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Abstract. We propose a refinement approach to language emptiness, which is

based on the enumeration and the successive refinements of SCCs on over-ap-

proximations of the exact system. Our algorithm is compositional: It performs as

much computation as possible on the abstract systems, and prunes uninteresting

part of the search space as early as possible. It decomposes the state space dis-

junctively so that each state subset can be checked in isolation to decide language

emptiness for the given system. We prove that the strength of an SCC or a set

of SCCs decreases monotonically with composition. This allows us to deploy the

proper model checking algorithms according to the strength of the SCC at hand.

We also propose to use the approximate distance of a fair cycle from the initial

states to guide the search. Experimental studies on a set of LTL model checking

problems prove the effectiveness of our method.

1 Introduction

1.1 Background and motivation

Checking language emptiness of a Büchi automaton is a core procedure in LTL [24, 36]

and fair-CTL model checking [26] and in approaches to verification based on language-

containment [21]. The cycle detection algorithms commonly used in symbolic model

checkers fall into two categories [32]: One is based on the computation of an SCC

hull [13, 17, 35, 19, 14, 34], and the other is based on SCC enumeration [42, 2, 3, 15].

Although some SCC enumeration algorithms [2, 3, 15] have better worst-case complex-

ity bounds than the SCC hull algorithms—O(η log η) or O(η) versus O(η2), where η

is the number of states of the system—the comparative study of [32] shows that the

? Parts of this work appeared in preliminary form in [38] and [39].
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worst-case theoretical advantage seldom translates in shorter CPU times. In many prac-

tical cases, applying any of these symbolic algorithms directly to the entire system to

check language emptiness remains prohibitively expensive.

We regard the given model, or exact system, as the synchronous composition of

many submodules; composing any subset of these submodules gives a simplified model,

which may help in checking language emptiness for the original system. The removal

of constraints from the excluded submodules makes the simplified model an over-

approximation—it may have more behaviors than the exact system. As a result, verifica-

tion of an LTL property with the simplified model may be conservative: If the language

of the simplified model is empty, the language of the original system is also empty; if

the language is not empty, however, the language of the original system may still be

empty—that is, there may be a “false negative.”

Although verification in an abstract model may result in a false negative, it does

provide valuable information for the language emptiness checking of the original sys-

tem. Given a model A, every SCC in A′, an over-approximation of A, consists of one

or more complete SCCs of A. In other words, an SCC in the concrete system must be

either included in or have no intersection with an SCC in the abstract model. Let π be

the set of SCCs of A; then, π is a refinement of the set of SCCs in A′. In addition, if

an SCC in the abstract model does not contain a fair cycle, none of its refinements will.

Therefore, it is possible to enumerate the fair SCCs in A′ first, and then refine each of

them individually to compute the fair SCCs in A.

We propose a compositional SCC analysis algorithm to language-emptiness check-

ing, which is based on the enumeration and successive refinement of SCCs on a set

of over-approximations of the exact system. By combining appropriate cycle-detection

algorithms (SCC hull or SCC enumeration algorithms) into our general framework, we

get a hybrid algorithm that shares the good theoretical characteristics of SCC enumera-

tion algorithms, while outperforming the most popular SCC-hull algorithms, including

the one of Emerson and Lei.

The analysis is conducted on a set of over-approximations of the exact system, rang-

ing from the most abstract to the most concrete. Applying SCC enumeration on the

most abstract over-approximation gives us the initial SCC partition of the state space.

The partition is then refined on a more concrete over-approximation—one that is usu-

ally the composition of the previous over-approximation and a remaining submodule.

At any stage, if an SCC does not contain any fair cycle, it is not considered in any more

concrete systems. The procedure may refine parts of the state space until it reaches the
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exact system. However, each SCC of the exact system is contained in an SCC of each

of its over-approximated abstract systems, and we do not have to consider further many

non-fair SCCs. Hence, we can often drastically limit the set of states in which a fair

cycle may be found.

In language emptiness checking, the models are considered as Büchi automata. The

strength of a Büchi automaton [20, 4] is an important factor in checking the emptiness

of its language. When A′, an over-approximation of the exact system A, is known to

be terminal or weak, specialized algorithms exists for checking the emptiness of the

language in A. Previous work [4] showed that these specialized algorithms usually out-

perform the general language emptiness algorithms. However, the previous classifica-

tion of strong, weak and terminal was applied to the entire Büchi automaton instead of

each individual SCC. This can be inefficient, because a Büchi automaton with a strong

SCC and several weak ones is classified as strong. In this paper, we apply the definition

of strength to each individual SCC, so that the appropriate model checking procedure

can be deployed at a finer granularity. Furthermore, we prove that the fair SCC strength

of an automaton may not increase as more submodules are composed—which we call

the strength-reduction theorem: After the composition, a strong SCC may break into

several weak SCCs, but a weak one cannot generate strong SCCs. Our method analyzes

SCCs as they are computed to take maximal advantage of their weakness.

Our approach achieves favorable worst-case complexity bound: O(η) or O(η log η),

depending on what underlying SCC enumeration algorithm is used; this is valid even

when the algorithm adds one submodule at the time to the abstract system until the con-

crete system is reached. In practice, however, the effort spent on the abstract systems

can be justified only if it does not incur too much overhead. As the abstract system

becomes more and more concrete through composition, the SCC enumeration on the

abstract system may become too expensive. In such cases, the algorithm jumps directly

to the concrete system, with all the useful information gathered from the abstract sys-

tems.

Based on the SCC quotient graph of the last abstract model, we disjunctively de-

compose the concrete state space into subspaces. Each subspace induces a Büchi sub-

automaton that is an under-approximation of the exact system; therefore, it accepts a

subset of the original language. The decomposition is exact, for the union of these

language subsets is the original language. Therefore, language emptiness of the exact

system can be checked in each of these subautomata in isolation. By focusing on one
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subspace at a time, we mitigate the BDD explosion during the most expensive part of

the computation—testing abstract fair cycles against the concrete system.

To further speed up the search for fair cycles, we propose a guided search algorithm

for the traversal of the subspaces. Note that we are only interested in the reachable state

space. Early termination is promoted by examining first the promising areas where fair

cycles may reside, and by stopping the cycle-detection algorithm as soon as a fair cycle

is found. In the targeted search, the approximate distance to the fair SCCs is used as

guidance.

To summarize, our compositional SCC analysis algorithm, called the Divide and

Compose (D‘n’C) algorithm, has the following features:

– It is compositional and performs as much work as possible on abstracted systems.

– It considers only parts of the state space at any time.

– It uses the strength of a given set of SCCs to decide the proper model checking

algorithm.

– It localizes the fair-cycle detection by disjunctive decomposition and targeted search.

1.2 Related work

The previous works most closely related to ours are the various abstraction refinement

algorithms [21, 1, 22, 30, 18, 9, 41, 10, 7, 27, 23, 40, 16]. Abstraction refinement was

first introduced by Kurshan [21] to check linear properties specified by ω-regular au-

tomata. For these universal properties, it is enough to consider abstract models that are

over-approximations; they are obtained by considering subsets of the variables, while

leaving the others unconstrained. (This definition of the abstract systems is essentially

the same as ours.) If the verification result is inconclusive, the current abstract model is

refined by adding more details of the system, after which the property is checked again.

However, in all these existing abstraction refinement methods, information gathered

from previous abstract models is seldom used to help the verification on the current

abstract model; model checking starts from scratch in every iteration. In [25], previously

computed satisfying states are used as the starting point for the backward fix-point.

The set of states, however, are under-approximations of the exact satisfying states. In

contrast, we stress the importance of carrying information learned from previous over-

approximated abstract systems to the next. We present a general framework that allows

us to simplify a search using information obtained in a more abstract version of the state

space. In particular, the searches in abstract state space allow us to forgo searching parts
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of the concrete state space, and even if search is required, this information may allow

us to use cheaper algorithms.

On the other hand, the selection of abstract systems in our algorithm is very gen-

eral, and our implementation is rather primitive compared to that of the aformentioned

abstraction refinement algorithms, particularly the counter-example guided methods

[9, 41, 10, 7, 40, 23]. These works have addressed the details on how the next ab-

stract system should be selected, based on the analysis of the spurious abstract counter-

example(s). Although the majority of them have been designed for checking safety

properties, we believe that these refinement methods can be adapted to the language

emptiness check, and therefore, can be harmoniously combined with our compositional

SCC analysis algorithm.

1.3 Organization of this paper

The rest of this paper is organized as follows: After reviewing the technical background

in Section 2, we give the set of theorems underlying our compositional SCC analysis

algorithm in Section 3 and discuss don’t care conditions in Section 4. We present the

generic algorithmic framework in Section 5 and the various compositional approaches

in Section 6. Section 7 deals with disjunctive state space decomposition and the guided

search for fair cycles. Implementation details and our experiments are discussed in Sec-

tion 9; the results show that our new algorithm often achieves substantial savings in

memory and CPU time. Section 10 summarizes the contributions of the paper and out-

lines promising future work.

