurrent or not, we usé

the terminterferencein a generic manner, both for access pairs
occurring in the same thread or occurring concurrently.

In order to check properties of a bounded CCEQGwve encode
it as a first-order logic formula in a step-wise manner. First the pro-
gram statements i@ are encoded in ainterference-modulaman-

ner by ignoring the interference between all reads and writes (de-

noted®). The read-write interference it is then encoded using
sequential consistency axioms (denol&d which corresponds to

composing the program threads. The property, e.g., existence of an

assertion violation, data race, or atomicity violation, is encoded as
aformula® prp. The combined formula

P =P ANIIANDPprp

is then checked for satisfiability using an off-the-shelf constraint
solver, e.g., an SMT solver [28, 29]. The formdlds satisfiable iff
there exists an execution of the program that violates the property.

3.1 Interference-Modular Encoding
We show how to encode all the edges of the CCEGwithout

e If the source oft; is anintra-thread joinnode with incoming
edgeg; andty, theng(t;) = g(t;) V g(tr).

e If the source oft; is aninter-thread joinnode with incoming
edges; andty, theng(t;) = g(t;) A g(tx).

e If ¢; is a branching statement with conditiorandt; precedes
t;, theng(t;) = g(t;) A c.

e In all other cases, the sourcetphas a single incoming edge
andg(t:) = g(t;)-
Fig. 2 (center) shows the path conditions in the example CCFG.

Global accessesEach global edge is encoded using the notion
of a global accessThe global accesa for an edgee is a tu-
ple (Addr,Val, En), whereAddr(a) is the memory location ac-
cessedV al(a) is the value read or written, arfén(a) is the con-
dition under whicte is enabled. For example, edge (cf. Fig. 2)

is encoded as an access = (y,ry1, g(t11)). Similarly, edgetis

is encoded as a global accasss = (z,a1,g(t15)). The global
accessu captures all the information about the execution of the
corresponding global edgesuccinctly.

modeling the interference between the global reads and writes. Thelnterference Skeleton.Observe that to model all interferences in

encoding in this section is similar to our previous works [13, 21];
we review the main details here. Although the GSA form can
encode sequential programs (cf. Sec. 2.3), it cannot directlydenco
a program thread in a concurrent context. This is due to possibility
of interferenceon shared variables by concurrent threads, i.e., a

the CCFGC precisely, we not only need the values of global
accesses, but also their relative orde€inLet — denote the partial
order among global accesses induced by the CCFG (qaibeplam
order). For accesses; andas, if a1 C a2 holds, thena; must
happen beforei> in all program executions. The set of global

read of a shared variable (a global read, in short) must take into accesses itv', sayRW, together with their program order, denoted

account all possible interferences from concurrent writes. To enor
modeling such interferences, each global read of variable
assigned a fresh symbolic value (also called aplaceholdey.

1We will later see that introducing such placeholders isait fan instance
of interference abstraction (Sec.5).



Interference Skeleton:

GSA Form: Path Conditions of all Edges:

to @ ©0=0 A y0=0 [Woo0, Wo1] ujoo

ty: g(t1) = true wa

f2 1 5 g(tz2) = g(t1) , rd (K?
t11: a1 =71y [ria] ta1 : by = rx” [ra1] g(ti1) = g(t1) g(ta1) = g(tz) 1 fl
tiz: taz g(t12) = g(t11) A (a1 =0)  g(ta2) = g(ta1 A (b1 = 1) '

ti3 1 x1 = 1[ws] t2z 1 y1 = 1[was] g(tiz) = g(t12) g(tas) = g(tez) w13 wWa3
tis: az =ra' + 1 [r14] taa: by =ry® + 1 [raa] g(t1a) = g(t13) g(t2a) = g(ta3)

ti5: x2 = az [Wis) tas @ Y2 = bz [was] g(tis) = g(t14) 9(t25) = g(ta) T4 ro4
tie : tae : g(tie) = g(t11) A (a1 #0)  g(t2e) = g(tar) A (b #1) war
ti7 1 w3 = 0[wir] tar : y3 = 0 [war] g(ti7) = g(t1e) g(ta7) = g(t2e) 1 ¢ ¢
t1s : a3z = ite(a1 # 0,a1,a2) tog : bz = ite(by # 1,b1,b2) g(tis) = g(t15) V g(t17) g(tag) = g(tas) V g(tar) W15 W25
t3: g(ts) = g(t2) A g(tas) \ /
ty g(ts) = g(ts) A g(t1s)

g(ts) = g(ta) i

T51

ts : assertmca # 7*y3) [r50,r51]

Figure 2. The symbolic encoding of the bounded program in Fig. 1. The globasdg labeled by the corresponding global accesses (e.g.,
t11 by [r11]). Edgest is labeled by write accesses priwoo)andy (wo1) respectively. Edges is labeled similarly.

(RW,C), is called theinterference skeletorflS) of C. Fig. 2 ence (both intra- and inter-thread) using the axioms for sequential
(right) shows the IS (as a graph) for the running example: each consistency (SC) over the set of global acced3&g8 in C'. Intu-
node corresponds to an access= (Addr,Val, En) modeling itively, the SC axiomdink the read accesses RWW to appropriate

the location, value and the enabling condition respectively, and the write accesses iRV to obtain feasible program executions. The
edges model the program order. Note that the IS models all the basis of axiomatic composition is thiak relation.

global accesses and their mutual ordering precisely.

To encode the ISRW, C) in first-order logic, we introduce a
new type calledAcc and the following operators over the type:
a must-happen-beforpredicate H B over pairs ofAcc elements
and operatorsiddr, val, and en which map anAcc element to
its location, value and enabling condition, respectively. Nbsv
is encoded a®g:

DEFINITION 1 (Link Relation). The predicatdink(r, w) denotes
that the read- observes writev, i.e., the value retrieved by the read
access is the same as the value set by the write aceesghelink
relation isexclusive i.e.,link(r, w) = Yw' # w. =link(r,w").

The SC axioms [11, 13, 32], denotedldscan be modeled in
typed first order logic using operatofB, addr, val anden and
quantified variables, w andw’ over typeAcc (cf. Sec. 3.1). The
formulall := II; A IIx A II3, where

II; :=Vr.3w. en(r) < (en(w) A link(r,w))
(addr(a) = Addr(a) A en(a) = En(a)A Il :=Vr . Vw. link(r,w) = HB(w,r)A
val(a) = Val(a)) (addr(r) = addr(w)) A (val(r) = val(w))
and® po encodes : I3 :=Vr . Vw. V' . (link(r, w) =

(en(w") AN=HB(w',w) A —=HB(r,w') =
Ppo = /\ addr(r) # addr(w’) )
(a;,a;)€C

Formulall; models that if a readis enabled, then must be linked
to some enabled write, and vice versa. Formuld, models the
. . data flow and relative order betweemndw whenr links with w,
3.2 Encoding Properties i.e., both the value and addresssofindw must be same and
Generic programming errors may be modeled as embedded asserexecutes before. Formulalls says that ifr links with w then no
tions in the CCFG. The formul@prp then captures the condi-  other writew’ to thesame addresasr should be executed between
tion under which a given assertion is violated. For an assertion w andr, i.e.,w’ executes either before or afterr.
assert(c) in transitiont, ® prp is defined as Fig. 3 shows the hierarchical encoding ®f When checking

P — g(t) A —c properties, thé&l axioms interact subtly with the property violation

PRP =Y condition® p p: the condition® » z » identifies well-formed paths

denoting that the conditionmust hold ift is executed. In our run- in the CCFG that lead to a property violation and enables the reads
ning example in Fig. 2, fresh variables®, rz2, ra?, ryt, ry?, ry® and writes along those paths; the axiofighen make sure that
are added to denote the values of the six global reads, and the propreads and writes along those paths can be appropriately linked to
erty sub-formula is defined @prp := g(ts) A —(raz® # ry?) obtain a feasible thread interleaving.

