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ABSTRACT
Divergent forks are a common practice in open-source soft-

ware development to perform long-term, independent and

diverging development on top of a popular source reposi-

tory. However, keeping such divergent downstream forks in

sync with the upstream source evolution poses engineering

challenges in terms of frequent merge conflicts. In this paper,

we conduct the first industrial case study of the implications

of frequent merges from upstream and the resulting merge

conflicts, in the context of Microsoft Edge development. The

study consists of two parts. First, we describe the nature of

merge conflicts that arise due to merges from upstream and

classify them into textual conflicts, build breaks, and test

failures. Second, we investigate the feasibility of automati-

cally fixing a class of merge conflicts related to build breaks
that consume a significant amount of developer time to root-

cause and fix. Towards this end, we have implemented a tool

MrgBldBrkFixer and evaluate it on three months of real Mi-
crosoft Edge Beta development data, and report encouraging

results.
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1 INTRODUCTION
During software development, a fork occurs when software

code is copied and used as the starting point of an inde-

pendent development, thus creating a distinct and separate

piece of software. While some forks are created to allow

developers to work independently on authoring and testing

changes (e.g., new features, refactorings, and bug fixes) to be

eventually merged back to the “master” branch, other forks

are created to carry out long-term, independent, diverging

development on top of the original source code. In the latter

case, we call the fork a divergent fork.
Unlike a branch that is often short-lived, a divergent fork

may live permanently along side the original project. How-

ever, flow of information between the original and forked

repositories is asymmetric. While most divergent forks need

to continuously integrate changes from the original reposi-

tory, e.g., to keep upwith important security patches, changes

from the forked repositories seldom flow back into the origi-

nal repository. To signify this asymmetric nature, we refer

to the original repository as the upstream and the forked

repository as the downstream.

Divergent forks are a common practice in open-source

development, e.g., to provide customized products by adapt-

ing an open-source project. Leveraging an upstream soft-

ware that defines or adheres to some standards (e.g., An-
droid) allows the downstream software to offer better appli-

cation compatibility. As an example, web browsers such as

Opera, Samsung Internet, andMicrosoft Edge build upon the
Chromium engine; similarly, customized versions of the An-
droid mobile operating system are offered by various smart-

phone vendors, together with their own applications.

Although popular and convenient, a divergent forkmay in-

cur significant overhead. One challenge is to keep the down-

stream synchronizedwith important updates in the upstream.

As the upstream software evolves due to API changes and

security patches, the downstream needs to be updated ac-

cordingly. That is, the downstream needs to perform amerge
from the upstream. Unfortunately, such a merge may fail

due to syntactic conflicts or semantic conflicts that can lead
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Table 1: The Chromium version used by Chromium-
based web browsers as of October 3, 2019.

Browser Name Version Browser Name Version

Microsoft Edge 78 Avast 77

Brave 77 Vivaldi 77

Colibri 76 Iron 76

Epic 75 Opera 73

Samsung Internet 71 Blisk 70

LG WebOS (TV)

web engine
53

to build breaks and test failures [2, 6, 19, 22, 23]. Manually

resolving these conflicts is labor intensive.

Table 1 shows the Chromium versions used in various

Chromium-forked web browsers as of October 2019. At the

time, the latest branch version of Chromium was 78 but

most browsers lagged behind by at least one or two versions.

Given that supporting frequent merges from the upstream

is expensive, we speculate that most vendors either chose to

update less frequently, or budget additional developer time

to perform such merges frequently.

While merge conflicts are not unique to divergent forks [2,

6, 19, 22], the complexity and cost of root-causing and fixing

the asymmetric upstream merge induced conflicts is signifi-
cantly higher, for three reasons: (1) Changes in the upstream

often occur without knowledge of the downstream develop-

ment. (2) Root-causing the upstream commit responsible for

merge conflict in general, and build break in particular, is

non-trivial when the commit history of the upstream con-

sists of several thousand commits. (3) A merge induced build

break may also be caused by changes in the downstream,

often made many commits earlier. This makes it difficult to

find the right developer to assign the fix, e.g., if the developer

has left the project.

In this work, we study the problem of upstream merge in-

duced conflicts in the context of Microsoft Edge development.

Microsoft recently adopted the open-source Chromiumproject

in the development of the Edge browser in order to increase

compatibility and reduce fragmentation for web develop-

ers [16]. In the remainder of this paper, we may refer to

Chromium as the upstream and Edge as the downstream.

Our case study has three main contributions.

• We systematically investigate the downstream com-

mits performed by Edge developers to merge from

Chromium during a three-month period, and create a

taxonomy of the merge conflicts.

• We systematically investigate the repairs that develop-

ers have to make manually to resolve these conflicts.

We identify a particular sub-class of merge conflicts,

named Structural fixes in C++ files, which incurs sub-

stantial time for developers to root-cause and fix.

• We investigate the feasibility of generating repairs au-

tomatically. Toward this end, we develop and evaluate

a repair tool, named MrgBldBrkFixer, for Structural
fixes in C++ files.

In the remainder of this section, we explain Structural fixes
in C++ files andMrgBldBrkFixer in more detail.

