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Abstract
Variable hiding and predicate abstraction are two popular abstrac-
tion methods to obtain simplified models for model checking. Al-
though both methods have been used successfully in practice, no
attempt has been made to combine them in counterexample guided
abstraction refinement (CEGAR). In this paper, we propose a hy-
brid abstraction method that allows both visible variables and pred-
icates to take advantages of their relative strengths. We use refine-
ment based on weakest preconditions to add new predicates, and
under certain conditions trade in the predicates for visible variables
in the abstract model. We also present heuristics for improving the
overall performance, based on static analysis to identify useful can-
didates for visible variables, and use of lazy constraints to find more
effective unsatisfiable cores for refinement. We have implemented
the proposed hybrid CEGAR procedure. Our experiments on pub-
lic benchmarks show that the new abstraction method frequently
outperforms the better of the two existing abstraction methods.

1. Introduction
Variable hiding [18, 15] and predicate abstraction [8] are two fre-

quently used abstraction techniques in the counterexample guided
abstraction refinement framework (CEGAR [15, 4, 2]). Both meth-
ods create over-approximated models, and therefore are conserva-
tive with respect to universal properties such as LTL [20]. Since the
abstract model may have more behaviors than the concrete model,
if a property holds in the abstract model, it also holds in the con-
crete model; however, if a property fails in the abstract model, it
may still be correct in the concrete model. The abstraction refine-
ment loop consists of three phases: abstraction, model checking,
and refinement. Typically, one starts with a coarse initial abstrac-
tion and applies model checking. If the property fails in the abstract
model and the model checker returns an abstract counterexample, a
concretization procedure is used to check whether a concrete coun-
terexample exists. If a concrete counterexample does not exist, the
abstract counterexample is spurious. Spurious counterexamples are
used during refinement to identify the needed information currently
missing in the abstraction.

The variable hiding abstraction [18, 15, 4], or localization reduc-
tion, partitions the set of state variables of the model into a visible
subset and an invisible subset. In the abstract model, the transition
functions of visible variables are preserved as is, and the invisible
variables are abstracted as pseudo-primary inputs. Since the in-
visible variables are left unconstrained, the abstract model has all
possible execution traces of the original model, and possibly more.

.

The cone-of-Influence (COI) reduction can be regarded as a special
case of variable hiding abstraction, wherein variables in the transi-
tive fan-in of the property variables are marked as visible. Program
slicing in software analysis is similar to COI reduction, and can be
viewed as another special case. Compared to COI reduction, which
produces an exact model for deciding the given property, variable
hiding in general is more aggressive and may lead to spurious coun-
terexamples.

In variable hiding, the abstraction computation is efficient. Given
a set of visible variables, the abstract model can be built directly
from a textual description of the original system, without the need
for computing the concrete transition relation in the first place. This
is advantageous because in practice the concrete transition rela-
tion may be too complex to compute. However, in variable hiding
only existing state variables and transition functions can be used
to construct the abstract model, which in general limits the chance
of finding a concise abstraction. Despite this restriction, variable
hiding has been relatively successful in abstracting large hardware
designs [4, 23], especially when combined with the use of SAT
solvers [5, 19, 9, 1, 17, 24]. This is because the models tend to
be well-partitioned and as a result, system properties often can be
localized to a few submodules.

Predicate abstraction [8] is more flexible than variable hiding
since it allows a choice of predicates for abstraction, and has been
used to verify both software and hardware [2, 6, 12, 14]. In pred-
icate abstraction, a finite set of predicates is defined over the set
X of concrete state variables and each predicate corresponds to a
fresh Boolean variable pi ∈ P . With these predicates, the model is
mapped from the concrete state space (induced by X) into an ab-
stract state space (induced by P ). The main disadvantage of predi-
cation abstraction is the expensive abstraction computation. Unlike
in variable hiding, this computation is not compositional; the worst-
case complexity is exponential in the number of predicates. When
the number of predicates is large, the abstraction computation time
often goes up significantly. Cartesian abstraction [7, 3] has been
proposed to alleviate this problem; however, it leads to a further
loss of accurracy in the abstraction.

Traditional hardware models are well structured, in that exist-
ing state variables and transition functions are often sufficient for
constructing a concise abstraction for most user-defined properties.
In this case, exploiting the extra flexibility provided by predicate
abstraction may not be very crucial. However, with the increasing
use of higher level modeling and description languages in today’s
hardware design practice, the functional and structural partition-
ings may no longer directly correspond with each other, and as a
result, the correctness of a property may not be easily localized to
a few variables or submodules. In such cases, predicate abstraction
is generally more effective. Furthermore, for system-level designs
the boundary between hardware and software is getting blurred,
and there is a need for abstraction method that work well on both.