Besides assertion violations, we can encode standard concur-
rency errors such as data races and atomicity violations directly as
a set of happens-before constraints. Suppose we want to check the
three-access atomicity violation [30, 31] involving global accesses
¢, ¢ andr, wherec andc’ are in the same thread and are intended S
to execute atomically; is executed in another thread and interferes ®c I Iy I
with bothc andc’. (An example of such violation is given later in
Fig. 7.) The property formula is defined as follows:

®prp = en(c) Aen(r) Aen(c') AN HB(c,r) AN HB(r,c)

bg = Pace NPpPo
whered 4.. encodes the set of accesgeld/,

Pace = Nocrw

(HB(ai,a;))

We also refer tab po asprogram order constraints

Figure 3. Hierarchical Encoding of the CCFG.

4.1 Full instantiation of SC axioms

Let R andW denote the set of all reads and writesifl respec-
tively. GivenR and W, IT can be encoded directly by instantiat-
ing the quantifiers for all reads & and writes inW. Recall from

4. Axiomatic Composition

Given the skeleton IS £RW, ) obtained from the interference-
modular encoding of the CCFG, we can now encode the interfer-



Sec. 3.1 that the values afidr(a), val(a) anden(a) for each
access: are already encoded ib.. Additional constraints are re-
quired to encode the exclusivity dfnk and thatH B is a strict

partial order. Here, we exploit the theory of uninterpreted functions:

rewritelink(r, w) asId(r)=Id(w), whereld is an indexing func-
tion which maps each access to an unique integer. All writese
initialized with uniqueld(w) values. Similarly, rewrite B(a, b)
asClk(a) < Clk(b), where theClk function assigns an integer
time-stamp to each access and the operat@ncodes the partial
order over integer time-stamps.

Example. The SC constraints for the running example (with sub-

stituted values foen, val, addr and H B in TI; andIls) are

Iy := (en(r1a) & vje{00,13,15,17}(6n(wj) Alink(ria, wj))A
(en(rs) & Vje{01,23,25,27}(e"(“’j) A link(rg, w;))A

IIs := link(r14, ’woo) = Clk}(’u}oo) < Clk}(’!‘14) Arzt = 0)/\
link(r14, wiz) = Clk(ti3) < Clk(tia) Arat = 1)A
link(r14, w1s) = Clk(t15) < Clk(tia) Ara’ = a1)A

II3 := l’ink)(’l"14, ’wOo) =
=(g(t13) A Clk(wgo) < Clk(wiz) < Clk(r14))A
=(g(t15) A Clk(wgo) < Clk(wis) < Clk(r14))A
=(g(t17) A Clk(woo) < Clk(wi7) < Clk(ria))A

Let I denote the quantifier-free formula obtained by instantiating

II for all accesses iR andW. Note that the number of constraints
in the worst case is cubic in the sizesRandW. .
The following theorem captures the idea that the solutiori$ of

Wz = {woo,wo1,w13,w15,w23,was }, M = {(r11, wo1),(r1a, wis),
(7”5071U15), (7”21711113), (7“24,1023)7(7”51,11125)} and C consists
of program order constraintsbo in Sec. 3.1) together with
(wis C r21) and(r21 C wis). Note thatw;r andw.; are dis-
abled and hence not iVz. An execution trace = (t1t2)({ti1 —
t14})(tar — t25 tag)(t1s5t1s){ts-t5 } corresponds td@ and violates
the assertion.

4.2 Redundant Instantiation of SC axioms

As mentioned earliedI may give rise to a large number (cubic in
the reads/writes) of constraints; in practice, many of these are re-
dundant. For example, if a readorecedes writev in the program
order, instantiatingl for link(r, w) is wasteful and can be avoided.
Redundant constraints also occur in a more obscure manner, e.g.,
suppose the given property can be violated by executing the pro-
gram threads sequentially without interleaving them. In this case,
most constraints linking reads in one thread to concurrent writes in
another thread are unnecessary for checking the property. Pruning
redundant constraints is the key to making our problem tractable.
Interestingly, the syntactic formulation of offers insights on
how to prune redundant constraints. Let us consider a few pruning
methods. Suppose, for example, we pick a subset of reads and
writes, sayR C R andW C W respectively, and instantialé
only for R and W to obtain, sayJI". Note thatII™ is anover-
approximatiorof IT becausél = IIT A F', whereF corresponds to
the pruned constraints. Hence, a witnesd tomay not correspond
to any feasible program execution; however, a proofférimplies

correspond to the feasible executions of the program that violate that the property is never violated iR. On pruning constraints

the checked property.

THEOREM 1. [13] Suppose we have an encodifg of a bounded
CCFG C and a property encoding prp. The formula® :=

[OTSIA A dprp is satisfiable iff there exists a feasible execution

of C' which violates the property.

For convenience, ib is satisfiable then we say that a witness exists;
otherwise we say that a (unsatisfiability) proof exists. Instead of

always referring tob for a given CCFG and a property, we sy
is satisfiable (has a witness) or is unsatisfiable (has a proof).

We now characterize the satisfying model$lafising the notion
of aread-write matctand arninterference relation

DEFINITION 2 (Read-Write Match)Given set of readsR and
writesW, aread-write matclimatch, in short) is a partial function
M:R—W.

DEerFINITION 3 (Interference Relation (IR))An interference rela-
tion is a tuple (Rz, Wz, M,C) whereRz C R, Wz C W, M
is a match and- is a partial order over the seék U W.

DEFINITION 4 (IR Satisfyingll). If II is satisfiable with a model
O, then there exists an unique IR= (Rz, Wz, M, C) satisfying
TI defined as follows:

e Rz andW7 are respectively the enabled reads and write®in
i.e., r € Rz & en(r)) and w € Wz &< en(w)).

e M : Ry — Wx is well-defined for all- € Rz with co-domain
Wz. Moreover,M (r) = w iff link(r,w) holds in©.

e _={(a,b) |a,b € (Rz UW<z) A HB(a,b) holds in® }.

