14.3

Predicate Learning and Selective Theory Deduction
for a Difference Logic Solver

Chao Wang

Aarti Gupta

Malay Ganai

NEC Laboratories America
4 Independence way, suite 200, Princeton, NJ 08540

{chaowang, agupta, malay}@nec-labs.com

Abstract

Design and verification of systems at the Register-Transfer (RT)
or behavioral level require the ability to reason at higher levels of
abstraction. Difference logic consists of an arbitrary Boolean com-
bination of propositional variables and difference predicates and
therefore provides an appropriate abstraction. In this paper, we
present several new optimization techniques for efficiently deciding
difference logic formulas. We use the lazy approach by combin-
ing a DPLL Boolean SAT procedure with a dedicated graph-based
theory solver, which adds transitivity constraints among difference
predicates on a “need-to” basis. Our new optimization techniques
include flexible theory constraint propagation, selective theory de-
duction, and dynamic predicate learning. We have implemented
these techniques in our lazy solver. We demonstrate the effective-
ness of the proposed techniques on public benchmarks through a
set of controlled experiments.

Categories and Subject Descriptors
B.6.3 [Logic design]: Design aids— Verification
General Terms: Verification, Algorithms
Keywords: Difference logic, decision procedure, SMT solver, SAT

1. Introduction

Difference logic, known also as separation logic, consists of stan-
dard Boolean connectives as well as difference predicates of the
form (v; — v; < ¢) where v;, v; are integer variables and c is an
integer constant. In contrast to Boolean level modeling where inte-
ger variables are converted into bit-vectors, difference logic models
systems at a higher level of abstraction. Difference logic is a subset
of quantifier-free first order logic for which efficient decision pro-
cedures exist. It has been widely used in the automated verification
of pipelined micro-processors [4] and real-time systems [12]. A
satisfiability solver for this logic can also be used in software veri-
fication and sequential equivalence checking [15] between system-
level models and RTL. Because of these applications, SAT Modulo
Theory (SMT) solvers, including solvers for difference logic, have
become an important research topic.

This paper is focused on the efficient implementation of a word-
level solver for difference logic. We adopt a framework based on
the so-called lazy approach [3, 8, 1, 10, 19, 16, 18, 26], which
combines a DPLL [7] Boolean SAT procedure with a dedicated
theory solver. Transitivity constraints among difference predicates,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2006, July 24-28, 2006, San Francisco, California, USA.

Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

235

or theory lemmas, are derived by the theory solver and added on-
demand. In contrast to this is the eager approach [4, 24, 22, 14, 25],
which translates a difference logic formula directly into an equi-
satisfiable Boolean formula, on which it applies the Boolean SAT
solver. As has been demonstrated by several recent papers [16, 18,
26], the lazy approach is often better for deciding this particular
logic. In a more recent paper [9], the strengths of both eager small-
domain encoding and lazy approach have been combined to yield a
robust performance over a wide set of benchmarks.

In the lazy approach, a Boolean SAT solver works on a Boolean
abstraction of the original formula by replacing difference pred-
icates with fresh Boolean variables. The theory solver receives
assignments from the Boolean solver and performs theory propa-
gation, including consistency check of the assignments and theory-
based deduction. If a conflict occurs in the consistency check, it
returns a blocking clause to the Boolean solver to rule out the par-
ticular assignment; the theory solver can also deduce new implica-
tions and feed them back to the Boolean solver.

We propose three new optimization techniques to improve the
performance of a lazy solver. First, we make the invocation of the-
ory propagation adaptive. In principle, theory propagation can be
invoked at any stage of the Boolean constraint propagation (BCP).
Calling theory propagation earlier can prevent the Boolean solver
from exploring further an ultimately unsatisfying partial assign-
ment through the detection of a theory conflict; however, too fre-
quent theory solver calls may also incur a significant overhead.
We propose a unified theory constraint propagation framework in
which the timing of invocation can be changed easily, so that we
can conduct controlled experiments to find the best overall setting.
Our experiments show that overall it is desirable to call theory con-
straint propagation at every decision level after BCP finishes.

