IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

2297

Improving Ariadne’s Bundle by Following
Multiple Threads in Abstraction Refinement

Chao Wang, Bing Li, HoonSang Jin, Gary D. Hachtel, Life Fellow, IEEE, and Fabio Somenzi

Abstract—The authors propose a scalable abstraction-refine-
ment method for model checking invariant properties on large
sequential circuits, which is based on fine-grain abstraction and
simultaneous analysis of all abstract counterexamples of the short-
est length. Abstraction efficiency is introduced to measure for a
given abstraction-refinement algorithm how much of the concrete
model is required to make the decision. The fully automatic
techniques presented in this paper can efficiently reach or come
near to the maximal abstraction efficiency. First, a fine-grain
abstraction approach is given to keep the abstraction granularity
small by breaking down large combinational logic cones with
Boolean network variables (BNVs) and then treating both state
variables and BNVs as atoms in abstraction. Second, a refinement
algorithm is proposed based on an improved Ariadne’s bundle® of
synchronous onion rings on the abstract model, through which
the transitions contain all shortest abstract counterexamples. The
synchronous onion rings are exploited in two distinct ways to
provide global guidance to the abstraction refinement process. The
scalability of our algorithm is ensured in the sense that all the
analysis and computation required in our refinement algorithm
are conducted on the abstract model. Finally, we derive sequential
don’t cares from the invisible variables and use them to constrain
the behavior of the abstract model. We conducted experimental
comparisons of our new method with various existing techniques.
The results show that our method outperforms other counterex-
ample-guided methods in terms of both run time and abstraction
efficiency.

Index Terms—Abstraction refinement, binary decision diagram
(BDD), formal verification, model checking, satisfiability (SAT).

I. INTRODUCTION

HE PRIMARY obstacle to widespread use of formal-

verification techniques, especially contemporary
symbolic-model-checking algorithms [3], [4], remains the
continuing explosive growth in the complexity of the model on
which the verification property is specified. This is partly due
to Moore’s law—as the chips themselves grow in complexity,
the size of the circuit assigned to one designer or design
team grows commensurately. Another cause for the explosive
growth is the increasing use of high-level hardware description
languages (HDLs); models whose implementation requires
thousands or tens of thousands of binary state variables (e.g.,

Manuscript received July 18, 2005; revised September 30, 2005. Some of
the preliminary results appeared in [1] and [2]. This paper was recommended
by Associate Editor R. F. Damiano.

C. Wang is with the NEC Laboratories America, Princeton, NJ 08540 USA.

B. Li, G. D. Hachtel, and F. Somenzi are with the University of Colorado,
Boulder, CO 80309 USA.

H. Jin is with Samsung Electronics, Korea.

Digital Object Identifier 10.1109/TCAD.2006.873897

n the legend of Theseus, Ariadne’s bundle contained one ball of thread
to help Theseus navigate the labyrinth. In this paper, we work with multiple
threads—hence, the “improved.”

registers) may yet look modest when considering their HDL
descriptions. Recent papers [5]-[16], including this one, have
shown that symbolic-model checkers, extended to include
an automated abstraction-refinement paradigm, hold great
promise in dealing with state explosion.

Abstraction is an important technique to bridge the capacity
gap between the model checker and large digital systems. When
a system cannot be directly handled by the model checker,
abstraction can be used to remove information that is irrelevant
to the verification of the given property. Abstract interpretation,
which can be regarded as a relation between the abstract
system and the concrete system, was first used by Cousot and
Cousot [17] in the context of static program analysis. There
exist automatic abstraction techniques under which an entire
class of properties is preserved. Bi-simulation-based reduction
[18], [19], for instance, preserves the entire propositional
p-calculus. However, these property-preserving abstractions
are often less attractive in practice because they are either
hard to compute or do not achieve a drastic reduction [20]. A
more practical approach is property-driven abstraction, which
preserves or partially preserves only the property at hand.
Balarin and Sangiovanni-Vincentelli [21], Long [22], and
Cho et al. [23] have studied various ways of deriving an ab-
stract model from the concrete system for model checking.

Abstraction refinement was introduced by Kurshan [24] in
checking linear properties specified as w-regular automata. In
this paradigm, verification is viewed as an iterative process of
synthesizing a simplified model that is sufficient to prove or
refute the given property. The key issue here is to identify in
advance which is relevant and which is not. In coordinated spec-
ification analysis (COSPAN) [25], the initial abstraction con-
tains only the state variables in the property and leaves the other
variables unconstrained. Since unconstrained variables can take
arbitrary values, the abstract model is an overapproximation in
the sense that it contains all possible execution traces of the
original model, and possibly more. Therefore, when a linear
time property holds in the abstract model, it also holds in the
concrete model; when the property fails in the abstract model,
the result is inconclusive. In case of an inconclusive result,
the abstract model is refined by adding back some previously
unconstrained variables. Note that such an overapproximate
abstraction is applicable not only to safety properties but also
to all universal properties, including linear temporal logic (LTL)
[26], universal fragment of computation tree logic (ACTL), and
w-regular automata, because overapproximation suffices to
prove these properties true.

For practical reasons, it is important to keep the abstrac-
tion process fully automatic. Manual abstraction can be very

0278-0070/$20.00 © 2006 IEEE

2298

powerful when it is carried out carefully by experienced users.
However, it often requires a significant amount of user’s in-
tervention and the in-depth knowledge of the design. In fact,
manual abstraction is very labor intensive and can be error
prone even for skilled users, which makes it hard for verification
to keep up with the design schedule in real industry settings.
Therefore, fully automated abstraction techniques are far more
attractive in practice. In abstraction refinement, one typically
starts with a coarse initial abstraction and then automatically
augments the abstract model by iterative refinement.

The refinement schedule can be computed either statically,
at the very beginning, or dynamically, at each refinement step.
Algorithms in the first category include [27] and [28], where
the refinement schedules are solely based on the structural
information of the model, such as the pairwise latch relation
and the variable-dependence graph. On the other hand, dynam-
ically computed refinement schedules are guided by the model-
checking result of the previous abstraction; therefore, they are
generally more accurate than the statically computed ones. In
Pardo’s iterative p-calculus model-checking procedure [29],
refinement was driven by analyzing the sets of approximate
satisfying states in the formula operation graph (which was im-
proved later in [30]). For properties that have counterexamples,
abstract counterexamples (ACEs) have been used to guide the
refinement [5]-[7], [9], [31], [32]. Typically, counterexamples
that appear in the abstract model but not in the concrete model
are identified as spurious, and the goal of refinement is to get
rid of the spurious counterexamples.

In counterexample guided dynamic-refinement methods, the
symbolic analysis is often based on binary decision diagram
(BDD) [33]. Yet another category is called proof-based ab-
straction refinement [10]-[16], which computes the dynamic-
refinement schedules using a Boolean satisfiability (SAT)
solver. Note that the methods in this category do not focus
on identifying and removing spurious counterexamples. In-
stead, they rely on the SAT solver’s capability of producing
unsatisfiability cores. For an unsatisfying Boolean formula, the
unsatisfiability core is a subset of the original Boolean formula,
which is also unsatisfiable [34]. Given a model and an invariant
property, the existence of finite-length counterexamples can be
formulated as a Boolean SAT problem. When the problem is not
satisfiable, the unsatisfiability core directly induces an abstract
model that disables all counterexamples of that length.

The main challenge in abstraction refinement is related to the
ability of generating a small final abstract model. The final or
deciding abstraction is the one that can decide the truth of the
given property. Since one can always start from a simple initial
abstraction, the effectiveness of the refinement algorithm is
critical in keeping the final abstract model small. The simplicity
of the final abstract model is bounded ultimately by the degree
of locality of the given property. In general, a high degree of
locality is necessary for the success of the abstraction refine-
ment. For a property whose proof or refutation relies on the
detailed knowledge of the entire system, abstraction refinement
is ineffective. In practice, however, user-specified properties
often depend on only part of the system. This is largely due to
the structured programming/design style adopted by engineers.
Therefore, it is the refinement algorithm’s responsibility to ex-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

ploit fully the degree of locality of a given property. To measure
the quality of different abstraction-refinement algorithms, we
define abstraction efficiency as

_ (1 final abstract model size
= original model size

For every pair of model M and property ®, there exists an
optimum, or maximum, abstraction efficiency n*. Note that n*
is a property of the specific verification problem (M, ®), not a
property of the abstraction-refinement algorithm. As a heuristic
principle, the closer to the optimum value, the better a certain
abstraction-refinement algorithm is.

Another important metric for abstraction refinement is its rate
of convergence. This characterizes how quickly a refinement
algorithm converges from the initial abstract model to a decid-
ing abstraction. In practice, this can be measured by either the
number of refinement iterations or the overall run time. We have
observed cases for which some algorithms converge quickly to
a near optimal abstraction while other algorithms spend a lot of
time searching in vain for such an abstraction. In this paper, we
propose a suite of algorithms that find, at each iteration, a set of
refinement variables that are a subset of a near-optimal deciding
abstraction.

A. Contribution

First, we propose a fine-grain abstraction approach to keep
the abstraction granularity small by breaking down large com-
binational logic cones with Boolean network variables (BNVs)
and then treating both state variables and BNVs as atoms in
abstraction. It allows the refinement granularity to go beyond
the usual “state variable level,” which is in contrast with most
abstraction methods in the prior art. In this method, the entire
fan-in combinational logic cone of a state variable is either
included in or completely excluded from the abstract model
despite of the fact that not all these fan-in logic gates might
be necessary for the verification even when the state variable
itself is.

Second, we propose a data structure called the synchronous
onion rings (SORs) to capture for an invariant property all
the spurious counterexamples of the shortest length. We then
give a new refinement algorithm called generational refinement
of Ariadne’s bundle (GRAB) to systematically analyze all the
shortest counterexamples. GRAB has two novel features: First,
it takes a generation of refinement steps to eliminate all spurious
counterexamples supported by a given set of SORs. Second,
each refinement in the current generation is chosen by a scalable
game-based strategy whose computation depends solely on the
current abstract model.

We also explore, in the context of abstraction refinement,
the use of approximate reachable states of the invisible sub-
modules to speed-up verification. We use approximate reach-
able states to disable certain valuations of the pseudoprimary
inputs. Constraints from these neighboring invisible variables
can prevent some spurious ACEs, therefore, leading to the
decision of a property possibly earlier in the refinement cycle.
To the best of our knowledge, we are the first to analyze these
invisible submodules in the context of abstraction refinement; in

WANG et al.: IMPROVING ARIADNE’S BUNDLE BY FOLLOWING THREADS IN ABSTRACTION REFINEMENT

previous works, these invisible submodules were often dis-
carded completely.

We have implemented our new algorithm in the model
checker verification interacting with synthesis (VIS) [35], [36].
We present experimental comparisons of our algorithm to
two recent counterexample-based refinement algorithms: the
SepSet algorithm in [7] and the conflict analysis-based algo-
rithm in [8], as well as the default BDD-based invariant-check
algorithm in VIS, and the default-bounded model checker in
VIS. For the purpose of experimental comparison, we have
also implemented the algorithms of [7] and [8]. The experi-
ments were conducted on circuits from both public domain and
industry. Many of the models used were kindly provided by
Chauhan et al. [8].

B. Related Work

Our fine-grain abstraction approach is unique in treating both
state variables and BNVs as abstraction atoms. In fact, our
refinement strategies must search in a two-dimensional space.
Refinement in the sequential direction is comprised of state
variables only, which is typical of much of the pioneering prior
art of Clarke et al. [5], [7]. Refinement in the Boolean direction
is comprised of BNVs only. Although the cut-set variables in
the work of Wang et al. [6] and Glusman et al. [31] are similar
to BNVs, they were not treated the same as state variables
during refinement. We shall show that by carefully controlling
the refinement direction between sequential and Boolean, we
can produce significantly more concise refinement.

