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Abstract. Although the counterexample returned by a model checker can help
in reproducing the symptom related to a defect, a significant amount of effort is
often required for the programmer to interpret it in order to locate the cause. In
this paper, we provide an automated procedure to zoom in to potential software
defects by analyzing a single concrete counterexample. Our analysis relies on
extracting from the counterexample a syntactic-level proof of infeasibility, i.e.,
a minimal set of word-level predicates that contradict with each other. The pro-
cedure uses an efficient weakest pre-condition algorithm carried out on a single
concrete execution path, which is significantly more scalable than other model
checking based approaches. Unlike most of the existing methods, we do not need
additional execution traces other than the buggy one. We use public-domain ex-
amples to demonstrate the effectiveness of our new algorithm.

1 Introduction

One of the major advantages of model checking [5, 22] is the production of a counterex-
ample when verification fails. However, the counterexample only shows a symptom of
the defect; users still need to spend a considerable amount of time scrutinizing the
potentially lengthy trace in order to find the cause of the failure. In principle, an observ-
able failure is caused by a defect in the code after the infection propagates through a
sequence of relevant statements (also called the infection chain [26]). In this paper we
present an efficient procedure for identifying this infection chain, i.e., the cause-effect
segments from the given counterexample that eventually lead to a failure.

The problem of fault localization for software programs has been the attention of
recent research. Testing based methods [16, 23] rely on availability of a good test suite;
they compare a large set of failing executions with successful ones to find out points
in the failing executions that may (statistically) be responsible for the failure. Usually,
they assume that a large number of successful executions are available to be chosen as
a comparison to failing executions.

� A whodunit, for “who done it?”, is a plot-driven variety of detective story in which the reader
is provided with clues from which the identity of the perpetrator of the crime may be deduced.
Examples are the Sherlock Holmes stories by Conan Doyle.
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Model checking based methods [3, 11, 10] seek additional execution traces by de-
ploying the same model checker again with additional constraints. A representative
approach is the work by Groce et al. [10], which uses a SAT based bounded model
checker to produce the counterexample, and then uses a pseudo-Boolean constraint
solver (called PBS [2]) on a constrained version of the same bounded model check-
ing instance to search for a “closest” successful execution trace. The difference be-
tween these two traces is considered as potential cause of failure. A drawback of model
checking based method is their limited scalability in dealing with large systems or long
counterexamples. Furthermore, the difference between a successful run and the coun-
terexample does not always provide a good explanation of the failure.

Delta debugging as in [26, 6] uses automated testing to isolate relevant variables
and values of the program by systematically narrowing the state difference between a
passing run and a failing run. Note that this method also requires alternative runs in ad-
dition to the given counterexample. The method is based on trial and error, by assessing
the outcome of altered executions to determine whether a change in the program state
makes a difference in the test outcome. The alternative runs also determine the quality
of results that Delta debugging can infer: a variable can be isolated as a failure cause
only if its value differs in the two runs. This method is purely empirical, which is quite
different from methods based on formal/static analysis. As is stated in [26], Delta de-
bugging may require a large number of tests to find a difference that can no longer be
narrowed.

A problem closely related to fault localization is program repair, which has been
studied in [25, 15, 9]. They take the view that a system component may be responsible
for a failure if replacing it by an alternative can make the system correct. The program
repair problem is cast into a two-player reachability game on a finite-state machine
extended from the system, by assuming any component can be replaced by an arbitrary
function in terms of inputs and the system state. An algorithm that computes a winning
strategy for the game effectively solves the program repair problem. However, program
repair in general is significantly more costly than standard model checking.

In general, accurately locating the faulty code requires a complete specification of the
system behavior (the same argument also holds for automated program repair). Unfortu-
nately, such specifications are often missing in realistic software development settings.
Without a complete specification, it is not possible to determine whether a particular
line in the code is faulty or not. What can be done (a view shared by many previous
works as well as this paper) is to locate portions of the program where a defect may
reside, and to provide an explanation how a defect triggers the failure. In this paper, we
try to identify the infection chain in the failed execution path, with the belief that the
defect resides in one of the chain segments.