Second, we propose an efficient algorithm for theory deduction.
In [18], exhaustive theory deduction has been used to derive all pos-
sible theory related implications whenever a predicate changes its
value. Such an exhaustive approach can be costly since it requires
each time a complete single-source shortest path enumeration. As
shown in [26], the cost of a conventional shortest-path computation
is often orders-of-magnitude more expensive than an incremental
one. The authors of [26] choose to avoid theory deduction in or-
der to minimize the overhead (instead, they try to make consis-
tency check more efficient through incremental conflict detection).
We will show that incremental conflict detection can be augmented
with selectively deducing implications at no additional cost, there-
fore combining the aforementioned advantages of both approaches.

Third, we propose a new algorithm for dynamically learning new
difference predicates. We note that existing lazy solvers can only
learn new lemmas, i.e. relations among existing difference predi-
cates, but not new predicates'. In many cases this becomes a seri-

1 we have noticed that the word “predicate-learning” is overloaded. In [19],

ous limitation. In [24, 25], the authors used the diamonds formula
to demonstrate the worst-case exponential blow-up in lazy solvers.
To the best of our knowledge, all existing lazy solvers show ex-
ponential cost in dealing with diamonds. The reason is that their
theory propagation can add lemmas on existing predicates, but not
new difference predicates. The solutions provided in [24, 25] were
based on eager approaches (per constraint and small-domain en-
coding, respectively); however, eager approaches have their own
limitations. In this paper, we give a heuristic algorithm to automat-
ically learn important new predicates. Our experiments show that
the algorithm is often “smart” enough to pick up the right set of
predicates and as a result, it solves the diamonds example in linear
time. The identification of new predicates is similar in principle to
automatic predicate abstraction techniques [2, 11, 13] which dis-
cover new predicates in order to refine a given abstraction.

The rest of the paper is organized as follows. We provide tech-
nical background in Section 2. The three proposed techniques will
be presented in Sections 3, 4, and 5, respectively. We give our ex-
periments results in Section 6 and then conclude in Section 7.

2. Preliminaries

We represent all difference predicates in the form v; — v; < ¢,
where v; and v; are integer variable and c is a constant. Although
the above representation uses < only, predicates with other equality
and inequality relations can be rewritten into the above form.

2.1 Boolean Skeleton

A difference logic formula can be abstracted into a pure Boolean
skeleton by replacing all the difference predicates with new Boolean
variables. The Boolean skeleton is an abstraction because transi-
tivity constraints among predicates are removed. Therefore, the
Boolean skeleton may have more satisfying assignments than the
original formula. A (partial) assignment of the Boolean skeleton
corresponds to a conjunction set of difference constraints; some of
the predicates are set to true while others are set to false. If a solu-
tion (which is a set of constant values for the integer variables that
satisfy all difference constraints) exists, the assignment is called
consistent.

The consistency of a Boolean assignment can be checked by a
dedicated theory solver on the constraint subgraph. A constraint
subgraph G(V, E) is a weighted directed graph whose nodes are
the integer variables and whose edges are difference predicates or
their negations. For example, if the predicate (v; — v; < c¢) is set
to true, it corresponds to an edge (v;, v;) with weight c. Similarly,
the constraint —~(v; — v; < ¢), which is equivalent to (v; — v; <
—c—1), corresponds to an edge (v;, v;) with weight (—c — 1). An
assignment is consistent if and only if the corresponding constraint
subgraph does not have a negative weighted cycle.

If a negative weighted cycle exists, we can derive a transitivity
constraint from the cycle and add it as a blocking clause to augment
the Boolean skeleton. A lazy solver typically starts a DPLL search
on the Boolean skeleton and propagates assignments to a theory
solver for consistency check. It keeps augmenting the Boolean
skeleton with transitivity constraints until either a consistent full
assignment is found, or the augmented Boolean skeleton itself be-
comes unsatisfiable.

2.2 Theory Conflicts

Deciding the satisfiability of a difference logic formula in gen-
eral is NP-complete [20]. Consistency check on a conjunction set
of difference constraints requires polynomial time. A straightfor-

for instance, it was used as a synonym of “lemma-learning.”

236

ward implementation of conflict detection based on the Bellman-
Ford single-source shortest path algorithm [5] requires O(|V| | E|)
run time. Since consistency check needs to be called frequently
during a DPLL search, it has been made incremental by several re-
cent solvers [16, 6, 26]. The best complexity bound of incremental
negative cycle detection [21]is O(|V| log |V| + | E]).