We believe that variable hiding and predicate abstraction can be



regarded as two extremes that have complementary strengths. In
this paper, we propose a hybrid approach that explores the spec-
trum between the two extremes, to provide more robust and con-
cise abstractions. Specifically, we propose a hybrid abstraction that
allows both visible state variables and predicates in the same ab-
stract model. We present algorithms for optimizing the abstrac-
tion computation, and for deciding when to add more visible state
variables and when to add more new predicates within a CEGAR
framework. We also present heuristics for improving the overall
performance, based on static analysis to identify useful candidates
for visible variables, and use of lazy constraints to find more effec-
tive unsatisfiable cores for refinement. We have implemented the
new hybrid abstraction and CEGAR framework, and demonstrate
its application for verifying word-level Verilog designs. Our ex-
perimental results show that the new method matches the better of
the two existing abstraction methods, and outperforms them both
in many cases. We believe this is due to the hybrid abstract model
being more concise than either extreme when allowed to have both
visible variables as well as predicates.

Although we focus on hardware verification, the main ideas (and
indeed our prototype implementation of hybrid CEGAR) are di-
rectly applicable to verifying software programs also. The flex-
ibility in our hybrid approach provides a uniform way to handle
models derived from both hardware and software, and results in ef-
fective and concise abstractions automatically. In the remainder of
the paper, we will briefly mention handling of software programs
in our model representation, but will focus more on details related
to verifying hardware designs described in word-level Verilog.

2. Abstraction Methods
Let X = {x1, . . . , xm} be a finite set of variables representing

the current state of the model, and X ′ = {x′
1, . . . , x

′
m} be the

set of variables representing the next state; then a valuation X̃ or
X̃ ′ of the state variables represents a state. A model is denoted
by the tuple 〈T, I〉, where T (X,X ′) is the transition relation and
I(X) is the initial state predicate. X̃ is an initial state if I(X̃)

holds; similarly, (X̃, X̃ ′) is a state transition if T (X̃, X̃ ′) is true.
In symbolic model checking, the transition relation of a model and
the state sets are represented symbolically by Boolean functions in
terms of a set of state variables. For hardware models, all state
variables are assumed to belong to finite domains. The concrete
transition relation T (X, X ′) is defined as follows,

T =

m∧

i=1

Ti(X, X ′) ,

where Ti is an elementary transition relation. Each xi ∈ X has
an elementary transition relation Ti, defined as x′

i = δi(X), where
δi(X) is the transition function of xi.

Variable hiding marks a subset Xv = {x1, . . . , xn} ⊆ X of
state variables as visible. The set of remaining variables (called
invisible variables) is denoted by Xinv = (X \Xv ). For xi ∈ Xinv ,
let Ti = true. The abstract model (via variable hiding) is defined
as 〈TV , IV〉 such that,

TV =
∧n

i=1
Ti(X, X ′)

IV = ∃Xinv . I(X)

TV (X,Xv
′) may depend on some invisible current-state variables

in Xinv , which are treated as free inputs. In model checking, free
inputs are existentially quantified during image computation. One
can explicitly remove Xinv variables by existential quantification,

T̂V = ∃Xinv . TV (X,Xv

′)

However, this may cause a further loss of accuracy since TV ⊆ T̂V .
In practice, using TV as opposed to T̂V in model checking often
gives better results.

In predicate abstraction, we consider a set P = {P1, . . . ,Pk}
of predicates over variables in X . A new set P = {p1, . . . , pk} of
Boolean state variables are added for the predicates such that pi is
true iff Pi(X) evaluates to true. The abstract model (via predicate
abstraction) is defined as 〈TP , IP〉 such that,

TP = ∃X, X ′ . T (X,X ′) ∧
∧k

i=1
pi ↔ Pi(X) ∧ p′

i ↔ P
′

i(X)

IP = ∃X . I(X) ∧
∧k

i=1
pi ↔ Pi(X)

The mapping from T to TP , or predicate image computation, is
expensive. Most existing tools [6, 16, 12] developed for hardware
verification use either BDDs or a SAT solver to compute the pred-
icate image. For instance, one can build a Boolean formula for
T (X, X ′) ∧

∧k

i=1
pi ↔ Pi(X) ∧ p′

i ↔ Pi(X
′) as the input to a

SAT solver; TP(P, P ′) is obtained by enumerating all the satisfy-
ing solutions of the formula in terms of variables in P and P ′.