The new causal analysis algorithm presented in this paper differs from previous
works in that: (1) it does not require additional successful or failing executions other
than the given counterexample; (2) it does not use expensive model checking or con-
straint solving algorithms. Instead, we use a path-based syntactic-level weakest pre-
condition computation algorithm to aid the analysis. It produces a concise proof of
infeasibility for the given counterexample, which is a minimal set of word-level pred-
icates extracted from the failed execution that explains why the execution fails. Since
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the pre-condition computations are cheap and are restricted to a single execution path
(less chance to blow up), our method is significantly more scalable than other model
checking based methods.

2 Motivating Examples

We provide two small examples to illustrate a shortcoming of some existing fault lo-
calization methods. The main assumption of the method in [10] is that, one can locate
the defect by comparing a successful run with a buggy run. A similar assumption is
also made in Delta debugging [26] although automatic testing is used to get alternative
runs. The unique feature of [10] is defining a distance metric with respect to the given
counterexample and then searching for a “closest” successful run with respect to that
metric. Since a program is deterministic, the only change they make in searching for
a successful run is the input values. By changing the input values and minimizing the
difference caused by these changes, they try to find an execution trace that does not vi-
olate the property. In other words, they try to find ways to dodge the observable failure
instead of fixing it.

find max (x1, x2, x3)
{

1: max = x1;
...

2: if ( max <= x2 )
3: max = x2 ;

...
4: if ( max >= x3 )
5: max = x3 ;

...
6: assert ( max >= x1 ) ;
7: assert ( max >= x2 ) ;
8: assert ( max >= x3 ) ;

}

(a) the maximum of three inputs;

compute diff (x1, x2)
{

1: if ( x1 != x2 ) {
2: if ( x1 < x2 )
3: diff = x1 - x2 ;
4: else
5: diff = x2 - x1 ;

}
6: else {
7: diff = 0 ;

...
}

8: assert ( diff > 0 ) ;
}

(b) the difference of two inputs;

Fig. 1. Two examples to illustrate fault localization algorithms

First, we note that it is not always possible to dodge the failure by merely changing
input values. When a failure exists regardless of any particular input value, the algo-
rithm in [10] fails since there is no valid solution for the constraint solver to optimize.
Even if a successful run can be found, the difference between the two runs does not
necessarily offer enough hints to locate the defect. This can be illustrated by the C pro-
gram in Figure 1-(a), which is supposed to find the maximum of three inputs. The input
(0,1,0) can trigger an execution that fails the assertion check at Line 7. The asser-
tion failure is caused by Lines 4-5 where the conditional expression should have been
different.
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Table 1 lists the variable assignments at different execution steps for the original
counterexample and a closest successful run. Each row in the table shows the names of
variables or conditional expressions, their program locations (max @3 corresponds to
Line 3), their values, and the distance according to the metric in [10]. Since there are
only two different assignments: x2 @0 and max @3, it would classify Line 3 as cause
of the failure. However, both Line 3 and Line 2 (the guard of Line 3) are correct, and
the real error is in Lines 4-5.

Table 1. Counterexample and successful executions for find max

variables/predicates variable/predicate valuations in distance
counterexample a successful run

x1 @ 0 0 0
x2 @ 0 1 0 1
x3 @ 0 0 0

max @ 1 0 0
(max<=x2) @ 2 true true

max @ 3 1 0 1
(max>=x3) @ 4 true true

max @ 5 0 0
(max>=x1) @ 6 true true
(max>=x2) @ 7 false true

Our second example, Figure 1-(b), is a program to compute |x1 − x2| when the two
inputs have different values. There is a bug at Line 2 and the correct version should be
(x1 > x2). A counterexample can be produced with the input (0,1), under which
the program goes through Lines 1-3 and 8. Since there is no way to avoid the failure
as long as (x1 != x2), a closest successful run would be with the input (0,0). The
successful run goes through lines 6-8. As a result, all lines within the if-branch and else-
branch are different between the two runs, and would be marked as potential causes of
the failure.