Following the notation in [5], we represent the weight of edge
(u,v) by w[u, v] and the cost of node v by d[v]. We call the edge
(u,v) stable if the costs of the two nodes satisfy d[v] < d[u] +
wlu, v]. Edges that are not stable can be relaxed through the mod-
ification of costs of tail nodes, by assigning d[v] = d[u] + w[u, v].
Every time the cost of a node v changes by relaxation, we also
record in field 7[v] the node responsible for that change—that is,
m[v] = w if the change is due to stabilizing the edge (u,v).

Without the presence of negative cycles, all edges can be made
stable after a finite number of relax operations. The key to incre-
mental conflict detection is making sure that all edges remain stable
before and after every call to the theory solver (such a requirement
can often be met easily [26]). If adding a new edge creates a neg-
ative weighted cycle, the cycle must go through the added edge.
Therefore, an incremental conflict detection algorithm goes as fol-
lows: for every newly added edge, we check whether it is stable
and if not, keep relaxing it and edges affected by relaxation until
all edges become stable. If during this process the newly added
edge needs relaxation again, we find a negative cycle. We can re-
trieve the cycle by following [v] fields, since node responsible for
the last change to d[v] has been recorded in 7[v],

Depending on how edges are ordered in the sequence of relax
operations, incremental cycle detection may have different run time
complexity bounds. (The best one is achieved by ordering nodes in
a Fibonacci heap based priority queue.) It was reported in [26] that
for deciding difference logic, an incremental algorithm on-average
can have orders-of-magnitude reduction in the number of relax op-
erations compared to a non-incremental one.

3. Theory Constraint Propagation

In principle, the Boolean SAT solver can invoke the theory solver
at any stage of DPLL search to perform consistency check or theory
deduction. Invoking the theory solver earlier prevents the Boolean
solver from exploring further a partial assignment that is ultimately
unsatisfying. On the other hand, too frequent invocations may
cause a significant overhead since constraint propagation in the the-
ory solver, although it has been significantly improved lately, is still
more time-consuming than BCP. Whether an invocation scheme is
good or not also depends on the type of the input formula. Suppose
the formula is strongly constrained in the theory part but loosely
constrained in the Boolean part, calling the theory solver as early
as possible is better, because there is often a large number of satis-
fying assignments for the Boolean skeleton that are not satisfying
for the entire formula. On the other hand, if the formula is strongly
constrained in the Boolean part or does not even have a satisfy-
ing Boolean assignment, postponing theory propagation may avoid
unnecessary overhead.

We have designed the theory propagation procedure in such a
way that it can easily incorporate many different invocation set-
tings. The procedure is given in Figure 1, where the pseudo code
of deduce is a slight modification of standard BCP procedure of
Boolean SAT solvers (without the last five lines of the while loop,
it becomes standard BCP).

The function time_for_theory_propagation () returns true
whenever the appropriate time has come for calling the theory solver
— this is where we incorporate different invocation settings. The
function theory_detect_conflict () implements an incremen-

deduce ()

{
while (implications.empty()) {
set_var_value (implications.pop());
if (detect_conflict())
return CONFLICT;
add_new_implications () ;
if (time_for_theory.propagation()) {
if (theory.detect_conflict())
return CONFLICT;
theory add new_implications () ;
}
}
return NO_CONFLICT;
}

Figure 1: Adaptive constraint propagation (Boolean and theory).

tal negative cycle detection algorithm as in [26], which adds a
blocking clause whenever a negative cycle is found. A blocking
clause consists of the negation of all edges appearing in the nega-
tive cycle, which at this point of time is guaranteed to be evaluated
to false (a conflicting clause). Suppose the cycle (A, B, C) is de-
tected then the added clause is (—A V =B V —=C). The clause
is used by the Boolean SAT solver later for conflict analysis and
non-chronological backtracking. Theory deduction may be imple-
mented in theory_addnew_implications, which derives and
adds pure Boolean level implications to the queue implications.

Inside the function t ime_for_theory_propagation (), one can
easily implement the following invocation schemes (and many oth-
ers): (1) after the assignment of each predicate; (2) after BCP fin-
ishes at each decision level; and (3) after a full Boolean assign-
ment. Making the function always return true will implement the
per predicate assignment approach, making it return true when-
ever the implication queue is empty will implement the per deci-
sion level approach, and making it return true when the implication
queue is empty and at the same time the decision level is 0 will
implement the per full assignment approach.