In [6], Wang et al. proposed a min-cut abstract model to
replace the conventional coarse-grain abstract model. In the
sequel, we use coarse grain when the smallest abstraction atom
is a latch. They first defined a free-cut set of signals as those
at the boundary of the transitive fan-in and transitive fan-out of
the visible state variables. They then computed a min-cut set
of signals between the combinational inputs and the free-cut
signals; the logic gates above this min-cut were included in the
reduced abstract model. However, the granularity is still at the
state-variable level because logic gates above the free cut were
always included in the abstract model, regardless of whether or
not they were necessary for verification. In [8], Chauhan et al.
adopted a similar approach, in which the further reduction of
abstract model was achieved by prequantifying pseudoprimary
inputs dynamically inside image computations. This approach
shares the same drawback as that of Wang et al. [6].

In [31], Glusman et al. computed a min-cut set of signals
between the boundary of the current abstract model and the
combinational inputs and included logic gates above this cut
in the abstract model. Since an arbitrary subset of the fan-in
combinational logic gates of a state variable could be added, the
abstraction granularity was at the gate level. However, there are
some significant differences between our fine-grain abstraction
and their method. First, fine-grain abstraction directly reduces
the size of the transition relation by treating each elementary-
transition relation as an abstraction atom, while their method
aims at reducing the number of cut-set variables. Second, our
refinement algorithm carefully controls the refinement direc-
tion, while theirs does not differentiate the two directions.

2299

Third, logic gates added by their method cannot be removed
from the abstract model afterwards—even if later they are
proved to be redundant, but the removal is possible in our
method.

In [16], Zhang et al. proposed a technique called “dynamic
abstraction,” which maintains at different time steps separate
visible variable subsets. Their approach can be viewed as a finer
control of abstraction granularity over the time axis, since they
are using different abstract models for computation at different
time steps. However, at each time step, the abstraction atoms
are still latches. Therefore, this approach is entirely orthogonal
to our fine-grain abstraction.

A counterexample-guided refinement algorithm was pro-
posed by Clarke et al. in [5], which relies on symbolically
simulating a single ACE on the concrete model and then sep-
arating the deadend states from bad states. This algorithm was
later improved in [7] by replacing the BDD-based concretiza-
tion test with SAT and ILP solvers. Our refinement method
differs from [5], [7], and other single counterexample-guided
algorithms [8], [9] in that: 1) it handles all shortest ACEs
rather than a single counterexample and 2) at each level in
the concretization test, a set of abstract states, instead of just
one abstract state, is used to constrain the bounded unrolled
concrete model at each time step. We note that the number of
spurious ACEs can be extremely large in practice, suggesting
that the single counterexample-driven refinement is “a-needle-
in-the-haystack”™ approach. To our knowledge, Clarke et al. [7]
also had some preliminary experiments with multiple coun-
terexamples and translation of multiple counterexamples to the
SAT problem for invalidation; although, the work has not been
published.

The refinement algorithm in [31] also relies on analyzing
multiple counterexamples. In their approach, multiple abstract
error traces are represented by a data structure called the
multivalued counterexample. However, their multivalued coun-
terexample does not guarantee to capture all the shortest ones,
making it incapable of catching concretizable couterexamples
at the earliest possible refinement step. Furthermore, their
variable selection algorithm is based on the classification of
invisible variables into strong 0/1 signals and conditional 0/1
signals. We shall show in Section V that strong 0/1 signals in
particular are rare cases in practice. As a result, their refinement
is often less accurate than GRAB.

In [32], Mang and Ho proposed a refinement algorithm
based on controllability and cooperativeness analysis. Their
cooperativeness analysis extracts a small subset of candidate
input signals by applying a three-value simulation engine [6]
to simulate the ACEs and then ranking all the inputs (i.e., in-
visible state variables and BNVs) according to various criteria.
Their controllability analysis is independent of any particular
counterexample (i.e., based on SORs); it is applied to a subset
of input signals by scoring them according to a game-theoretic
formula derived from the SORs. These two proposed analyses
are then carefully integrated together to better refine the ab-
stract model. Their controllability analysis is an improvement
of our GRAB algorithm. Their experimental results showed
a significant improvement over both GRAB and the RFN
method in [6].

2300

The proof-based abstraction-refinement methods in [10]—
[16] also handle implicitly all the counterexamples of a finite
length. These methods differ from ours in that their refinement
variable-selection algorithms are all SAT-based, i.e., relying on
the SAT solver’s capability to produce succinct unsatisfiability
proofs. In contrast, our core refinement variable-selection al-
gorithm is pure BDD-based, even though we use SAT as well
in predicting the refinement direction and in the concretization
test. We note that a small unsatisfiability proof, i.e., the one
with a small subset of Boolean variables or clauses, does
not automatically give a small refinement set [13], [37]. Both
proof-based and counterexample-based methods have their own
advantages and disadvantages. A detailed experimental com-
parison of GRAB with a proof-based refinement algorithm can
be found in our recent paper [14], which shows that these
two kinds of methods complement each other on the various
test cases. Amla et al. [38] also published results of their
experimental evaluation of the various SAT-based abstraction
methods. There is also a trend of combining counterexample-
based methods and proof-based methods in abstraction
refinement [39].

C. Organization of Paper

After establishing notation in Section II, we present our fine-
grain abstraction approach in Section III. We then discuss in
Section IV how to compute and deploy Ariadne’s bundle in the
abstraction refinement process. This leads to a discussion of the
new refinement variable-selection algorithm in Section V. We
explain in Section VI our SAT-based methods for predicting
the refinement direction and minimizing the refinement set. We
then give experimental results in Section VII and conclude in
Section VIII.

II. PRELIMINARIES

In symbolic model checking, one manipulates sets of states
instead of each individual state. Both the transition relation of
the model and the sets of states are represented by Boolean
functions called characteristic functions, which can in turn be
represented by BDDs or Boolean formulas. Let the model be
given in terms of:

1) aset of present-state variables * = {x1,...,Zm };
2) aset of input variables w = {wy, ..., wy,};
3) aset of next-state variables y = {y1,...,Ym}-

The state transition graph of the model can be represented
symbolically by (T, I), where T'(x,w,y) is the characteristic
function of the transition relation, and I(z) is the set of initial
states. A state is a valuation of either the present-state or next-
state variables. If the valuation of the state variables makes
the initial predicate I(x) true, the corresponding state is an
initial state. Let Z, g, and w be the valuations of x, y, and w,
respectively, then the transition relation 7'(Z,w, §) is true if
and only if under the input condition w there is a valid transition
from State 7 to State .

Computing the image or preimage is the most fundamental
step in symbolic model checking. The image of a set of states
consists of all the successors of these states in the state transi-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

tion graph; the preimage of a set of states consists of all their
predecessors. In this paper, we use the two operators EY (D)
and EX(D) to represent the image and preimage of D under the
transition relation 7". These two basic operations are formally
defined as follows:

EYr(D)={s|3se€ D : (s,s') € T}
EXr(D)={s|3s € D: (s,s') € T}.

When the context is clear, we will drop the subscripts and use
EX and EY instead. Given the symbolic representation of the
transition relation 7" and the state set D, the image and preimage
are computed as

EXr(D) =3y, w . T(x,w,y) A D(y)
EYr(D) =3z, w . T(z,w,y) A D(x).

In this paper, we are focusing on invariant properties of the form
AGp; that is, the predicate p holds globally. Many interesting
temporal logic properties, including AGp, can be evaluated by
applying EX and EY repeatedly until a fix point is reached [40].
The set of states that are reachable from I, for instance, can be
computed by the least fix-point computation

EPI = puZ - TUEY(Z).

This computation is called the forward reachability
analysis—one that repeatedly computes the image of the
set of already-reached states starting from the initial states [
until it stops growing. Similarly, the set of states from which
D is reachable, denoted by EF D, can be computed by the least
fix-point computation

EFD = uZ - DUEX(Z).

This is often called the backward reachability analysis.

Invariant properties can be decided by the reachability analy-
sis. Let P denote the set of states labeled p, then EPI C P
means that the property AGp holds. If the property fails, the
model checker can produce a counterexample, i.e., a sequence
of states (sg, $1, - .., Sg) such that sg € I and s = —p.

The set of reachable states can be computed by BDD-based
symbolic fix-point computation, in which the states and tran-
sition relation are represented by BDDs, while set operations
including intersection, union, and existential quantification are
implemented as BDD operations. Symbolic model checking [4]
was a major breakthrough in boosting the capacity of model-
checker techniques leading to the subsequently widespread
acceptance of model checking in hardware verification. When
BDDs are used as the underlying data structure, the complexity
of symbolic model checking depends on the size of the BDDs
that represent the operands. Because of this, the search for
heuristics to avoid the BDD blowup has been one of the major
research areas in formal verification.

III. FINE-GRAIN ABSTRACTION

The model is considered as a formal description of the
behavior of the system. Abstraction preserves only the part of

WANG et al.: IMPROVING ARIADNE’S BUNDLE BY FOLLOWING THREADS IN ABSTRACTION REFINEMENT

z1

2301

Z2

Z4

Ts5

Fig. 1. Illustration of fine-grain abstraction.

behavior that is relevant to the verification of the given property,
in the hope that the simplified model is easier to verify. For
digital circuits, the abstract models can be constructed directly
from a high-level description of the system, even before the
concrete model of the system is available.

A. Defining Abstract Model

We consider the concrete model M = (T,I) to be the
synchronous composition of many submodules. The transition
relation 7" is then the conjunction of individual transition sub-
relations. In the simplest form, every state variable together
with its bit transition relation is considered as a submodule. Let
J ={1,...,m} be the indexes of the state variables; then

T(x,w,y) = /\ Tj(x?wvyj)

jeJ

where T (z, w, y;) is the bit transition relation of the jth binary
state variable y; and, thus, depends on one next-state variable.
If y; has a transition function A;, then the transition relation for
y; can be formulated as T; = (y; < Aj(z,w)).

Any overapproximation of 7' and I, denoted by T and T,
respectively, induces an abstract model. A widely adopted way
of overapproximating 7" is replacing some of the bit relation T
by tautology, since tautology does not impose any constraint on
how the transitions can be made. Note that 7} is treated as an
atom for abstraction in this approach, since it is either included
in or excluded completely from the abstract model.

Assume that the abstract model contains a subset of state
variables J = {1,...,k} C J. Let & C x be the subset of
present-state variables and § C y be the subset of next state
variables, then T is defined as follows:

f(x,w,g) = /\ Tj ({jvi‘}’wﬁgj) .

jel

Variables in £ are called the visible state variables, and variables
in & =z \ are called the invisible state variables. Note that
although T has a subset 9 of the next-state variables, it may
contain some invisible present-state variables Z; these invisible
present-state variables are treated as inputs (also called pseudo-
primary inputs). The set of initial states I(Z) is an existential

projection of I(x): An abstract state is initial if and only if it
contains a concrete initial state.

The abstract model A = (T', I) is defined in exactly the same
concrete state space, only with more transitions among the
states and possibly more states labeled as initial. The simplifica-
tion of the abstract model is not in the size of the state transition
graph, but mainly in the size of the BDD representation of
the transition relation. Due to less number of conjuncts, the
characteristic function can be represented by a simpler Boolean
formula. This interpretation of abstraction appears natural when
analyzing symbolic-graph algorithms.

Restricting the abstraction granularity at the state-variable
level is not suitable for verifying industrial-scale systems with
extremely large combinational logic cones. At this level, T}
can be either (y < A;) or tautology, depending on whether
the corresponding state variable is included or not, but not an
arbitrary Boolean function in between. However, not all logic
gates in the combinational logic cone might be necessary for the
verification, even if the state variable itself is. Unnecessarily in-
cluding the irrelevant information can make the abstract model
too complex for the model checker to deal with. Let < denote
the subset or equal relation, then an abstraction T} such that
(y = Aj) < rf] < 1 is often more appropriate; however, this
is not possible under the “coarse-grain” abstraction approach.