Structural fixes in C++ files. Consider a method Foo
that was defined and used in the upstream when the down-

stream was created. Then, the downstream created some

new call-sites for Foo. At some point during the upstream

development, however, Foo was renamed to Bar, a new pa-

rameter was added, and then all the call-sites were properly

changed. While merging such a change into the downstream

does not cause syntactic conflicts (since the downstream

may not change these files), compilation will fail and cause

a build break. During our case study, we observe many such

conflicts. Furthermore, the root-cause is often not obvious

to downstream developers. Often times, developers have to

manually inspect the upstream commits (which can be a

few thousands, as shown in Section 2), analyze the change

impact, and then create a suitable patch, e.g., renaming the

method and the default value of the additional parameter.

MrgBldBrkFixer. Wewould like to know howmuch the

repair of merge conflicts can be automated. Toward this end,

we develop a prototype tool for repairing the sub-class of

Structural fixes in C++ files errors. The tool relies on differenc-
ing the Abstract Syntax Trees (ASTs) of the two programs [7]

to identify the changes in the upstream for a given symbol

(say Foo in the above example) and then creates a patch that

can be applied to the downstream. To improve the scalability

and accuracy of the tool, we propose techniques for soundly

pruning the irrelevant upstream commits. Using real devel-

opment data of Microsoft Edge collected in a three-month

period, we perform a feasibility study of MrgBldBrkFixer.
The result shows that 40% of the build breaks targeted by

MrgBldBrkFixer can be repaired automatically.

The remainder of the paper is organized as follows: First,

we present our study of the upstreammerge induced conflicts

in Edge development in Section 2, and our detailed analysis

of Structural fixes in C++ files in Section 2.4. Next, we present

MrgBldBrkFixer in Section 3, followed by our feasibility

study results of MrgBldBrkFixer in Section 3.3. We review

the related work in Section 5, and then give our conclusions

in Section 6.

2 STUDY OF UPSTREAM
MERGE-INDUCED CONFLICTS IN EDGE

In this section, we study the upstream merge-induced con-

flicts in the context of Microsoft Edge development, a re-

cent divergent fork of Chromium. We first describe the Edge

branch structure related to such upstream merges in Sec-

tion 2.1. Next, we present the data for the merges during a
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Upstream
(U)

Integration
(I)

Downstream
(D)

fork

Stabilization
(S)

Upstream commits merged

One cycle of merge

Figure 1: The branch structure of Microsoft Edge.

three-month period from April 2019 to June 2019. We manu-

ally investigated the data and classify the nature of conflicts

based on the commits that fixed the conflicts.

2.1 Branch Structure of Microsoft Edge
Figure 1 gives an overview of (somewhat simplified) branch

structure in Microsoft Edge. Each horizontal line represents

one of the four branches: Upstream (U ), Integration (I ), Sta-
bilization (S) and Downstream (D). Circles in each branch

indicate commits created by developers and an arrow points

from a child commit to its parent commit. Here the D branch

denotes the master branch of Edge, and the U denotes the

Chromium master. The “fork” indicates the creation of the D
branch as a divergent fork of U , and both branches evolve

independently.

At each merge, the downstream pulls the changes from

the upstream in a two-phase process through the I and S
branches. First, textual (syntactic) conflicts are resolved in the

I branch after pulling the changes from the recent versions

of the upstream and downstream. After resolving the textual

conflicts, any build errors (including compiler errors) or test

failures are resolved in the S branch. Finally, the source code
is merged back to D master, where one cycle of merge is

completed. We omit the details of finalizing the merge cycle

as they are irrelevant to our focus in this paper.

2.2 Commit Data
2.2.1 Breakup by month. Table 2 shows the summary sta-

tistics of the data by each month. The first row shows the

number of merges from U each month. Each merge repre-

sents a merge process to pull the upstream changes after

resolving all the conflicts. It means each merge includes one

cycle of resolutions for textual-level conflicts, build breaks

and test failures (if any). The second row is the number of

commits of U that are merged into D, which is shown as

orange-colored region, as an example, in Figure 1. The third

row shows the number of commits in I , for fixing any textual-
level conflict that prevents the textual merge. The last row is

the number of commits in S, corresponding to the resolutions
of build breaks and test failures.

Table 2: The summary of data.

Contents

Numbers for Each Month

April 2019 May 2019 June 2019

The # of merges 11 8 11

The # of upstream commits merged 8,138 9,581 8,031

The # of commits in

integration branch of downstream
286 560 337

The # of commits in

stabilization branch of downstream
325 357 353

In total, there are 30 merges over three months, and more

than 25,000 upstream commits that merged to downstream

over this period. For each month, an average of around 390

(respectively, 345) commits are made to resolve textual-level

conflicts (respectively, resolve build breaks and test failures).

2.2.2 Breakup by merge. Figure 2 provides statistics about
the upstream payload of each merge in terms of the number

of days, commits and files updated. Each merge consumes

only a few days (between 2 and 7 days) of upstream changes.