Intuitively, if I is satisfiable, then we can extract a mafahby
recording which of thdink(r, w) predicates hold in the current
solution and the partial order induced by thed B predicate. Note
that the exclusivity of théink constraints ensures thaf is a well-
defined function. R

For the running example in Fig. 2] has a satisfying IRZ
= (Rz,Wz,M,C) where Rz = {rii,714,750,751, 721,724},

as above, we are able twver-approximatehe interference, and
hence the program behaviors axiomatically. Clearly, such an over-
approximation is cheaper to check if we can discover siRahd

W sets, which are sufficient for proving the absence of violation.

Consider another form of pruning, again based on the syntactic
structure of the axioms. Observe that instantiafihgleads to a
disjunction oflink(r,w) formula for each read € R and write
w € W. If W is large, we must explore a large number of choices
to find an appropriate read-write match. This naturally leads to
another approximation: pick a subset of wril@s C W for each
readr and instantiatdI; (similarly II> and II3) only for pairs
(r,w) wherew € W. By pruning the disjunctions, we obtain an
under-approximatiomf the interference (denoted by~ ) which is
cheaper to analyze. This under-approximation preserves witnesses,
i.e., awitness found using— corresponds to a concrete witness in
the programP. Again, the usefulness &i~ depends on obtaining
a smallWW sufficient for computing a witness.

Each of the approximations above relies on either weakening or
strengthening the SC axioms bgcouplingeads and writes; hence
we refer to them asnterference abstractiong§lAs). The above
two examples show how the syntactic structure of the SC axioms
may be exploited to obtain approximations (under- or over-) of
thread interference. In fact, the abundance of quantifidrisatiows
us to build a complex array of abstractions systematically, where
the under- and over-approximations of interference are intricately
combined. We now define interference abstractions obtained in this
manner formally.

5. Interference Abstractions

To formally represent the interference abstractions, we first define
thelink setfor a read.

DEFINITION 5 (Link Set).Given a set of read® C R, let W :
R — 2" map each read € R to a set of writes which may link
with. We say tharV(r) is the link set of-.

Let W denote the default link set such t@(r) contains all pos-
sible writes that may link with statically. For example, in Fig. 2,



o~

W(r14) = {woo, w13, w1s, w17} because:4 reads variable. Let

A andy: denote thér, w) pairs andr, w, w’) triplets for whichlI,
andII; are instantiated respectively. Now, we can reformulate the
SC axiomdT as follows.

I :=Vr e R. 3w e W(r). ¢1(r,w)
Il :=V(r,w) € A. ¢a(r,w)

I3 :=V(r,w,w) € . ¢3(r,w,w’)
II := H1 N H2 A H3

where
o1(r,w) == en(r) < (en(w) A link(r, w))
p2(r,w) = link(r,w) = (HB(w,r)A\

addr(r) = addr(w) A val(r) = val(w))
link(r,w) =

(en(w") A=HB(w',w) AN =HB(r,w")

= addr(r) # addr(w"))

To modelA andX, we introduce functiona ando as follows.

AMR,W) ={(r,w) |r € R,w € W(r)}

d3(r,w,w’) ==

a(RW,W) = {(r,w,w’) | r € Ryw € W(r),w € W (r)}
Given R, WW and W' the functions)\ and o model the set of
(r,w) pairs and(r, w, w") triples thatll, andIl; are instantiated
for, respectively. The complete instantiatifirof IT corresponds to
R=R,W=W,A = XR,W)andS = (R, W, W).

5.1 Syntactic IAs

An interference abstraction (IA) is characterized byirmomplete
instantiation ofII axioms. We say that the IAs thus obtained are

LEMMA 1. Given a syntacti©IA «, I = 117,

Syntactic UA’s are more tricky to define.

DEFINITION 8 (Syntactic UA). An IA o (R,W,AY) i/s_\an
UiA iff (i) R =R, (i) A = A(R, W) and (i) ¥ = o(R, W, W).

Intuitively, an UA is obtained ifIl; is instantiated for all reads
r € R but only for a subse¥V of the default link set of each read.
Moreover,I1; must be instantiated for all paifs, w) € A(R, W)
andX: consists of all triplegr, w, w’) wherew is drawn fromW(r)

butw’ ranges over the default s@(r). All the above constraints
are critical for constructing an ld which preserves witnesses.

LEMMA 2. Given a syntactitJia a = (R, W, A, %), I1* = I1.

A subtle difference between ani®a = (R, W, A, ¥) and an

Uia 8= (R, W', A, ¥') must be noted. Suppose for some R,

r € Rina.Inthe UA 8, " = R and hence € R’; however,

let W' (r) be empty. Although these two cases appear similar, they
correspond to different instantiationsiaf For the QA «, I1; will

not be instantiated for at all; however, for the W 3, IT; will be
instantiated as.en(r). In other words, not including a readn an

OlA allowsr to be enabled in any witness Bf* without linking

to any write; in contrast, setting’ (r) = () in an UA amounts to
disablingr in all witnesses of1°.

A full instantiationTI of IT corresponds to both ani® and an
UIA. Also, an lAa = (R, W, A, X) is an mixed IA (MA), if ais
neither an @A nor an UA. In particular, ifR # R andW # W,
thena is an MiA. Intuitively, in an MIA, some reads may not be
linked to any writes while other reads may link to a restricted set of

syntactichecause they are obtained by restricting the instantiations writes. We next discuss how to visualize the set of syntactic IAs.

of SC axioms syntactically.

DEFINITION 6 (Syntactic Interference Abstraction (IA)given
IT as above and the set of all global reals an interference ab-
straction« is defined to be a tupleR, W, A, ) such that: ()R C

R, (i) W C W, (i) A C MR, W), and (iv)S C o(R, W, W).

We say thaix is aproper IA if at least one ofR, W, A or X is
a proper subset. We refer #®, ¥V, A and ¥ as components or
dimensions ofv. Thesizeof « is defined to be the sum of the sizes
of components ofv.

Each IAa = (R, W, A, X) corresponds to an instantiation of
TI, denoted bylI*, consisting of sub-formulaEl{, TI5 andII5.
Intuitively, an 1A corresponds to first fixing a set of reaitsand
the set of writesV(r) that each read € R may link to, and
then instantiatingI, for each(r, w) in A(R, W), andII, andIls

I

for subsets of\(R, 17\7) anda(R,W,W) respectively. Note that

replacing read values by placeholders (during interference-modular

encoding, cf. Sec. 3.1) is the coarsest IA, where aread does kot lin
with any write, i.e., may assume an arbitrary value. R

An IA «is said to beunderapproximate (W) iff II* = II.
Similarly, « is said to beoverapproximate (@) iff II = TI*.
Otherwise we say that is amixedlA (M 1A). As expected, an 4
is useful for obtaining witnesses while an/Ohelps obtain proofs.
We now show how the @ and UA as defined above in a semantic
manner can be obtaineyntactically

DEFINITION 7/\(Syntactic a). An IA
oA iff W= W.

(R,W,A,X) is an

In other words, an O\/i\s obtained ifl1; is instantiated for all writes

in the default link sevV(r) of each read € R. However]I, need

not be instantiated for all reads afid/II; may not be instantiated
for all reads and writes. The following lemma shows that a syntactic
OIA is also asemanticdOIA and hence preserves proofs.