Since the cost of theory constraint propagation is often higher
than Boolean constraint propagation, if a certain search subspace
can be blocked by conflicts of both types, it is better to block it by
Boolean conflicts rather than by theory conflicts. It then follows
that the per predicate assignment approach is not particularly in-
teresting, since under this setting a blocking clause added by the
theory solver may not prevent the same future theory conflict. We
illustrate this using an example.

Example 1 Consider the formula fragment
(aVX)AN(@VY)A(aVD)A(-XV)AN..A(RXVY) ,

where (-X V —Y') is a blocking clause learned from a previous
call to theory solver (i.e., predicates X and Y cannot be true simul-
taneously). A BCP procedure, such as the one in Chaff [17], may
produce the following execution sequence:

set_var_value detect_conflict implications

(—a) () {X,Y 0}

(X) () {Y,bye,...,2Y}
(Y) (*) {b7 Cyvny _'Y7 _'X}
(b) () {e,...,Y, =X}

(=Y) (Y, =Y)

Note that Chaff reports a conflict only when set_var_value tries
to set a previously assigned variable to a different value, and the
above assignments will be prevented at the end of BCP due to

237

(=X V Y. However, under the per predicate assignment set-
ting, the theory solver is called right after setting ("), which will
discover the same conflict and add a learned clause (—=X V —Y").
More importantly, this clause no longer acts as a blocking clause—
this is disadvantageous because conflict clause based learning is
key to the performance of modern SAT solvers.

To make sure that BCP fires first whenever a conflict can be de-
tected by both, one needs to wait at least until BCP finishes at each
decision level before calling the theory solver. We will give exper-
imental comparison of the three settings in Section 6.

4. Selective Theory Deduction

An important part of theory propagation® is to deduce new im-
plications, i.e. implied values of some unassigned predicates. Note
that the Boolean counterpart in BCP uses the unit-literal rule. The-
ory deduction, on the other hand, relies on the creation of nega-
tive cycles in the constraint subgraph: the predicate p is implied
if adding an edge for its opposite literal —p to the graph creates a
negative cycle.

Exhaustive theory deduction was used in DPLL(T) [18] to de-
rive all possible theory implications under the current assignment.
Such deduction is carried out whenever a new edge is added. For
instance, after adding edge (x,y), they enumerate all the shortest
paths (y — y;) from the node y, as well as all the shortest paths
(z; — z) to the node z; they find sets {z;} and {y;} by call-
ing the Bellman-Ford single-source shortest path algorithm twice.
Then, for every un-assigned predicate p : (y; — x; < c¢) such that
dly;] — d]zi] < ¢, they add (p) as an implication; note that setting
p to false would create a negative cycle (z; — z,y — yj, ;).
Exhaustive theory deduction can remove the burden on theory con-
flict detection since future conflicts are prevented by theory based
implications. However, such an exhaustive approach may be costly.

Another extreme approach was adopted in [26], where the au-
thors chose to make conflict detection efficient but not to do the-
ory deduction at all. In Figure 1, their approach corresponds to
the use of theory_detect_conflict () in full strength but not
doing anything inside theory_add-new_implications (). Their
approach has the advantage of relaxing edges incrementally and
backtracking with zero cost in the theory solver, and according
to [26], the number of relaxed edges in their theory solver is of-
ten orders-of-magnitude less than that of a full-blown shortest path
computation.

We show in the following that the benefits of the aforementioned
two approaches can be combined. In particular, incremental cy-
cle detection can be augmented with the capability of performing
selective theory deduction, and at no additional cost to the incre-
mental algorithm in [26]. The key is to reuse existing cost values
of the nodes computed during incremental negative cycle detec-
tion. Recall that in the incremental algorithm, all edges are made
stable before and after the calls to theory constraint propagation,
and all nodes changed by the newly added edge through relaxation
are recorded in the [v] field. When the conflict detection routine
returns no conflict, we have a set {y’ } of nodes that have just been
relaxed in theory_detect_conflict () — this is because each
time an edge is relaxed, we can mark its tail node as an element of
this subset. Note that {y} is a subset of the set {y;} in [18] for
exhaustive theory propagation, since the latter may also include tail
nodes of some already stable edges. Similarly, we can get a subset

2The word “theory propagation” is also overloaded. We take it to mean
a combination of consistency check and theory deduction. However, [18]
used it as a synonym of “theory deduction.”