Within this short period of time, the number of upstream

commits ranges from 266 to more than 1500, updating several

thousand files. For example, the five-number summary of

the commits is: Min(266), Q1(514), Median(881.5), Q3(1145)

and Max(1547). It implies that (1) Chromium evolves rapidly

by making many code changes, and (2) the downstream fork

can easily lag behind without frequent merges.

(a) # of days (b) # of commits (c) # of files updated

Figure 2: Statistical information of the upstream
merged for each merge process.

2.3 Classification of Fix Commits
We carefully classify the fix comments, which are the down-

stream commits that resolve the upstream merge induced

conflicts. Table 3 shows a taxonomy of the resolved con-

flicts, together with some patterns that we find. In the three

months, there are 2,218 commits to resolve all the merge

induced conflicts. Recall that we consider three types of

conflicts: textual conflict, build break and test failure. The

percentage of each category is shown in the last column of

the table: The number of fix commits for textual conflict is

1183, for build breaks is 815, and for test failures is 220. We

describe each type in more detail in the next few paragraphs.
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2.3.1 Textual conflict resolution. Textual conflict occurswhen
the default textual merge algorithm (e.g., Git merge) for the

version control system cannot create a merged file from the

upstream and downstream change-sets of a file. These tex-

tual conflicts are resolved by developers to obtain a merged

file. Recall that such fixes happen in the I branch of Edge;

the data show that 53% of its fix commits are used to resolve

textual conflicts. Although textual conflicts are frequent, we

do not further focus on them in this particular study because

the nature of these conflicts and their resolution (e.g., using

structured merge tools [10]) have been well-studied.

2.3.2 Build break resolution. A build break occurs when

the build script fails to generate the executables. Some of

the build breaks are due to failures in parsing files, while

others are due to the inability to resolve a symbol during

compilation. Based on the three-month data, we have studied

how build breaks are resolved and identified three categories:

(i) Fixes of ill-formed files, (ii) Build script file fixes and (iii)

Structural fixes in C++ files. In total, 36% of the downstream

fix commits are related to build breaks.

The category Fixes of ill-formed files refers to fixes needed

to correct various syntax errors. Most commits in this cat-

egory have messages such as “Fixing a bad merge” or “Re-

verting changes due to a bad merge”. Many of these fixes

undo or modify the changes made earlier during the textual

conflict resolution. These fixes can be further divided into

sub-classes. One sub-class, called stylelint errors, results from
automatic enforcement of coding conventions using style

linters. Another sub-class, called parse errors, involves the
fixes of broken brackets and parenthesis. In addition to the

50 fixes that all into the above two sub-classes, there are 108

fixes that cannot be accurately characterized. The reason is

because many of them happen when the entire code (e.g.,

class or function) is over-written by some old code during

the textual conflict resolution.

The category Build script file fixes refers to changes made

in the build script files. Large source code systems are com-

piled using various scripts/systemswritten in Python, JavaScript,

NinjaBuild or CSV — we label them as script files. Such files

undergo changes when the structure of the directory or flags

defined in the source code are changed. In the three months,

there are 259 fix commits related to the build scripts.

Finally, the category Structural fixes in C++ files refers
to changes to the structural elements of the source code

files. Since C++ is the main language used for Microsoft
Edge development, we focus on errors in these C++ files.

Often times, the errors are compiler errors due to failed

resolution of symbols. We call them Structural Build Fixes
because the fixes perform some structural code changes such

as changes to function calls, types and namespaces. In the

three months, there are 398 fix commits in this category.

We also find some patterns. For example, when a directory

structure is changed, the header include statement needs to

Table 3: Distribution of fixes during merges.
Conflict Details # of commits %

Textual Textual-level conflict resolution 1183 53.3

Build Break

Fixes of ill-formed files 158

36.7

- Stylelint fixes (31)

- Parse error fixes (19)

- Uncategorized (108)

Build script file fixes (.js, .gn, .json, etc.) 259

Structural fixes in C++ files 398

Test Failure

Macro fixes in unit test 169

9.9

Flag file fixes 51

Total 2218

102 ...
103 - IN_PROC_BROWSER_TEST_F(OmniboxViewViewsTest, PastAndGoAcce){

+ IN_PROC_BROWSER_TEST_F(OmniboxViewViewsTest,
+ TEST_DISABLED_TRIAGE(PasteAndGoAccelerator, 22305207)) {

104 OmniboxView* view = NULL;

Figure 3: Example change to disablemacro in unit test.

52 ...
53 {"enable-service-worker-long-running-message", true},

+ {"enable-sharing-device-registration", false}
54 {"enable-show-autofill-signatures", true},

Figure 4: Example change to adding flag in flag file.

be updated accordingly. Also, some API usages need to be

updated due to changes of the API definitions in upstream.

2.3.3 Test failure resolution. Once the project builds success-
fully, e.g., after the build break resolution, there may still be

failures during the execution of unit and integration tests.

Fixes in this category fall in two sub-categories. The first sub-

category isMacro fixes in unit test. For example, as the down-

stream is customized from the upstream, it may not need all

the features. Therefore, some unit tests from the upstream

need to be disabled. An example code change found in during

our case study is shown in Figure 3. Since the test macro

IN_PROC_BROWSER_TEST_Fwith OmniboxViewViewsTest is
no longer needed, the downstream developers disabled it in

line 103. As usual, - indicates that the line is removed and +
indicates that the line is added. In the three months, there are

in total 169 commits related to updating/adding/disabling

unit tests.