In the worst case, the number of satisfying assignments in TP is
exponential in the number of predicates. Abstraction computation
may become intractable when the number of predicates is large. In
such cases, one has to resort to a less precise abstract transition re-
lation T̂P (such that TP ⊆ T̂P ). In Cartesian abstraction [7, 3], for
instance, the set P is partitioned into smaller subsets where pred-
icate images are computed separately for each individual subset,
and the resulting relations are conjoined together to obtain T̂P .

3. The Cost of Abstractions
We evaluate the conciseness of abstraction in terms of the num-

ber of Boolean state variables in the abstract model. In model
checking, the state space is exponential in the number of state vari-
ables, making the number of state variables an effective indicator
of the hardness of model checking.

3.1 The Cost of a Predicate
In variable hiding abstraction, a visible variable xi ∈ Xv with

domain dom(xi) has a cost equal to log|dom(xi)|, where |dom(xi)|
is the cardinality of the set. We assume that binary encoding is used
for xi in the concrete model and log|dom(xi)| is the number of bits
for encoding xi. The cost of an invisible variable is 0. In predicate
abstraction, since all variables in P are in the Boolean domain, the
cost of each pi ∈ P or each corresponding predicate Pi(X) is 1.
To facilitate the comparison of predicate abstraction with variable
hiding, we distribute the cost of pi (which is 1) evenly to the con-
crete state variables in Pi(X) as follows: If there are l supporting
X variables appearing in the expression P i(X), the predicate adds
a cost of (1/l) to each of these variables. When there are visible
variables, we distribute the cost of a predicate evenly to its sup-
porting invisible variables only. If all the variables appearing in
Pi(X) are already made visible, then the predicate is redundant
since adding it will not improve the accuracy of the abstraction.

Example 1 The predicate P1 : (u+v > 10) adds 1/2 each to the
costs of u and v; the predicate P2 : (u− 2v ≤ 3w) adds 1/3 each
to the costs of u, v, and w.

Example 2 When u is a visible variable, the predicate P1 : (u +
v > 10) adds 1 to the cost of v, the predicate P2 : (u− 2v ≤ 3w)
adds 1/2 each to the costs of v and w, and P3 : (u 6= 0) is
redundant.

The total cost distributed to a concrete state variable xi ∈ X by
predicates, denoted by costP (xi), is the sum of the costs incurred



by all the predicates in which xi appears. Recall that in variable
hiding, the cost of xi ∈ X is log|dom(xi)| when it is visible.
Therefore, if costP(xi) > log|dom(xi)|, then predicate abstrac-
tion is considered to be less concise, since making xi visible re-
quires less Boolean state variables than representing the predicates.
On the other hand, if costP(xi) < log|dom(xi)|, then predicate
abstraction is considered to be more concise.

3.2 The Cost of a Visible Variable
Variable hiding can be viewed as a special case of predicate ab-

straction, wherein all possible valuations of a visible variable are
provided as predicates.

In predicate abstraction, TP(P, P ′) is defined in the abstract
state space; however, it can be mapped back to the original state
space as follows, TP(Y, Y ′) =

∃(P, P ′) . TP(P, P ′) ∧

k∧

i=1

pi ↔ Pi(Y ) ∧ p′

i ↔ Pi(Y
′)

Here Y and Y ′ are used to represent the same sets of state vari-
ables as X and X ′. According to the mapping from T (X,X ′) to
TP(P, P ′), we have TP(Y, Y ′) =

∃(X, X ′) . T (X, X ′)∧
k∧

i=1

Pi(Y )↔ Pi(X)∧Pi(Y
′)↔ Pi(X

′)

This equation is interpreted as follows: In order to allow all the
visible variables in T (X,X ′) to be preserved, while existentially
quantifying invisible variables, one can define a set of new predi-
cates for each xi ∈ Xv as follows: let dom(xi) = {d1, . . . , dl},
the set of predicates is {(xi = d1), (xi = d2), . . . , (xi = dl)}.

However, preserving a visible variable xi using these predicates
may be inefficient since it requires |dom(xi)| new Boolean state
variables, one for each predicate (xi = dj). In contrast, making xi

visible only requires log|dom(xi)| Boolean state variables. If all
these predicates (representing valuations of xi ∈ Xv ) are needed in
order to decide the property at hand, then variable hiding provides
an exponentially more concise abstraction.