In these two examples, the inaccuracy of the algorithm is due to its way of analyzing
causality, which we believe is very different from the actual debugging practice by pro-
grammers. Given an execution trace exhibiting some erroneous behavior, a programmer
will not keep changing the input values until the bug disappears. Instead, the program-
mer will keep the same input and try to find out how this particular input value leads to
the failure. When there is an assertion check in the code, it often means that the program
is expected to work at this location all the time, regardless of which path it has taken
to reach here and regardless of the input values. Therefore, we choose to focus on the
given counterexample and tackle the problem from a different angle; in particular, we
want to explain why this particular run fails.

3 Preliminaries

We provide some needed notations before introducing the definition of transforming
statement and the notion of minimal proof of infeasibility, which are the foundation of
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our counterexample causal analysis algorithm. We focus on the class of failures that
can be captured using assertions. In a C program, for instance, assert(!crash) rep-
resents the property that crash should never be true at this program location. A coun-
terexample is a particular execution path of the program that violates the assertion.

An execution path π = s1, s2, . . . is a sequence of simple program statements, each
of which has one of the following types:

– assignment statement s: v := e, where v is a variable and e is an expression; we
assume that the statement has no side-effects.

– branching statement s: assume(c), where c is a predicate. It may come from
statements like if(c)...else or successfully executing of assert(c).

Given an execution path π, we use πi = si, . . . to represent the suffix starting from
i ≥ 1; we also use πi,j = si, . . . , sj to represent the segment between i and j.

A counterexample is a tuple 〈I, π1,n〉, where I is an input valuation and π1,n is the
corresponding execution path leading to failure at sn:assert(c). A counterexample is
a concrete execution of the program. Given a set I of initial values to input variables, the
execution of a deterministic program is completely fixed. It is easy to map a counterex-
ample back to an execution path π. Complex data structures and language constructs do
not pose a problem, because everything is completely determined in a concrete trace.
For pointers, the locations that they point to are fixed at every step; similarly for arrays,
the indexes are also fully determined. Since a counterexample is of finite length, recur-
sive functions and statements involving data in dynamically allocated memory can be
rewritten into simple but equivalent statements.

The set of input variables of the program induces an input space, in which each
particular input valuation corresponds to a point. In general, an execution path π1,n

corresponds to more than one counterexamples, each of which maps to a distinct point
in the input space. The input subspace related to π1,n can be represented by the weakest
pre-condition of ¬c with respect to π1,n−1; that is, the weakest condition before π1,n−1

that entails the failure at sn. The definition of weakest pre-condition is given below,
where we use f(V/W ) to denote the simultaneous substitution of W with V in function
f(W ).

Definition 1 (cf.[8]). Given πi,j = si, . . . , sj and a propositional formula φ, the weak-
est pre-condition of φ with respect to πi,j , denoted by WP (πi,j , φ), is defined as fol-
lows,

– For a statement s: v = e, WP (s, φ) = φ(e/v);
– For a statement s: assume(c), WP (s, φ) = φ ∧ c;
– For a sequence of statements s1; s2, WP (s1 : s2, φ) = WP (s1, WP (s2, φ)).

Weakest pre-condition computation has been used in several recent predicate abstrac-
tion algorithms [20, 13, 14], where it is applied to an infeasible counterexample in the
abstract model in order to find relevant predicates that can eliminate the trace in the
refined model. However, in this paper the purpose of computing weakest pre-conditions
is quite different, since the counterexample here is a feasible trace in the concrete pro-
gram, as opposed to an infeasible trace in an abstract model.
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We use this computation to find a minimal set of conditions for the program to stay
on the same path without violating the assertion. The result is a set of predicates that
should hold at each step of the path. By comparing how these predicates contradict with
each other and with the given set of input values, we can locate part of the original code
responsible for this particular assertion failure.

4 Analyzing the Infection Chain

Given a counterexample 〈I, π1,n〉, we identify a set of statements in π1,n constituting
the infection chain, i.e., cause-effect segments that lead eventually to a failure in sn. We
accomplish this by computing WP (π1,n−1, c). According to the definition, the weakest
precondition over a path is a conjunction of predicates. That is,

WP (πi,j , c) = c′ ∧ (c′1 ∧ c′2 . . . ∧ c′k) ,

where c′ is transformed from the given formula c through (possibly transitive) variable
substitutions, and each c′l is transformed from a condition in sl: assume(cl) such that
i ≤ l ≤ j. More formally, given a formula φ, we use φ′ to denote the formula in WP
that is transformed from φ. The definition is transitive in that both φ′ = φ(e/v) and
φ′(e2/v2) are transformed formulae from φ.