The second sub-category is Flag file fixes, which resets

certain flags (typically maintained in a special flags file) that

cause test failures in the downstream. Figure 4 shows an ex-

ample flag enable-sharing-device-registration, which
was introduced by the upstream, and the downstream devel-

opers disabled it by resetting the flag due to test failures. In

total, there are 51 fix commits related to flags similar to the

above example.

2.4 Structural Build Fixes in C++ Files
In this section, we focus on a specific sub-category Structural
fixes in C++ files of build breaks that are induced when the
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merge is performed (see Table 3). Most fixes in this category

share a common pattern that we describe informally as fol-

lows: Consider a structure element 𝑆 (e.g., a field in a class,

function or a namespace) with a given signature (identified

by its name and type) that is defined in the upstream with

uses in both the upstream and downstream. At some point

in time, an upstream commit changes the signature of 𝑆 and

updates all the uses of 𝑆 in the upstream code. When such a

commit is merged into the downstream, the uses of 𝑆 intro-

duced by the downstream code can no longer be resolved.

Figure 6a illustrates this situation using a fix commit

found in Microsoft Edge (the downstream) to fix a build

break on May 6th. The build break complains about the

selected_index function being undefined. In the fix com-

mit, the downstream developers updated the function call

selected_index into GetSelectedIndex. Figure 6b shows
the corresponding upstream commit that induces this build

break: the upstream commit made on May 2nd changed the

function name from selected_index to GetSelectedIndex,
and redirected all its call sites in upstream code.

We focus on this class of merge induced conflicts because,

among all classes of fix commits, developers found it to be

the most laborious to identify the root-cause and prepare

the fix for the downstream code. We attribute this to the

following reasons:

• A developer needs to scan the (possibly thousands

of) upstream commits merged to identify the relevant

changes that induce the build break. This includes not

just understanding how the definition is changed, but

also how the uses are changed. For example, if the

upstream introduces a new parameter to a function

and sets it to null at all but one of the call sites, the

most likely patch downstream is to pass null as an

additional parameter.

• Unlike other merge conflicts, these build breaks can

manifest even in the absence of any downstream changes

since the last merge. Consider the case when the com-

piler cannot resolve the use of a symbol 𝑆 introduced in

the downstream several hundred merges back (which

may span across months to years), but updated in the

latest upstream commits. The developer who intro-

duced the use in the downstream may not have all the

context, or may not even be available. Therefore, even

finding the right person to investigate the fix is not

easy.

The situation is accurately captured in a quote from a senior

manager in theMicrosoft Edge development team:

“For each upstream induced build break, it takes at
least 30 minutes to hours for developers to resolve.
The main burden for the developers is they need
to look up the history of upstream changes.”

Furthermore, we believe that many of the merge con-

flicts in the other categories can be addressed by tools avail-

able (e.g., structure-aware textual merge conflict resolution

tools [1, 10]) and partially automated with custom knowl-

edge of patterns (e.g., in the case of flags involved in test

failures). In fact, at the time of this study, theMicrosoft Edge
team has regular expression based fixes for many commonly-

known patterns. In contrast, as we have illustrated in this

section, the causes of structural build breaks in C++ files can

be quite varied and therefore require a deeper, AST-aware

analysis.

In the remainder of this section, we shall identify various

common sub-categories of the structural build breaks in C++

files. Table 4 shows a list of resolution cases in the down-

stream, divided into eight groups by common example causes

from the upstream: Include Statement Update, Entire Func-
tion Definition/Call Update, Function Name Update, Function
Type/Specifier Update, Function Parameter/Argument Update,
Function Parameter/Argument’s Type Update, Class/Names-
pace/Enum Reference Update, and Uncategorized. While the

example causes from the upstream are provided to help un-

derstand the breaks, they are not meant to be exhaustive.

Also, we report the number of commits for each group in the

last column. Some commits are counted in multiple groups,

as one commit may have several fixes. Since the classification

is inherently manual, there exists a set of commits for which

we could not find the exact patterns with possible causes;

therefore, it is classified as Uncategorized (Group 8). In the

remainder of this section, we present examples of five cases

for some groups in the table due to space limitation.

2.4.1 Include Statement Update. As an example of Group 1,

Figure 5 shows a fix commit to fix a build break on May 15th.

The include statement for a header in line 26 is updated with

a new header path. The reason is the directory chrome_elf
was moved to outside of chrome directory in upstream, so

downstream source code referring the directory had to be

updated.

24 ...
25 #include "base/win/win_util.h"
26 - #include "chrome/chrome_elf/chrome_elf_main.h"

+ #include "chrome_elf/chrome_elf_main.h"
27 #include "chrome/install_static/install_util.h"

Figure 5: Header statement resolution in downstream
on May 15th (commit: df9e775a).

2.4.2 Function Name Update. We have already described

this particular example in Figure 6, which shows the the

fix commit in the downstream with a possible cause in the

upstream. It is classified as Group 3 in the table.