Based on this observation, we propose a fine-grain abstrac-
tion approach to go beyond the state-variable level. It considers
not only the state variables but also the BNVs. BNVs are
intermediate variables inserted into the combinational logic
cones of latches to partition large cones so that a compact
BDD representation of their transition relations is possible.
Once inserted, each BNV is associated with a small area of
the combinational circuit; similar to the state variables, there is
an elementary-transition relation for each BNV. The transition
relation of the entire system is the conjunction of all these
elementary-transition relations.

The following example shows how fine-grain abstraction
works. In Fig. 1, there are ten gates in the fan-in combinational
logic cones of the two latches. Here, y; and y- are the next-
state variables, and x1, ..., x5 are the present-state variables,
among which x; and x5 correspond to y; and y». Let A, be the
output function of Gate 9 in terms of the present-state variables
and inputs only; similarly, let A,, be the output function of
Gate 10. A, and A, are also called the transition functions of

2302

Latch 1 and Latch 2, respectively. According to the definition
in the previous section, the bit transition relation of Latch 1 is
defined as

T1 =Y < Ayl (xlaanx37x4)-

We now insert new variables ¢1, 2, t3, and ¢4 to partition the
fan-in combinational cones of the two latches. We use ¢, to
represent the output function of the signal v, in terms of both
state variables as well as newly added BN'Vs. This is in contrast
to A,, which is in terms of the state variables only. These
new functions and their corresponding finer grain elementary-
transition relations are defined as

8, =11 D 12 Ty, =11 < 0,
O, = (w2 ANw3) ® 1y Ty, =t3 < 6,
Oy = (@3 Vas) Aay Ty, =t3 <= 0y
8, =12 D3 Ty, =ty < 0,

62/1 = _|(£E1 N tg) V _|(.174 A tl) ﬂJl =Y < 6y1
(5y2 :—|((E4/\t1) Aty Ty2 =17 <—>5y2.

Note that the state variable y; is now associated with J,, and
T,, only. The bit transition relation of Latch 1 is a conjunction
of three elementary-transition relations

Ty =T, AT, AT,

In coarse-grain abstraction methods where only state vari-
ables are treated as atoms, when Latch 1 is included in the
abstract model, all the six fag—in gates (Gate 1, 2,4, 5,7, and 9)
are also included; that is, T'= T, AT;, AT;,. In fine-grain
abstraction, when Latch 1 is in the abstraction, only those gates
covered by the elementary-transition relation T}, are included;
this is indicated in the figure by the cut ¢;, which contains
Gates 5, 7, and 9. In the successive refinement steps, only the
clusters that are relevant to verification are added. In the next
section, we will present an algorithm to identify which clusters
should be included. Meanwhile, let us assume that the current
abstract model is not sufficient and the BNV ¢ is added during
refinement. This is indicated by the new cut ¢, in the figure,
which means T' = T}, A T}, . The abstract model now contains
Latch 1 and Gates 2, 5, 7, and 9. Continuing this process, it may
add yo, t4, . . . until a proof or refutation is found.

It is possible in the fine-grain approach that gates covered
by the transition cluster 73, (i.e., Gates 1 and 4) never appear
in the abstract model if the gates are indeed irrelevant to the
verification of the given property. This demonstrates the advan-
tage of fine-grain abstraction. In a couple of industry strength
circuits, including one from the PicoJava Instruction Unit, we
have observed that over 90% of the gates in some large fan-
in cones are indeed redundant, even though the corresponding
latches are necessary.

Our BNV-based approach can have a finer granularity of
abstraction than the min-cut-based approach in [6]. Take Fig. 1
as an example, according to [6], where the free-cut set is
{x1,x2, 3, 24,t3}, which means that the free-cut model al-
ready includes everything except Gates 3 and 6. Since this free-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

cut set happens to be a min-cut set as well (another min-cut set
is {x1, xa, 3, T4, x5 }), this free-cut model is also their min-cut
abstract model.

In fine-grain abstraction, the granularity depends on the size
of the elementary-transition relations as well as the algorithm
used to perform the partition. In the current implementation,
we apply the frontier [41] algorithm to selectively insert BNVs.
We choose the frontier algorithm because it is a stable technique
for reducing the sizes of partitioned BDDs; however, some kind
of structural analysis may further improve the quality of the
inserted BN'Vs. The frontier algorithm was initially proposed
in the context of symbolic image computation. It works as
follows: First, the elementary-transition function of each gate is
computed from the combinational inputs to the combinational
outputs, in some topological order. If the BDD size of an
elementary-transition function exceeds a given threshold, a new
BDD variable is inserted. For all the gates in the fan outs of
that gate, their elementary-transition functions are computed in
terms of the new variable. Each BNV or state variable is then
associated with a BDD 4y, or §,, for describing its transition
function.

The actual abstraction granularity can be fine tuned by
controlling the BDD threshold of the frontier partitioning al-
gorithm. In the extreme case, the BDD threshold can be set
to one, i.e., a BNV is created for every logic gate. In that
case, the optimum abstraction, among all the possible final
abstract models, is the one that has the fewest logic gates. In
some sense, one can establish a connection between abstraction
refinement and logic synthesis. Abstraction refinement is an
iterative process of synthesizing a small abstract model that can
prove or refute the given property.

We now formally define the fine-grain abstract model. We
denote the set of BNVs by t = {t1,...,t,}. Every variable
t;, is associated with a transition relation T;, = (tx < ¢,),
and every state variable is associated with a fine-grain transi-
tion relation T, = (y; < 6,,). Let J = {1,...,m} and K =
{1,...,n}, then the concrete transition relation becomes

T(x,w,t,y) = /\ Ty, (z,w,t,y;) A /\ Ty, (z,w, t, tr).
jeJ keK

Assume that our refinement algorithm (in Section IV) returns
a fine-grain abstract model consisting of m’ < m state vari-
ables and ' < n BNVs, ie., J={1,...,m'} CJand K =
{1,...,n'} C K, then

T=N\T, (@ {z,w}hiy)n \ T, (@, {5w} i)
ke[?

j€J

Here, & = {z,|j € J } is the subset of visible present-state
variables, § = {y;|j € J} is the subset of visible next-state
variables, and £ = {t|k € K} is the subset of BNVs in the
abstract model. All the remaining (invisible) present-state vari-
ables and BN'Vs go into #. During symbolic model checking,
variables in Z are treated as inputs or pseudoprimary inputs.

WANG et al.:

Fig. 2. Ariadne’s bundle of SORs. (a) Current abstraction. (b) SORs.

B. SORs

Counterexamples found in the abstract model may not
be real paths because some transitions that are responsible
for the counterexamples may be forbidden in the concrete
model. Checking whether these ACEs are real or not is called
the concretization test. Conceptually, concretization test can
be done by reconstructing the abstract paths in the concrete
model. If they cannot be reconstructed, the counterexamples
are spurious. Refinement relies on the analysis of the spurious
counterexamples.

The number of counterexamples to a general LTL property
can be infinite (e.g., when the counterexamples contain cycles).
Even if one focuses on invariant properties and on counterex-
amples of the shortest length, the number of counterexamples
can still be extremely large. We have observed in practice, for
instance, that the number of shortest counterexamples to an
invariant property is 10%5 in a model with 100 state variables.
This suggests that analyzing them one by one through enu-
meration is not a good strategy. Since it is not clear yet how
to identify the more representative ones, arbitrarily choosing
one counterexample to guide the refinement is also “a-needle-
in-the-haystack™ approach. It is desirable to capture as many
counterexamples as possible and analyze them simultaneously.
For safety properties, one can actually capture symbolically all
the counterexamples of the shortest length.

We propose a new data structure called the SORs to cap-
ture all the shortest counterexamples of an invariant property.
Consider the property AGp as an example. The state transition
graph of the abstract model is shown in of Fig. 2(a). Forward
reachability analysis from I gives the forward onion rings,
which are the sets of new states encountered at each iteration
during the breadth-first search. F'!' = {3, 4, 5}, for instance, is
the set of states that can be reached in one step from the initial
states. Note that the —p states are first reached at the third step of
the search. An analogous backward reachability analysis from
the —p states in F'> would reach states {8, 9} in F2, {5} in F'!,
and the initial state 2. Once the forward and backward reachable

IMPROVING ARIADNE’S BUNDLE BY FOLLOWING THREADS IN ABSTRACTION REFINEMENT

2303

onion rings are available, the intersection of the two sets of
states at each step gives the SORs

S0 = {2}, S* = {5}, S* = {8,9}, S® = {12}.

Note that both forward and backward onion rings are standard
representation for counterexamples in BDD-based symbolic
model checkers; they have been used also in a bounded model
checking (BMC) induction proof to restrict the SAT search
space [42].

The term “Ariadne’s bundle” is used to denote the subrelation
T® induced by considering only the transitions between a state
at one step to another state in the next step in the SORs. It
comprises the bundle of all shortest counterexamples and no
other counterexample.? Note that the state-transition graph of
the Ariadne’s bundle has significantly less states and transitions
than the abstract model. In this simple case, there are two
shortest counterexamples of length three. In practice, however,
the number of counterexamples in the SORs is typically large.

C. Multithread Concretization Test

Concretization test of the ACEs cannot be accomplished by
simulation, even if a single abstract path is to be reconstructed.
This is because an abstract path may not have a complete
set of assignments to all the input variables of the concrete
model—one abstract transition often corresponds to multiple
concrete transitions. Various symbolic techniques have been
proposed for concretization test. In [5], BDD-based image com-
putation was applied in the concrete model to reconstruct all the
concrete paths inside a single abstract path. In [6], the search
of a concrete path inside a single abstract path was performed
by an automatic test pattern generation (ATPG) engine. In
[7] and [8] the reconstruction was performed by SAT solvers.
However, one thing common to all these methods is that the
concretization test deals with only a single-ACE.

The problem here is the simultaneous concretization of
all the shortest counterexamples. We solve this multithread
concretization test by formulating it as a Boolean satisfia-
bility problem and then applying an SAT solver. Given the
length L SORs {S°,...,SL}, we define the SAT problem as
U=UyAUg

Uy =I(VOA N\ T(V,U, VY
0<i<L
Ug= [\ SV

0<i<L

where W 4 represents the unrolling of the concrete transition
relation for L time frames, and WUg represents the constraints
coming from the abstract SORs (Fig. 3). We use V" to represent
the state variables at the ith time frame and U to represent the
internal nodes and inputs. The predicate 1(V°) represents that
all states at time frame zero are initial, while T'(V?, U?, Vi+1)

2There is an interesting analogy between the abstract counterexamples
and the magic Ariadne’s thread. In the Greek mythology, Theseus needs the
thread to navigate through the Labyrinthus to kill the monster Minotaurus; in
abstraction refinement, one needs the guidance of abstract counterexamples to
remove the “false negatives.”

2304

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Fig. 3.

N

Fig. 4. Translating BDD into combinational circuit.

indicates that transitions between time frames 7 and ¢ + 1 must
obey the concrete transition relation. The predicate S*(V'?) re-
stricts states at the ¢th time frame into the ith ring of the SORs.

Formula W is satisfiable if and only if there exists a concrete
counterexample (CCE) inside the abstract SORs. When U is
satisfiable, the set of assignments returned by the SAT solver
represents a concrete path from an initial state to a —p state.

In order to decide W with an SAT solver, we need to put the
formula into the conjunctive normal form (CNF). In particular,
we need to translate the rings {S’} into CNF because the
symbolic model checker normally returns S® as a BDD. The
translation from a BDD to a Boolean circuit is illustrated in
Fig. 4. The basic idea is to translate each BDD node into a
two-to-one multiplexers. Note that each BDD node represents
an If-Then-Else (ITE) branching condition. If the current
variable is true, the output node of the BDD is the same as the
left child, otherwise, the right child. ITE nodes can be mapped
directly to multiplexers. Since each multiplexer consists of
3 and gates, the Boolean circuit is linear in the number of
BDD nodes. This is the translation scheme we implemented
in our framework. It was first used by Gupta et al. [11] in
speeding up BMC with BDD learning. This translation scheme
requires the addition of a large number of auxiliary variables
to encode the internal logic gates. An alternative approach is
to enumerate all the minterms of the complemented function
S, and convert the minterms into CNF clauses. A minterm
of the Boolean function corresponds to a root-to-leaf path in its
BDD. Although no auxiliary variable is required, the number
of root-to-leaf paths can still be exponential in the number of

Multithread concretization test by constraining BMC instance with SORs.