4. Hybrid Abstraction
We present a hybrid abstraction method that allows visible vari-

ables and predicates to be in the same abstract model. Given a set
Xv = {x1, . . . , xn} of visible variables and a set {P1, . . . ,Pk} of
predicates, together with a set P = {p1, . . . , pk} of fresh Boolean
variables, we define TH(X, P, X ′, P ′), the new hybrid abstract
transition relation, as follows,

TH = TV(X,Xv

′) ∧ TP(P, P ′) ∧
k∧

i=1

pi ↔ Pi(X)

The model can be viewed as a parallel composition of two ab-
stract models TV and TP , defined in terms of Xv and P vari-
ables, and connected through the correlation constraint

∧k

i=1
pi ↔

Pi(X). Without loss of generality, we assume that for every pred-
icate Pi(X), at least one of its supporting X variables is invisible.
(If all supporting X variables in P i are visible, we remove the re-
dundant predicate Pi.)

Since adding the correlation (third conjunct in the above for-
mula) can make model checking significantly more expensive (due
to a large BDD for TH), we choose to use a less precise abstraction

T̂H = TV (X,Xv

′) ∧ T̂P(P, P ′)

Note that in addition to removing the correlation constraint between
X and P , we also replace TP by T̂P (Cartesian abstraction) — this

removes the potential correlation among P variables. The advan-
tage of using T̂P is that it is cheaper to compute. We can use the
syntactic cone partitioning method [3, 12] to enumerate the ele-
mentary transition relation of each predicate separately. That is,
each next-state predicate P i(X

′) is clustered with all the current-
state predicates Pj(X) such that the supporting X variables of
Pj(X) affect the next-state values of the supporting X ′ variables
of Pi(X

′). If the correlation among some P variables is missing
because of this Cartesian abstraction, we will add it back if needed
during refinement.

The loss of both kinds of correlation constraints can cause spuri-
ous transitions to appear in the abstract model. An abstract transi-
tion (s, s′), where s and s′ are valuations of variables in (P ∪Xv )
and (P ′ ∪ Xv

′), respectively, is spurious if no concrete transition
exists between (s, s′). There are two possible reasons for a spu-
rious counterexample to appear: (1) there are spurious transitions
because the abstraction computation in T̂H is not precise; and (2)
there are spurious counterexample segments because the sets of
predicates and visible state variables are not sufficient. Note that a
counterexample segment may be spurious even if none of its transi-
tion is spurious. During refinement, we first remove spurious tran-
sitions, by identifying some needed constraints over variables in
Xv , Xv

′, P , and P ′ and conjoining them with T̂H.

4.1 Refinement for Spurious Transitions
For a spurious transition (s, s′), there is no concrete transition

between s and s′ but T̂H(s, s′) is true. Let the abstract state s =
{p̄1, . . . , p̄k, x̄1, . . . , x̄n} be a valuation of variables in P ∪Xv and
s′ be a valuation of the variables in P ′∪Xv

′, then (s, s′) is spurious
iff the formula R(X,P, X ′, P ′), defined below, is not satisfiable.

T ∧
n∧

i=1

xi = x̄i ∧ x′

i = x̄′

i ∧
k∧

i=1

Pi(X)↔ p̄i ∧ Pi(X
′)↔ p̄′

i

We build a Boolean formula R for each abstract transition in the
given counterexample, and use a SAT solver to check its satisfiabil-
ity. If the formula is not satisfiable, then the transition is spurious.

Removing the spurious transition requires the addition of a con-
straint r(X,P, X ′, P ′), i.e., conjoining T̂H with r. The additional
constraint r is defined as follows,

r = ¬(
n∧

i=1

xi = x̄i ∧ x′

i = x̄′

i ∧
k∧

i=1

pi ↔ p̄i ∧ p′

i ↔ p̄′

i)

The constraint r can be strengthened by dropping the equality con-
straints on some irrelevant X and P variables. The irrelevant vari-
ables can be determined by analyzing the UNSAT core reported by
the SAT solver. An UNSAT core of a Boolean formula is a sub-
set of the formula that is sufficient for proving the unsatisfiability.
If certain subformulas in R, such as xi = x̄i and Pi(X) ↔ p̄i,
do not appear in the UNSAT core, then we can drop those equality
constraints from r. The strengthened version of r is guaranteed to
remove the spurious transition at hand.