2 Preliminaries

We model the system to be verified as a labeled, generalized Büchi automaton, defined

as follows:

Definition 1. A labeled, generalized Büchi automaton is a six-tuple

A = 〈Q, Q0, T,F , A, Λ〉 ,

where Q is the finite set of states, Q0 ⊆ Q is the set of initial states, T ⊆ Q × Q is the

transition relation, F ⊆ 2Q is the set of acceptance conditions, A is a finite alphabet

for which a set P of atomic propositions is given and A = 2P , and Λ : Q → A is the

labeling function.
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Note that we have defined automata with labels on the states, not the edges. The au-

tomata are generalized because multiple acceptance conditions are possible. A state q

is complete if for every a ∈ A, there is a successor q′ of q such that a ∈ Λ(q′). A set of

states, or an automaton, is complete if all of its states are. In this paper, all automata are

assumed to be complete.

A run of A is an infinite sequence ρ = ρ0, ρ1, . . . over Q, such that ρ0 ∈ Q0,

and for all i ≥ 0, (ρi, ρi+1) ∈ T . A run ρ is accepting (or fair) if, for each Fi ∈ F ,

there exists q ∈ Fi that appears infinitely often in ρ. The automaton accepts an infinite

word σ = σ0, σ1, . . . in Aω if there exists an accepting run ρ such that, for all i ≥ 0,

σi ∈ Λ(ρi). The language of A, denoted by L(A), is the subset of Aω accepted by A.

L(A) is nonempty if and only if A contains a reachable fair cycle—that is, a cycle that

is reachable from some initial state and intersects all acceptance conditions.

A Strongly-Connected Component (SCC) is a maximal set of states such that there

is a path between any two states of the set. An SCC that consists of just one state without

a self-loop is called trivial. A non-trivial SCC that intersects all acceptance conditions

is called a accepting (fair) SCC. An SCC that contains some initial states is called an

initial SCC. Contracting every SCC into a single node, merging parallel edges, and then

removing self-loops results in the SCC (quotient) graph. The SCC graph of A, denoted

by G(A), is a Directed Acyclic Graph (DAG); it induces a partial order: a minimal

(maximal) SCC has no incoming (outgoing) edge.

An SCC-closed set is the union of a collection of SCCs. The set of SCCs of A,

denoted by π(A), is a partition of Q. An SCC partition π1 is a refinement of another

partition π2 if, for every C1 ∈ π1, there exists C2 ∈ π2 such that C1 ⊆ C2.

We define the exact system A as the synchronous composition of several submod-

ules. Composing a subset of these submodules gives us an over-approximated abstract

model A′. In symbolic algorithms, A, A′, as well as the submodules, are all defined

over the same state space and the same set of atomic propositions, and agree on the

state labels. Communication then proceeds through the common state space, and com-

position is characterized by the intersection of the transition relations.

Definition 2. The composition A1 ‖ A2 of two Büchi automata A1 and A2, where

A1 = 〈Q, Q01, T1,F1, A, Λ〉 and

A2 = 〈Q, Q02, T2,F2, A, Λ〉 ,

is a Büchi automatonA = 〈Q, Q0, T,F , A, Λ〉 such that Q0 = Q01∩Q02, T = T1∩T2,

and F = F1 ∪ F2.
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Let A = A1 ‖ A2; both A1 and A2 can be considered as over-approximations of A.

An SCC in A1 or A2 is a SCC-closed set in A.

Definition 3. The strength of an accepting SCC C is defined as follows (cf. [20, 4]):

– C is weak if all cycles contained within it are accepting.

– C is terminal if it is weak and for every state q ∈ C, all the successor states of q

are in some terminal SCCs. Terminality implies acceptance of all runs reaching C.

– C is strong if it is not weak.

Note that strength is defined only for accepting SCCs. The strength of an SCC-closed

set containing at least one accepting SCC or of an automaton is the maximum strength

of its accepting SCCs. Our definition of weakness is more relaxed than that of [20, 4],

while still allowing us to use faster symbolic model checking algorithms.

Lemma 1. Given a Büchi automaton A and an overapproximation A′ of A,

1. if C is a weak SCC of A′, then A contains a reachable fair cycle contained inside

C if and only if A |= EF EG C ∩ Q0 6= ∅;

2. if C is a terminal SCC of A′, then in A there is a reachable fair cycle contained in

C if and only if A |= EF C ∩ Q0 6= ∅.

Proof. EF C is the subset of states in Q that can reach the states in C, while EG C is the

subset of states in C that lead to a cycle lying in C. Assuming the definitions of weak

and terminal, we have the proof as follows:

1. Suppose that C is a weak SCC of A′, and A contains a reachable fair cycle inside

C. Then A |= EFEG C ∩ Q0 6= ∅. Conversely, if A |= EF EG C ∩ Q0 6= ∅, then A

contains a reachable cycle inside C. Since every cycle in A is also contained in A′

and every cycle that A′ contains in C is accepting, every cycle that A contains in

C is accepting. Therefore A contains a reachable fair cycle.

2. Suppose that C is a terminal SCC of A′, and A contains a reachable fair cycle

inside C. Then a state of C is reachable in A and A |= EF C∩Q0 6= ∅. Conversely,

suppose that A |= EF C ∩ Q0 6= ∅. Note that all cycles in A′ contained in C are

accepting, and that there are no other infinite paths in A′ that start in C. Hence, all

cycles in A contained in C are accepting, and that there are no other infinite paths

in A that start in C. Since one state of C is reachable and the transition relation is

complete, a fair path within C is reachable in A.



8

In symbolic algorithms, both the sets of states and the transition relation T are

represented by their characteristic functions, which in turn are represented by Binary

Decision Diagrams (BDDs [6]). These BDDs are manipulated as sets by union, inter-

section, complementation, as well as image EY and preimage EX computations. The

image (or preimage) of a set of states consists of all their successors (or predecessor) in

the graph. They are defined as follows:

EYT (S) = {q′ | ∃q ∈ S : (q, q′) ∈ T}

EXT (S) = {q | ∃q′ ∈ S : (q, q′) ∈ T} .

When the context allows it, we shall drop the subscript identifying the transition rela-

tion.

Many interesting properties can be evaluated by fix-point computations, in which

EX and EY are the basic symbolic steps. The set of states reachable from the initial

states Q0, denoted by EP I , is a least fix-point computation

µZ . Q0 ∪ EY(Z) .

Likewise, EF C is

µZ . C ∪ EX(Z) .

The computations of EG, EU, and EGfair true are defined as follows:

EG S = νZ . S ∩ EX Z

E S1 US2 = µZ . S2 ∪ (S1 ∩ EX Z)

EGfair true = νZ . EX

⋂

fi∈F

E Z U(Z ∩ fi) .

In general, language emptiness can be decided by evaluating EGfair true. The com-

putation of EGfair true as described above is known as the Emerson and Lei algorithm

[13], a representive of the SCC hull algorithms. It requires O(η2) preimage computa-

tions in the worst case, where η is the number of states.

An alternative way of checking for language emptiness is to enumerate all SCCs,

and then check if they satisfy all the acceptance conditions. An SCC enumeration al-

gorithm often picks a state v as a seed, and then computes both EF v and EP v. The

intersection of EF v and EP v gives the SCC containing v. After removing this SCC,

the algorithm picks another seed among the remaining states. This procedure termi-

nates when no state is left. Among the existing SCC enumeration algorithms, the one
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by Gentilini et al. [15] has the best complexity bound, which is O(η). Note that it is

better than the quadratic bound of SCC hull algorithms.

The fact that all components are defined over the same state space masks the fact

that the analysis of a component is typically much easier than the analysis of the exact

system. Complexity bounds given in terms of the numbers of states do not recognize

this difference. In the following, we define the effective number of states to take into

consideration the fact that an automaton does not control some of the state variables.

Let V be a finite set of binary state variables, whose valuations form the set of states

Q; then, η = 2|V |. Given q ∈ Q and v ∈ V , let qv ∈ Q be the state given by q ∪ {v}

if v 6∈ q and q \ {v} otherwise. Then A controls v if there exist q1, q2 ∈ Q such that

(q1, q2) ∈ T but (q1, q
v
2) 6∈ T . In other words, v is controlled by A if the automaton

can change its value. Let VA be the subset of variables controlled by A, the effective

number of states of A is defined as ηA = 2|VA|. The language emptiness for A can

be checked in O(η2
A) steps by the Emerson-Lei algorithm, and in O(ηA) steps by the

algorithm of [15].

Image and preimage computations usually account for most of the CPU time in

BDD-based symbolic model checking. Therefore, it is important to minimize the sizes

of the representations of both the transition relation, and the argument to the (pre-)image

computation—the set of states. The size of a BDD is not directly related to the size of

the set it represents. If we need not represent a set exactly, but can instead determine

an interval in which it may lie, we can use generalized cofactors [11, 12] to find a set

within this interval with a small BDD representation.