BDD nodes. In [43], a hybrid encoding scheme was proposed
to make a tradeoff between the above two approaches.

IV. GRAB

In this section, we illustrate the generic process of abstraction
and refinement by treating the simple example in Fig. 5. We
then give the overall algorithm of our generational refinement
based on Ariadne’s bundle.

A. Example

The concrete model M in Fig. 5 is the synchronous compo-
sition of three submodules: M7, M5, and Ms3. That is

M= M H Mo || Ms.

Each component M; has one state variable v;. The state
variable v; can take four values and thus must be implemented
by two binary variables; the other two state variables (vs, v3) are
binary variables. The variable v4, which appears on the edges in
My, is a primary input. The property of interest is AG(v; # 3),
i.e., State 3 in M; is not reachable. The right part in Fig. 5
gives the state-transition graph of the concrete model. It is clear
that the property fails in the concrete model, as shown by the
bold edges, which exhibit a CCE of length 4: (000, 111, 200,
211, 300). N

The initial abstraction is .4 = M, in which only the state
variable appearing in the given property is preserved, and all
the other state variables are treated as pseudoprimary inputs.
There is an ACE of length 3: (0__,1__,2__,3__). This ACE
is spurious because it is not concretizable; no direct transition
is possible from 200 to 3__ in M.

Although this example is simple, it demonstrates an impor-
tant aspect of the abstraction refinement process. Refinement
algorithms based on separating deadend states from bad states,
like those in [5], [7] since they are actuated by a single coun-
terexample, may pick only variable vy for refinement. In fact,
v9 can separate the bad states {211, 210} from the deadend
state {200}. Here, {200} is a deadend state (cf., [5]) since it
is reachable from the initial state but does not have a concrete
transition to {3__}, while {211, 210} are bad states since
they are not reachable from the initial state but have concrete
transitions to {3__}. However, after this refinement, an ACE
of the same length still exists—it can be (00_, 10_,21_,30_).
Therefore, {vs} is not a sufficient refinement set to kill the

WANG et al.: IMPROVING ARIADNE’S BUNDLE BY FOLLOWING THREADS IN ABSTRACTION REFINEMENT

Ma(va) § Ms(v3) ¢ _.IOOO_.111—>200 ;1p1
g [t
w3
0' 011—=100 w4211—>3T00
U4

Fig. 5. Example for abstraction refinement.

ACE (0__,1__,2__,3__). This is suggestive of the danger
of placing too much refinement emphasis on a single ACE.
Of course, it is much more of a problem when the SORs
contain an extremely large number of counterexamples. In
this case, choosing the refinement variables based on a single
counterexample can be ineffective.

We now illustrate the SOR-based generational refinement
framework using the above example. In building the SORs,
self-loops and back edges are pruned away to focus on the
shortest counterexamples in the current abstract model. When
A = Mj, the SORs contain just the four states of My, which are
connected by the four forward edges. Since the first generation
of shortest ACEs are of length 3, the refinement process starts
by dealing with the SORs of length three until all paths in them
are killed. The initial SORs are shown in Fig. 6(a). Note that in
M, only edges from State 2 to States 1, 2, and 3 are labeled. As
will be discussed in Section V, these labels cause the variable
selection routine to pick variable vy for the first refinement.
The refined abstract model is A = M; || Ms; however, A is not
constructed in this naive way, but by a more efficient two-step
process.

First, we split the states according to the labels on their
outgoing edges, as shown in Fig. 6(b). Because of the label
vy A vy, the last abstract edge (2__,3__) is split into two
rather than four refined edges. State 20_ is now backward
unreachable from —p, so the two incoming edges, (10_,20_)
and (11_,20_), are removed. The outgoing edges from State
01_ are removed as well because State 01_ is not an initial state.
States like 20_ are called the deadend states. The concept of
deadend states is critically involved in the refinement variable
selection algorithm, as discussed below in Section V. Note
that all the splits that make the SORs change from the one in
Fig. 6(a) to the one in Fig. 6(b) are done before M, is brought
in. The second step is to actually take the composition of M,
with the remaining edges of the SORs. This kills the edges
(11_,21_) and (21_,31_) and leads to the reduced SORs in
Fig. 6(c).

After the above refinement step, the number of length-3 spu-
rious counterexamples is decreased but they have not been re-
moved completely. At this point, v will be selected as the next
refinement variable. We then proceed to again take the first part
of the two-step refinement process, as illustrated in Fig. 6(d).
The result is a disconnection of I and —p because there is no
outgoing edge from the sole remaining initial state. At this

2305

010 101 210—=301

V4
V4 ?
001 110—=201 310

v A4

=D
Gu

@D
(a)

—<>—<>

o (G—-e

—>(2__

(b)

(c)
V4
@i =G

D

—
@ .

(d)

D >

¢ Va
@D—=Gw
(e)

Fig. 6. Generational refinement process. (a) Original SORs. (b) Split states.
(c) Account for TR of M>. (d) Split states again; and (e) compute length-4
SORs.
point, it has been proved that no CCE of length 3 exists, so
this generation of refinements is complete. Note that during the
two refinements in the length-3 generation (i.e., adding ve and
adding v3), the SORs are updated incrementally inside previous
SORs. The BDD don’t cares associated with this incremental
process lend critical efficiency to SOR’s refinement process.

Next, the SORs are built from scratch, which now are of
length 4, as is shown in Fig. 6(e). This final set of SORs
contains a single counterexample that is concretizable in M,
as discussed above in reference to Fig. 5. Therefore, the given
property fails.

The proposed refinement algorithm does not try to remove
all the spurious ACEs in one shot. Instead, it identifies local

2306

w
(=]

—+length of ACEs
—= num of abs vars

AY,N/ \
il \

i \

N
W
)

—
o

num of vars / len of ACE
o S

W

[o o e e L o e o e e e e L e e o
1 5 9 13 17 21 25 29 33 37
Refinement iteration step
Fig. 7. Effect of generational refinement with refinement minimization.

variables that are critical to refinement by exploiting the global
guidance provided by the SORs. It may take a set of refinement
steps, called a generation of refinements, to remove all the
shortest ACEs of a given length.

The effect of generational refinement is illustrated in Fig. 7.
The data are obtained from a circuit design called D20 in
which the given invariant property is true. The upper curve rep-
resents the number of state variables in the abstract model at dif-
ferent refinement steps, and the lower curve is the length of the
shortest ACE. A generation consists of a number of consecutive
refinement steps, all with SORs of the same length. Note that
every time the length of the shortest ACE changes, the number
of abstract variables may decrease; this is due to the greedy
refinement-minimization procedure that tries to keep the ab-
straction as small as possible by removing redundant variables.
We will explain refinement minimization in Section VI-B.
Experience shows that this greedy minimization is critical in
achieving a high abstraction efficiency.

B. Overall Algorithm

Let {S% S',..., 8L} be the length-L synchronized onion
rings, where SY is a subset of initial states, ST is a subset of
states satisfying —p, and S7 is a set of states on the shortest ab-
stract paths from S to S¥. The pseudo code of the abstraction-
refinement algorithm is given in Fig. 8. It is called GRAB for
generational refinement of Ariadne’s bundle. GRAB accepts as
inputs the concrete model M and the property @ (of the form
d = AGp). R

The initial abstract model A contains only those state vari-
ables that appear in the local support of the property, but
no BNV. The outer loop is over the length L of the current
generation of SORs. With the abstract model being gradually
refined, L is guaranteed to grow monotonically in the outer
loop. The action starts in Line 3, where BDD-based forward
reachability analysis is used to compute the forward onion rings
from the initial states to —p states. If —p cannot be reached
in A, it cannot be reached in A either. In this case of early
termination, GRAB returns true. Otherwise, the first set of
SORs is computed. An SAT-based concretization test is then
performed in the concrete model. Here, it simultaneously tries
to concretize all the ACEs in the SORs by one satisfiability

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

GrRAB(M, @) {

1 A = INITIALABSTRACTION(M, ®);
2 while (true) { //Loop over SORs with different length
3 {5'} = COMPUTESORS(A, ®);
4 if ({S'} is empty)
5 return true;
6 CCE = MULTITHREADCONCRETIZATION(M, {S'});
7 if (CCE not empty)
8 return (false, CCE);
9 {Sk}=1{5'}
10 while (true) { //Loop at the current length
11 A = REFINEABSTRACTION(A, {Sk});
12 {54} = REDUCESORS(A, {S%});
13 if ({S%} is empty)
14 break ;
15 }
16 A= REFINEMENTMIN[MIZAT[ON(.Z, {s);
bl

REFINEABSTRACTION(A, {S'}) {
17 ws=A{}, wg =1,
18 while (Jws| < threshold) {

19 v = PICKBESTVAR(A, {S'});

20 wg = wg U{v}, wg = we \ {v}

21

22 return COMPUTEABSTRACTION(A, ws) ;
}

Fig. 8. Abstraction-refinement algorithm GRAB.

instance. If any of these counterexamples can be concretized,
the property ® is proved false, and the CCE is returned.

If no CCE exists, we start the inner loop over the refinements
in this generation. Although the number of ACEs in the SORs
decreases monotonically, the length of the SORs does not
change in the inner loop. Since all the ACEs have been proven
spurious at the very beginning, no concretization test is needed.
{SE} represents the “reduced SORs.” Each time the abstract
model is refined, the SORs are reduced (Line 12) until all the
spurious counterexamples disappear. Typically, a few that pass
through the inner loop produce the breakout, which implies that
the set of refinement variables added in the current generation
constitutes a sufficient set. A set of refinement variables, when
added, kill the entire length- L SORs. Termination is guaranteed
by the finiteness of the model.

The game-based heuristic for picking the refinement vari-
ables is presented in the next section, followed by SAT-
based greedy minimization of the refinement set. Prior art in
abstraction-refinement algorithms [5], [7], [8] can be described
with a similar framework of pseudo code. However, these
algorithms were all based on the analysis of a single ACE.
Note that even an optimal refinement algorithm based on a
single counterexample cannot necessarily guarantee a good
overall refinement. GRAB will be compared to these alternative
methods in the experimental-result section.

V. REFINEMENT VARIABLE SELECTION

We consider the refinement problem as a two-player reach-
ability game in the abstract model. Given the model A and a

WANG et al.: IMPROVING ARIADNE’S BUNDLE BY FOLLOWING THREADS IN ABSTRACTION REFINEMENT

target predicate —p, the model checking of AGp can be viewed
as a two-player concurrent reachability game [44], [45]. The
two players are the hostile environment and the abstract model;
they play by controlling the values of the pseudoprimary inputs
of the abstract model. In ./Z, the pseudoprimary inputs, denoted
by &, are the set of invisible variables. Let & be partitioned
into two sets, £ = wg U wg, among which wg is controlled by
the environment (player), and wg, which is controlled by the
system (player).

The positions of the game correspond to the states of the
abstract model. Let X, a valuation of the set of present-state
variables Z, be a position; similarly, let capital values of other
vector names stand for their valuations. From one position
X, the environment player chooses values for the variables in
wg and, simultaneously, the system player chooses values for
variables in wg. The new position is computed as the unique Y
satisfying T(X' X, Y) The goal of the environment player is
to go through the spurious paths and reach a state labeled —p
in spite of the system’s opposition. A (memoryless) strategy for
the environment player is a function that maps each state of A
to one valuation of the variables in wg. Likewise, a strategy for
the system player is a function that maps each state of A to one
valuation of the variables in wg.