5.2 Visualizing Syntactic I1As

As mentioned above, an |A corresponds to instantiatirig only
for a subset of all possible reads and/or writes. Note that even
thoughTIl; is instantiated forA\(R, W), II, andIIs may be in-
stantiated independent &f,, for different subsets of reads and
writes from R andW. The possible choice of read and write sub-
sets gives rise to a complex space of |As. To better visualize this
space, consider Fig. 4 which shows the components as four inde-
pendent dimensiong, WV, A andX.. Intuitively, the)V dimension
corresponds to an under-approximation, while the other dimensions
correspond to over-approximations. Moving away from the center
along any dimension correspondsreglucingthe approximation
corresponding to that dimension. Note also that the dimensions are
somewhat inter-dependent, i.e., it makes sense to select values for
A andX only after we finish selecting the values fBrandV.

The 1A space shown in Fig. 4 is, in fact, even more complex,
e.g., we may instantiate only the order constraift8(w, r) in
I1, without instantiating the data flow constraintsl (r)=val(w).
Consequently, we may obtain even more fine-grained’s) cor-
responding to sub-dimensions of theaxis in the figure. We show
later that the space of syntactic IAs directly corresponds to a com-
plete lattice. We now show that these syntactic IAs indeed have a
practical significance, i.e., they correspond to some common se-
mantic notions useful for reasoning about concurrent programs.

5.3 Useful Semantic Interference Abstractions

Many popular techniques for reasoning about concurrent pragram

incorporate some form afemantianterference abstraction. Many

of these abstractions can be readily modeled by our syntactic IAs.
Let us first examine the meaning of instantiatifigincom-

pletely. Not instantiatingI, for some reada and writew disallows

linking = with w in any execution. FormulBl, corresponds t¢o-

cal consistency: not instantiating, for some(r, w) implies that



R ={r1,r2,...} ThreadT; ThreadT;
t1  lock(A) t1 — to assert(A#£ i)
to  if(x==0) assume (A= L) {A:=4; }
» A t3 unlock(A) to — t3 assume (= 1)
ty  y=1, to — ta assume (%£ 1)
£ - "y {(T:)} ts  unlock(A) ts — 1y assert(A= 1) { Ai=1; }
T, W, w ) ty — ts {y=1;}
ts — te assert(A=1) { A:=1; }
w

r— {wq, wy, ...}

Figure 6. The assertion failure at, caused by double unlock, can

Figure 4. The Space of Syntactic Interference Abstractions. be detected in a serial execution.
no afeasible

ThreadT} ThreadTs interleaving ThreadT, ThreadTs interleaving
t1  lock(A) t11  lock(B) can reachtg
to x=1; tia a=y; andtqg Si- t1 :p:= &a;
ts  lock(B) t13  lock(A) multaneously { ) t1
ty y=1 tia b=x ty : if (p # 0) t2
ts  unlock(B) t15  unlock(A) ts: *(p):=10 ta
te z=1; tic z2=2; t t 4 t "
tz  unlock(A) t17  unlock(B) 6 16 ty:p:=0; 3

ts 1 a:=0;

Figure 5. A control-state reachability analysis can prove the ab-

Figure 7. Any serial execution of blocky, t3 is non-erroneous.
sence of data race (betwegnandt;). 9 Y 218

or interleave sporadically [7, 9]. Thread-local bugs fall in this
category, e.g., as in Fig. 6 (left), where= 0 initially. Here lock
A may be released twice. Recall (cf. Sec. 2) that we encode locks
using guarded assignments to shared variables as in Fig. 6 (right).
Additional assertions are addedttofor checking double-locking
errors, and tots, ts for checking double-unlocking errors. The
5.3.1 Control-State Reachability assertion ats is violated due to double unlocking. We can detect

. i this violation by only considering a serial execution of thre@ds
Sometimes we can prove a property using a control-state reach-  This form of reasoning can be captured by amlh =
ability analysis [23, 31] where the control flow structure and the (R, W, A, %), whereR contains reads om which are only linked

in any executiony may link withw irrespective of their values, ad-
dresses and execution order. The fornmilijacorresponds tglobal
consistency: not instantiatings for some(r, w,w’) implies that
in any execution where links with w, any other interferingy’ is
allowed to interleave in betweenandw.

synchronization operations (such lask-unlockandsignal-waiy = \yith writes inside the same thread or an initial write. More pre-
are modeled precisely, whereas the other data flow is ignored. Thiscjsely, the read of: at ¢, links with the initial writez = 0, the
reasoning corresponds tosamanticlA defined as follows: parti- read of A at ts links with the write at eithet; or ¢, and so on.

tion the set of all readR on shared variableSV in the program  Note that restricting the set of writes to link makeg(r)  W(r)
into two d'SJO'mSUbSEt.SQSWC and(R_\Rsym). The suk_)set_%sym .. forr € R, and hence results in aniAJ Checking this Wa for
consists of all the variables modeling the synchronization primi-  gayisfiability corresponds to checking only serial executions.
tives. The SubseR \ Rsyx.c) consists of the remaining global vari- Sometimes all the serial executions are good, but an interleaved
ables, which will be ignored in the IA. Given a default write map  eyecytion involving only a small amount of interference may lead
W for the reads in the program, this semantic IA can be obtained g g bug. Fig. 7 shows one such bug due to atomicity violation
syntactically as The transitionstz, ts in threadT; are intended to be executed
_ ¥ ™ YYEYY atomically; however, the programmer fails to enforce ittdfis
@ = (Rayne; W, A(Rsyne, W), 0 (Rayne, W, W)) interleaved in between, andts;, a NULL dereference occurs.
The IA a is an QA by definition (V = WandRsym C R) and Again, an UA « is sufficient to detect such bugs. Note that if
hence a proof obtained with still holds when the SC axioms are ~ We force each global read to copy from the preceding intra-thread
fully enforced. write, we will not be able to detect the bug. Therefore, the U
Consider Fig. 5 as an example. The two concurrent threads should allow the read gfatts to link with ¢4 (besides; ). Inferring
Ty,T> communicate through lockst, B and shared variables  suchreduced set of writeBY) automatically is, however, the prime
x,y,z. The property of interest is that whether the writeszto ~ challenge.
attg andt1g cause a data race. We can show that no data race exists
by using a control-state reachability analysis based on ldciad 6. Exploring the IA Space
B only; the rest of the variables y andz may be ignored because . - .
of the following reason. Transitioris andt,; cannot be enabled at V& now focus on finding an efficient exploration strategy over the
the same time, because thrédmust acquired in order to reach IA space to dlscoyer IAs of small size, which are precise enough
ts, but if A is held byT?, then thread’s cannot react; s because for checklng the given property. Let de_note the set containing all
it cannot acquired att,5. We can capture this reasoning precisely POSSible IAs. We define an order relation.dras follows.
by including reads on onlyl and B variables inR.,n. in the 1A « DEFINITION 9 (Order of IAs).Given two IAse = (R, W, A, %)
above and therefore can prove the absence of data racewwith and 3 = (R, W' A',Y), we say thate < Bif R C R,
W CW,AC A, ¥ C Y, and at least one o2, W, A is a

5.3.2 Serial or Largely Serial Execution proper subset of the corresponditity W', A

Sometimes program bugs are insensitive to thread scheduling, i.e.,
they appear even in executions where the threads execute serially For modeling pointers/structures, please refer to our preswork [13].