Often, we are only interested in the results as far as they lie within a care set K (or

outside a don’t care set K). Since the language emptiness problem is only concerned

with the set of reachable states R, we can regard R as a care set, and add or delete edges

that emanate from unreachable states. By doing this, the image of a set that is contained

within R remains the same. Likewise, the part of the preimage of a set S that intersects

R remains the same, even if unreachable states are introduced to S by adding edges.

This use of the states in R as don’t cares, which are often called the Reachability Don’t

Cares (RDCs), depends on the fact that no edges from reachable to unreachable states

are added.
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3 SCC refinement

We start with the definition of over-approximations of a Büchi automaton, followed by

the theorems that provide the foundations of our SCC refinement algorithm. Automaton

A′ is an over-approximation of A, denoted by A ≤ A′, if Q = Q′, Q0 ⊆ Q′
0, T ⊆ T ′,

F = F ′, and Λ = Λ′. The relation ≤ is a partial order on automata; furthermore,

A ≤ A′ implies that A′ simulates A [28]; hence, L(A) ⊆ L(A′).

Theorem 1 (Compositional refinement). Let A,A1, . . . ,An be Büchi automata such

that A ≤ Ai for 1 ≤ i ≤ n. Then, the set of SCCs π(A) is a refinement of

Θ = {C1 ∩ · · · ∩ Cn | Ci ∈ π(Ai)} \ ∅ .

Proof. Every state in an SCC C ∈ π(A) is reachable from all other states in C. An

over-approximation Ai preserves all transitions of A, which means that in Ai, every

state in C remains reachable from the other states in C. Therefore, for 1 ≤ i ≤ n, C

is contained in an SCC of Ai; hence it is contained in their intersection, which is an

element of Θ. Since the union of all SCCs of A equals Q and distinct elements of Θ are

disjoint, Θ is a partition of Q, and π(A) is a refinement of it. ut

In particular, π(A) is a refinement of the SCC partitions of any of its over-approxima-

tions; thus, an SCC of A′ ≥ A is an SCC-closed set of A. Theorem 1 allows us to

gradually refine the set of SCCs on the over-approximations until we arrive at π(A).

One benefit is that we can often decide early that an SCC-closed set does not contain

an accepting cycle.

Observation 1 Let C be an SCC-closed set of A. If C ∩ Fi = ∅ for any Fi ∈ F , then

C has no states in common with any accepting cycle.

Therefore, we can trim the state space by avoiding refining non-fair SCC-closed sets as

soon as possible, keeping around only “suspect” SCCs.

Theorem 2 (Strength reduction). Let A and A′ be Büchi automata such that A is

complete and A ≤ A′. (Hence, A′ is also complete.) If C is a weak (terminal) SCC-

closed set of A′, and it contains an accepting cycle of A, then C is a weak (terminal)

SCC-closed set of A.

Proof. We prove this by contradiction. Assume that C is a weak set of A′, but is a strong

set of A. Then, at least one cycle in C is not accepting in A. As an over-approximation,
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A′ preserves all paths of A, including this non-accepting cycle, which makes C a strong

set of A′ too. However, this contradicts the assumption that C is weak in A′. Therefore,

C cannot be a strong set of A. A similar argument applies to the terminal case. ut

In other words, the strength of an SCC-closed set never increases as a result of compo-

sition. In fact, the strength may actually reduce in going from A′ to A. For example, a

strong SCC may be refined into one or more SCC none of which is strong; a weak SCC

may be refined into one or more SCCs, none of which is weak. This strength reduction

theorem allows us to use special algorithms as soon as a strong SCC-closed set becomes

weak or terminal.

Deciding the strength of an SCC-closed set can be expensive. In the implementation,

we make conservative decisions of the strength of an SCC C as follows:

– C is weak if C ⊆ Fi for every Fi ∈ F ;

– C is terminal if C is weak and (EY C) \ C = ∅;

– C is strong otherwise.

We use the example in Fig. 1 to show the impact of composition. The three Büchi

automata with one acceptance condition (F = {F1}) are defined on the same state

space. State 01 is labeled ¬p; all other states are labeled true implicitly. Double circles

indicate that the state satisfies the acceptance condition. The synchronous composition

of the two automata at the top produces the automaton at the bottom. Note that only

transitions that are allowed by both parent automata appear in the composed system.

Both automata at the top are strong, although their SCC partitions are different. The

composed system, however, has a weak SCC, a terminal SCC, and two non-fair SCCs.

Its SCC partition is a refinement of both previous partitions.

Let the SCC quotient graph G(A) of a Büchi automaton A be G = 〈C, C0, TC , FC〉,

where C is the set of SCCs, C0 ⊆ C is the set of initial SCCs, TC ⊆ C × C is the

transition relation, and FC is the set of fair SCCs. Let G ′ be a subgraph of G, where

C′ ⊆ C, C′
0 ⊆ C0, T ′

C ⊆ TC , and F ′
C ⊆ FC . In other words, removing some nodes

or transitions, or making some fair nodes non-fair, gives us a subgraph. A subgraph of

G(A) induces a subautomaton.

Definition 4. Given the SCC quotient graphG of A and a subgraphG ′ = 〈C′, C′
0, T

′
C , F ′

C〉,

the subautomaton A ⇓ G ′ = 〈Q, Q′
0, T

′,F ′, A, Λ〉 is defined as follows:

– Q′
0 ⊆ Q0 is the subset of initial states that appear in C ′

0,

– T ′ ⊆ T is the subset of transitions among the states that appear in C ′.
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Fig. 1. The impact of composition on the SCCs. Dash boxes represent fair SCCs
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– F ′
i ∈ F ′ is the subset of Fi ∈ F that intersects the set of states in F ′

C .

Essentially, A ⇓ G′ is the original automaton restricting its operation only in the

set of states Q′. Therefore, A ⇓ G(A) = A. Since accepting runs in the subautomaton

are always accepting in A, its language is a subset of L(A). Furthermore, the pruning

operation on the SCC graph, defined as removing nodes that are not on any path from

initial nodes to fair nodes, does not change the language accepted by the corresponding

automaton. The claim can be extended to the SCC subgraph of any over-approximation

of A.

Observation 2 Let A ≤ A′ and G′ be a subgraph of G(A′), then L(A ⇓ G′) ⊆ L(A).

We define an SCC subgraph GCj (A) for every fair node Cj of G(A), so that it

contains all SCCs that are on the paths from the initial SCCs to Cj (including Cj);

furthermore, all the nodes are marked non-fair, except for Cj . It can be constructed by

marking Cj fair and all the other nodes non-fair and then pruning the SCC graph. When

the context is clear, we will simply use GCj to denote such a subgraph. Recall that a

Büchi automaton has an accepting run if and only if some reachable fair nodes exist

in its SCC graph. It follows that each of these SCC subgraphs induces a subautomaton

that accepts a subset of the original language; the union of these subsets of languages is

the same as the language of the original automaton.

In addition, GCj can be further decomposed into subgraphs. An SCC subgraph of

this kind, denoted by G
Cj

i , represents a path from the i-th initial SCC to the j-th fair

SCC. Therefore, the languages accepted by the subautomata A ⇓ G
Cj

i also form a

disjunctive decomposition of the language accepted by A ⇓ GCj . The claim can be

extended to the SCC subgraphs of any over-approximation of A. To summarize, we

have the following theorem:

Theorem 3 (Disjunctive decomposition). Let A ≤ A′ and the set of SCC subgraphs

{G
Cj

i } be the disjunctive decomposition of A′. Then, L(A) = ∅ if and only if L(A ⇓

G
Cj

i ) = ∅ for every subgraph.

Subautomata with respect to the SCC subgraphs are under-approximations of the

exact system. An under-approximation normally can be used to certify the existence of

fair runs, but not to prove language emptiness. However, by Theorem 3 our disjunctive

decomposition creates a complete set of under-approximations, therefore does not pro-

duce conservative results for language emptiness checking. An advantage of applying

this disjunctive decomposition theorem is to decide language emptiness of the exact
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Fig. 2. Use of don’t cares in the computation of SCCs

system by checking subautomata separately. When we restrict the search to a smaller

state space, we increase the effectiveness of don’t cares in speeding up symbolic image

and preimage computations.

4 Don’t care conditions

Thanks to the theorems in the previous section, at any time, we only manipulate small

portions of the state space, defined by SCC-closed sets or subautomata. This allows us

to use care sets that are often much smaller than the set of reachable states, and thus to

increase the chance of finding small BDDs. We cannot use the approach outlined for the

reachable states (in Section 2) directly, since there may be edges from an SCC-closed

set to other states as the one from State 4 to State 6 in Fig. 2. We show here that in order

to use arbitrary sets as care sets in image computation, a “safety zone” consisting of

the preimage of the care set needs to be kept; similarly for preimage computation, the

safety zone must consist of the image of the care set.