2.4.3 Function Parameter/Argument’s Type Update. As an ex-
ample of Group 6, Figure 7b shows an upstream cause where

the signature of a “virtual” method SubscribeFromWorker
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Table 4: List of resolution cases in upstream induced build break.
Group Type of Resolution/Fixes in Downstream Possible (Example) Causes from Upstream # of commits

1 Include Statement Update - File/Directory Name/Structure is updated 62

2

Entire Function Definition/Call Update

(e.g., function body move/add/removal)

- Function definition (with body) is added/removed

- Function definition (with body) moved to different class/section

(e.g., public→ private)

35

3 Function Name Update

- Function name is updated - Entire function is removed

(e.g., function deprecation)

56

4 Function Type/Specifier Update

- Function definition type is updated

- Function definition specifier is added/removed

10

5

Function Parameter/Argument Update

(e.g., parameter/argument add/remove/reorder)

- Function definition parameter is added/removed/reordered 44

6

Function Parameter/Argument’s Type Update

(e.g., parameter/argument type update)

- Function definition parameter’s type is updated

- Function definition parameter’s specifier/modifier is added/removed

- Hierarchy/Name of Class/Namespace/Enum definition is updated

56

7

Class/Namespace/Enum Reference Update

(e.g., field type update)

- Hierarchy/Name of Class/Namespace/Enum definition is updated 53

8 Uncategorized 120

166 ...
167 views::Combobox* combobox = GetLanguageCombobox();
168 - if (model_->GetTargetLanguageIndex() == combobox->selected_index() {

+ if (model_->GetTargetLanguageIndex() == combobox->GetSelectedIndex() {
169 return;
170 }

(a) Downstream commit on May 6th (commit: 7abf5c10).

102 ...
103 void ModelChanged();
104 - int selected_index() const { return selected_index_; }

+ int GetSelectedIndex() const { return selected_index_; }
105 void SetSelectedIndex(int index);

(b) Upstream commit on May 2nd (commit: 0b079bf5).

Figure 6: Function name change in downstream with
upstream cause.

43 ...
44 void SubscribeFromWorker(const GURL& requesting_origin,
45 int64_t service_worker_registration_id,
46 const PushSubscriptionOptions& options,

- const RegisterCallback& callback) override;
47 + RegisterCallback callback) override;

(a) Downstream commit on May 6th (commit: 582db1e8).

75 ...
76 virtual void SubscribeFromWorker(const GURL& requesting_origin,
77 int64_t service_worker_registration_id,
78 const PushSubscriptionOptions& options,
79 - const RegisterCallback& callback)

+ RegisterCallback callback)

(b) Upstream commit on May 2nd (commit: b534bf78).

Figure 7: Function parameter’s specifier/modifier re-
moval in downstream with upstream cause.

in a base class is updated by removing the specifier and

modifier of the 4th parameter. Uses of this method include

methods in the inherited classes as well, some of which may

have been introduced in the downstream.

Figure 7a shows the corresponding fix commit in the down-

stream that changes the signature of one such method in a

derived class, which was not visible to the upstream. Note

that the complete set of fixes should also include changing

the argument that is passed at the call sites (not shown in

this figure).

46 ...
47 - base::TaskScheduler::GetInstance()->FlushForTesting();

+ base::ThreadPool::GetInstance()->FlushForTesting();

(a) Downstream commit on April 17th (commit: 9327111c).

37 ...
38 - class BASE_EXPORT TaskScheduler: public TaskExecutor {

+ class BASE_EXPORT TaskScheduler: public TaskExecutor {
39 public:

(b) Upstream commit on April 15th (commit: 52fa3aed).

Figure 8: Class name change in downstream with up-
stream cause.

2.4.4 Class Reference Update. As an example of Group 7,

Figure 8a shows a fix commit for an unresolved reference

of a class name TaskScheduler. The fix renames the class

from TaskScheduler to ThreadPool, as a response to an

upstream commit 8b that introduced such a change in the

first place.

2.4.5 Enum Reference Update. As another example of Group

7, Figure 9a shows the downstream fix commit that changes

the name of an enum class, due to the change of the upstream

shown in Figure 9b.

3 TOWARDS AUTOMATIC FIXES FOR
UPSTREAM-INDUCED BUILD BREAKS

To evaluate the feasibility of automated fixes of merge in-

duced build breaks, we develop a prototype tool namedMrg-
BldBrkFixer. Our focus is on an important sub-class of fixes,

called renaming fixes, where the build breaks can be resolved

by either (i) renaming a function, class, namespace or enum,

or (ii) renaming the types of a function’s parameters or the

return value. While no exhaustive, these fixes already cover

a significant number of build breaks in Groups 3, 4, 6 and 7

of Table 4.
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88 ...
89 base::ThreadPool::GetInstance()->Start(
90 {{kBackgroundMaxThreads, kSuggestedReclaimTime},
91 {kForegroundMaxThreads, kSuggestedReclaimTime},
92 - base::ThreadPool::InitParams::SharedWorkerPoolEnvironment::COM_MTA});

- base::ThreadPool::InitParams::CommonThreadPoolEnvironment::COM_MTA});

(a) Downstream commit on May 7th (commit: cc7f9934).