ThreadT’, ThreadT

r1:  assume(l=1); ro: assume(l = 1);
wy =1 wo =2
A wh o L= 1

Figure 9. Example with concurrent lock/unlock.

Figure 8. Semantic Interpretation of IAs. The bold circle denotes
the full instantiation of 1.

If « < B, then we say thaB refinesa. The poset(A, <) is a
complete lattice with component-wise set union and intersection
as the join and meet operators. The top element of the lattice
(R, 17\7, AR, )7\7), o(R, 17\7, 17\7)) corresponds to a full instantiation e () R = Rz,

(I1* = 1I) while the bottom elemer®), 0, 0, 0) corresponds to not o (i) W(r) ={M(r)} if M(r)is defined, els&V(r) = 0,
instantiatingl at all (I* = true). o (i) A= M,

o (V)X ={(r,w,w) | (r,w) € MAw' € Wz AwC w' C r}

DEFINITION 10 (IR-induced 1A).Given an interference relation
Z = (Rz,Wz,M,C), the IAS = (R, W, A,Y) induced byZ,
denoted by IA7), is defined as follows.

6.1 Exploring the Lattice

Given a propertyP, we say that amv is minimalfor P if « is an However, in generalZ may not correspond to a true witness of
O1A (UIA) which proves (falsifies)P, and there exists n6 < « I because of approximation in IM: all the constraints IAZ)
such thaf3 proves(falsifies)P. Since computing a minimal IAisat  relevant to th& may not be enforced by (contained in) the current
least as hard as checking the property itself, we are only interestedMIA. On enforcing the missing constraints (from the setZlj( if

in practica”y efficient a|gorithms to Compuw']a” |AS. Zisno Ionger a witness, then we say tiais I1-inconsistent.

The formulation of syntactic I1As suggests two naive strategies
to obtain small 1As. Starting with a W «, one may iteratively
augment the setgV, A andX until an actual witness is obtained.
Similarly, one may start with an @ « and iteratively instantiate
constraints until a proof is obtained. Both these refinement strate- ness) due to multiple reasons. For examplemay not be defined
gies introdyce new constraints idaaz.ymann.er. Semaptically, this  for some enabled € Rz. Instantiatingll; for suchr is unsatis-
form of refinement corresponds to increasing coupling or interfer- onia pecause antecedent(r) is true but the consequent is false.
ence between threads and checking if a witness or a proof persistSye say that is 11, -inconsistent here. Similarly, instantiatifig
as the coupllng Increases. or a subset of-w pairs in M may be unsatisfiable. In this case,

The two refinement strategies presented above have a number of, o sayZ is I1o-inconsistent. We definB;-inconsistent similarly.
issues. First, these strategies are suitable either for finding proofSygie that, in general, we may need to instantiate a combination of
(using QA’s) or witnesses (using M’s), but not both. Second, 1y, 1, andII, constraints fof to detect ifZ is II-inconsistent.
since the two IAs are disjoint, the proof-directed strategy does not g following lemma is crucial to finding actual witnesses using

ain from the witness-directed strategy, and vice versa. Ideally, we . ) . . I
gesire of a refinement method Wherg){)oth\(@ and UA’s couldy IAS It ShQWS that to find an actua_l witness, i.e., an IR satisfying
it is sufficient to compute &l-consistent IR.

work in unison and assist each other. A natural way to combine

DEFINITION 11 ([I-inconsistent IR) Suppose an IR induces 1A
6 =1A(Z). We say thaT is II-inconsistent if1° is unsatisfiable.

An IR Z = (Rz, Wz, M, C) may bell-inconsistent (invalid wit-

Oia’s and UA’s is via an MA. LEMMA 3. If an IRZ is II-consistent, thef satisfied].
Fig. 8 depicts and compares the semantics '€ UiA's and
MiIA’s in a visual manner. Recall that the full instantiatidrmod- Example. Consider the example in Fig. 9 with two threads

els sequential consistency precisely and hence corresponds to aland 7, each containing a pair of lock/unlock statements on the
feasible thread interleavings. Ani© removes interference con-  lock I. The lock/unlock statements are transformed into guarded
straints fromil and therefore leads to more interleavings (infeasible statements (cf. Sec. 2) and note that each lock/unlock pair is
ones) than allowed bii. In contrast, an th adds interference con- ~ associated with a triple of lock accesses, e.gs, 11, w:) for
straints toll, leading to fewer interleavings than allowed yAn . Her(i, the Ilnk/set ofry is W(r1) = £w27w2}. Similarly,
MIA contains both an @ and an UA, and therefore omits some ~ /Y(72) = {w1,w1}. Consider an IRT = (R, Wz, M,C),
interleavings fronil while allowing some infeasible ones. \J/\v/?e_re Rz and Wy contain all reads and writes respectively,
Although MiA’s combine the advantages of bothA® and o {(ry, wb), (T%’wl)} andc contalps program order rele_ltlon,
Uia’s, neither models nor proofs of M’s may provide conclusive Lo/t & w1 & i andr; C wp C ws. Clearly, matchi/ vio-

results because of combined over- and under-approximation in an:ﬁg;rﬁ’igﬁﬁgﬁnigtrlcséix%wrfﬁs%'g (ii)-rquggr:;srigatirgf’i ;gl'é%r;_
MiA. We now examine the sufficient conditions under which a 2 1orp .

cause the transitivity off B relation is violated. Consider another
model (proof) of an MA may be an actual model (proof) for. IR T’ with ordering:r C wi C w) C 72 C ws C wlh. SUPPOSe
6.2 Models and Proofs of (Mixed) IAs the matchM” links o with wi. The IRZ" is II3-inconsistent: if
ro links with w; then the interfering writevs, should not occur in
between, and henc® violateslIIs.
Dual to the notion of dI-consistent IR (a valid witness) is the
idea of avalid proof i.e. a subset of constraints Of*, which does
not mention any reads whose link sets are under-approximated.

Given an MA «, we define the interference relation (IRsatisfy-

ing II* (model of the MA) in a manner similar to Defn. 4: in the
solution of 1%, Rz and Wz are enabled reads and writes respec-
tively, M(r) = w iff link(r,w) holds andC consists of(r, w)-
pairs satisfyingd B relation. Each IRZ, in turn, corresponds to an

induced IA defined as follows. Intuitively, if an IR satisfies1*, DEFINITION 12 (Valid Proof). Suppose the instantiatioi® for
then the induced IA, 1AZ), models the subset of SC constraints an IA o = (R, W, A,¥) is unsatisfiable and” is a proof of
relevant taZ. The hope is that IAZ) is an UA; in that caseZ is a unsatisfiability. We say tha® is valid if P contains na- such that

true witness. w(r) € W(r).