Theorem 4. Let Q be a set of states and let T ⊆ Q × Q be a transition relation. Let

K ⊆ Q be a care set, B ⊆ K be a set of states. Finally, let T ′ ⊆ Q×Q be a transition

relation and B′ ⊆ Q a set of states such that

T ∩ (K × K) ⊆ T ′ ⊆ T ∪ (K × Q) ∪ (Q × K), and

B ⊆ B′ ⊆ B ∪ EXT ′(K) .

Then, EYT ′(B′) ∩ K = EYT (B) ∩ K.
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Proof. First, suppose that q′ ∈ EYT ′(B′) ∩ K, and let q ∈ B′ be such that q′ ∈

EYT ′({q}) ∩ K. Since q′ ∈ EYT ′({q}), so q ∈ EXT ′(q′), and because q′ ∈ K, we

have q ∈ EXT ′(K). Hence, q ∈ B′ implies q ∈ B, and q, q′ ∈ K, which means that

q′ ∈ EYT ({q}) ∩ K. Finally, q ∈ B implies q′ ∈ EYT (B) ∩ K.

Conversely, suppose that q′ ∈ EYT (B) ∩ K, and let q ∈ B be such that q′ ∈

EYT ({q}) ∩ K. Now q, q′ ∈ K, and hence q′ ∈ EYT ′({q}) ∩ K, and since q ∈ B′,

q′ ∈ EYT ′(B′) ∩ K. ut

Hence, we can choose T ′ and B′ within the given intervals so that they have a small

representations, and use them instead of T and B. Through symmetry, we can prove the

following theorem.

Theorem 5. Let Q be a set of states and let T ⊆ Q × Q. Let K ⊆ Q, B ⊆ K,

T ′ ⊆ Q × Q, and B′ ⊆ Q be such that

T ∩ (K × K) ⊆ T ′ ⊆ T ∪ (K × Q) ∪ (Q × K), and

B ⊆ B′ ⊆ B ∪ EYT ′(K) .

Then, EXT ′(B′) ∩ K = EXT (B) ∩ K.

Edges are added to and from states in the set K (states outside K), while the safety

zone for (pre-)image computation excludes the immediate (successors) predecessors of

K. Note that the validity of the aforementioned use of the reachable states as care set

follows as a corollary of these two theorems. Figure 3 shows a possible choice of T ′

given the T and K of Fig. 2. For that choice of T ′, it shows, enclosed in the dotted line,

the set EXT ′(K). If B = {1, 2}, then EYT (B)∩K = {2, 3, 4}. Suppose B′ = {1, 2, 4}.

Then

EYT ′(B′) ∩ K = {2, 3, 4, 6} ∩ {0, 1, 2, 3, 4} = {2, 3, 4} = EYT (B) ∩ K .

Note that the addition of the edge from State 7 to State 3 causes the former to be ex-

cluded from EXT ′(K).

5 The generic algorithm

The theorems of Section 3 motivate the generic SCC refinement algorithm in Fig. 4. The

Divide and Compose (D‘n’C) algorithm, whose entry function is GENERIC-REFINEMENT,

takes as arguments a Büchi automaton A and a set L of over-approximations to A,
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Fig. 3. Example of application of Theorem 4

which includes A itself. The relation ≤ on L is not required to be a total order. The

algorithm returns true if a fair cycle exists in A, and false otherwise.

The algorithm keeps a set Work of obligations, each consisting of a set of states, the

series of over-approximations that have been applied to it, and an upper bound on its

strength. Initially, the entire state space is in Work, and the algorithm keeps looping until

Work is empty or a fair SCC has been found. The loop starts by selecting an element

(S, L′, s) from Work and a new approximation A′ from L. If A′ = A, the algorithm

may decide to run a standard model checking procedure on the SCC at hand. Otherwise,

it decomposes S into accepting SCCs, and after analyzing their strengths, adds them to

Work. The algorithm uses several subroutines.

Subroutine SCC-DECOMPOSE, takes an automaton A′ and a set S, intersects the

state space of A′ with S to yield a new automaton A′′, and returns the set of accepting

SCCs of A′′. Note that an SCC of A′′ is not necessarily an SCC of A′: It may be a

proper subset of one. The subroutine avoids working on any non-fair SCCs, as justified

by Observation 1. Subroutine ANALYZE-STRENGTH returns the strength of the set of

states. (See Definition 3.) Subroutine MODEL-CHECK returns true if and only if a fair

cycle is found using the appropriate model-checking technique for the strength of the

given SCC.

The way entries and over-approximations are picked is not specified, and neither is

it stated when ENDGAME returns true. These functions can depend on factors such as

the strength of the entry, the over-approximations that have been applied to it, and its

order of insertion. In later sections, we shall make these functions concrete.
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It follows from Theorem 1 that at any point of the algorithm, for any entry (S, L′, s)

of Work, S is an SCC-closed set of A. At any point, the sets of states in Work are

disjoint. Termination is guaranteed by the finiteness of L and of the set of SCCs of A.

When decomposing an SCC-closed set S, we can use S as don’t care set as dis-

cussed in Section 4. This usually gives us a much larger don’t care set than the reacha-

bility don’t cares; therefore, the use of don’t cares can lead to a significant improvement

in the computation efficiency. Furthermore, image and preimage computations on the

over-approximations can be very cheap, because these over-approximations are usually

much smaller than the concrete system. In addition, each SCC-closed set is divided into

several components, some of which (the non-fair ones) are not considered in the exact

system, and some of which are analyzed further in isolation.

Since we are not interested in unreachable states, we keep track of the reachable

states of the current over-approximation to discard unreachable SCCs. Whenever the

next subsystem is picked, we compute the set of reachable states anew, but limiting this

computation to the previous reachable states; the new reachable states are contained in

the previous reachable states, as long as the new abstract system is a refinement of the

previous one. Because of this, previous reachable states can be used as a care set in

computing the new ones. Although we compute reachability multiple times, [29] has

shown that the use of approximate reachability information as a care set may more than

compensate for the overhead.

The refinement approach that we have presented can be extended to the use of under-

approximations. As over-approximations can be used to discard the possibility of an

accepting cycle, under-approximations can be used to assert its existence. Let A1 and

A2 be under-approximations of A; if either A1 or A2 contains an accepting cycle, then

so does A. Furthermore, if an SCC C1 of A1 and an SCC C2 of A2 overlap, then A

contains an SCC C ⊇ C1 ∪ C2. SCC-enumeration algorithms [42, 2, 3, 15] compute

each SCC from a seed state, by accumulating states with forward and backward reacha-

bility computations. In this case, we can use the entire set of states C1 ∪C2 as the seed

to compute C, as opposed to using a single state in C1 ∪ C2. Hence, we can avoid the

recomputation of C1 and C2.

6 Composition policies

The SCC refinement algorithm described in Section 3 is generic, because it does not

specify:
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type Entry = record
S; // An SCC-closed set of A

L′; // Set of abstract models that have been considered

s // Upper bound on the strength of the SCC

end

GENERIC-REFINEMENT(A,L){ // Concrete and abstract models

var Work: set of Entry;

Work = {(Q, ∅, strong)}

while (Work 6= ∅) {

Pick an entry E = (S, L′, s) from Work;

Choose A′ ∈ L such that there is no A′′ ∈ L′ with A′′ ≤ A′;

Over-approximate reachability computation on A′;

if (ENDGAME(S,s)) {

if (MODEL-CHECK(A,S, s))

return true;

}

else {

C = SCC-DECOMPOSE(S,A′);

if (C 6= ∅ and A′ = A)

return true;

else {

for (all C ∈ C) {

s = ANALYZE-STRENGTH(C,A′);

insert (C, L′ ∪ {A′}, s) in Work;

}

}

}

}

return false;

}

MODEL-CHECK(A,S, s){ // Automaton, SCC-closed set, strength

case (s) {

strong: return Q0 ∩ EGF (S) 6= ∅;

weak: return Q0 ∩ EF EG(S) 6= ∅;

terminal: return Q0 ∩ EF(S) 6= ∅;

}

}

Fig. 4. The generic SCC-refinement algorithm
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1. what set of over-approximations L of the Büchi automaton A is available;

2. the rule to select the next approximation A′ to be applied to a set S;

3. the priority function used to choose what element to retrieve from the Work set;

4. the criterion used to decide when to switch to the endgame.

These four aspects make up a policy, and are the subjects of this section. Implementation

details are deferred to Section 9.

6.1 Choice of the abstract systems

We assume that A is the composition of a set of submodules M = {M1, . . . , Mm}, and

that the set L of over-approximations consists of the compositions of subsets of M :

L ⊆ {Mj1 ‖ · · · ‖ Mjp
| {j1, . . . , jp} ⊆ {1, . . . , m}} .