{z;} of the set {z;} in [18], by following 7[z] backward from z
— this is a subset of nodes on a shortest path to z.

In contrast to the high overhead of exhaustive theory propaga-
tion, finding {;} and {y’} requires no additional relax operation
other than those already in the incremental cycle detection proce-
dure. Next, we search for all unassigned predicates p : (y; —
x; < ¢) such that d[y;] — d[zi] < ¢, and add (p) to the queue
implications.

When an implication is added to implications, we need to
record an explanation (i.e. what implies it) so that later it can be
used just like an implication produced by BCP during the standard
conflict analysis [23]. The explanation is the would-be negative cy-
cle, which can be recorded either inside the constraint graph or as a
new clause added into the Boolean skeleton. The new clause con-
sists of the negation of all edges appearing in the negative cycle.
Adding new clauses to the Boolean skeleton allows BCP to derive
the same implication in the future without running theory deduc-
tion again, which is advantageous since BCP is often much faster
than graph manipulation. However, adding too many such clauses
can also slow down BCP. An alternative is holding the explana-
tion in the graph and adding it as a clause only when it is actually
used during conflict analysis. Our experience shows that holding
explanations outside the Boolean skeleton (until needed) is a better
choice for most examples.

We have implemented two different versions of selective theory
deduction:

e Forward deduction: finding only implications in the form of
(y; — x < ¢). In other words, let {x;} be {x} to reduce the
overhead.

e Both directions: finding all implications in the form of (y; —
’
x; < c¢).

The no-deduction approach in [26] can be incorporated as well by
assuming that both {z}} and {y}} are empty sets. The set of impli-
cations that can be derived in selective theory deduction is a subset
of the implications derived in exhaustive theory deduction, but this
is done with much less overhead. We will give experimental com-
parisons of the two approaches and that of [26] in Section 6; the
results suggest that overall forward-deduction is the best in balanc-
ing between gain and overhead.

5. Dynamic Predicate Learning

A fundamental problem of existing lazy solvers is that they build
the Boolean skeleton only with predicates in the original formula.
In other words, any predicate not in the original formula does not
appear in the initial Boolean skeleton and will never be added later.
Inside their theory propagation procedures, transitivity lemmas and
deduced implications must be expressed in terms of the original
set of predicates. This restriction, however, may prevent the theory
solver from returning concise lemmas. In [24, 25], the authors used
the diamonds formula to illustrate the worst case exponential blow-
up of solvers based on the lazy approach. A diamonds formula
with O(n) nodes in its constraint graph, as shown in Figure 2, has
O(2™) negative weighted cycles. To our best knowledge, all exist-
ing solvers based on the lazy approaches, including the most recent
ones [16, 18, 26], show exponential cost in dealing with diamonds.

Eager approaches such as [24, 25] work much better in this case,
by using a per constraint or small-domain encoding scheme to
build an equi-satisfiable Boolean formula. In [24], for instance,
the total number of chordal edges needed for encoding the Boolean
formula is polynomial (although the number is often large for an
arbitrary difference logic formula). In this section, we propose a
method to make the lazy solver perform well in such cases.

238

SV

€o -1

Figure 2: The diamonds example.

The key observation is that the number of transitivity constraints
can be significantly reduced if we are allowed to use new predi-
cates. For example, the dotted lines E; in Figure 2 are not origi-
nal predicates, but can be added due to transitivity constraints like
(e1 A ea — FE1). Suppose, for instance, the conflict due to the
shortest negative cycle (eo, E1, E2, E3) is detected at some point
of time and the blocking clause (—egV—F1V-E2V—E3) is added
to the Boolean skeleton, then the number of additional blocking
clauses needed to solve the diamond formula will become polyno-
mial. This is because any conflict corresponding to a longer neg-
ative cycle also makes this clause false, and therefore is blocked
during BCP. As a result, assignments corresponding to longer neg-
ative cycles will never be presented to the theory solver.