We say that a read invalidatesa proof P, if P containsr and

W(r) C W(r). The following lemma shows that to prove absence
of errors, it is sufficient to find an IA having a valid proft

LEMMA 4. Let the instantiatiodI® of an IAa = (R, W, A, Y)
have a valid proofP. ThenP is also a proof forl.

6.3 Refinement of Mixed IA's

We now present our refinement procedurerRvhich tries to au-
tomatically compute an IA precise enough for either proving the
property or finding a violating witness.g® works directly on an
mixed IA (MiA) and iteratively refines the M to obtain either a
valid proof or all-consistent IR (cf. Sec. 6.2). Fig. 10 provides an
overview of our refinement procedure. The procedure starts with
an initial IA o« = (R, W, A, %) by choosing set&, W, A andX..
Then, ReF checks ifII* conjoined with the CCFG and property
encodings®¢- and® pr p respectively (cf. Sec. 3.1), is satisfiable.
If II* is satisfiable and the IR obtained from the solution iH-
consistent, the algorithm terminates with a valid witnes< 6
not IT-consistent, thelax must contain an over-approximation due
to eitherR, A or X (cf. Sec. 6.2). Thereford]* is refined to re-
duce the over-approximation (using proceduepRD). Otherwise
I1* is unsatisfiable: iffI1* has a valid proofP, the algorithm ter-
minates. IfP is not valid, i.e., it contains an under-approximation
due toW(r) for somer, thenII® is refined to reduce the under-
approximation (using procedureeR-U).

Note the advantage of working with aniM upon termination,
the final IA may not be an @ or an UA; obtaining all-consistent
IR or a valid proof is sufficient to obtain a conclusive result. We
now describe the details of theeR-O and ReD-U steps. The
pseudo code is listed as follows.

Let « (R, W, A\, Y). Let the II-inconsistent IR beZ
(Rz, Wz, M,C). Refinea by performing one of the following oper-

ations to reduce the over-approximatiorin

e Pickr € Ry \ RandW C W(r). SetR :
W(r) :=W.

® SetA :=AUM
e SetX =X U{(r,w,w') | (r,w) e M ANw Cw' Cr}

Sincell® is unsatisfiable, obtain the set of invalidating re&isC R in
the proof of unsatisfiability ofI*. Refinea by settingV(r) = W(r)
for eachr € R’ to reduce the under-approximationdn

R U {r} and

In words, ReD-O analyzes the IR and then chooses to refine
« by updating one or more o or A or ¥ depending on the
reason oflI-inconsistency (cf. Sec. 6.2). SimilarlyeR-U checks

if TI* is unsatisfiable due to under-approximationWi(r) for
somer; inibat case, RD-U removes the approximation by setting
W(r) == W(r).

Checking if the IRZ is II-inconsistent is done by adding
constraints 1AZ) related toZ incrementally and checking if
the result is satisfiable. Note that bothe®®O and checking
TI-consistency involve adding constraints to reduce the over-
approximation. Therefore, we combine them in practice using a

v

Initialize TA «

v

Is ((I)(j ATIY A ‘I)pRp)

/ satisfiable? \
RED-O RED-U
(Reduce Over-approximation in o) g A UNSAT | (Reduce Under-approximation in a)
\ NO (IRT) (Proof P) ﬁ\]o
7 is Il-consistent? Is P Valid?
# YES YES
‘Witness Proof

Figure 10. Flow diagram for the refinement procedure®R

and hence is property-directed. The algorithmaFRerminates in
finite number of steps because the height of the IA lattice is finite
and each iteration of & ascends the lattice by one or more steps.

The refinement procedure can be implemented efficiently using
an incremental SMT solver [28, 29] by iteratively adding new
constraints. Moreover, using aniM during refinement enables
sharing the learned information between the constitueatsGand
UIA’s inside the MA, thus allowing the @’s and UA'’s to assist
each other for computing both proofs and witnesses.

For the example in Fig. 2, we initialize M oo = (R, W, A, X)
as follows. R includes all read$11, 714, 721, 724, 750,751 W IS
initialized so that the link set of each read contains no concurrent
writes: W(Tu) = {’LUOl}, W(TM) = {w13,w17}, W(r50) =
{w1s, w17} and so on. Suppose we instantidte= A\(R, W), i.e.,
for all writes in the link set of each read. L8t= (. The IA«is an
MIA because, e.gW(r14) C W(r14) (under-approximation) and
> = () (over-approximation).

On checkingIT® (with @« and ®prp), the result is unsatis-
fiable because: links with wo1 andrz; links wgo. Hence, the
thenbranch inT, executes while thelsebranch inT: executes.
Thereforerso gets value2 andrs; gets value) so that the asser-
tion is never violated. The proof of unsatisfiability mentions
ér\]d’f’21. Suppose the procedureBR-U then expand®V for ro; to
W(Tzl) = {woo,wlg,wm, w17} andA is Updated with the cor-
responding pairs. In the next iteration, suppose we obtain ah IR
which linksrz; with w3, butZ hasw,s C wy5 T 721 in Z. Here,

7 is notII-consistent because it violaték;. Therefore, RF up-
dates¥ = {(r21, w15, w13)} using RED-O, which finally results
in all-consistent IR withwis C ro1 C wis.

Note how a combination of over- and under-approximation
was exploited by RF to arrive at all-consistent IR. Further,
even though we check bounded programs (where paths in each
thread or number of threads have been under-approximated), over
approximating interference is orthogonal and does not work against
the previous under-approximation. In fact, it may assist in finding
the bug quickly in many cases (cf. above example) or obtaining a
proof early by avoiding redundant constraints.

7. Focused Refinement

layered instantiation strategy (Sec. 7.2). Besides disambiguatingThe procedure RF proceeds iteratively by ascending the lattice

the choices in RD-O as presented above, the strategy also avoids
adding irrelevant constraints.

Note how ReF exploits the uniform representation of IAs in
form of MIA’s to check properties using a symbiotic combination
of OIA’s and UA’s. Also, the refinement is guided both by unsat-
isfiability proofs and witnesses obtained at intermediate iterations

of IAs based on the current satisfying solution or an infeasibility
proof. Since the size of the lattice is exponential in the number of
reads and writes, the basic refinement strategy may not converge
quickly to a desirable small IA on its own. In particular, it may
add redundant constraints guided by the model from the solver,
thus making the intermediate IA larger and the subsequent itera-



tions more expensive. We propose a set of heuristics to focus theous publicly available programs [33—35]. We check for errors such

refinement on relevant constraints.

7.1 Static Focusing

We first describe heuristics to guideeRby removing redundant
constraints or adding useful lemmas statically.

(/S\O) Interference Pruning. For each read-, compute a small
W(r), not containing any writes that may never link with. For
example, a cannot link withw if HB(r,w) holds statically, or

if HB(w,r) and there exist interfering writas’ along each path
from w to r. Such writes may be detected by performing a static
analysis on the interference skeleton (IS) (cf. Sec. 3.1).