73 ...
74 struct BASE_EXPORT InitParams {
75 - enum class SharedWorkerPoolEnvironment {

+ enum class CommonThreadPoolEnvironment {

(b) Upstream commit on April 30th (commit: 3e2898f0).

Figure 9: Enum name change in downstream with up-
stream cause.
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Figure 10: Overview of the automated patching.

Figure 10 presents the overview. The input consists of (i) a

set of upstream commits, 𝐶 , that constitutes the merge, and

(ii) a build break error, 𝜖 , in a downstream C++ file 𝑓 . The

output is the patched downstream file 𝑓 ′ aimed to resolve

the build break. Internally, there are four steps:

(1) Identify the symbol 𝜎 in 𝑓 that is responsible for the

build break error 𝜖 .

(2) Prune the upstream commits in 𝐶 to remove the ones

not relevant to 𝜎 , to obtain 𝐶 ′ ⊆ 𝐶 .
(3) Analyze changes to definitions and uses (Defs and

Uses) in the filesmodified in𝐶 ′
, to infer a set of possible

renaming patches, denoted Π.
(4) For each patch 𝜋 ∈ Π, apply 𝜋 to the AST node (in 𝑓 )

that contains 𝜎 , to obtain 𝑓 ′.

We explain the patch generation process in more detail

in Section 3.1, while deferring the discussion of “pruning

upstream commits” to Section 3.2.

3.1 Patch Generation
In a nutshell, our patch generation algorithm searches for

changes to the definitions and uses of 𝜎 in the set 𝐶 ′
of

upstream commits. The notion of “use” depends on the nature

of the symbol, e.g., whether it is a function, class, namespace,

or enum. In addition to considering references to a symbol

(e.g., function call for a function, or class reference for a

class), we consider implicit usages due to the presence of

inheritance. For a virtual function 𝐹 inside a class 𝐽 , we

consider any override function 𝐹 in a class 𝑉 that derives

from 𝐾 as a potential usage of 𝐹 in 𝐽 .

Let Δ be a set of diff-regions obtained when comparing

the files before and after the commits in𝐶 . Let each 𝛿 ∈ Δ be

a diff region that consists of a pair (𝛿−, 𝛿+) of enclosing AST

nodes before and after a change. We associate a region in a

file with the smallest AST node that encloses the region; and

we associate a dummy AST node null for an empty region.

Let Δ𝑑 ⊆ Δ (respectively, Δ𝑢 ⊆ Δ) be the subset of diffs that
contains changes to the definitions (respectively, uses) of 𝜎 .

Let Δ𝜎 � Δ𝑑 ∪ Δ𝑢 .

3.1.1 Function changes. Let us first consider the case when
the symbol 𝜎 represents a function. Since 𝜎 is a function, we

look for any diff region 𝛿 ∈ Δ𝜎 that contains a change to

the function signature. This includes regions that change (i)
the function name, (ii) the return type, or (iii) the types of

function parameters.

For ease of comprehension, we define three predicates.

For any diff node 𝛿 , let IsNameChange(𝛿) return true if 𝛿 is

a change of a function name, let IsParTypeChangei (𝛿) return
true if 𝛿 is a change of the 𝑖 th parameter of a function, and

let IsRetTypeChange(𝛿) return true if 𝛿 is a change of the

return type of a function.

Given Δ𝑑 and Δ𝑢 , we generate the set Π of candidate

patches as follows. We initialize Π to the empty set. Then,

for each (𝛿𝑑 , 𝛿𝑢) ∈ Δ𝑑 × Δ𝑢 , we update Π as follows:

(1) If IsNameChange(𝛿d) and IsNameChange(𝛿u), then add
(RenameName, 𝜎, 𝛿𝑢+) to Π.

(2) If 𝛿𝑢 changes a function definition that overrides 𝜎

defined in 𝛿𝑑
−
, then

(a) add (RenameRetType, 𝜎, 𝛿𝑢+) to Π if

IsRetTypeChange(𝛿d) and IsRetTypeChange(𝛿u).
(b) add (RenameParamType𝑖 , 𝜎, 𝛿𝑢+) to Π if

IsParTypeChangei (𝛿d) and IsParTypeChangei (𝛿u).
Note that we cannot simply use changes in the definition

Δ𝑑 nodes to generate the patches. For example, for the case

when an entire function definition is deleted and the function

uses are renamed (i.e., due to function deprecation), we need

to inspect the changes of uses in upstream 𝛿𝑢
+
to infer the

patch.

3.1.2 Enum, Class and Namespace changes. We also consider

the cases when the name of an enum, a class, or a namespace

changes. Such changes may denote either direct renaming

of the type, or changing the hierarchy in which the entity is

defined. For this case, our algorithm for generating a patch

is similar to the case of renaming the function name; due to

the space limit, we omit the details.