We also assume that the states of A are the valuations of a set of r binary variables V ,

and that the sets of variables controlled by each module Mi are nonempty and form a

partition of V . Hence, m ≤ r = |V |. If an over-approximation A′ has a strict subset

of submodules, and ηA and ηA′ are the numbers of states in A and A′ respectively, we

have 2ηA′ ≤ ηA.

M3 ‖ M4

1

M1 M2 M3 M41 module

4 modules

3 modules

0 modules

M1 ‖ M3 ‖ M4 M2 ‖ M3 ‖ M4

M1 ‖ M2 ‖ M3 ‖ M4

M1 ‖ M2 ‖ M4M1 ‖ M2 ‖ M3

M1 ‖ M22 modules M1 ‖ M3 M2 ‖ M3 M1 ‖ M4 M2 ‖ M4

Fig. 5. Lattice of over-approximations

The set of all over-approximations generated from subsets of M forms a lattice

under the relation ≤, shown in Fig. 5 for m = 4. In the case illustrated by this figure,
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the coarsest approximation, which is the set of no modules, is the 1 of the lattice. (This

approximation is never used in practice.) The exact system is the composition of all

four modules. For sufficiently large m, it is impractical to make use of all 2m over-

approximations; consequently, we shall only consider efficient policies, in which any

given state is contained in the SCC-closed set passed to SCC-DECOMPOSE O(r) times.

Specifically, we shall stipulate that there is a constant λ, such that L can be parti-

tioned into subsets L1, . . . , Lr satisfying the following conditions:

1. |Li| ≤ λ, that is, each subset of L contains at most λ over-approximations;
2. for every A′ ∈ Li, ηA′ ≤ 2i;

3. A ∈ Lr.

Two such cases are illustrated in Fig. 5. In both cases, (j1, . . . , jm) is a permutation

of (1, . . . , m) that identifies a linear order of the modules. The first one is called the

popcorn-line policy. The approximations are:

L = {Ai = Mj1 ‖ · · · ‖ Mji
| 1 ≤ i ≤ n} .

When an entry E = (S, L′, s) is retrieved from Work, the Ai of lowest index that is

not present in L′ is chosen as the next approximation A′. At the left of Fig. 5 (solid

thick lines), the algorithm uses a popcorn-line policy with (j1, . . . , j4) = (1, 2, 3, 4)

and λ = 1. The approximations are:

A1 = M1,

A2 = M1 ‖ M2,

A3 = M1 ‖ M2 ‖ M3,

A4 = M1 ‖ M2 ‖ M3 ‖ M4.

Another one is called the lightning-bolt policy. The approximations are

L = {A2i−1 = Mj1 ‖ · · · ‖ Mji
| 1 ≤ i ≤ n} ∪ {A2i = Mji+1

| 1 ≤ i < n} .

When an entry E = (S, L′, s) is retrieved from Work, among the two Ai, the one with

lower index is chosen first.

At the right of Fig. 5 (thick grey lines), 2n − 1 approximations are used in a

lightning-bolt policy, for which (j1, . . . , j4) = (4, 3, 2, 1) and λ = 2:

A1 = M4, A2 = M2,

A3 = M4 ‖ M2, A4 = M3,

A5 = M4 ‖ M2 ‖ M3, A6 = M1,

A7 = M4 ‖ M2 ‖ M3 ‖ M1.
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In both cases, the number of times a state is in the set passed to SCC-DECOMPOSE

is bounded by the number of approximations in L. Therefore, a popcorn-line policy

tends to call SCC-DECOMPOSE fewer times, but a lightning-bolt policy may break up

the SCC-closed sets with easy approximations ({A2i}) before applying to them harder

approximations ({A2i−1}). Therefore, it tends to use less memory.

6.2 Adaptive popcorn policy

It may be impractical to adopt the popcorn-line policy all the way down to the exact

system:

1. There may be too much overhead in analyzing all the abstract models;

2. if an SCC-closed set becomes weak or terminal, checking it directly in the concrete

model may be cheap.

In these two cases, one may decide to switch to the endgame. That is, after spending a

reasonable amount of effort on decomposing the SCCs in the abstract models, we jump

to the concrete model. When the endgame comes, there are different ways of jumping to

the exact system—all of them can be considered as variants of the popcorn-line policy.

The first variant is to go to A directly, and search for fair cycles inside each SCC-

closed set S in Work. Both SCC hull and SCC enumeration algorithms can be used

for the fair-cycle detection. Assume, for instance, that A is the composition of the set

of submodules {M1, ..., M8}, and we decide to jump after composing the first three

submodules. This variant can be described as follows:

A1 = M1,

A2 = M1 ‖ M2,

A3 = M1 ‖ M2 ‖ M3,

A4 = M1 ‖ M2 ‖ M3 ‖ · · · ‖ M8.

Alternatively, one can further trim the SCC-closed sets before searching for fair

cycles in the concrete model. Remaining submodules are applied, one at a time, to

further partition these SCC-closed sets. This variant, called the “Cartesian product”
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approach, is characterized as follows:

A1 = M1,

A2 = M1 ‖ M2,

A3 = M1 ‖ M2 ‖ M3,

A4 = M4,

· · ·

A8 = M8,

A9 = M1 ‖ M2 ‖ M3 ‖ · · · ‖ M8.

Given the fact that each submodule Mi is relatively small and we consider them one

at a time, the calls to SCC-DECOMPOSE are cheap. In fact, the partition of the state

space into the last SCC-closed sets before jump has been based on the assumption

that the state variables of other submodules are free variables (i.e., submodules do not

affect others through these variables); by calling SCC-DECOMPOSE on these remaining

modules individually, their state variables are constrained, resulting in further partition

of the SCC-closed sets. A direct analogy can be observed between this approach and

the MBM (Machine by Machine) algorithm of [8] in computing the set of approximate

reachable states.

The third variant, called the “one-step further composition” approach, is character-

ized as follows:
A1 = M1,

A2 = M1 ‖ M2,

A3 = M1 ‖ M2 ‖ M3,

A4 = A3 ‖ M4,

· · ·

A8 = A3 ‖ M8,

A9 = M1 ‖ M2 ‖ M3 ‖ · · · ‖ M8.

The second variant does not compose prior to making the full jump; in contrast, the

“one-step-further” approach invests more heavily by composing A′ with each of the

remaining submodules. At each step, we use the refined SCC-closed sets computed in

the previous step. For a transition to exist in the composition, it must exist in both of the

machines being composed. Whereas the second variant never fractures SCCs by this

joint constraint (since it assumes submodules do not affect each other), the third variant

does, ultimately leading to the partitioning of these SCCs into smaller SCC-closed sets.

Following this line to the extreme would lead us all the way back to the original

popcorn-line policy, in which the fully iterative composition is used. The first vari-
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ant represents the least investment, and therefore suffers the least amount of overhead.

However, when it performs the most expensive part of the computation—cycle detec-

tion in the exact system—it must search a large state subspace. Conversely, the fully

iterative approach has the smallest state subspace to search, but incurs the greatest over-

head.

6.3 SCC refinement trees

The popcorn-line approach defines an SCC refinement tree like the one of Fig. 6 that

highlights the potential advantage of SCC refinement. The figure corresponds to a

model of eight dining philosophers, with a property that states that under given fairness

constraints, if a philosopher is hungry, she eventually eats. The system has nine mod-

ules, which are the property automaton and the eight modules for the philosophers. The

property passes, i.e., no fair cycles exist in the system. Only the nodes representing fair

SCCs are shown in this tree. The nodes at Level i are the fair SCCs of Ai, together with

their numbers of states. (A1 is the property automaton.) Reachability analysis shows

that there are about 47k reachable states. Note that only very small sets of states remain

after the composition of the first four modules—the property automaton, the philoso-

pher named in the property, and her two neighbors—and that no work is done on the

exact system.

To define a policy we need to specify the order in which elements are retrieved from

the Work set. Two obvious choices are FIFO and LIFO order. As one would expect,

the SCC refinement tree is traversed in breadth-first manner for a FIFO order, and in

depth-first manner for a LIFO order. When, as in Fig. 6, there are no fair cycles in A, the

order in which the tree is visited is immaterial. However, in the presence of fair cycles,

one strategy may lead to earlier termination than the other may. If one assumes that

fair cycles are numerous, then depth-first search is particularly attractive. Breadth-first

search, on the other hand, can be implemented with low overhead, since at any time,

only one over-approximation (and its state transition graph) need to be loaded into the

main memory.

7 Disjunctive decomposition

After switching from the adaptive popcorn policy to the endgame, we need to search

for fair cycles on the exact system. This can be done by computing EF S, EF EG S, or

EGfair S, depending on the strength of each individual set. We can conduct the search
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either by considering all the fair SCC-closed sets simultaneously, or by considering

each of them in sequence. When the exact system is complex, however, considering

each of them separately may be the only feasible approach.