(S1) Biased Initialization. To obtain IAs with lesser concurrent
interference, we initializéV(r) for eachr with only writes in

the same thread or initial writes. This ensures that if a serial or
largely serial execution (cf. Sec. 5.3) violates the property, then
few refinement iterations will be sufficient. We also bias the initial
IA to couple reads and writes on synchronization variables only.
This forces RF to start with only those IAs where the above
interference conditions must hold.

(S2) Lock Lemmas.A number of optimizations are possible for
locks. (S2a) Consider the program shown in Fig. 9 again. The
read in the initial assume statement)(may link with eitherw,

or ws. However note that ilink(r1,w2) holds thenval(ry) =
val(w2) = 2, making the guard! = L) as false, which in
turn blocks the execution d&f;. Therefore, we reduce the link set
W(r1) by removingw, from it. (S2b)Let £ denote the set of
matching lock/unlock statements in the whole program and the
accesses to the lock variable for eath € £ be (r;, w;,w;).

For eachL,, L, € L, either the statement block denoted by
executes before the block denotedlbyor vice-versa. This fact can
be captured by the constraittaVj. (H B(wj, r;)V HB(w}, r:)),
which are quadratic in the size @f (better than the original cubic
size).

(SS)AIthoug/rl instantiatindI. eagerly for all pairs of reads/writes
A = X(R,W) is expensive, instantiating only a portion Hf

for A incurs lesser cost both in terms of constraints size and solv-
ing times. We can therefore instantiate only a portioilef e.g.,
link(r,w) = HB(w,r) for all (r,w) € A eagerly. This is espe-
cially useful if the ordering constraints are sufficient for checking
the property. Formally, this form of instantiation corresponds to fur-
ther partitioning the components of anand instantiating some of
those partitions eagerly.

7.2 Layered Instantiation

Note that in RED-O, updating® adds far more (quadratic in num-
ber of reads and writes) constraints than updatinglinear in
size of readsR). We, therefore, perform a layered refinement to-
wards the goal of adding fewer redundant constraints. Given an
IRZ = (R,W, M,C) satisfyingII¢, we first check ifZ is II»-
consistent (cf. Sec. 6.2). T is notIl.-consistent, we update and
continue to the next iteration. Only when we findIa-consistent

IR, we check ifZ is II3-consistent. In this way, we bias the re-
finement towards\. Similarly, we update the sét only when the
current matchV/ is bothIls- andIIs-consistent.

8. Experiments

We implemented the algorithme® and evaluated it on concur-
rent benchmarks in the FUSION framework [20, 21]. Although
our method can be applied to arbitrary bounded concurrent pro-

grams, in these experiments, we focus on analyzing concurrent pro-

gram slices obtained by run-time analysis of the FUSION tool. Our

benchmarks consist of Java program slices obtained from the vari-

as assertion violations and data races. Many of these program slices
are difficult to analyze, because they contain multiple threads (with
forks and joins), each having a large number of global accesses,
together withassumestatements containing guards for branches
taken during run-time. Our goal was to investigate if the hardest
subset of available benchmarks could be checked using small IAs.

We initialize the refinement scheme with an IA containing all
reads in the CCFG and the link set of each read with only writes
which are non-concurrent with the read. Lock lemmas were also
added to improve refinement. We observed that ler®ahad a
much larger impact than lemn&2b, althoughS2balso helped re-
duce run-times in a few cases. Further, we used biased refinement
(7.2) strategy for reducing over-approximation. We focus on show-
ing the effectiveness of IAs and thatiMs can perform better than
O1A’s or UIA's. All experiments were conducted on 2.33GHz Intel
Xeon machine with 16GB memory.

Fig. 11 compares the full instantiation with the refinement
(REF) procedure on a set of properties of the hard benchmarks.
In this table, Columns 1-3 show the name of each test case, the
number of threads, and whether there is a bug (T) or a proof (F).
Columns 4-6 show the number of reads, the number of writes, and
the average size of the link sets. The remaining columns compare
the run-times and the IA sizes obtained with and without interfer-
ence abstraction. The IAs computed bgrRare drastically smaller
than full instantiation both for satisfiable and unsatisfiable bench-
marks. This confirms the belief that only a small amount of inter-
ference need be considered for checking many properties. More-
over, small IAs lead to much lesser run-times than with the full
instantiation. We observed that for obtaining proofgFmRieeded
to instantiatell, only a few times for each-w pair in the initial
IA. Finding witnesses is more challenging than finding proofseR
goes through a number of iterations for reducing both the under-
and over-approximation present in the initial IA.

Fig. 12 shows the advantage of using combineid ®in REF
vs using only @A’s or only UIA’s. These are scatter plots where the
x-axis is the run-time with only @'s or only UIA’s, and the y-axis
is the run-time with MA’s. The data points correspond to checking
several data race properties in benchmark (syncBench.1119). We
observe that Nh's clearly outperform @ ’s implying that under-
approximated IAs are essential for efficiency. In contrasta’s
may not be always better than onlyiAJs: however, the over-
approximation in MA’s improves the performance in most cases.

The procedure BrF for finding small IAs may be viewed as an
automated quantifier instantiation (AQI) technique specific to the
domain of SC axioms where the variables are quantified over fi-
nite domains. Although a number of SMT solvers support asserting
quantified formula and include generic AQI heuristics, we found
that such approach did not perform well even on small bench-
marks (we used Yices [28] with default settings). We believe it
is due to the following reasons: first, the solver must be provided
with large number (at least quadratic in the number of reads and
writes) of non-interference constraints derived from static pruning
(cf. Sec. 7.1), without which these benchmarks become intractable.
Secondly, generic AQI heuristics often lead to eager redundant in-
stantiation which severely hurts performance. Most importantly, it
is difficult for generic heuristics to infer a biased initialization of the
MiA’s: the initialization exploits knowledge about the typical be-
haviors of concurrent programs, which is unavailable to the solver.