Definition 1: A position XinAisa winning position for
the hostile environment if there exists an environment strategy
such that, for all system strategies, —p is eventually satisfied.

The concept of winning position is closely related to refine-
ment. Before the abstract model is refined, there are spurious
paths from the initial states to states labeled —p. This corre-
sponds to the partition (wg = &, wg = { }). The hostile en-
vironment controls all the invisible variables. Assuming that A
is deterministic, the environment always has a winning strategy
because it can force any transition by controlling the variables
in Z. Refinement can be viewed as removing some variables
from wg and putting them into wg. Here, we want to identify a
small subset of variables that, once removed from wg, will sig-
nificantly reduce the number of winning positions for the hos-
tile environment. Here, the two-player reachability game is used
to illustrate the intuition behind our refinement algorithm. How-
ever, our algorithm can also be viewed as choosing the variable
that removes the counterexamples with the largest capacity.

The refinement problem can be stated as follows. Among all
the possible partitions of & = wg U wg, choose the one that
gives the environment the least number of winning positions.
In this two-player reachability game, the partition that favors
the hostile environment the least also favors the abstract system
most. Once the partition is available, variables in wg together
with their elementary-transition relations are added into the
abstract model.

Given an input variable partition & = {wg,wgs} and the
spurious counterexamples represented by the SORs {S7}, the
environment’s winning positions inside 57 are computed as

Jwe Yws. 3. [sf (&) AT(&,2,9) A SH1(9)
which is the subset of S7 states from which the environment

can force the transition to S7*! despite the opposition from the
system.

2307

L

Fig. 9. Illustration of winning positions.

Although universal quantification (V) is not the same oper-
ation as composition, they both reduce the number of enabled
edges. Furthermore, it can be shown that when an edge label
has an essential variable, a variable which factors out of its
label (all the edges in Fig. 9 except the edge from state 5 to
state 7), composing that variable with the abstract model splits
the abstract edge into two edges (instead of four). Among the
two new tail states created by the splits, one has no fan-out
nodes—that is, it is a deadend split.

Given the partition {wg,wg}, the normalized number of
winning positions for the hostile environment inside S’ are
computed as

JwpVws.39.| S (@) AT (7, §) A Sj“(g))”
|57 ()|

{wg,ws}
Nj =

Here, |.| stands for the cardinality of the set. N;, the normalized
number of winning positions, is a good indicator of the impact
of refining with respect to the variables in wg. For the purpose
of refinement, we prefer the partition that gives N; the lowest
value.

Consider the abstract model in Fig. 9 as an example, in which
the first two rings of the SORs are S° = {1,2,5,6} and S! =
{3,4}, and the set of invisible variables is & = {g, f}. When
the partition of & is such that wg = {g} and wg = {f}, the set
of winning positions for the hostile environment is {1, 2}. State
1 is a winning position because when the hostile environment
makes the assignment g = 1, the system player will be forced to
a —p state (either three or four) no matter what value is assigned
to f. A similar argument applies to State 2 as well. According
to the definition of NV;

N{le Y Zq g 0
N{HN _ g5 @)
N{HaN _ g 95 3)
N Z g, @

It indicates that g is a better candidate than f for refinement,
because putting g alone in wg gives the hostile environment

2308

Refine with variable g Refine with variable f

Fig. 10. State splitting: g is better refinement candidate.

one winning position, while putting f alone in wg gives it two
winning positions.

To summarize, our refinement algorithm selects a small
subset of invisible variables into wg such that the partition
{wEg,wgs} minimizes

> e

0<j<l

V{wE,wS}.

This is greedily approximated inside REFINEABSTRACTION.
The one variable that minimizes the above number is repeatedly
picked (Line 19 in Fig. 8).

The computation of winning positions is similar to BDD-
based preimage computation. This computation is scalable
because it is performed on the abstract transition relations.
By pulling S’ out of the quantifications and using early-
quantification [41], [46], the computation can be made very ef-
ficient. Furthermore, the following common intermediate result
can be shared among different partitions of Z:

39 - |T(#,%9) ASTH(9)

Note also that wr U wg contains only invisible variables that
are in the local support of the current abstract model, not
necessarily the entire set of invisible variables.

A further explanation of the heuristic via state splitting is
shown by the two examples in Figs. 10 and 11. In the first
example, g is an essential variable to the label on the spurious
transition 2 — 4, and f is an irrelevant variable. A variable v
is essential to a function f(v) if and only if either f(0) =0
or f(1) = 0. By intuition, one would prefer refining with ¢
because f is irrelevant. This is indeed the right choice because
it will split State 2 into two new states (—g, 2) and (g, 2), only
one of which has an out-going edge to State 4. Therefore, it is
possible to remove this spurious edge—in the case when State
(—g,2) becomes unreachable after refinement. Refining with
f, however, does not have such an impact. Both of the two new
states (—f,2) and (f,2) will have out-going edge to State 4.
This is consistent with the game-based analysis—State 2 is a
winning position for the hostile environment if it controls g.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Refine with variable g Refine with variable f

Fig. 11. State splitting: g is still a better refinement candidate.

In the second example, it is no longer easy to figure out that
g is still a better refinement candidate than f because both g
and f appear in the edge labels (Fig. 11). However, the game-
based analysis tells us that State 1 is a winning position for the
hostile environment if it controls g. Refining with g produces
a similar deadend split—only one of the two new states has
an out-going edge to the next ring. Therefore, it is possible to
remove this spurious edge, in the case that State (g, 1) becomes
unreachable after refinement. Refining with f, however, always
leaves the spurious edges intact. This is also consistent with
the game-based analysis—State 1 is a winning position for the
hostile environment if it controls g.

The refinement method in [31] also relied on analyzing
multiple counterexamples. It was based on the classification of
invisible variables into strong 0/1 signals and conditional 0/1
signals. A strong 0/1 signal was defined as “in all counterexam-
ples; the value of the signal at the given phase of the trace is
zero or one, respectively.” In other words, only if a variable is
essential with respect to all the label functions of the abstract
edges from S7 to S7*! will it be classified as a strong 0/1
signal. In practice, however, this is a very rare case. In fact,
both f and g in Fig. 9 are not strong 0/1 signals; according
to Glusman et al. [31], both would be classified as conditional
0/1 signals and assigned the same weight. Compared to their
method, GRAB is often more accurate in identifying important
refinement variables. In Fig. 9, for instance, GRAB can tell that
g is actually a better refinement candidate than f.

VI. KEEP REFINEMENT SET SMALL
A. Refinement Direction

In our fine-grain abstraction model, there are two types of
elementary-transition relations: One is associated with state
variables, while the other is associated with BNVs. Accord-
ingly, there are two different refinement directions. If we refine
in the sequential direction, we will add more state variables
making a potentially larger state space in the refined model;
if we refine in the Boolean direction, we will add more logic
gates in the fan-in cones of visible state variables, which means
that the state space will stay the same but some spurious
transitions will be removed. Our experience shows that the

WANG et al.: IMPROVING ARIADNE’S BUNDLE BY FOLLOWING THREADS IN ABSTRACTION REFINEMENT

game-based refinement variable selection algorithm itself is not
intelligent enough to make the right move. If we do not impose
any distinction between the two directions, the final abstract
model often contains many redundant state variables. This
suggests that refinement needs some guidance on the proper
direction.

The idea of predicting the appropriate refinement direction
is as follows. If adding BNVs only can remove the spurious
counterexamples, then the Boolean direction is chosen to avoid
a potentially larger state space; otherwise, the sequential di-
rection is chosen. We predict the proper refinement direction
at every refinement step through a satisfiability check similar
to the concretization test. The major difference between this
check and the multithread concretization test is that it uses the
extended abstract model instead of the concrete model. The
extended abstract model is defined as the one that contains
the visible state variables as well as their complete fan-in
logic cones. In Fig. 1, for instance, if the current fine-grain
abstract model contains Latch 1 and Gate 5, 7, and 9, then the
extended abstract model contains Latch 1, and Gate 1, 2, 4, 5,
7, and 9.

Note that it is the set of BNVs appearing in the extended
abstract model but not in the fine-grain abstract model that
differentiates the two models. Let 1" and T, be the transition
relations of the fine-grain abstract model and the extended
abstract model, respectively. If ACEs exist in 7" but not in
T., then we should refine in the Boolean direction. Thus, the
refinement direction can be decided by solving the Boolean
formula V¢ = W A Ug, where

Up=1(X%) A\ T.(X', W X"
0<i<L

vs= [\ SV

0<i<L

U enables only paths of length L that are allowed by the
extended abstract model, while Ug enables only paths in the
abstract SORs. Since there exist some length-L counterexam-
ples in the fine-grain abstract model, an unsatisfiable ¥ means
that it is possible to remove these counterexamples by adding
only BNVs in the fan-in cones of the current visible state
variables; in this case, we choose the Boolean direction. If
W€ is satisfiable, it is impossible to remove all these length-L
counterexamples by adding BNVs only. We need to add more
state variables by refining in the sequential direction.

B. Refinement Minimization

Once the entire spurious SORs are gone, all the newly added
variables form a sufficient refinement set—that is, they are
sufficient for removing all the current-length spurious coun-
terexamples. However, this refinement set may not be minimal.
Given a sufficient set of refinement variables and the SORs, the
refinement-minimization problem can be defined as finding the
minimal subset of refinement variables that can kill the spurious
counterexamples. In previous work [6], [8], a trial-and-error-
based greedy minimization was used to remove the possible
redundant variables. This greedy minimization can also be ap-

2309

plied here. With fine-grain abstraction, however, minimization
must be applied in both refinement directions with respect to
the entire SORs instead of a single counterexample.

According to our method for deciding refinement directions,
we do not refine in the Boolean direction unless the set of vis-
ible state variables becomes sufficient (i.e., no counterexample
exists in ﬁ). As soon as a sufficient set of state variables is
added, it is minimized with respect to the entire bundle of coun-
terexamples before refinement shifts to the Boolean direction.
When a set of state variables is being minimized, the extended
abstraction model induced by these state variables is unrolled
to form the SAT formula ¥ i (referred to the previous section).
Every time a state variable is removed from the refinement set,
all the BNVs that are relevant only to this state variable are
also pruned away. Note that although we have a sufficient set of
state variables, ACEs of the current length may still exist in the
fine-grain abstract model; although, they do not appear in the
extended abstract model any more. After refinement shifts to
the Boolean direction, only BN'Vs will be added until the entire
SORs are removed; at this point, the set of newly added BNVs
is greedily minimized.

Our refinement minimization resembles the multithread con-
cretization test. The only difference is that, in concretization
test, we unroll the concrete model L time frames to capture all
length-L concrete paths; in refinement minimization, we unroll
the abstract models (ﬁ for minimizing the state variables, and
T for minimizing BNVs). For every variable in the sufficient
set, we first remove it from the set and then check whether
the spurious counterexamples come back or not. If they do not
come back, that variable is proved to be redundant; otherwise,
the variable is necessary and must be added back. Since the
satisfiability checks here are conducted in the abstract models,
which can be arbitrarily smaller than the concrete model, these
SAT problems are usually much easier to solve.

C. Sequential Don’t Cares

Previous work in abstraction refinement divided the original
system into two parts: a set of visible variables and a set of
invisible variables. Model checking was applied to the abstract
model that contains only the elementary-transition relations of
visible variables. The elementary-transition relations of invisi-
ble variables, on the other hand, were completely ignored. Since
their transition constraints are removed, the invisible variables
are treated as pseudoprimary inputs in model checking, they
can take arbitrary values at all times. ACEs may be spurious
because the valuations of pseudoprimary inputs that are respon-
sible for triggering these counterexamples may not be allowed
in the concrete system.