3.2 Upstream Commit Pruning
The patch generation algorithm needs to construct the AST

for each of the files modified in the upstream commits 𝐶
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Figure 11: Components of upstream commit pruning

and then inspect the diff-regions. As shown in Figure 2, the

number of modified files in the upstream for each merge

process can be thousands (2,000∼8,000). The presence of such
a large number of files can reduces both the scalability and

the accuracy of the algorithm. While their scalability impact

is obvious, the accuracy impact is due to the introduction

of spurious patches, e.g., when we use techniques that do

not yield the most qualified type for each symbol due to

the best-effort construction of AST using srcML [3]. While

future prototypes can leverage high-fidelity ASTs, e.g., the

ones constructed by the CLANG compiler, it will be at the

cost of a longer build time.

To alleviate this problem, we developed an Upstream Com-
mit Pruning procedure, shown in Figure 10. Given a build

break, and a set of upstream commits 𝐶 (orange-colored

region in Figure 11, the procedure does the following:

(1) Find the symbol 𝜎 responsible for the build break (such

as selected_index in Figure 6a).

(2) Find the file 𝑓 that contains the definition of 𝜎 , using

the last known good (LKG) build (dashed-red circle

in the figure) in the downstream by navigating the

def-use chain of the symbol. The LKG commit can

be obtained by searching for the first ancestor in the

downstream starting from the build break commit in

the stabilization branch.

(3) Find the subset of commits 𝐶 ′ ⊆ 𝐶 that modify 𝑓 .

It is easy to see that any change to the definition of 𝜎 has to

be included in one of the commits𝐶 ′
. We additionally assume

that the upstream also updates the uses of 𝜎 in the same

commit; this is a reasonable assumption because developers

would at least compile the code before submitting a commit.

This assumption has been confirmed empirically using the

real data set.

3.3 Evaluation Setup
In this section, we present the feasibility study by usingMrg-
BldBrkFixer on the historical fix commits in Microsoft Edge,

as discussed in Section 2.4. The prototype tool is written in

Java while using srcML [3] to create the AST andGumTreeD-
iff [7] to perform AST-diff. All the steps outlined in previous

subsections are implemented, except for the extraction of the

symbol 𝜎 from the build error message 𝜖 , and the search of

the file containing the definition of 𝜎 . (Currently, we do it by

manually loading the project in Visual Studio and navigating

to the definition).

Out of the 398 Structural fixes in C++ files in our three

months of fix commits (Table 3), we use only the commits

from Group 3, 4, 6 and 7 in Table 4, because our current proto-

type only produces fixes related to renaming. In other words,

it does not yet handle fixes categorized as Include statement
(Group 1), or fixes that require adding/removing/reordering

parameters (Group 5). Moreover, for Group 6 and 7, our pro-

totype obtains partial fixes, since some of these fixes require

more complex analysis (e.g., relating the type of actual pa-

rameters at a call site with the type of formal parameter, or

hierarchy change for enum/class/namespace).

Thus, we obtained a total of 164 candidate commits for our

experimental evaluation. Our experiments were conducted

in Microsoft Windows 10 Enterprise edition on a computer

with an Intel i7 2.6 GHz CPU and 32 GB of RAM.

We considered the following research questions:

• How many of these manually resolved commits can

actually be automated?

• How effective is the upstream commit pruning tech-

nique that we propose?

We answer these two questions in the remainder of this

section.

3.4 Evaluation Results
Table 5: Auto-patch rate by groups in Table 4

Group Number Fixed Ratio

Group 3 38/56 (67.8%)

Group 4 4/10 (40%)

Group 6 12/56 (21.4%)

Group 7 13/53 (24.5%)

3.4.1 Resolution Generation. MrgBldBrkFixer successfully
generated the patches for 64 out of 164 resolution commits

without false positives, almost 40% of the resolution commits

for the categories that we target. Some of these patches are

partial fixes because a commit may contain multiple resolu-

tions, some of which may not be covered by our prototype

(e.g., groups in Table 4 that we do not handle). Out of the

64 patches, our fixes fully cover the developer resolution for

41 commits, and partially cover for 23 commits. On average,

each fix updates 2.5 downstream files since the same symbol

𝜎 may be renamed in multiple files. Our patch generation

algorithm consumed, on average, 1.72 commits after apply-

ing the upstream commit pruning technique, and 48.25 files

(including non C++ files).

MrgBldBrkFixer took 70.90 seconds on average to generate
and apply the patches to downstream files. Given that devel-

opers often spend 30 minutes or more to fix each build break,

this means our prototype tool can substantially improve the
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productivity of developers who are trying to root-cause and

fix the merge-related build breaks.

Table 5 shows the ratio of automatically fixed commits by

the groups in Table 4. We can conclude that many cases of

Function Name Update (Group 3) can be automated, the cases

where our prototype is most effective, fixing almost 68% of

cases. There are various reasons why our method could not

generate a fix for all instances in a group. Many of them are

due to limitations of our current prototype implementation,

as opposed to any fundamental challenges. For example,

we current do not support complex fixes such as hierarchy

changes of functions, classes, enums and namespaces.