4.2 Refinement for Spurious Segments
If there is no spurious transition in a spurious counterexample,

more predicates or visible variables are needed to refine the abstract
model. We adopt the following notation: let Xj ∪ P j be the copy
of (X∪P ) at the j-th time frame. If the counterexample s0, . . . , sl

is spurious, the following formula is unsatisfiable,

l−1∧

j=0

R(Xj , P j , Xj+1, P j+1)



Note that each R is satisfiable by itself (R is defined in 4.1). We
can remove the spurious counterexample by using a weakest pre-
condition (WP) based refinement method [2, 11]. Since the weakest
precondition computation relies on the underlying representation of
the concrete model, we postpone the discussion of refinement to the
next section, after we present this representation.

5. The Hybrid CEGAR Procedure
In this section, we present our hybrid CEGAR procedure based

on models represented as Control and Data Flow Graphs (CDFGs).
We formally define the CDFG representation first. Intuitively, this
representation allows a separation between control and data state,
such that control states are represented explicitly in terms of basic
blocks (with guarded transitions between blocks) and data states
are represented implicitly in terms of symbolic data variables (with
assignments that update data state). This provides a natural repre-
sentation for software programs, where control states correspond
to control locations of the program and data states to values of pro-
gram variables. For hardware models, we pick Verilog as a repre-
sentative HDL, and describe how to obtain CDFGs from word-level
Verilog designs—this has certain features that impact the proposed
abstraction and refinement techniques.

The CDFG is a concrete model, serving as input to our hybrid
CEGAR procedure. We compute the hybrid abstract model directly
from the CDFG model, with respect to a set Xv of visible variables
and a set P = {P1, . . . ,Pk} of predicates.

5.1 Transforming Verilog Designs into CDFGs
We transform the Verilog design through rewriting to a function-

ally equivalent reactive program. This reactive program is formally
represented as a control and data flow graph (CDFG).

Definition 1 A control and data flow graph (CDFG) is a 5-tuple
〈B, E, V, ∆, θ〉 such that

• B = {b1, . . . , bL} is a finite set of basic blocks, where b1 is
the entry basic block.

• E ⊆ B×B is a set of edges representing transitions between
basic blocks.

• V is a finite set of variables that consists of actual variables
in the design and auxiliary variables added for modeling the
synchronous semantics of hardware description.

• ∆ : B → 2Sasgn is a labeling function that labels each
basic block with a set of parallel assignments. Sasgn is the
set of possible assignments.

• θ : E → Scond is a labeling function that labels each edge
with a conditional expression. Scond is the set of possible
conditional expressions.

Example 3 The Verilog example in Figure 1 computes Fibonacci
numbers (taken from [12]). The equivalent CDFG is on the right.
To maintain the synchronous semantics, we add the variable a NS
to hold the next-state value of the reg type variable a. The loop
body corresponds to the execution of the always block exactly once
(in a clock cycle). Since a <= b+a is a non-blocking assignment,
i.e., a gets the current value of (b + a) at the next clock cycle (not
immediately), when translating the assignment b <= a, we do not
substitute a by a NS. Note that if it were a blocking assignment b
= a+b and b = a in the Verilog description, we would have trans-
lated them into a NS = b+a and b = a NS.

module main (clk);
input clk;
reg [31:0] a, b;

initial a = 1;
initial b = 0;

always @ (posedge clk)
begin

if (a < 100)
a <= b + a;

b <= a;
end

wire error = (a + b > 200);
endmodule

goto LOOP

ERROR

LOOP:

5

6

2

a NS = b+a

4

1

7

(a+b≤200)

(a≥100)

a=a NS

b=a

(a<100)

a = 1
a NS = 1
b = 0

(a+b>200)

3

Figure 1: Rewriting the Verilog design into a CDFG.

In Figure 1, each rectangle in the CDFG is a basic block and the
edges are labeled by conditional expressions. For example, the
transition from block 3 to block 4 is guarded by (a<100). Edges
not labeled by any condition are assumed to have a true label.
Block 1 is the entry block and block 7 is the error block. Reach-
ability properties in the Verilog model are translated into assertion
checks at the beginning of the loop. For example, G(a + b ≤ 200)
is translated into if(a+b>200) ERROR. The verification problem
consists of checking whether the ERROR block is reachable from
the entry block. More complex properties (PSL or LTL) can be
handled by first synthesizing them into monitors followed by our
Verilog-to-CDFG translator.

The transformation from Verilog designs to CDFG representa-
tions is made easy by introducing the NS variables. Our CDFG is
a representation similar to a software program, except that it has a
single infinite loop to emulate the reactiveness of a hardware model.
A clock cycle in the Verilog model corresponds to the execution of
the loop body of the CDFG exactly once. Procedural statements
from all the always blocks are sequentialized inside the infinite
loop. Due to the addition of extra NS variables for the reg type
variables, e.g., a NS for a as in Figure 1, sequentialization of mul-
tiple synchronously running always blocks may take an arbitrary
order. In our implementation, we choose an order that can mini-
mize the number of added NS variables, since such optimizations
reduce the size of the concrete model and therefore speed up model
checking.