With some additional analysis of the invisible part of the
system, we can further constrain these invisible variables (or
pseudoprimary inputs). As is illustrated in Fig. 12, we decom-
pose the invisible part of the system into a series of submodules,
each of which contains a subset of the invisible latches. The
decomposition is based on the machine-decomposition algo-
rithm originally proposed by Cho et al. [23] in the context
of reachability analysis. Approximate reachable states of the
invisible part can be computed by analyzing each submod-
ule, in turn, assuming that the other submodules are in any

2310

1

Abstract Model Remaining Submodules

Fig. 12. Sequential don’t cares from remaining submodules.

states that have already been estimated to be reachable. The
machine-by-machine (MBM) process of reachability analysis
is iterated until a least fixpoint is reached. As is pointed out by
Moon et al. [47], computing approximate reachable states with
the MBM algorithm can be several order-of-magnitudes faster
than the concrete reachability analysis due to the decoupling of
the different submodules.

The set of approximate reachable states of the invisible part
computed by MBM is an upper bound on the set of exact
reachable states. It can be used to constrain the behavior of the
invisible variables of the abstract model. If certain valuations of
the invisible variables are not even in the set of approximate
reachable states, they will never appear in the original sys-
tem. Therefore, during the reachability analysis of the abstract
model, these pseudoprimary input conditions can be disabled.

In our current implementation, the machine decomposition
is applied to the entire system followed by the least fix-
point machine by machine (LMBM) [47] traversal of the
submachines, as described above. The approximate reachable
states are computed only once before abstraction refinement;
they are then used in the abstraction refinement to constrain the
forward reachability analysis of the abstract models at every
abstraction level. Specifically, the BDD operation constrain
[48] is used to remove spurious transitions from 7" by using
the approximate reachable states as the care set. Constraints
on the behavior of the abstract model due to the neighboring
submachines prevent some spurious ACEs, leading to the
decision of a property possibly earlier in the refinement cycle.

Note that a more systematic integration of machine de-
composition and approximate reachability analysis into the
abstraction-refinement paradigm is also possible. The result
would be a multiway partition refinement process. Partitioning
of the model into submachines can be done so that the abstract
model is one of the many submachines. Refinement is then
considered as merging the abstract model with some other
submachines.

VII. EXPERIMENTS

We have implemented our GRAB algorithm and two compet-
ing counterexample guided refinement algorithms in VIS-2.0
[35], [36]. We use Colorado University Decision Diagram
(CUDD) for the BDD-based computation and Chaff [49] as the
back-end SAT solver. The experiments were run under Linux on

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

an IBM IntelliStation with a 1.7-GHz Intel Pentium 4 CPU and
2 GB of RAM. CPU times are in seconds and are all inclusive.

L 5 ‘ i‘} § ‘ i‘M ‘ ______ ﬁ A. Comparison of Refinement Algorithms

Table I compares two variants of the GRAB algorithm
against the BDD-based check_invariant algorithm in VIS
(CI), BMC, the SepSet refinement algorithm [7], a variant of
SepSet called SepSet+, and the SAT conflict analysis-based
refinement algorithm (CA) of [8]. Here, we focus on comparing
the performance of the various refinement variable-selection
algorithms; for the purpose of this controlled experiment, the
same coarse-grain abstraction and concretization test are used
for all abstraction and refinement methods. The CI experiments
consist of forward reachability analysis with early termination.
For BMC, only the times for failing properties are reported.
BMC in VIS checks for one-step inductive invariants, but none
of our invariants is one-step inductive. The variant of GRAB,
denoted by GRAB, does not perform refinement minimization.
The variant SepSet+ differs from SepSet because it minimizes
the number of variables in the separation set, instead of the size
of the separation tree.

Each model checking run was limited to 8 h. Dynamic
variable reordering was enabled (with method sift) for all
BDD operations. The comparison was conducted on 14 models,
coming from both industry and the VIS verification bench-
marks [36].

In Table I, the second column lists the number of binary
variables in the cone of influence (COI) of the property. The
third column shows the length of the counterexample or of the
last ACE encountered by GRAB if the property holds (indi-
cated by a T). For each of the abstraction-refinement methods
compared, iter is the number of refinement iterations and regs
is the number of state variables in the proof or disproof. If an
experiment ran out of time, the number of iterations performed
up to that point and the number of state variables in the last
abstract model are given in parentheses. For GRAB, we also
report sat, which is the time spent in the SAT solver during
ACE concretization. Note that in GRAB, iter can be larger than
regs because of refinement minimization.

Note that both variants of the GRAB algorithm significantly
outperform CI, SepSet, and CA in terms of CPU time. BMC has
the best times for several failing properties, but fails to com-
plete for the hardest problems and for the passing properties.
Regarding the size of the BDDs, GRAB is much more efficient
than CI; SepSet and CA have even fewer BDD nodes in their
model-checking phase, and they use SAT instead of BDDs in
the refinement phase.

Table II compares the final abstractions of GRAB and CA. In
the table, g is the final set of state variables produced by GRAB,
while c is the final set of state variables produced by CA. The
first three columns are repeated from Table 1.

Table II shows that, in general, there is very good correlation
between the final abstractions produced by CA and GRAB. In
the 23 experiments that both methods completed, GRAB and
CA produced the same final abstraction in four cases. In another
ten cases, the abstraction produced by GRAB is strictly better
than the one of CA. Conversely, in two cases, CA produces an
abstraction that is strictly better than the one of GRAB. These

WANG et al.: IMPROVING ARIADNE’S BUNDLE BY FOLLOWING THREADS IN ABSTRACTION REFINEMENT 2311
TABLE 1
PERFORMANCE COMPARISON FOR INVARIANT CHECKING ALGORITHMS
| circuit | COL | cex ” CI “ BMC | SepSet i SepSett+ I CA I GRAB— GRAB |
regs len time time |[time [ter | regs |[time | iter [regs |[time [iter [regs |[time [iter [regs |[time [iter | regs [sat |
Dl1-pl 101 9 45 1 48 11 38 74 9 21 98 15 26 9 18 21 9 18 21 1
D23-pl 85 5 7 1 8 2 21 17 2 21 11 1 21 29 5 23 20 5 21 1
D24-pl 147 9 >8h 27 1 0 4 1 0 4 1 0 4 1 0 4 1 0 4 1
D24-p2 | 147 T(9) >8h - [[6982 2 8 7087 2 8 || 2153 | 34 77 1 3 8 3 3 8 1
DI1-p2 101 13 1947 2 1774 27 45 962 23 38 423 28 44 27 25 28 51 37 23 1
D22-pl | 140 10 58 2 615 3] 133 1005 5 135 728 3 133 537 3] 134 720 3] 132 1
D1-p3 101 15 1157 3 623 22 36 446 19 32 636 | 25 39 39] 23 27 56 | 34 25 2
D24-p5 | 147 T(2) >8h - 310 4 7 944 3 7 36 4 11 4 4 6 3 4 5 1
D12-pl 48 16 5 5 106 22 32 124 20 35 64 | 12 28 6| 17 24 141 25 23 1
D2-pl 94 14 166 6 147 5 48 280 5 48 239 7 50 124 5 53 180 | 10 48 1
DI16-pl | 531 8 837 10 [>8h [(3%) [(4D) >8h [(36) [N 890 3 16 282 9 14 92 9 14 5
D24-p3 | 147 T(3) >8h -]l >8h | (D 4) >8h 2) 4) 62 5 11 37 6 8 20 6 8 1
D5-pl 319 31 513 58 43 4 13 148 4 13 82 3 13 26 9 18 31 9 18 | 12
D24-p4 | 147 T(3) >8h - 545 4 7 711 4 7 70 5 11 29 6 8 43 6 8 1
D21-pl 92 26 63 3787]| 3790 39 88 2402 36 85 1922 [28 79 | 1010 | 11 76 || 2817 | 26 66 3
Bpl 124 | T(18) || 7453 | 4350 | 14 | 27 || 4360 | 14 27 284 5 19 88 | 19| 24 73| 19| 18| 6
B-p2 124 17 12988 150 110 2 7 115 2 7 108 2 7 220 8 13 93 8 7| 11
MO-pl 221 T(3) >8 h - >8h | (O (3) >8h 0) 3) 1182 9 19 219 | 14 17 136 | 14 16 | 20
B-p3 124 T(4) 12466 - >8h | (74 | (80) >8h [(95) | (101) 167 6 42 144 | 35 52 223 | 35 43 2
D21-p2 92 28 152 || 10515 4146 36 85 2930 37 86 [2962 | 30 83 I 2079 | 19 89 || 4635 | 41 70 6
B-p4 124 T(5) 7089 - | 9255 49 67 || 10360 54 68 228 [43 157 | 36 54 393 [47 42 3
B-p0 124 | T(17) 7467 >8h | (54) | (6]) >8h | 39) 47 || 2644 7 49 330 | 28 29 || 1256 | 32 24 | 10
rcu-pl 2453 | T(2) >8 h 375 7 11 375 7 11 [| >8h 5 (9) 197 9 12 195 9 10 0
D4-p2 230 [T(19) 765 >8h | (5 [(6 >8h | (10) 22 [>8n | 3] a7 682 | 38 69 | 1103 | 69 38 6
TABLE 1II
CORRELATION BETWEEN FINAL PROOFS (GRAB VERSUS CA)
[circuit [COL [cex [[[g[[e[[lgUecl [fgnel [lg\e[| [\ gl [subset? |

Dl-pl 101 9 21 26 27 20 1 6 no

D23-pl 85 5 21 21 21 21 0 0 yes

D24-pl 147 9 4 4 4 4 0 0 yes

D24-p2 147 T(9) 8 77 77 8 0 69 strict

D1-p2 101 13 23 44 44 23 0 21 strict

D22-pl 140 10 132 133 133 132 0 1 strict

D1-p3 101 15 25 39 40 24 1 15 no

D24-p5 147 T(2) 5 11 11 5 0 6 strict

D12-pl 48 16 23 28 28 23 0 5 strict

D2-pl 94 14 48 50 50 48 0 2 strict

D16-pl 531 8 14 16 16 14 0 2 strict

D24-p3 147 T(3) 8 11 13 6 2 5 no

D5-pl 319 31 18 13 18 13 5 0 strict

D24-p4 147 T(3) 8 11 13 6 2 5 no

D21-pl 92 26 66 79 81 64 2 15 no

B-pl 124 T(18) 18 19 19 18 0 1 strict

B-p2 124 17 7 7 7 7 0 0 yes

MO-pl 221 T(3) 16 19 21 14 2 5 no

B-p3 124 T(4) 43 42 43 42 1 0 strict

D21-p2 92 28 70 83 85 68 2 15 no

B-p4 124 T(5) 42 43 43 42 0 1 strict

B-p0 124 T(17) 24 49 49 24 0 25 strict

reupl | 2453 | T0) 0] O 7 7 7 7 strict

D4-p2 230 T(19) 38 | (171) ? ? ? ? ?

differences are in part a consequence of applying refinement
minimization once every outer iteration in GRAB, instead of
once every inner iteration. The other sources of difference are
the order in which variables are selected for refinement (this
is what happens in D24-p2) and the order in which they are
considered by the greedy-minimization procedure.

Though we exercised diligence in implementing the algo-
rithms of [7] and [8], there remain differences between the
originals and our rewritings. For instance, in order to do the
controlled experiment, we used the coarse-grain approach when
comparing various refinement methods. This is not the case of
the original methods of [8] and will, in some cases, impede the
search for a good abstraction. However, the drawback is shared

by all the methods we implemented and, therefore, should not
have a major impact on the comparison we present.

B. Comparing Abstraction Efficiency

Further evidence for the importance of global guidance is
provided by an analysis of abstraction efficiency for 80 mid-
size test cases from the VIS Benchmarks. Each test case has
a passing property and a nontrivial abstract model. It requires
at least one refinement iteration. The abstraction efficiency is
zero (100%) if the final model contains all (no) state variables.
Fig. 13 shows scatter plots of the abstraction efficiency of
SepSet, CA, and GRAB. SepSet+ behaves like SepSet. Each

2312

=
A

=)

= 100 e
& I
Z -

] A
= 80 .