We are aware that a number of improved AQI heuristics have
been implemented in Z3 [36]. We believe that these recent im-
provements are complementary, and, if exploited correctly, could
assist ’F in converging faster. Note that an SMT solver also uses
a combination of under- and over-approximations internally during
constraint solving, which is unfortunately ineffective in handling
the full instantiation directly. In other words, the solver is unable



\ Bm [N]JSAT] R [ W [Ag. W | Full Instantiation | With IAs (REF) |

T(s) IA Size T(s) IA Size
barrierB.653 13 285 269 9 29 27K [ 27K | 91K 2 249 /1285/0
barrierB.653 | 13 285 | 269 9 30 | 27K/ 27K [ 91K || 22 350 / 382 / 3.2K
syncBench.722] 13 270 | 289 3 4 891 / 891 / 8.5K 2 259 727070
syncBench.722] 13 270 | 289 3 4 891 / 891 / 85K 2 254 [ 270 | 55
syncBench.1119 16 496 457 24 902 12K [ 12K 7 1M 3 477 1496 /0
syncBench.1119 16 496 457 24 741 12K / 12K / 1M 149 533 7 498 |/ 12K

1012 | 856 48 >1hr | 49K / 49K | 8M 15 989 / 1012 / 0
>1hr | 49K [ 49K | 8M 258 | 1056 / 1023 / 20K
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syncBench.1954 19
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daisy1 3 496 | 798 19 117 | 10K / 10K / 0.4M 5 370 /49570
daisyl 3 496 | 798 19 681 | 10K / 10K / 0.4M || 396 370 / 30 / 850
elevatorl 4 829 | 615 3 202 3K / 3K / 29K 38 824/01/0
elevatorl 4 829 | 615 3 82 3K / 3K [ 29K 23 824 /3070
elevator2 4 2259 | 1491 10 >1hr | 24K / 24K [ 0.7M 15 22047070
elevator2 4 2259 | 1491 10 >1hr | 24K / 24K [ 0.7M 14 2204 1 39 / 215

Figure 11. Experimental Results. R (W) = number of reads (writes). IA size dertbtesize of the |1Ax = (R, W, A, ¥) when the check
terminates, in form (A/B/C) where AS [W(r)|, B =|A| and C =[£|. nK and nM are shorthand fer x 10® andn * 10° respectively.
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Figure 12. Run-times using Ma’s vs. only QA’s or only UiA’s on benchmark syncBench.1119.

to focus on the concurrent facts relevant to the property by itself; bined may- and must-summaries of procedures to obtain a more
the presented refinement scheme, in contrast, has the concurrencyscalable analysis of sequential software [44]. Decision procedures
specific knowledge (e.g., to compute an initial biased 1A) and is for bit-vectors [45] also employ mixed abstractions of formula.

able to steer the solver towards the relevant facts. Automatic quantifier instantiation (AQIl) inside SMT solvers

is an active research topic. The most prevalent AQI strategy [28,
29], introduced in Simplify [46], employsriggers [36, 46]: to

9. Related Work enable Ql, subterms (triggers) of quantified assertions are matched
Automated reasoning about concurrent programs with shared (unified) with the ground terms in the partial model of the solver.
memory has been traditionally done by systematically restricting However, such heuristics are in general incomplete and often cause
the thread scheduler [2, 4, 5, 37, 38] based on partially-ordered a large number of redundant instantiations. Le@é@l. proposed
traces [1] with dependency relation (Mazurkiewicz (M-) traces). In to handle quantified assertions via a separate module [47] similar
particular, the work in [4] uses iterative enlargements of scheduler to a theory module in an SMT solver. However, lack of tight
under-approximations to find bugs based on proofs from a SAT integration between the quantifier module and the main solver leads
solver. Automated compositional methods have also employed ab-to duplicate theory reasoning as well as restrained learning.
stractions of both transition relations [39, 40] and state spaces [41]
of individual threads. IAs, in contrast, build upon the axioms of
memory consistency instead of M-traces (cf. [42]). Note that the .
notion of IAs is orthogonal to abstractions of transition relations: 10.  Conclusions

IAs abstract only the correlations between reads and writes without We presented a new form of concurrency abstraction for shared
modifying the transition relations of individual threads. The no- memory programs called interference abstractions (IAs) based on
tion of field abstractionintroduced in [26] for removing reads and the axioms of sequential consistency. The framework of 1As pro-
writes to selected structure fields may be viewed as a formaf O  vides an automated and flexible mechanism for approximating in-

However, field refinement links each field read with possible terference. An iterative algorithm to synthesize IAs for checking
writes, thus hampering its scalability. As our experiments show, concurrent properties was presented and shown to yield small IAs
the combination of @\'s with UIA’s is important. for practical benchmarks. IAs may be extended in multiple ways,

Iterative abstraction-refinement methods [16, 17] for sequential e.g., we carcluster multiple reads and/or writes into a single ac-
software using predicate abstraction [18, 19] have been investigatedcess and reason about these access sets simultaneously. These ex-
widely. Mixed abstractions of transition systems containing both tensions, in contrast to pure I1As, may also violate the program or-
mayandmusttransitions to preserve universal and existential prop- der. Extending the notion of 1As to relaxed memory models is also
erties respectively have also been studied and applied to sequentiahn interesting direction. We also plan to compare with automated
software (cf. [43] for a nice overview). Recent work has also com- quantifier instantiation inside constraint solvers, handle unbounded



programs, and investigate rely-guarantee reasoning using interfer-[24] Clarke, E., Kroening, D., Lerda, F.: A tool for checkidgNSI-C

ence abstractions.
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Appendix

LEMMA 1. Given a syntacti©IA o, 11 = I1°.

Proof. We can viewll as IT* conjoined with instantiations of
Mforr € R\ Ror(r,w) € A(R,W)\ Aor(r,wuw') €

~

o(R, W, )7\7) \ X. Therefore]ll = II*. ¢

LEMMA 2. Given a syntactitJIA o = (R, W, A, X)), I1¢ = .

Proof. Let the IRZ = (M,C) be the model forlI* where
M : R — W. Sincell? is satisfiable, so arH{, I15 andIl3. We
now show that all ofiI;, II», I3 are individually satisfiable, and
henceZ satisfiesiI. Note thatll; only contains more disjunctions
thanII{, henceﬁ\l is satisfiable. We can partition the set of r-w
pairsA(R, W) for M into Ay = {(r,M(r)) |r € R} and the rest,
say A>. Note that since\/ contains(r, w) for each(r,w) € Ai,
solink(r,w) must hold. Sincéink is exclusive, s@link(r, w) =
false) for all (r,w) € As. Henceg:(r, w) evaluates to true for
all (r,w) € Az, and therefordl, is satisfiable. Similar reasoning
applies tolls. o

LEMMA 3. If an IRZ is II-consistent, the satisfied].

Proof. Let Z = (Rz,Wz,M,C). The induced IATA(Z)
(Rz, W', A", %) (cf. Defn. 10) can be extended to anAJa
(R,W,A,X) as follows. LetR consist of Rz together with all
disabled reads. Let they = W'. Let, A = A\(R,W). LetZ =
S UA{(r,w,w') | (r,w) € M A (w' C wVrC w')}. Note that

A

¥ =o(R,W, W) and hencex is an UA. Becaus€ also satisfies
UIA «, hence, by Lemma Z also satisfie$I.

LEMMA 4. Let the instantiatiodI® of an IAa = (R, W, A, X)
have a valid proof?. ThenP is also a proof forl.

Proof. Let R* C R consist of reads with under-approximated
link set, i.e.,W(r) C W(r). We can writelI* as F' A G where
F =Vr € RR3w € W(r). ¢1(r,w) and G denotes the rest
of the formula. SinceP is an UNSAT proof forlI* and does not
mentionR’, thereforeP is a proof forG. Now I1 may be written
asF' A G A G, whereF’ = Vr € R'3w € W(r). ¢1(r,w) and
G’ denotes the rest of the formula. Therefdids also has a proof
P.