We propose a method to add new short-cut predicates lazily. An
important feature of our method is that we do not immediately as-
sociate any transitivity constraint (e.g., e1 Aez — E1) with the new
predicates. Conceptually, we add for each new predicate F; a re-
dundant clause (E; V —E;). Since these clauses are redundant, the
Boolean skeleton remains an abstraction. However, because of the
connections between new and old predicates, lemmas on new pred-
icates will be added automatically in the DPLL search—suppose
assignments to some new predicates conflict with the rest of the for-
mula, these new predicates will appear in a blocking clause whereas
irrelevant new predicates will stay unused. This is in contrast to the
eager encoding approach in [24], which adds transitivity lemmas
over all possible short-cuts regardless of whether they will be use-
ful to the satisfiability check. There is a clear advantage of our dy-
namic predicate learning approach, since the number of short-cuts
in the graph is typically large and there is no easy way of knowing
before-hand which one is useful.

To reduce overhead, we do not consider all short-cuts of a graph
as new predicates. Our algorithm in selecting candidate short-cuts
is based how many times their head and tail nodes show up in neg-
ative cycles and whether the nodes are re-convergence points in
the graph—we are interested in nodes that appear frequently in the
negative cycles and at the same time are re-convergence points. Our
procedure goes as follows: we associate a counter to each node of
the graph and increase the counter every time the node appears in
a theory conflict. As time goes by, the counter values will keep in-
creasing. If the nodes x and y appear in the current negative cycle,
both have high in-degree or out-degree, and their counter values ex-
ceed an empirical threshold, we will allocate a new Boolean vari-
able £ : x —y < (d[z] — d[y]). We also add to the Boolean skele-
ton a redundant clause (E' V —FE). The intuition behind our node
selection algorithm is that re-convergence points of the constraint
subgraph are the fundamental reason for a potentially exponential
number of negative cycles, and a node frequently appearing in the
negative cycle may be part of an ongoing blow-up.

A problem arises when we implement dynamic predicate learn-
ing in a DPLL based Boolean SAT solver. Most existing solvers, in-
cluding Chaff [17], do not support dynamically adding new Boolean

1000 1000

100 100 +

Per full assignment

04,

Per variable assignment

T T
10 100
Per decision level

1 10 100
Per decision level

1000 1 1000

Figure 3: Different invoking settings for theory propagation: per
predicate assignment, per decision level, and per full assignment.

variables. We circumvent this problem by pre-allocating a fixed
number of new Boolean variables but do not associate them with

any new predicate (or short-cut). The binding between a pre-allocated

Boolean variable and a short-cut predicate in the graph comes later
during the solving process.

We also want to avoid adding too many such predicates. Since
the goal is to avoid the potentially exponential number of negative
cycles, we only add new predicates for nodes that appear very of-
ten in negative cycles. In our current implementation, we set the
frequency threshold for short-cuts to 200. That is, we add new
predicates between x and y only when both appear in the negative
cycles more than 200 times, and only when both nodes have more
than one incoming/outgoing edges. We have found that this empir-
ical setting works very well in practice.

6. Experiments

We have implemented the proposed techniques on top of the SAT
solver Chaff [17] and our own graph manipulation procedure. Dur-
ing the implementation, we have tried to optimize the performance
of the solver whenever possible. Our base-line comparison [26],
which has incremental cycle detection but none of the techniques
proposed in this paper, already has a better runtime performance
than the most recent lazy solvers [16, 18] and is considerably bet-
ter than the eager solver in UCLID [22] on a large set of public
benchmark formulas. We have conducted controlled experiments
to evaluate the effectiveness of the three proposed techniques. All
the experiments were run on a workstation with 3.0 GHz Intel Pen-
tium 4 processor and 2 GB of RAM running Red Hat Linux 7.2. We
set the memory limit to 1 GB and the time limit for each formula
to 600 seconds.

6.1 Efficient Theory Constraint Propagation

First, we give experimental results on the different settings for
invoking theory constraint propagation. The benchmark formulas
belongs to the DTP suite [18] that are randomly generated to cover
a wide range of different scenarios. The results are given in Fig-
ure 3, where we compare the CPU time for different settings. The
scatter plot on the left-hand side compares the solver that invokes
theory propagation per predicate assignment to the solver that in-
vokes theory propagation per decision level after BCP finishes. The
scatter plot on the right-hand side compares the solver that invokes
propagation per full assignment to the solver that invokes propaga-
tion per decision level after BCP finishes. Points above the diagonal
lines are winning cases for the per decision level setting.