Definition 2. A transforming statement of φ is an assignment statement s: v = e
such that variable v appears in the transitive support of formula φ.

For example, statement s1:x = y+1 is a transforming statement of φ:(x > 0), since
WP (s1, φ) produces φ′:(y+1 > 0); statement s2:y = z*10 is also a transform-
ing statement of φ, since WP (s2, φ′) produces (z*10+1 > 0). During weakest pre-
condition computations, only assignment statements can transform an existing conjunct
c into a new conjunct c′. Branching statements can only add new conjuncts to the ex-
isting formulae, but cannot transform them. Given an execution path πi,j = si, . . . , sj ,
we use the subset TS(πi,j , c) ⊆ {si, . . . , sj} to denote the transforming statements
for the predicate c. Transforming statements are the foundation of our causal analysis
algorithm.

For a failed execution path π1,n where the statement sn is assert(c), the three
pre-conditions, WP (π1,n−1, true), WP (π1,n−1, c), and WP (π1,n−1,¬c), have the
following relationships:

1. WP (π1,n−1, true) = WP (π1,n−1, c) ∨ WP (π1,n−1,¬c);
2. WP (π1,n−1, c) ∧ WP (π1,n−1,¬c) = ∅;

This is illustrated by Figure 2. Also note that the three pre-conditions share a common
subformula (c′1∧· · ·∧c′k), which is the same as WP (π1,n−1, true). We now introduce
the notion of proof of infeasibility.

Theorem 1. Given a counterexample 〈I, π1,n〉, we have I ⊆ WP (π1,n−1,¬c), mean-
ing that

I ∧ WP (π1,n−1, c) = ∅ .
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input subspace WP (π1,n−1, true)

assert(c)

c1
c2 c3

c4

WP (π1,n−1,¬c)

WP (π1,n−1, c)

¬c

Fig. 2. Partitioning of the input subspace WP (π1,n−1, true)

The input valuation I is a conjunction set of predicates I = I1 ∧ . . .∧ Im, where Ii, for
instance, can be the valuation of an input variable x = 10. Given that

(I1 ∧ . . . ∧ Im) ∧ c′ ∧ (c′1 ∧ . . . ∧ c′k) = ∅ ,

there exist a minimal subset of conjuncts in I and a minimal subset of conjuncts in
WP (π1,n−1, c), denoted by Isub and WPsub, respectively, such that Isub∧WPsub = ∅.
The point here is that only some conjuncts are responsible for the empty intersection
(which is the reason of the assertion failure). We call Isub ∧ WPsub a minimal proof of
infeasibility.

In general, one can find a minimal set of contradicting predicates as follows,

1. initialize Isub = I and WPsub = WP (π1,n−1, c);
2. minimize WPsub by dropping each conjunct c′i in WPsub, and then checking

whether Isub ∧ WPsub = ∅: if the result remains empty, drop c′i permanently;
otherwise, add it back.

3. minimize Isub by dropping each Ii in Isub, and then checking whether Isub ∧
WPsub = ∅: if the result remains empty, drop Ii permanently; otherwise, add it
back.

For this particular application, however, we note that WPsub always contains c′. This is
because other conjuncts c′i come from assume statements and are all consistent with I ,
but c′ comes from the failed assertion condition c. Therefore, we can skip the test for c′

when minimizing WPsub. It is often the case that c′ contradicts to some other conjuncts
in WP and Isub is not needed in the proof of infeasibility. However, if WP does not
have conflicting conjuncts by itself, then a minimal proof is of the form Isub ∧ c′.

The intuition behind this definition is that: given a concrete counterexample, our
proof of infeasibility provides a succinct explanation about the cause of the assertion
failure at sn. The choice of computing a syntactic-level proof of infeasibility, as opposed
to other forms including interpolation [19], is due to the need of eventually mapping the
proof back to the source code program. In our case, the explanation can be mapped back
to the source code by finding the transforming statements with respect to predicates
in WPsub.
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5 The Causal Analysis Procedure

In this section we present the entire causal analysis procedure and then explain how it
can be applied to the two working examples.