7.1 Decomposition of the exact system

Theorem 3 allows us to disjunctively decompose the exact system into subautomata

{A ⇓ G
Cj

i }, where G
Cj

i is an initial-fair path in the SCC quotient graph of A′. Since

each of these subgraphs corresponds to a depth-first search path in the SCC graph,

containing a set of abstract counter-examples, it is called a hyperline. Our algorithm

goes through all these hyperlines and checks language emptiness on each of them in

isolation.

Computing all the hyperlines requires not only all fair SCCs of A′, but also the non-

fair SCCs. These non-fair SCCs can be computed with SCC-DECOMPOSE, and just like

the fair ones, they can also be computed incrementally. As one may expect, the number

of hyperlines in an SCC graph—a DAG—is exponential in the size of the graph. In order

to avoid an excessive partitioning cost on the over-approximations, with the consequent

exponential number of hyperlines, we apply the following heuristic control on the size

of the SCC graphs:

– Skip applying SCC-DECOMPOSE on S if S is a non-fair SCC-closed set and its size

is below a certain threshold.

– Switch to the endgame if the number of edges of the SCC graph exceeds a certain

threshold.

– Switch to the endgame if the number of fair nodes of the SCC graph exceeds a

certain threshold.

With such a heuristic control, the number of hyperlines is bounded by a constant value.

7.2 Guided search for fair cycles

In the endgame, we disjunctively decompose the exact state space into subspaces ac-

cording to the different hyperlines of the last abstract model. Every hyperline, or every

G
Cj

i subgraph, induces a subautomaton of the exact system. Language emptiness is

checked in these subautomata in isolation. Although subautomata may share states, we

can avoid visiting any state more than once by keeping a set of visited states globally

and not looking at them again. Within A ⇓ G
Cj

i , we search for cycles that are both
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reachable and fair. Although reachability analysis shares the same worst-case complex-

ity bound with the best cycle-detection algorithm, in practice it is usually much cheaper

than fair cycle detection. This motivates us to always make sure a certain state subspace

is reachable before deploying the cycle detection procedure, in order to avoid searching

unreachable states for a fair cycle.

Fair cycle detection is triggered only after the reachability analysis hits one or more

promising states—states that are in fair SCC-closed sets and at the same time satisfy

some acceptance conditions. Recall that the symbolic SCC enumeration algorithms

[2, 3, 15] used in SCC-DECOMPOSE compute an SCC by first picking a seed. The

promising states encountered during forward reachability analysis are good candidates

for the seed. In addition to the order in which they are encountered during the forward

search, promising states are further prioritized according to the number of acceptance

conditions they satisfy: if two promising states are hit simultaneously by the forward

search, whichever satisfies more acceptance conditions is preferred. By prioritizing the

seeds, we heuristically choose the SCC that is expected to be closer to the initial states

and more likely to be fair; this may reduce the number of reachable states traversed by

forward search and may lead to a shorter counter example. Note that the algorithm in

[17] was also designed to avoid visiting too many reachable states in the search for fair

cycles, although their approach was significantly different from ours.

Despite our disjunctive decomposition, there may still be many reachable states

within each subautomaton. The ideal way of finding a fair cycle, if it exists, is to traverse

only part of the reachable states of the subautomaton, and go directly to a promising

state to start the SCC enumeration. To reach a promising state with the least possible

overhead (i.e., traversing the least number of reachable states), we need some guidance

for such a targeted search.

The intermediate results of the reachability analysis of A′, can provide a guidance

for the targeted search. Reachability analysis with Breadth-First Search (BFS) gives us

the set of reachable onion rings, denoted by {R0, R1, . . . , Rl}; each ring is the set of

states at a certain distance from the initial states. For example, a state in R2 cannot be

reached from an initial state in less than two steps. Suppose that the promising state

nearest to the initial states is in R3, one wants to spend as little effort as possible in

traversing states in R1 and R2.

The targeted search algorithm DETECT-FAIR-CYCLE, given in Fig. 7, is called by

MODEL-CHECK for every hyperline G ′. The two global variables Reach and Queue

represent the set of reached states and the SCC-closed sets, respectively. The abstract
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reachable onion rings of A′
sub, denoted by absRings or {Ri}, are used to estimate the

distance of SCCs to the initial states. The distance is used to order the SCC-closed sets

in the priority queue Queue. Following this order, we pick up the SCC sets one by one

inside SCC-DECOMPOSE-WITH-EARLYTERMINATION and search for fair cycles. The

procedure DETECT-FAIR-CYCLE terminates when either all reachable states in Asub

are visited, or a fair cycle is found.

Instead of using the conventional IMAGE computation, we use a heuristic algorithm

called sharp image computation for the targeted reachability analysis. The pseudocode

for the sharp image computation is also given in Fig. 7. Let D be the from set, and {Ri}

be the set of reachable onion rings from an abstract model. The procedure first finds

the ring that is closest to the target and at the same time intersects D. The intersection

of this ring and D is further compacted by BDD-SUBSETTING [33, 31], resulting in

D#, whose states have the shortest approximate distance to the promising states. As a

generic function, BDD-SUBSETTING returns a minterm, a cube, or an arbitrary subset

of (D ∩ Ri) with a small BDD representation. Finally, the image of D# is computed

by the conventional IMAGE operation; such an image is obviously a subset of EY(D).

Although related to it, our sharp search is different from the high-density algorithm

of [33], because our goal in compacting the from set is to get closer to the fair SCCs,

not increase the density of its BDD representation. Nevertheless, our approach has a

problem in common with high-density search—namely, how to recover from dead-

ends. Since IMAGE# computes only a subset of the exact image, it is possible for the

frontier set, Front, to be empty before the forward search actually reaches the fix-point.

Whenever this happens, we need to backtrack with the standard IMAGE.

Every time a promising state is encountered during the targeted reachability analy-

sis, it is picked as a seed for computing the SCC. The entire search terminates if the

SCC containing the seed is fair. If the SCC is not fair, it is merged into the set of already

reached states Reach before the targeted reachability analysis is resumed (because the

SCC has proved to be reachable). Since every SCC found in this way is guaranteed to

be reachable, the SCC enumeration algorithms [2, 3, 15] can be further enhanced with

early termination [34]: they terminate as soon as a fair cycle is found, as opposed to

after both the forward and backward search from the seed reach their fix-points. This

requires that after each forward and backward step, we check whether the intersection

of the forward and backward results satisfies all the fairness conditions—if it does, the

union of the forward and backward search results contains a reachable fair cycle.
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DETECT-FAIR-CYCLE(A,A′,G′, Reach, Queue){ // model, abs model, hyperline,

// reached states, and scc-closed sets

A′

sub = A′ ⇓ G′;

Asub = A ⇓ G′;

absRings = COMPUTE-REACHABLE-ONIONRINGS(A′

sub);

Front = Reach;

while (true) {

while (Front 6= ∅) and (Front ∩ Queue = ∅) {

Front = IMAGE#(Asub, F ront, absRings) \ Reach;

if (Front = ∅)

Front = IMAGE(Asub, Reach) \ Reach;

Reach = Reach ∪ Front;

}

if (Front = ∅)

return false;

if (SCC-DECOMPOSE-WITH-EARLYTERMINATION(Asub, Queue, absRings))

return true;

}

}

IMAGE#(A, D, {Ri}) {

i = |{Ri}|;

while (D ∩ Ri = ∅) {

i = i − 1;

}

D# = BDD-SUBSETTING (D ∩ Ri);

return IMAGE(A,D#);

}

Fig. 7. The guided search for fair cycles and sharp image computation algorithm
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When the language is indeed empty, all reachable states of the subautomata must

be traversed. Let ηA be the number of reachable states of the exact system, and let the

total number of hyperlines be a constant value; then, the cost of deciding reachability is

O(ηA). The total cost of the targeted search depends on the underlying symbolic SCC

enumeration algorithm, which we analyze in the next section.

8 Complexity

The refinement algorithm described thus far cannot improve the worst-case complexity

of the language emptiness check. In the following, we show that the complexity of our

incremental approach is within a constant factor from that of the non-incremental one;

this means that it is O(ηA) if [15] is used in SCC-DECOMPOSE, or O(ηA log ηA) if

[2, 3] is used instead. In the following theorem, we assume that the algorithm of [15] is

used.

Theorem 6. If the set of approximations L can be partitioned into subsets L1, . . . , Lr

such that, for some constant λ,

1. |Li| ≤ λ;

2. for every A′ ∈ Li, ηA′ ≤ 2i; and

3. A ∈ Lr,

then the generic refinement algorithm runs in O(ηA) steps.

Proof. The cost of SCC analysis for A′ is bounded by kηA′ , for some constant k.