On these benchmark formulas, the best performance is achieved
by invoking theory constraint propagation after BCP finishes at
each decision level. Note that in terms of the timing for invok-
ing theory constraint propagation, it is in the middle of the three

239

1000 1000

100 -

Forward deduction
Both directions

10 100
No deduction

T T
1 10 100
No deduction

1000 1 1000

Figure 4: Comparison of different theory deduction schemes: no-
deduction, forward-deduction, both-directions.

settings. It is also possible to devise a heuristic algorithm to auto-
matically adapt the time interval between consecutive invocations
of the theory solver.

6.2 Selective Theory Deduction

We now give the experimental comparison of the three theory de-
duction schemes, i.e. no-deduction, forward-deduction, and both-
directions. The results are given as scatter plots in Figure 4, where
we compare the CPU Time for different invocation schemes. The
scatter plot on the left-hand side compares the solver with forward-
deduction scheme to the one without theory deduction; the scatter
plot on the right-hand side compares the solver with both-direction
scheme to the one without theory deduction. Note that in both plots,
points above the diagonal lines are the losing cases for the one with-
out theory deduction.

The direct comparison of the two selective deduction schemes
are not provided in the scatter plots, but can be made in the total
CPU time for running all benchmarks. The time is 2438 seconds for
the no-deduction scheme, 666 seconds for the forward-deduction
scheme, and 1138 seconds for the both-directions scheme. Again,
the best setting is the one in the middle. The results show that se-
lective theory deduction can significantly improve the run time per-
formance of the solver. However, the fact that forward-deduction is
faster than both-directions suggests that too much effort in theory
deduction may incur a significant amount of overhead.

6.3 Dynamic Predicate Learning

Finally, we give the evaluation of our dynamic predicate learn-
ing algorithm. The first test of its effectiveness was conducted on
a set of parameterized diamonds examples. The results are given
in Figure 5 where for each formula in the z-axis, the run time of
the solver with and without predicate learning is compared. As ex-
pected, the solver without predicate learning demonstrates an expo-
nential trend in run time, whereas the one augmented with dynamic
predicate learning remains linear in run time. This indicates that
our learning algorithm can automatically identify important new
predicates.

We also evaluated the algorithm on the DTP examples and ob-
served a significant performance improvement. The results are
given in Figure 6 where points under the diagonal line are winning
cases for the solver with dynamic predicate learning. The total CPU
time for completing all benchmarks is 437 seconds with dynamic
predicate learning, and 666 seconds without it. Furthermore, the
performance improvement brought by dynamic predicate learning
is very consistent. Note that the DTP formulas do not have any
specific structure in the constraint subgraphs, indicating that this
algorithm is effective for formulas of general types.

7.

~—no new predicate [

—=with new predicate

CPU time (s)

13 5 7 9 11 1315 17 19 21 23 25 27 29 31 33 35
Different diamonds formulae

Figure 5: Dynamic predicate learning: on diamonds.

1000

100 -

Dynamic predicate learning

100

No predicate learning

1000

Figure 6: Dynamic predicate learning: on DTP formulas.

Conclusions

We have presented three new techniques for efficiently decid-
ing difference logic formulas, which includes flexible theory con-
straint propagation, selective theory deduction, and dynamic pred-
icate learning. Theses techniques can be easily implemented in
the DPLL framework of many modern Boolean SAT solvers. Our
experiments show that the proposed techniques can significantly
improve the run time performance of the solver. We believe that
the same techniques can be applied to SMT solvers for other logic
as well. For future work, we want to investigate the possibility
of applying high-level model information to guide the satisfiabil-
ity check inside the solver, especially in the context of electronic
system level design and verification of embedded systems.

References

(11

[2

—

3

—

[4

=

(5]

A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea. A SAT-
based decision procedure for the boolean combination of differ-
ence constraints. In Theory and Applications of Satisfiability Testing
(SAT’04), pages 166—173, Vancouver, CA, May 2004.

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs. In Programming Language De-
sign and Implementation (PLDI’01), Snowbird, UT, June 2001.

C. Barrett, D. L. Dill, and J. Levitt. Validity checking for combina-
tions of theories with equality. In Formal Methods in Computer Aided
Design. Springer, Nov. 1996. LNCS 1166.