We also witnessed srcML-based GumTreeDiff sometimes

produces diff regions that do not accurately captures the

changes [5]. As an example, consider two functions whose

names are changed as follows: Foo1 → Foo2, and Bar1 →
Bar2. However, diff results may show the following changes:

Foo1 → Bar2, Bar1 → Foo2. In addition, since srcML con-

structs a best-effort AST from the source code, it misses fully

qualified semantic information such as class hierarchy. We

plan to overcome some of the problems by integrating our

tool with CLANG and making the diffing algorithm more

semantics-aware.

Finally, we found one interesting class of fixes where fo-

cusing on the set of upstream commits since the previous

merge (orange-colored region in Figure 11) does not suffice

for patch generation; one needs to look at additional up-

stream commits prior to the last merge. We found cases of

function deprecation fixes where upstream developers first

changed only the function call sites of 𝑓 with a different

function 𝑔 in a prior commit, and it did not cause any down-

stream conflict. However, the current merge removed the

function definition (possibly as part of a cleanup) that caused

a downstream build break at a call site of 𝑓 . In this case, one

needs to search for the upstream commit that removed the

last reference of 𝑓 in the upstream in order to synthesize a

patch, which our current algorithm misses.

Figure 12: # of commits selected out of 1000 commits
by upstream commit pruning

3.4.2 Impact of Upstream Commit Pruning. Figure 12 shows
the reduction in the number of commits obtained by our

upstream commit pruning technique. The graph shows the

number of commits selected as relevant commits out of a

normalized 1,000 upstream commits in a merge. Recall that

the number of upstream commits typically range from 500

to more than 2,500 commits per merge (Figure 2).

This result illustrates that the pruning technique is able to

achieve substantial reduction (almost 1000 fold on average)

in the number of commits considered for our patch gener-

ation algorithm, which improves the scalability as well as

the accuracy. We also manually inspected the reduced set

of commits and fixes performed by the developers, to con-

firm that pruning did not unsoundly remove commits that

contain the root-cause of a build break.

4 THREATS TO VALIDITY
In this work we studied the nature of merge conflicts that

arise in a divergent fork such as Microsoft Edge. Our findings

may not be representative of other divergent forks, as it may

depend on how frequently merges are performed and the

nature of changes that may be cherry-picked by developers

(e.g., security patches only). However, we believe that most

of the patterns of conflicts identified in this work arise in

the setting of other divergent forks as well. Since we only

studied three months of merge data, there is a small chance

that the pattern of conflicts may evolve over time for Edge.

However, as per the third author, who has expert knowledge

of the Edge development, these conflicts are representative

of conflicts in production since June 2019.

5 RELATEDWORK
The effort to understand and resolve conflicts in cooperative

merges within a project has been done in various contexts

such as mining merge conflicts [2, 15, 26] or early detec-

tion of conflicts [2, 8, 17]. For more semantic conflicts (i.e.

build breaks, test failures), several detection [23] and reso-

lution approaches were proposed for preserving semantic

relation of a program [6, 9, 21, 25]. In contrast to the nature

of asymmetric merge relations in a divergent fork, all of the

works focus on symmetric merges where the payload of each

merge is relatively small. Our focus is to study the conflicts

in asymmetric merges of divergent forks and investigate the

feasibility of automatic fixes by utilizing the asymmetric flow.

Also, API migration [4, 11, 13, 24] and applying same code

change patterns [18] are not applicable to divergent forks.

Constructing change patterns from a large number of com-

mit history is not practical since divergent forks evolve in-

dependently, especially when upstream code evolves rapidly

without providing documentations for detailed changes. Our

approach combines upstream commit pruning and semantic

rule generation to overcome the challenges.

The work closest to ours is by Mahmoudi et al. [12], who

perform an empirical study of code changes of LineageOS
as a response to upgrading the version of Android. They
analyzed textual-level changes, and postulate some changes

could be applied automatically; however, the work does not

provide any algorithms or implementations for such fixes. In

contrast, our work shows the actual fix patterns across the

history of several merges, and provides the first implemen-

tation that is capable of generating patches in a real-world
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production setting. Similarly, our work shares the underlying

motivation of prior works on generalizing from a program

edit to apply to other similar locations [14, 20]; however

such approaches do not understand semantics of asymmetric

merge and do not scale to the changes in our setting.

6 CONCLUSIONS
We have presented the first industrial case study of upstream

merge induced conflicts in a divergent fork, namely the Mi-

crosoft Edge. We identified a class of conflicts, namely those

requiring structural fixes in source files, that require sub-

stantial manual effort to root-cause and fix due to the scale

of upstream commits that have to be considered. We pro-

vided a simple analysis based on constructing a patch for

such conflicts by analyzing the changes upstream through

an AST-aware diff. Our preliminary results are encouraging

in that we are able to generate patches for almost 40% of the

cases we consider as candidates.

We are currently working on extending the prototype tool

to target more fixes. First, we plan to deal with the addi-

tion and removal of function parameters, by inspecting the

arguments used at the upstream call sites. We also see exam-

ples where a lightweight data-flow analysis may help infer

new arguments to a call when the type of a parameter has

changed. Furthermore, we can extend the current algorithm

to deal with updates of header file paths in include state-

ments that appear frequently. Finally, we plan to eventually

integrate our tool into the production merge resolution sys-

tem of Edge development, and perform a user study of the

effectiveness of the patch generation.
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