Hence, the cost of analyzing all approximations and A itself is bounded by

kηA(λ + λ/2 + λ/4 + · · · + λ/2r) ,

which is bounded by 2λkηA. ut

While we cannot hope for an improved run time in the worst case, we can expect that

the refinement-based approach will be beneficial when the state space breaks up into

many small SCC-closed sets. In particular, we can prove the following linear complexity

result—even when the n log n algorithm in [2, 3] is used.

Theorem 7. Under the assumptions for L of Theorem 6, if for some constant γ, the

pairs (S,A′) passed to SCC-DECOMPOSE satisfy |S| ≤ γηA/ηA′ , then the refinement

algorithm runs in O(ηA) time.
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Proof. The analysis of A consists of the decomposition of SCC-closed sets of size

bounded by γ. Their number is linear in ηA, and each decomposition takes constant

time. Hence, the total time for the analysis of A is O(ηA). If |C| is the number of states

in SCC C of A′, then |C|ηA′/ηA is the effective size of C. The cost of analyzing A′ is

therefore O(ηA′ ). With reasoning analogous to the one of Theorem 6, one finally shows

that the total time is also O(ηA). ut

9 Implementation and experiments

9.1 Compositional SCC refinement

First, we describe the details of two implemented policies for the SCC refinement al-

gorithm D‘n’C, and of the experiments we ran. Both versions implement the popcorn-

line approach, with breadth-first search of the SCC refinement tree. The set of over-

approximated models are generated according to the strategy of [18], which divides the

set of state variables (or latches) into many small clusters. These clusters are consid-

ered as the submodules, whose composition is the exact system. The submodules are

sorted according to their distances from the state variables appearing in the property

automaton.

The two policies differ in when they switch to the endgame: The first policy de-

emphasizes compositionality in comparison to strength reduction by performing only

two levels of composition. At the first level, it computes the SCCs of the property au-

tomaton, and at the second level, it composes all the other modules of the system. The

second policy tries to exploit the full compositionality implied by Figs. 5 and 6. To avoid

too much overhead in the analysis of the over-approximations, it heuristically stops the

refinement at some point, and then immediately composes all the remaining modules,

thus proceeding directly to the exact system. In the implementation, we stop the linear

composition after 30% of the state variables have been composed to avoid having too

many fair SCCs in the full SCC refinement tree. Once the exact system is reached, the

Emerson-Lei algorithm is applied to its SCC-closed sets. For ease of reference, we refer

to the first policy as the Two-level method, and to the second as the Multi-Level method.

In both policies, if fair SCCs exist, the algorithm checks their strength. All the weak

SCCs are grouped together, and the exact system is checked for cycles within these

SCCs. The underlying assumption is that model checking weak SCCs is much cheaper

than model checking strong SCCs. If D‘n’C finds a cycle in the exact system, it termi-
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nates, otherwise it discards these SCCs. If no SCC exists, the algorithm also terminates:

there is no fair cycle. Otherwise, the approximate system is refined.

Our algorithm was implemented in the symbolic model checker VIS [5, 37], and the

results of Table 1 were obtained by appropriately calling the standard Language Empti-

ness command of VIS. SCC analysis was performed with the Lockstep algorithm of

[2, 3]. (A separate study showed that the algorithm of [15], in spite of its better worst-

case bound, in practice has a performance slightly worse than Lockstep.) Prior reacha-

bility analysis results were used as don’t cares where possible. In Table 1, all examples

were run with the same fixed order (obtained with dynamic variable reordering). For the

same set of models and property automata, we also obtained a second set of results, with

dynamic variable ordering turned on for each example. Similarly, we obtained a third

set of results, using the EL2 variant of the Emerson-Lei algorithm [17, 14, 34]. These

second and third sets are omitted, since their character is not significantly different.

(The only exception to the statement was the fact that the example nmodem1 took only

209 seconds with EL2, versus 4384 for the original Emerson-Lei algorithm.) The ex-

periments were run on an IBM Intellistation running Linux with a 400MHz Pentium II

processor with 1GB of RAM.

Table 1 has four columns. The three fields of the first column give the name of the

example, a symbol indicating whether the formula passes (P: no fair cycles exist) or

fails (F: a fair cycle exists), and the number of binary state variables in the system. The

three fields of the second column, obtained by direct application of the Emerson-Lei

algorithm as implemented in VIS, give:

1. the time it took to run the experiment (Time/Out (T/O) indicates a run time greater

than 4 hours);
2. the peak number of live BDD nodes (in millions—the datasize limit was set to

750MB); and
3. the total number of preimage (EX) / image (EY) computations needed.

These same field descriptors also apply to the third and fourth columns (for the Two-

Level and Multi-Level versions of the D‘n’C algorithm), except that the latter has an

additional field that indicates how the verification process terminates: ‘n’ means that the

algorithm arrives at some intermediate level of the refinement process in which there

no longer exists any fair SCC; ‘w’ means that the algorithm found a weak fair SCC

containing a fair cycle.

The property automata being used in the experiment were translated from LTL for-

mulae. In order to avoid bias in favor of our approach, each model is checked against
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a strong LTL property automaton. Note that the presence of an n or w in the last field

demonstrates that both pruning of the SCC refinement tree and strength reduction are

effective in these experiments.

Table 1. Comparing Emerson-Lei and D‘n’C. With RDCs.

Emerson-Lei D‘n’C D‘n’C

(VIS LE) Two-Level Multi-Level

Circuit P/ latch Time BDD EX/EY Time BDD EX/EY Time BDD EX/EY

and LTL F num (s) (M) (s) (M) (s) (M)

bakery1 F 56 212 5.1 5337/0 31 1.3 354/4 27 1.3 484/328

bakery2 P 49 69 3.4 526/0 20 1.3 10/4 20 1.3 62/73 n

bakery3 P 50 421 14 1593/0 46 2.5 90/4 43 1.8 537/428

bakery4 F 58 T/O - -/- 1950 3.4 1088/5 1337 4.7 947/96

bakery5 F 59 T/O - -/- 1009 6.1 127/5 623 6.1 216/243

eisenb1 F 35 23 1.0 416/0 16 0.9 21/4 16 0.9 21/4

eisenb2 F 35 T/O - -/- 4800 8.2 162/5 1683 7.7 105/93 w

elevator1 F 37 210 14 163/0 49 2.8 132/9 41 2.2 155/31

nmodem1 P 56 4384 11 5427/0 192 1.1 992/4 233 0.6 5007/71

peterson1 F 70 17 1.1 24/0 20 1.3 19/4 21 1.2 157/173

philo1 F 133 371 12 258/0 7 0.2 8/12 7 0.2 8/12 w

philo2 F 133 73 2.8 557/0 30 1.3 258/5 12 0.5 25/44 w

philo3 P 133 T/O - -/- T/O - -/- 115 1.2 993/224

shamp1 F 143 44 2.1 8/0 103 5.6 9/6 87 2.2 266/280

shamp2 F 144 T/O - -/- 1892 16. 74/6 101 2.9 345/349

shamp3 F 145 T/O - -/- 337 4.4 19/17 335 4.4 19/17 w

twoq1 P 69 12 0.4 25/0 4 0.1 7/9 4 0.1 7/9 n

twoq2 P 69 241 8.9 175/0 27 0.8 91/5 30 0.9 181/95

Comparing the D‘n’C algorithm to the one by Emerson and Lei, we find, with only

three exceptions out of 18 examples, a significant (more than a factor of 2) performance

advantage for the D‘n’C algorithm. Comparing the Two-Level and Multi-Level ver-

sions, one sees that on these examples, with four exceptions (eisenb2, philo2, philo3,

and shamp2), the two policies give comparable performance. We think that this is be-

cause most of our examples are simple mutual-exclusion and arbitration protocols, in

which the properties have limited locality. We expect the compositional algorithm to
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do even better on models with more locality. On the other hand, one can see that the

greater compositionality of the Multi-Level version proves its worth, especially on the

larger examples.

9.2 Disjunctive decomposition and guided search

Here, we describe the details of another implemented policy for the disjunctive decom-

position and the sharp guided search algorithm in our general framework. We call the

enhanced algorithm D‘n’C#, which uses the adaptive popcorn-line approach to trim the

fair SCC-closed sets before we jump to the exact system (by the “Cartesian Product”

approach). We then use guided fair cycle detection to inspect each hyperline restricted

subautomaton. We compared D‘n’C# with the original D’n’C algorithm on the same

set of test cases to demonstrate the effectiveness of the added features. The results are

shown in Tables 2 and 3, whose data were obtained on a 400MHz Pentium II processor

with 1GB of RAM.

In Table 2, prior reachability analysis results were used as don’t cares where possi-

ble. The table has four columns. The three fields of the first column give the name of

the example, a symbol indicating whether the formula passes or fails, and the number

of binary state variables in the system. The next three columns compare the run time,

the total memory usage, and the peak number of live BDD nodes of the three meth-

ods. Comparing the D‘n’C# algorithm to D‘n’C, we find three wins for D‘n’C# and

15 wins for D‘n’C. This indicates that the disjunctive decomposition is encumbered by

overhead of maintaining and decomposing the SCC graph. However, among the 15 wins

of D‘n’C, only four are for problems requiring more than 100 seconds to complete—

that is, the easy problems. In contrast, on the three wins of D‘n’C#, D’n’C took 1337,

1683, and 233 seconds. Therefore, we conclude that the additional overhead is not sig-

nificant, and on the harder problems, D‘n’C# is as competitive as D‘n’C when advance

reachability analysis is feasible.