S +
= g

P + +

el o +
= 60 7

8 '»' +
o * +

= At +
=5 40 7 *

o 1

= s +

:3 20 o +

] LIS

E R i

< At + o +

J

0 20 40 60 80 100
Abstraction efficiency by method GRAB

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

<
O 100 o
3 2
= o+
= A
g 80 %
o .
= B
S Ky +
% 60 i .
8 Ak *
T 40 o
£ s *
S PO
£ 20 ety
7 # + o+
= & + +
< F + v +

G +

0 20 40 60 80 100

Abstraction efficiency by method GRAB

Fig. 13. Comparison of abstraction efficiency. (a) GRAB versus SepSet and (b) GRAB versus CA.
TABLE III
EFFECTIVENESS OF FINE-GRAIN ABSTRACTION AND USE OF SEQUENTIAL DON’T CARES
COl COI | cex GRAB +FINEGRAIN +ARDC
circuit regs | gates | len time | regs time | regs time | regs
Dl-pl 101 5k 9 9 21 12 20 14 20
D23-pl 85 3k 5 20 21 3 21 14 21
D24-pl 147 8k 9 1 4 1 4 1 4
D24-p2 147 8k T 3 8 3 8 3 8
D1-p2 101 5k 13 51 23 27 23 29 23
D22-pl 140 7k 10 720 132 242 132 191 132
D1-p3 101 5k 15 56 25 32 23 33 23
D24-p5 147 8k T 3 5 4 6 2 5
D12-pl 48 2k 16 14 23 24 23 19 24
D2-pl 94 18 k 14 180 48 108 49 59 48
Dl6-pl 531 34k 8 92 14 25 14 21 14
D24-p3 147 2k T 20 8 4 6 2 5
D5-pl 319 25k 31 31 18 42 13 32 13
D24-p4 147 8k T 43 8 4 6 2 5
D21-pl 92 14k 26 2817 66 2725 70 622 67
B-pl 124 2k T 173 18 189 19 159 18
B-p2 124 2k 17 93 7 95 7 90 7
MO-pl 221 29k T 136 16 204 13 942 13
B-p3 124 2k T 223 43 76 43 62 43
D21-p2 92 14k 28 4635 70 1748 75 868 67
B-p4 124 2k T 393 42 101 43 108 42
B-p0 124 2k T 1256 24 1507 24 1484 24
rcu-pl 2453 38k T 195 10 188 10 216 10
D4-p2 230 8k T 1103 38 204 38 195 38
TU-pl 4494 | 154 k T >8 h - 2226 12 2263 12
1U-p2 4494 | 154k T >8h - 930 14 699 12
Total >16 h
+12207 10724 8130

point below the diagonal represents a win for GRAB. Scatter
plots for the other pairs of methods (not shown for lack of
space) show no clear winner.

Refinement minimization, though essential for good
performance of CA, does not always improve CPU time when
applied to our refinement scheme. The time spent checking the
variables for redundancy and the additional iterations are not
always offset by the reduction in the size of the abstraction.
Nonetheless, we argue that as we progress toward larger
models, refinement minimization adds to the robustness of the
method.

C. Fine-Grain Abstraction and Sequential Don’t Cares

Experiments were also conducted to test the effectiveness
of fine-grain abstraction and the use of sequential don’t cares.

In the implementation of the fine-grain abstraction, we set
the BDD threshold of frontier partitioning to 1000. Every
time the BDD size of the transition function went beyond
this threshold, a BNV was inserted in the combinational logic
cones. We have found that setting the BDD threshold to 1000
is consistently better when dealing larger models; although, the
default threshold 5000 works well for smaller ones (such as
VIS’s own test suite).

The first four columns of Table III repeat the statistics of the
test cases. The first column shows the names of the designs
and the second and third columns give the numbers of binary
state variables and logic gates in the COI, respectively. The
fourth column indicates whether the properties are true (T)
or false (F). If the properties are false, the lengths of the
shortest counterexamples are given. The following six columns

WANG et al.: IMPROVING ARIADNE’S BUNDLE BY FOLLOWING THREADS IN ABSTRACTION REFINEMENT

reachability time in percentage

80

20 H

I ANNNN. N . nnllg

oL LU HHANHHN el o= B HHHHHH

1234567 8 910111213141516 1718 192021 22 23 242526

computing SORs time in percentage

80

40

ol m AN N nﬂﬂ - IHI‘IH

12345678 91011121314151617 181920212223 242526

concretization time in percentage

80 1

20 =

NIIETT R i

Nn-fl

12345678 91011121314151617 181920212223 242526

refinement time in percentage

80

40 A

oL AT HHH . H nalll

12345678 91011121314151617 18192021 2223242526

1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

1200

1000

800

600

400

200

reachability time in seconds

mm O Un

1234567 8 91011121314151617 18192021 2223242526

computing SORs time in seconds

e m W

12345678 91011121314151617181920212223242526

concretization time in seconds

I T | TR

1234567 8 91011121314151617 18192021 2223242526

refinement time in seconds

”[‘Inﬂ... ol

12345678 91011121314151617181920212223242526

Fig. 14. CPU time spent on forward reachability analysis, computing SORs, multithread concretization test, and refinement with GRAB.

compare the performance of three different implementations:
GRAB uses the coarse-grain abstraction, +FINEGRAIN is
GRAB plus the fine-grain abstraction method, and +ARDC

is GRAB plus fine-grain abstraction and sequential Don’t
Cares. The underlying algorithm for picking refinement vari-
ables is the same for the three methods. For each method, the

2314

CPU time in seconds and the number of state variables in the
final abstract model are shown.

The fine-grain-abstraction approach shows a significant per-
formance improvement over the conventional coarse-grain ap-
proach. First, it is able to finish the two largest test cases that
cannot be verified otherwise. Careful analysis of IU-pl and
IU-p1, two problems from the instruction unit of the PicoJava
microprocessor, shows that some of their registers have ex-
tremely large fan-in combinational logic cones. Without fine-
grain abstraction, abstract models with less than ten registers
would have been too complex for the model checker to deal
with. For the other test cases that both methods managed to
finish, +FINEGRAIN is significantly faster than GRAB. In fact,
the total CPU time required to finish the 24 remaining test cases
is 12207 s for GRAB, and 7562 s for +FINEGRAIN.

With the use of sequential don’t cares, the performance of
+FINEGRAIN is further improved. +ARDC is significantly
faster than both +FINEGRAIN and GRAB on more than half
of the 26 test cases and is also comparable for the remaining
ones. The total CPU time required to finish all the 26 test cases
is 10724 s for +FINEGRAIN and 8130 s for +ARDC; this is an
average of 25% speedup.

D. Runtime Breakdown in Abstraction Refinement

Fig. 14 shows the allocation of CPU time among the different
phases in abstraction refinement. These data were extracted
with +ARDC; therefore, they correspond to the last column
in Table III. The four figures at the left-hand side give in
percentage the CPU time spent on reachability analysis, on
computing the SORs, on the multithread concretization test,
and on computing the refinement with GRAB, respectively.
The four figures at the right-hand side give the corresponding
CPU time in seconds. The 26 test cases are listed on the z-axis
in all figures. Note that other things also consume part of
the CPU time, such as incrementally building the BDD parti-
tions, the creation, and deletion of abstract finite-state machine
(FSM), etc.

Fig. 14 demonstrates that forward reachability analysis and
computing the refinement with GRAB have consumed most of
the CPU time. The backward reachability analysis to build the
SORs, on the other hand, often takes significantly less time than
its forward counterpart, even though it collects all the shortest
counterexamples. This is due to the application of forward
onion rings as care sets in the corresponding preimage compu-
tations. Furthermore, the actual run time of the concretization
test is often small (as shown by the “in seconds” figure), even
though it takes a significant amount in percentage from the total
CPU time (as shown by the “in percentage” figure). On this
particular set of test cases, multithread concretization test is
never the performance bottleneck. On the harder problems, test
cases 19-26, its overhead becomes negligible.

The performance of forward reachability analysis is limited
by the capacity of the state-of-the-art BDD-based symbolic
techniques. As the abstract model gets larger, BDD-based com-
putations become more and more expensive. The size the ab-
stract model also affects the overhead of the GRAB refinement
algorithm. The size of the BDDs for representing the SORs

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

becomes larger as the model gets more complex. In addition,
a larger abstract model often has more invisible variables in its
local support, which means that more CPU time needs to be
spent on scoring them.

VIII. CONCLUSION

Recent abstraction-refinement research and the advances in
BDDs and SAT solvers have led to model-checking algorithms
that exhibit much increased robustness on problems with hun-
dreds of state variables and are beginning to foray into the
thousands of variables. The combination of decision procedures
that characterize those methods raises the issue of global versus
local guidance in the search for counterexamples. In this paper,
we have shown that significant performance improvements
can be achieved by emphasizing global guidance, smaller ab-
straction granularity, and the use of don’t cares of invisible
variables.

Our experience with real-world designs shows that many of
them have a large number of state variables and very com-
plex combinational logic cones. To build meaningful yet still
tractable abstract models for these complex systems, fine-grain
abstraction has been proved to be indispensable. Furthermore,
emphasizing global guidance in refinement pays off. Our SOR-
based approach, based on the analysis of all shortest counterex-
amples, often achieves a much higher abstraction efficiency
relative to methods based on one counterexample only. Since
our GRAB refinement variable-selection algorithm is executed
on the abstract model and its local support variables only, it
is also more scalable than many of the previous methods that
require computation on the concrete system. We have found that
the cost of concretization test for multiple counterexamples is
usually less than the cost of SAT-based refinement procedures.
In addition, a practical lessening of the concretization check
problem may also come from an incremental approach like the
one in [9].

REFERENCES

[1] C. Wang, B. Li, H. Jin, G. D. Hachtel, and F. Somenzi, “Improving
Ariadne’s bundle by following multiple threads in abstraction refinement,”
in Proc. Int. Conf. Comput.-Aided Des., Nov. 2003, pp. 408-415.

[2] C. Wang, G. D. Hachtel, and F. Somenzi, “Fine-grain abstraction and
sequential don’t cares for large scale model checking,” in Proc. Int. Conf.
Comput. Des., San Jose, CA, Oct. 2004, pp. 112-118.

[3] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic,” in Proc. Workshop
Logics Programs. Berlin, Germany: Springer-Verlag, 1981, vol. 131,
LNCS, pp. 52-71.

[4] K.L.McMillan, Symbolic Model Checking. Boston, MA: Kluwer, 1994.

[5] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Proc. CAV, E. A. Emerson and
A.P. Sistla, Eds. Berlin, Germany: Springer-Verlag, Jul. 2000, vol. 1855,
LNCS, pp. 154-169.

[6] D. Wang, P.-H. Ho, J. Long, J. Kukula, Y. Zhu, T. Ma, and R. Damiano,
“Formal property verification by abstraction refinement with formal, sim-
ulation and hybrid engines,” in Proc. Des. Autom. Conf., Las Vegas, NV,
Jun. 2001, pp. 35-40.

[7]1 E. Clarke, A. Gupta, J. Kukula, and O. Strichman, “SAT based

abstraction-refinement using ILP and machine learning,” in Proc. CAV,

E. Brinksma and K. G. Larsen, Eds. Berlin, Germany: Springer-Verlag,

Jul. 2002, vol. 2404, LNCS, pp. 265-279.

P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang,

“Automated abstraction refinement for model checking large state spaces

using SAT based conflict analysis,” in Formal Methods in Computer Aided

[8

[t}

WANG et al.: IMPROVING ARIADNE’S BUNDLE BY FOLLOWING THREADS IN ABSTRACTION REFINEMENT

Design, vol. 2517, LNCS, M. D. Aagaard and J. W. O’Leary, Eds.
York: Springer-Verlag, Nov. 2002, pp. 33-51.