5.1 The Algorithm

Given a counterexample 〈I, π1,n〉, we compute the weakest precondition
WP (π1,n−1, c) by starting backward from c. (Recall that c comes from the failed
assert(c) at sn.) During this process, we also record in TS(c) all transforming state-
ments of c. At each pre-condition computation step, we check whether the intermediate
result WP (πi,n−1, c) is empty. There are two possibilities:

– there exists an index 1 ≤ i < n such that WP (πi,n−1, c) = ∅;
– no such index exists and the computation of WP (π1,n−1, c) completes.

We consider the first case as a special case, since it implies emptiness of WP (π1,n−1, c)
and hence emptiness of its intersection with I .

1. In the first case, we take the set of conjuncts in WP (πi,n−1, c) right after it be-
comes empty and compute a minimal subset WPsub. We consider all conjuncts in
WPsub as responsible for triggering the failure. In the source code, we mark only
transforming statements in {s | s ∈ TS(φ) such that φ′ ∈ WPsub} as explanation
of the failure.

2. In the second case, we take all conjuncts in I and WP (π1,n−1, c) and compute
a minimal proof Isub ∧ WPsub. We consider Isub and all conjuncts in WPsub as
responsible for triggering the failure. As is illustrated in Figure 3-(a), WPsub has
only one subformula in this case; that is, WPsub = c′. In the source code, we mark
only transforming statements in TS(c) as explanation of the failure. The marked
source code shows how Isub leads to the failure at sn:assert(c) through the
execution of the transforming statements.

The result in the first case is a stronger condition for explaining the failure—an empty
WP (πi,n, c) means that any execution path with the same suffix (si, ..., sn−1) would
fail at sn. As is illustrated in Figure 3-(b), the relevant input subspace in this case
becomes WP (πi,n−1, true), which is large than WP (π1,n−1, true) in general. (In the
figure, with a little abuse of notation, we have used WPsub \ c′ to represent the removal
of c′ from the set of conjuncts in WPsub.) By focusing on WPsub only, we can explain
the cause of failure common to all these execution paths.

Our algorithm aims at explaining why the given execution path fails by focusing
on the infection chain (i.e., set of transforming statements) leading to the failure. We
do not attempt to answer the question which segment in the infection chain contains
the faulty code or how to fix the bug by changing a particular segment. We believe
that the latter two problems in general require a relatively complete specification of
the intended program behavior in order for them to be solved effectively. Unfortu-
nately, complete specifications are often missing in realistic software development
settings.
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WP (π1,n,¬c)

Isub

(a) When Isub ∧ WPsub = ∅

I

WPsub = c′

(b) WPsub = ∅ before reaching s1

I

c′

WPsub \ c′

WP (π1,n−1, c) = c′ ∧ (c′1 ∧ . . . ∧ c′k)

I

Fig. 3. The minimal proof of infeasibility. WPsub consists of a subset of conjuncts of
WP (πi,n−1, c), and thus WP (πi,n−1, c) ⊆ WPsub. Similarly, I ⊆ Isub.

5.2 The Working Examples

We now demonstrate that our new method can produce better results than existing al-
gorithms. We first apply the new algorithm to find max in Figure 1-(a). We start the
weakest pre-condition computation with the failed assertion condition (max >= x2).
The sequence of intermediate results are listed in Table 2, where the first column gives
the line numbers, the second column gives the subformulae whose conjunction is WP ,
the third column indicates whether the statement belongs to TS(max ≥ x2); for in-
stance, a “yes” for Line 5 means that s5 :max = x3 is a transforming statement of the
predicate (max ≥ x2). The last column shows whether the weakest pre-condition is an
empty set.