R. Bryant, S. Lahiri, and S. Seshia. Modeling and veritying sys-
tems using a logic of counter arithmetic with lambda expressions and
uninterpreted functions. In Computer-Aided Verification (CAV’02).
Springer, July 2002. LNCS 2404.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Al-
gorithms. The MIT Press, Cambridge, MA, 1990.

240

[6]
[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Cotton. Satisfiability checking with difference constraints. Msc the-
sis, IMPRS Computer Science, Saarbrucken, 2005.

M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem proving. Communications of the ACM, 5:394-397, 1962.
J.-C. Filliatre, S. Owre, H. RueB, and N. Shankar. ICS: integrated can-
onizer and solver. In Computer Aided Verification (CAV’01), pages
246-249. Springer, 2001. LNCS 2102.

M. K. Ganai, M. Talupur, and A. Gupta. SDSAT: Tight integration
of small domain encoding and lazy approaches in a separation logic
solver. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’06), pages 135—150. Springer, 2006. LNCS 3920.
H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): Fast decision procedures. In Computer-Aided Verification
(CAV’04), pages 175-188. Springer, July 2004. LNCS 3114.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy ab-
straction. In Symposium on Principles of programming languages
(POPL’02), pages 58-70, 2002.

T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model checking for real-time systems. In /[EEE International Sympo-
sium on Logic in Computer Science, pages 394406, 1992.

H. Jain, F. Ivanci¢, A. Gupta, and M. Ganai. Localization and regis-
ter sharing for predicate abstraction. In Tools and Algorithms for the
Construction and Abnalysis of Systems (TACAS’05), pages 394—409.
Springer, 2005. LNCS 3440.

S. Lahiri and S. Seshia. The UCLID decision procedure. In Computer
Aided Verification (CAV’04), pages 475-478. Springer, 2004. LNCS
3114.

Y. Lu, A. Koelbl, and A. Mathur. Formal equivalence checking be-
tween system-level models and RTL. In International Conference on
Computer-Aided Design (ICCAD’05), 2005. Embedded tutorial.
M.Bozzano, R.Bruttomesso, A.Cimatti, T.Junttila, P.v.Rossum,
S.Schulz, and R.Sebastiani. An incremental and layered procedure for
the satisfiability of linear arithmetic logic. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’05), pages 317—
333. Springer, 2005. LNCS 3440.

M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the De-
sign Automation Conference, pages 530-535, Las Vegas, NV, June
2001.

R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory
propagation and its application to difference logic. In Computer Aided
Verification (CAV’05), pages 321-334. Springer, 2005. LNCS 3576.
G. Parthasarathy, M. K. Iyer, K.-T. Cheng, and F. Brewer. Structural
search for rtl with predicate learning. In Proceedings of the Design Au-
tomation Conference (DAC’05), pages 451-456, Anaheim, CA, June
2005.

A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. The small model
property: How small can it be? Information and Computation,
178(1):275-293, Oct. 2002.

G. Ramalingam, J. Song, L. Joscovicz, and R. Miller. Solving differ-
ence constraints incrementally. Algorithmica, 23(3):261-275, 1999.
S. A. Seshia, S. K. Lahiri, and R. E. Bryant. A hybrid SAT-based
decision procedure for separation logic with uninterpreted functions.
In Proceedings of the Design Automation Conference, pages 425-430,
Anaheim, CA, June 2003.

J. P. M. Silva and K. A. Sakallah. Grasp—a new search algorithm for
satisfiability. In International Conference on Computer-Aided Design,
pages 220-227, San Jose, CA, Nov. 1996.

O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding separation
formulas with SAT. In Computer-Aided Verification (CAV’02), pages
209-222. Springer, July 2002. LNCS 2404.

M. Talupur, N. Sinha, O. Strichman, and A. Pnueli. Range allocation
for separation logic. In Computer-Aided Verification (CAV’04), pages
148-161. Springer, July 2004. LNCS 3114.

C. Wang, F. Ivanci¢, M. Ganai, and A. Gupta. Deciding separa-
tion logic formulae by SAT and incremental negative cycle elimina-
tion. In Logic for Programming Artificial Intelligence and Reasoning
(LPAR’05), pages 322-336. Springer, 2005. LNCS 3835.