We choose this CDFG model in order to directly apply weakest-
precondition based predicate abstraction refinement algorithms [2,
11] that have been developed for software programs. In the tradi-
tional synchronous model, these WP-based refinement algorithms
are not directly applicable. Note that a synchronous model for Ver-
ilog designs is equivalent to summarizing all the statements in the
loop body of our CDFG model, and creating a single basic block
with a self loop, and with a set of parallel running assignments, one
for each register variable. Such a synchronous circuit model (as
opposed to a reactive program) is used in [12], where significant
modifications have to be made to the WP-based refinement algo-
rithm. Even with these modifications, one has to simultaneously
consider all possible branches inside each clock cycle, making the
WP computation likely to blow up. In contrast, in our CDFG rep-
resentation, the weakest precondition computation can be localized
to a single execution path, therefore offering the possibility of cre-
ating abstraction at a finer granularity. Abstraction computation
is also faster in the reactive model since SAT enumeration can be
applied to assignments in each individual block of the CDFG, as
opposed to all assignments of the single block of a synchronous
model simultaneously.



5.2 Hybrid Abstraction Refinement for CDFGs
We add a special state variable xpc, the program counter (PC),

to represent the control locations of the CDFG; the domain of xpc

is the set B of basic blocks. We assume that the set X of state
variables of the model is {xpc} ∪ V . In the sequel, xpc is always
the first element of X and therefore xpc and x1 are interchangeable.
We define the initial states of the model as I = (x1 = b1), i.e., all
possible valuations of V in the entry block b1. If the error block
is bErr ∈ B, the property to be verified is G(x1 6= bErr). The
set of parallel assignments in each basic block bj ∈ B, denoted
∆(bj), is written as x2, . . . , xm ← e2,j , . . . , em,j , where em,j

is the expression assigned to xm in block bj . The guard cj,k =
θ(bj , bk) is the edge label from block bj to block bk; if there is no
such edge, cj,k = false.

5.2.1 Trading Predicates for Visible Variables
In our hybrid abstraction, x1 is always visible. We can start with

Xv = {x1} and P = { }, and add new predicates using WP-based
refinement. At the same time, we check whether it is advantageous
to trade some existing predicates for visible variables as follows:

• Add new visible variables: For all xi ∈ Xinv , if the total cost
distributed to xi by predicates is larger than log|dom(xi)|,
we make xi visible, i.e., we add xi in Xv .

• Remove redundant predicates: For a predicate P i(X) whose
supporting X variables are all visible, we remove the predi-
cate and remove the corresponding pi from P .

• Modify correlation constraints: For all existing correlation
constraints r(Xv , P,Xv

′, P ′), if pi and p′

i are in the sup-
port of r, but Pi(X) has been declared as redundant and
removed, we existentially quantify pi and p′

i from r, i.e., we
use ∃(pi, p

′
i) . r(Xv ,Xv

′, P, P ′) instead.

Our initial hybrid abstract transition relation is T̂H = TV ∧ T̂P .
Given a set Xv , we compute TV =

∧n

i
Ti as follows: For x1 ∈ Xv ,

T1 represents the control flow logic,

T1 =

L∨

j=1

L∨

k=1

(x1 = bj) ∧ (x′

1 = bk) ∧ cj,k

Since invisible variables are treated as free inputs, if ci,k(X) con-
tains invisible variables, the guard is nondeterministically chosen
to be true or false (corresponding to if(*)). For xi ∈ Xv such
that i 6= 1,

Ti =
L∨

j=1

(x1 = bj) ∧ (x′

i = ei,j) ,

wherein ei,j(X) is the RHS expression assigned to xi in block j.
If there is no explicit assignment to xi, then ei,j = xi.

Correlations between X and P variables, as well as correlations
among P variables, are added lazily during refinement if spurious
transitions occur. We have explained our refinement method for
removing spurious transitions in Section 4.1. In the following sec-
tion, we focus on removing spurious counterexamples by adding
new visible variables and predicates to Xv and P , respectively.

5.2.2 Computing New Predicates in CDFGs
We use a weakest precondition based refinement algorithm for

finding new predicates [2, 11]. We include its description in this
section for the sake of completeness.