Table 2 shows that the weakest pre-condition becomes empty only after the intersec-
tion with initial input values x1=0, x2=1, x3=0. The minimal subset is

(x2 = 1) ∧ (x3 = 0) ∧ (x3 ≥ x2)

In the source code, we highlight all transforming statements of predicates in TS(max
≥ x2) as responsible for the failure. Thus, Line 5 is marked as explanation of the
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Table 2. Analyzing the cause of failure in find max

Line Predicates in the WP in TS(max ≥ x2) empty WP?

7 (max≥x2)
6 max≥x1, (max≥x2)
5 x3≥x1, (x3≥x2) yes
4 max≥x3, x3≥x1, (x3≥x2)
3 x2≥x3, x3≥x1, (x3≥x2)
2 max≤x2, x2≥x3, x3≥x1, (x3≥x2)
1 x1≤x2, x2≥x3, x3≥x1, (x3≥x2)
0 0≤1, 1≥0, 0≥0, (0≥1) empty

Table 3. Analyzing the cause of failure in compute diff

Line Predicates in WP in TS(diff > 0) empty WP

8 (diff>0)
3 (x1-x2>0) yes
2 x1<x2, (x1-x2>0) empty
1 x1�=x2, x1<x2, (x1-x2>0) empty
0 0�=1, 0<1, (0-1>0) empty

failure cause; this is significantly more accurate than the algorithm of [10] (which in-
stead would mark Line 3).

Next, we apply our algorithm to compute diff in Figure 1-(b). We start weak-
est precondition computation with the failed assertion condition (diff > 0). The se-
quence of intermediate results are given in Table 3. The statement in Line 3 transforms
the initial predicate into (x1-x2 > 0), which then contradicts to (x1 < x2), the new
predicate added at Line 2. Since WP (πi,n−1, (diff > 0)) = ∅, we compute the mini-
mal proof of infeasibility at this point. The result is as follows,

(x1 < x2) ∧ (x1 − x2 > 0) .

In the source code, we mark all transforming statements in TS(diff > 0) and TS(x1
< x2), as well as the source statement of c′1, which is assume(x1 < x2). Thus, our
algorithm reports Lines 2-3 of Figure 1-(b) as the failure cause. The fact that weakest
pre-condition becomes empty in the middle of a counterexample strongly indicates that
the error may happen in the common suffix. In contrast, the algorithm in [10] is inef-
fective on this example since the first else-branch is the only possible successful run;
as a result, it would mark the code in both branches.

6 Further Discussion

6.1 About Delta-Debugging

The notion of cause transition in [26, 6] is similar to transforming statements in our
method. A cause transition points to the connecting points of execution path where a
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change of the previous state would lead the execution to a different branch. To find
the defect, the method in [26, 6] traces forward in the program to identify the chain
of cause transitions, by running an additional set of tests. Their idea of empirically
comparing state difference between successful and failing runs is significantly different
from ours; the notion of minimal proof of infeasibility is not used. In our method, the
set of predicates produced by weakest pre-condition computations at each individual
program location represents an abstract program state.

As is pointed out in [6], for each infection F ′, there is either an earlier infection F
that causes F ′, or no earlier infection—in which case F ′ is the defect. Therefore, given
the observable failure, tracing back the infection chain requires two proofs:

1. to prove that F and F ′ are “infected”;
2. to prove that F causes F ′.

Without a complete specification, in general it is not possible to determine whether
a program state is infected (and therefore not possible to determine where the very
first infection is). However, we note that the actual defect ought to be in one of the
chain segments. By our definition, each transforming statement of the failed assertion
condition (i.e., the last infection) is a proof that a previous infection F causes F ′.

6.2 About Distance Metric in Explain [10]

Compared to the explain tool in [10], our method answers the question why a specific
execution path fails, instead of how the failure can be avoided. In general, it is hard
to answer the latter question in a useful way unless one has a complete specification.
The reason is that there can be multiple ways of avoiding a particular failure, each of
which corresponds to a different program intent. (Program intent in principle can only
be provided by human.)

For example, the failed property in our first working example is, “all runs that go
through Lines 1-8 should pass the assertion check at Line 9.” This is only a partial
specification of the program behavior. When being represented in linear temporal logic,
this property is of the form G(P → Q), where

– P : the execution actually goes through lines 1-8;
– Q: the execution fails assertion check at line 9.