[9] S. Barner, D. Geist, and A. Gringauze, “Symbolic localization reduc-
tion with reconstruction layering and backtracking,” in Proc. CAV,
E. Brinksma and K. G. Larsen, Eds. Berlin, Germany: Springer-Verlag,
Jul. 2002, vol. 2404, LNCS, pp. 65-77.

[10] K. L. McMillan and N. Amla, “Automatic abstraction without counterex-
amples,” in Proc. TACAS, Warsaw, Poland, Apr. 2003, vol. 2619, LNCS,
pp. 2-17.

[11] A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar, “Learning from
BDDs in SAT-based bounded model checking,” in Proc. Design Automa-
tion Conf., Jun. 2003, pp. 824-829.

[12] B. Li, C. Wang, and F. Somenzi, ”A satisfiability-based approach to
abstraction refinement in model checking,” Electron. Notes Theor. Com-
put. Sci., vol. 89, no. 4, pp. 143-155, 2003. International Workshop on
Bounded Model Checking. [Online]. Available: http://www.elsevier.nl/
locate/entcs/volume89.html

[13] B. Li and F. Somenzi, “Efficient computation of small abstraction refine-
ments,” in Proc. Int. Conf. Comput.-Aided Des., San Jose, CA, Nov. 2004,
pp. 518-525.

[14] B. Li, C. Wang, and F. Somenzi, “Abstraction refinement in symbolic
model checking using satisfiability as the only decision procedure,” Softw.
Tools Technol. Transf., vol. 2, no. 7, pp. 143-155, 2005.

[15] L. Zhang, M. R. Prasad, and M. S. Hsiao, “Incremental deductive and
inductive reasoning for SAT-based bounded model checking,” in Proc.
Int. Conf. Comput.-Aided Des., San Jose, CA, Nov. 2004, pp. 502-509.

[16] L. Zhang, M. R. Prasad, M. S. Hsiao, and T. Sidle, “Dynamic abstraction
using SAT-based BMC,” in Proc. ACM/IEEE Des. Autom. Conf., San Jose,
CA, Jun. 2005, pp. 754-757.

[17] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by constructions or approximation of fix-
points,” in Proc. ACM Symp. Princ. Program. Lang., 1977, pp. 238-250.

[18] R. Milner, “An algebraic definition of simulation between programs,” in
Proc. 2nd Int. Joint Conf. Artif. Intell., 1971, pp. 481-489.

[19] D. L. Dill, A. J. Hu, and H. Wong-Toi, “Checking for language in-
clusion using simulation relations,” in Proc. CAV, K. G. Larsen and
A. Skou, Eds. Berlin, Germany: Springer-Verlag, Jul. 1991, vol. 575,
LNCS, pp. 255-265.

[20] K. Fisler and M. Y. Vardi, “Bisimulation and model checking,” in Proc.
CHARME. Berlin, Germany: Springer-Verlag, Sep. 1999, vol. 1703,
LNCS, pp. 338-341.

[21] F. Balarin and A. L. Sangiovanni-Vincentelli, “An iterative approach to
language containment,” in Proc. CAV, C. Courcoubetis, Ed. Berlin,
Germany: Springer-Verlag, 1993, vol. 697, LNCS, pp. 29—40.

[22] D. E. Long, “Model checking, abstraction, and compositional verifica-
tion,” Ph.D. dissertation, Dept. Comput. Sci., Carnegie-Mellon Univ.,
Pittsburgh, PA, Jul. 1993.

[23] H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi, “Algorithms
for approximate FSM traversal based on state space decomposition,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 15, no. 12,
pp. 1465-1478, Dec. 1996.

[24] R. P. Kurshan, Computer-Aided Verification of Coordinating Processes.
Princeton, NJ: Princeton Univ. Press, 1994.

[25] R. H. Hardin, Z. Har’El, and R. P. Kurshan, “COSPAN,” in Proc. CAV,
T. Henzinger and R. Alur, Eds. Berlin, Germany: Springer-Verlag, 1996,
vol. 1102, LNCS, pp. 423-4217.

[26] A. Pnueli, “The temporal logic of programs,” in Proc. IEEE Symp. Found.
Comput. Sci., Providence, RI, 1977, pp. 46-57.

[27] W. Lee, A. Pardo, J. Jang, G. Hachtel, and F. Somenzi, “Tearing based
abstraction for CTL model checking,” in Proc. Int. Conf. Comput.-Aided
Des., San Jose, CA, Nov. 1996, pp. 76-81.

[28] J. Lind-Nielsen and H. R. Andersen, “Stepwise CTL model checking of
state/event systems,” in Proc. CAV, N. Halbwachs and D. Peled, Eds.
Berlin, Germany: Springer-Verlag, 1999, vol. 1633, LNCS, pp. 316-327.

[29] A. Pardo and G. D. Hachtel, “Incremental CTL model checking us-
ing BDD subsetting,” in Proc. Des. Autom. Conf., San Francisco, CA,
Jun. 1998, pp. 457-462.

[30] J.-Y. Jang, I.-H. Moon, and G. D. Hachtel, “Iterative abstraction-
based CTL model checking,” in Proc. DATE, Paris, France, Mar. 2000,
pp. 502-507.

[31] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, and M. Y. Vardi,
“Multiple-counterexample guided iterative abstraction refinement: An
industrial evaluation,” in Proc. TACAS, Warsaw, Poland, Apr. 2003,
vol. 2619, LNCS, pp. 176-191.

[32] E. Y. C. Mang and P--H. Ho, “Abstraction refinement by controllability and
cooperativeness analysis,” in Proc. Design Automation Conf., San Diego,
CA, Jun. 2004, pp. 224-229.

New

2315

[33] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677-691, Aug. 1986.

[34] L. Zhang and S. Malik, “Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions,” in Proc. DATE, Munich, Germany, Mar. 2003, pp. 880—885.

[35] R. K. Brayton et al., “VIS: A system for verification and synthesis,” in
Proc. CAV, T. Henzinger and R. Alur, Eds. Berlin, Germany: Springer-
Verlag, 1996, vol. 1102, LNCS, pp. 428-432.

[36] [Online]. Available: http://vlsi.colorado.edu/~vis

[37] A.Gupta, M. K. Ganai, and P. Ashar, “Lazy constraints and SAT heuristics
for proof-based abstraction,” in Proc. Int. Conf. VLSI Des., Jan. 2005,
pp. 183-188.

[38] N. Amla, X. Du, A. Kuehlmann, R. Kurshan, and K. McMillan, “An analy-
sis of sat-based model checking techniques in an industrial environment,”
in Proc. CHARME, Oct. 2005, pp. 254-268.

[39] N. Amla and K. L. McMillan, “A hybrid of counterexample-based
and proof-based abstraction,” in Proc. Formal Methods Comput. Aided
Design, Nov. 2004, pp. 260-274.

[40] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cam-
bridge, MA: MIT Press, 1999.

[41] R. K. Ranjan, A. Aziz, R. K. Brayton, B. F. Plessier, and C. Pixley,
“Efficient BDD algorithms for FSM synthesis and verification,” presented
at Int. Workshop Logic Synthesis (IWLS), Lake Tahoe, CA, May 1995.

[42] A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar, “Abstraction
and BDDs complement SAT-based BMC in DiVer,” in Proc. CAV,
W. A. Hunt, Jr. and F. Somenzi, Eds. Berlin, Germany: Springer-Verlag,
Jul. 2003, vol. 2725, LNCS, pp. 206-209.

[43] G. Cabodi, S. Nocco, and S. Quer, “Improving SAT-based bounded model
checking by means of BDD-based approximate traversal,” in Proc. Conf.
Des. Autom. Test Eur., Munich, Germany, Mar. 2003, pp. 898-905.

[44] E. A. Emerson and C. S. Jutla, “Tree automata, mu-calculus and deter-
minacy,” in Proc. 32nd IEEE Symp. Found. Comput. Sci., Oct. 1991,
pp. 368-377.

[45] H. Jin, K. Ravi, and F. Somenzi, “Fate and free will in error traces,”
in Proc. TACAS, Grenoble, France, Apr. 2002, vol. 2280, LNCS,
pp. 445-459.

[46] 1.-H. Moon, J. H. Kukula, K. Ravi, and F. Somenzi, “To split or to conjoin:
The question in image computation,” in Proc. Design Automation Conf.,
Los Angeles, CA, Jun. 2000, pp. 23-28.

[47] 1.-H. Moon, J. Kukula, T. Shiple, and F. Somenzi, “Least fixpoint approxi-
mations for reachability analysis,” in Proc. Int. Conf. Comput.-Aided Des.,
San Jose, CA, Nov. 1999, pp. 41-44.

[48] O. Coudert, C. Berthet, and J. C. Madre, “Formal Boolean manipulations
for the verification of sequential machines,” in Proc. Eur. Conf. Design
Automation, Mar. 1990, pp. 57-61.

[49] M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Proc. Design Automation Conf.,
Las Vegas, NV, Jun. 2001, pp. 530-535.

Chao Wang received the B.S. degree from Peking
University, Beijing, China, in 1996, and the Ph.D.
degree from the University of Colorado, Boulder, in
2004, both in electrical engineering.

He is a Research Staff Member of NEC Lab-
oratories America, Princeton, NJ. His research
includes formal specification and verification of
concurrent systems (hardware, software, and embed-
ded systems).

Dr. Wang is a recipient of the 2003-2004 Associ-
ation of Computing Machinery (ACM) Outstanding
Ph.D. Dissertation Award in Electronic Design Automation.

Bing Li received the B.S. and M.S. degrees from
Huazhong University of Science and Technology,
Wuhan, China, in 1996 and 1999, respectively, and
the M.S. degree from the University of Colorado,
Boulder, in 2001, all in electrical engineering. He
is currently working toward the Ph.D. degree in the
ECE Department of University of Colorado.

His research includes formal verification, with a
focus on algorithms based on binary decision dia-
grams (BDD) and satisfiability (SAT).

2316

HoonSang Jin received the Ph.D. degree in electrical engineering from the
University of Colorado, Boulder, in 2005.

He is currently with Samsung Electronics, Korea. His research interests
include electronic design automation, with a focus on formal verification using
BDDs, Boolean satisfiability solvers, and circuit-based reasoning.

Gary D. Hachtel (S’62-M’65-SM’74-F’80-
LF’04) received the B.S. degree from California
Institute of Technology, Pasadena, in 1959, and
the Ph.D. degree from the University of California,
Berkeley, in 1964, both in electrical engineering.

He is a Professor Emeritus who has been working
for the last 20 years in the University of Colorado,
Boulder, in fields of logic synthesis and formal ver-
ification. For the 17 years prior to his stint at the
University of Colorado, he was a Research Staff
Member in the Department of Math Sciences, IBM
Research, Yorktown Heights, NY.

Dr. Hachtel received the IEEE CASS Mac Van Valkenburg Award in 2004,
for his distinguished career of fundamental innovations across the broad spec-
trum of semiconductor electronic design automation.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Fabio Somenzi received the Dr. Eng. degree in elec-
tronic engineering from Politecnico di Torino, Turin,
Italy, in 1980.

He is a Professor in the ECE Department, Uni-
versity of Colorado, Boulder. He has published
one book and over 140 papers on the synthesis,
optimization, verification, simulation, and testing
of digital systems. Prior to joining the University
of Colorado in 1989, he was with SGS-Thomson
Microelectronics, Italy, managing a team for com-
puter aids for digital design.

Dr. Somenzi has served as Associate Editor for IEEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN and the Springer Journal on Formal Methods in
Systems Design, and on the program committees of premier EDA conferences
including International Conference on Computer Aided Design (ICCAD),
digital-to-analog converter (DAC), International Conference on Computer
Design (ICCD), European Design Automation Conference (EDAC)/Design,
Automation and Test in Europe (DATE), International Workshop for Logic
Synthesis (IWLS), and International Symposium on Low Power Electronics
and Design (ISLPED). He was the Conference Cochair of Computer Aided
Verification (CAV) in 2003.