Given a spurious counterexample with no spurious transition,
first, we identify a subset of conditional expressions (guards) that

are needed to prove the infeasibility of a concrete path. We focus
on one path in the CDFG, blk1, . . . , blkn, determined by the coun-
terexample. In this path, a basic block may appear more than once.
The sequence of statements π = st1, st2, . . . corresponding to this
path consists of two kinds of statements: a basic block blki cor-
responds to a set of parallel assignments ∆(blki), and a transition
(blki, blki+1) corresponds to a branching statement assume(c)
where c = θ(blki, blki+1).

Example 4 A spurious counterexample segment in Figure 1 corre-
sponds to the sequence of basic blocks 1,2,3,5,6,2,7. The sequence
of program statements is shown below:

blocks transitions statements in UNSAT
b1 a = 1;

a NS = 1; yes
b = 0; yes

b1 → b2
b2

b2 → b3 assume(a + b ≤ 200);
b3

b3 → b5 assume(a ≥ 100);
b5 b = a;

b5 → b6
b6 a = a NS; yes

b6 → b2
b2

b2 → b7 assume(a + b > 200); yes

Recall that we use a SAT solver to check the feasibility of a
counterexample segment, where an unsatisfiable formula indicates
that the counterexample is spurious (Section 4.2). For each c =
θ(blki, blki+1), we check whether c appears in the UNSAT core.
If it appears in the UNSAT core, then the guard c(X) is chosen
and its weakest precondition WP (π, c) is computed with respect
to the spurious prefix π. WP (π,φ) is the weakest condition whose
truth before the execution of π entails φ after the execution. Let
f(V/W ) denote the substitution of W with V in function f(W ).
WP (π, φ) is defined as follows: (1) for an assignment s:(v=e),
WP (s, φ) = φ(e/v); (2) for a conditional statement s:assume(c),
WP (s, φ) = φ ∧ c; (3) for a sequence of statements st1;st2,
WP (st1; st2, φ) = WP (st1,WP (st2, φ)). Refinement corre-
sponds to adding the new predicates appearing in WP (π, c) to the
abstract model.

In this example, suppose that the guard (a + b > 200) appears
in the UNSAT core and π is the sequence of statements in blocks
1,2,3,5,6 and 2. Then WP (π, a+ b > 200) provides the following
new predicates: P1 : (a + b > 200), P2 : (a NS + b > 200),
P3 : (a NS + a > 200). Adding these predicates will remove
the spurious counterexample, because in block 1, P3 = false; in
blocks 5 and 6, P2 = P3;P1 = P2; this makes the transition from
block 2 to block 7, guarded by (P1), evaluate to false.

In our method, new predicates are directly added by the refine-
ment algorithm, while visible variables are derived indirectly from
the existing set of predicates by trading in predicates. An alterna-
tive is to selectively make some of the variables in the UNSAT core
visible directly.

5.3 Eagerly Adding Syntactic Constraints
Recall that in T̂H, the constraints

∧k

i=1
pi ↔ Pi(X) are left

out completely, to make the abstraction computation cheaper. Al-
though some of the needed correlation constraints can be lazily
added during refinement of spurious transitions (Section 4.1), this
process can sometimes be inefficient due to the model checking ex-
penses and number of refinement iterations. Therefore, we eagerly
add certain cheaper constraints to T̂H upfront.



We use the following syntactic rules to decide which constraints
to add. We assume that T̂H = TV ∧ T̂P =

∧n

i=1
Ti ∧

∧k

i=1
Tpi

.

(Rule 1) for x1 ∈ Xv (the PC variable),

T1 =
L∧

j=1

L∧

k=1

(x1 = bj) ∧ (x′

1 = bk) ∧ cj,k

We process the conditional expressions cj,k(X) as follows:

• if cj,k is a constant (true or false), or all the supporting X
variables of cj,k(X) are visible, then do not change it;

• else if cj,k(X) is syntactically equivalent to (the negation of)
a predicate P l(X), then replace it by (the negation of) pl;

• otherwise, replace it with (∗), by adding a fresh primary in-
put indicating a nondeterministic choice.

Note that in the third case, over-approximation of ∃Xinv . Cj,k(X)∧∧k

i=0
pi ↔ Pi(X) is used; however, there is no approximation in

the first two cases.

(Rule 2) for xi ∈ Xv such that i 6= 1 (non-PC variables),

Ti =

L∨

j=1

(x1 = bj) ∧ (x′

i = ei,j)

We choose not to approximate ei,j(X), the expression assigned to
xi in block j. We use ei,j as is, even if there are invisible variables
in its support—these invisible variables become pseudo-primary in-
puts.