A counterexample of this property is an execution on which (P ∧ ¬Q) holds. One can
avoid this particular failure by satisfying ¬(P ∧ ¬Q) under the same input condition,
which is the same as

(¬c′1 ∨ . . . ∨ ¬c′k) ∨ c′ .

Unfortunately, any one of the disjunctive subformulae entails the entire formula. Note
that in our causal analysis, we focus only on c′ (i.e., the assertion check at sn should
pass) by assuming that P holds.

More Related Work: The property P → Q has also been studied in the context
of vacuity detection in [4, 18, 21], where P → Q is said to be vacuously satisfied
whenever P is false. This is because Q is often the property that the user intends to
check, while P is only a pre-condition. We believe that the same argument also applies
to counterexample explanation or fault localization.
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6.3 About Dynamic Slicing

Our method is also different from dynamic slicing [17, 1, 12], which is a variant of pro-
gram slicing with the restriction to an execution path. Although dynamic slicing often
gives more accurate data dependencies between variables than normal static analysis,
it is inferior to our weakest pre-condition based causal analysis in explaining cause of
failed assertions. Consider the following example,

1: x1 = 10;
2: x3 = 5;
3: ...
4: x2 = 0 ;
5: if ( x1 == 10) {
6: x2 = x2 * x3 ;
7: ...
8: }
9: else {
10: x2 = x2 * x4;
11: }
12: assert( x2 != 0 );

If only Lines 1-8 and 12 are executed, dynamic slicing with respect to line 12 can
remove the irrelevant variable x4, which could not have been removed by static pro-
gram slicing without knowing which path will be executed. However, it could not re-
move variable x1 since whether line 6 gets executed or not depends on the condition
(x1==10). In contrast, our analysis algorithm would remove (x1==10) because it is
not in the minimal proof of infeasibility (lines 4, 6, and 12).

7 Experiments

In this section, we apply our procedure to public benchmark programs in the Siemens
suite [24]. The Siemens suite provides a set of C programs, each of which has a number
of test vectors as well as a correct version of the program. The examples we used in
this study are from the TCAS (Traffic Collision Avoidance System) example, which is
a model of the aircraft conflict detection system. The assertion checks (or properties)
used in our experiment originated from a previous study using symbolic execution [7].

A faulty TCAS version differs from the correct one in Line 100, where the relational
operator > is used when it should be ≥.

result = !( Own_Below_Thread()) || ((Own_Below_Threat())
&& (!(Down_Separation >= ALIM()))) ; // correct

---
result = !( Own_Below_Thread()) || ((Own_Below_Threat())

&& (!(Down_Separation > ALIM()))) ; // buggy

The counterexample used in our study has been generated from a software model
checker, and it has a length of 90. (The counterexample may also come from other soft-
ware testing tools—our causal analysis procedure would be equally applicable as long
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as the counterexample is a fully determined execution path.) When our causal analysis
procedure is used, the weakest pre-condition becomes empty right after the computa-
tion passes Line 100. This gives a succinct explanation of the actual failure down the
stretch.

We compare our results with the previous results in [10]. Given the same counterex-
ample, the initial explanation by this previous algorithm was not particularly useful. In
fact, their tool dodged the failure by making the antecedent of the implication false. As
is stated in [10], to coerce it into reporting a more meaningful explanation, they had
to manually add some additional constraints (e.g. the antecedent should not be true).
After that, their tool reports a similar result as ours. We argue, however, that this kind of
manual intervention requires the user to have a deep understanding of the counterexam-
ple as well as the software program. In contrast, our method does not need additional
hints from the programmer, but still achieves the same accuracy as [10] combined with
manually provided assumptions.

8 Conclusions

We have addressed the problem of locating the failure cause of a program given a con-
crete counterexample trace, and demonstrated the effectiveness of our approach using
several examples. Our automated procedure relies on the minimal proof of infeasibil-
ity to generate succinct failure explanations. Since the computations are performed at
the syntactic level and are restricted to a single concrete path, there is no foreseeable
difficulty in applying it to long counterexamples in large production-quality software.
As future work, we will pursue a more detailed experimental study of the proposed
technique and comparison with existing tools.
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