In Table 3, the same set of test cases were checked with the approximate reachabil-

ity analysis results as the don’t cares where possible—that is, with ARDCs as opposed

to RDCs. Note that if RDC is already available, there is no need to do reachability on

each level in D‘n’C. However, RDC itself is in general very expensive to compute; when

RDC is not available, language emptiness becomes a much hard problem. (Approximate

reachability analysis is usually much faster than exact reachability analysis, and in prac-

tice, may be the only feasible way of extracting don’t cares from reachable states.) The

table has four columns. The three fields of the first column repeat the description of
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Table 2. Comparing EL, D‘n’C, and D’n’C#. With RDCs.

Time (s) Memory (MB) BDD (M)

Circuit T/ latch EL D‘n’C D‘n’C# EL D‘n’C D‘n’C# EL D‘n’C D‘n’C#

and LTL F num

bakery1 F 56 212 27 159 262 75 125 5.1 1.3 1.5

bakery2 P 49 69 20 28 152 73 74 3.4 1.2 1.2

bakery3 P 50 421 43 1514 550 111 125 14 1.8 1.5

bakery4 F 58 T/O 1337 655 - 411 476 - 4.7 4.8

bakery5 F 59 T/O 623 737 - 555 554 - 6.1 9.9

eisen1 F 35 23 16 128 69 50 64 1.0 0.9 0.6

eisen2 F 35 T/O 1683 944 - 564 340 - 7.7 1.7

elevator1 F 37 210 41 192 489 132 369 14 2.2 10.3

nmodem1 P 56 4384 233 227 569 63 169 11 0.6 2.2

peterson1 F 70 17 21 41 73 83 78 1.1 1.2 1.2

philo1 F 133 371 7 56 401 26 37 12 0.2 0.1

philo2 F 133 73 12 58 145 44 42 2.8 0.5 0.3

philo3 P 133 T/O 115 207 - 119 329 - 1.2 7.0

shamp1 F 143 44 87 303 96 113 401 2.1 2.2 9.2

shamp2 F 144 T/O 101 239 - 187 268 - 2.9 3.5

shamp3 F 145 T/O 335 1383 - 478 500 - 4.4 5.8

twoq1 P 69 12 4 14 36 23 24 0.4 0.1 0.0

twoq2 P 69 241 30 289 333 47 509 8.9 0.9 7.9
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Table 3. Comparing EL, D‘n’C, and D‘n’C#. With ARDCs.

Time (s) Memory (MB) BDD (M)

Circuit T/ latch EL D‘n’C D‘n’C# EL D‘n’C D‘n’C# EL D‘n’C D‘n’C#

and LTL F num

bakery1 F 56 T/O 7565 5367 - 609 447 - 17.6 8.0

bakery2 P 49 183 5 2 241 25 15 4.1 0.1 0.0

bakery3 P 50 2794 48 174 609 128 133 18.8 2.1 1.5

bakery4 F 58 T/O T/O 1964 - - 477 - - 4.0

bakery5 F 59 T/O T/O 1294 - - 416 - - 4.9

eisen1 F 35 23 6 107 36 26 73 0.3 0.3 0.5

eisen2 F 35 T/O T/O 1150 - - 365 - - 3.0

elevator1 F 37 3504 2156 585 663 612 657 24.4 21.1 23.6

nmodem1 P 56 T/O T/O 3375 - - 306 - - 2.6

peterson1 F 70 4 8 176 21 42 121 0.0 0.3 1.4

philo1 F 133 T/O T/O 385 - - 64 - - 0.9

philo2 F 133 T/O T/O 267 - - 144 - - 2.1

philo3 P 133 T/O 1139 241 - 609 119 - 21.4 1.4

shamp1 F 143 12 T/O 168 21 - 127 0.0 - 2.0

shamp2 F 144 T/O T/O 189 - - 153 - - 3.0

shamp3 F 145 T/O 53 735 - 51 331 - 0.3 5.0

twoq1 P 69 12 4 23 37 14 24 0.4 0.1 0.0

twoq2 P 69 172 30 665 322 15 496 7.7 0.9 8.2
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Table 4. Comparing EL, D‘n’C, and D‘n’C#. With ARDCs.

Time (s) Memory (MB) BDD (M)

Circuit T/ latch EL D‘n’C D‘n’C# EL D‘n’C D‘n’C# EL D‘n’C D‘n’C#

and LTL F num

Blackjack1 F 176 7296 2566 237 618 610 551 26.8 24.2 18.1

MSI1 P 65 T/O T/O 51 - - 83 - - 2.0

MSI2 F 65 T/O T/O 165 - - 342 - - 6.7

PIbus1 P 387 T/O 73 1700 - 243 539 - 3.5 13.4

PIbus2 F 385 501 292 1302 467 477 609 17.0 15.4 22.6

PPC60X1 F 67 1109 1690 651 609 611 445 20.1 22.4 10.6

PPC60X2 P 69 13459 2811 531 745 625 327 17.8 18.9 6.9

the test cases. The next three columns compare the run time, the total memory usage,

and the peak number of live BDD nodes of the three methods. Comparing the D‘n’C#

algorithm to D‘n’C, we find 12 wins for D‘n’C# and six for D‘n’C. In addition, all the

four wins for D‘n’C are for problems requiring less than 100 seconds to complete; in

contrast, D‘n’C# wins more on the harder ones—on eight out of its 12 wins, D‘n’C

timed out after 4 hours. The difference here is that both D‘n’C and EL depend heavily

on full reachability to restrict the search spaces, but the disjunctive decomposition and

sharp guided search of D‘n’C# minimizes this dependency.

We also conducted the experiments on a set of much harder test cases, the Texas-

97 benchmark circuits. The property automata being used in the experiment were also

translated from LTL formulae. The experiments were run on an IBM Intellistation with

a 1700MHz Pentium-IV processor and 2GB of SDRAM. The result is given in Table 4.

In Table 4, the comparison is with the results of approximate reachability analyses

as the don’t cares where possible. Note that exact reachability analysis is infeasible for

most of these circuits, except for MSI. The table has four columns. The three fields of

the first column give the name of the example, a symbol indicating whether the formula

passes or fails, and the number of binary state variables in the system. The next three

columns compare the run time, the total memory usage, and the peak number of live

BDD nodes of the three methods. Comparing the D‘n’C# algorithm to D‘n’C, we find

five wins for D‘n’C# and two for D‘n’C. Again, the two wins for D‘n’C are easier

problems, and the five wins for D‘n’C# are much harder—among them, two cannot be
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finished by D‘n’C within 8 hours. Therefore, it demonstrates a decisive advantage of

the D‘n’C# algorithm over both D‘n’C and EL.

10 Conclusions

In this paper, we have shown that over-approximations of the exact system can be used

to gradually refine the SCC-closed sets to its SCCs, and have presented a general frame-

work for SCC refinement. Our algorithm has the advantages of being compositional,

considering only parts of the complete state space, and taking into account the strength

of an SCC to decide the proper model checking algorithm. We have discussed different

policies in traversing the lattice of over-approximated systems, and have implemented

two of them. In comparison to the original Emerson-Lei algorithm, our experimental

results demonstrate significant and almost consistent performance improvement. This

indicates the importance of the three improvement factors built into our algorithm: (1)

SCC refinement, (2) compositionality, and (3) strength reduction.

We have also shown that the SCC quotient graph of the over-approximated system

can be used to decompose the concrete search state space. Based on the disjunctive

decomposition, we have presented a targeted search algorithm for fair cycle detection,

with the approximate distance to fair SCCs as the guidance. Experiments have shown

that for large or otherwise difficult problems, heavy investment in these heuristics is

well justified.

Our generic framework can be highly parallelized by assigning different entries

from the Work list, as well as different subautomata, to different processors. Processors

that deal with disjoint sets of states have minimal communication and synchronization

requirements. Although the algorithm is geared towards BDD-based symbolic model

checking, SCC refinement can also be combined with explicit state enumeration and

SAT-based approaches.

The simplicity of the implemented policies in comparison to the generality of our

framework suggests that there can be many promising extensions and variations. In par-

ticular, the way in which the set of over-approximations are generated is still primitive—

it is based solely on the structual information of the circuit. In this sense, the various

counter-example guided refinement techniques [21, 18, 9, 41, 10, 7, 40] proposed in

abstraction refinement can be incorporated into our algorithm generic framework. The

joint application of over- and under-approximations of the exact system can also be

interesting future work.
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