(Rule 3) for pi ∈ P (predicate variables), Tpi
is the elementary

transition relation of pi. We localize the computation of Tpi
to the

computation of Tpi,j in each basic block j (similar to x′
i = ei,j for

computing Ti),

Tpi
=

L∨

j=1

(x1 = bj) ∧ Tpi,j

where Tpi,j = ∃Xinv .WPj(Pi) ∧
∧k

l=1
pl ↔ Pl(X). We use

WPj(Pi) to denote the weakest precondition of Pi(X) with re-
spect to the assignments in block bj . Since the existential quantifi-
cation (∃Xinv .) is expensive, we compute Tpi,j as follows:

• if WPj(Pi) is a constant (true or false), or in the expres-
sion of WPj(Pi) all the supporting X variables are already
visible, then Tpi,j = (p′

i ↔WPj(Pi);

• else if WPj(Pi) is equivalent to (the negation of) another
predicate P l(X) or its negation, then Tpi,j equals (the nega-
tion of) the formula (p′

i ↔ pl);

• else if enumerating the solutions of p′

i and P variables for
p′

i ↔ WPj(Pi) ∧
∧k

l=1
pl ↔ P l is feasible, we use the

enumeration result instead. The result represents a relation
over p′

i and P ;

• otherwise, let Tpi,j be p′
i = (∗)—by adding a fresh primary

input to indicate a nondeterministic choice.

These heuristics are optional in that they do not affect the com-
pleteness of the overall CEGAR procedure. However, in practice
they are very effective in reducing the spurious transitions, and
hence avoiding the associated costs of model checking and large
number of refinement iterations.

6. Additional Heuristics for Refinement
In this section, we discuss some additional heuristics to improve

our hybrid CEGAR procedure. These are based on a static identi-
fication of candidate variables to make visible quickly, and a lazy
constraint technique to improve the quality of the unsatisfiable cores
used for the purpose of refinement.

6.1 Static Identification of Visible Variables
Before the CEGAR loop starts, we can use a simple static analy-

sis on the CDFG to heuristically compute a small set of promising
candidates of visible variables, i.e., variables that are likely to be
made visible during the refinement process. In particular, we use
the heuristic that for a state variable v, if (1) the next-state value
of v is determined by some arithmetic expression over the current-
state value of v, and (2) the variable v appears in some conditional
expression guarding an error block, then we consider v as a promis-
ing candidate visible variable.

However, we do not add these precomputed candidates as visible
variables upfront, since static analysis alone is not a good indica-
tor that these variables are needed to verify the property at hand.
Instead, during refinement, if a candidate variable v appears in the
support of a predicate P l(X) in the UNSAT core, then we im-
mediately add v as a visible variable even if its accumulative cost
costP (v) is not yet large enough.

always @(posedge clk) begin
...
if ( v > 1024 ) begin

if (...)
set the error bit;

end
...
v = v + x ;

end

Figure 2: Precomputing candidates of visible variables.

In other words, we bypass the step of first generating new pred-
icates based on WP-based analysis. This is because in the subse-
quent refinement iterations, it is likely that a large number of new
predicates (corresponding to the WP of P l) are needed, due to the
nature of v’s transition function. In Fig. 2, for instance, if the pred-
icate (v<1024) is in the UNSAT core, the subsequent refinements
will add (v+x<1024),(v+2x<1024),... as predicates—this is
precisely the situation we want to avoid. In the hybrid abstraction,
we avoid the situation by adding v as a visible variable immediately
after the addition of the new predicate (v<1024).

6.2 Lazy Constraints in UNSAT Core
Recall that we use an UNSAT core derived by the SAT solver for

refinement, both for spurious transitions (by identifying correlation
constraints in the UNSAT core) and for spurious segments (by iden-
tifying the conditional expressions in the UNSAT core). There are
often multiple UNSAT cores for the same unsatisfiable problem,
and the SAT solver by default may not generate an UNSAT core
that is better for refinement.

Consider the example in Figure 3, where a spurious counterex-
ample is shown on the left. Imagine that, for instance, lines 4 and 8
have complex loop bodies guarded by the conditions in lines 3 and
7, respectively; and the loop bodies contain i=i+1 and j=j+1. For
this spurious counterexample, there are four UNSAT cores:

• Lines 1, 2 and 3,

• Lines 5, 6 and 7,



1: A = 100;
2: i = 0;
3: assume (i>=A)
4:
5: B = 100;
6: j = 0;
7: assume (j>=B)
8:
9: k = i + j;
10: asumee (k < A+B)
11:

1:
2:
3: while (R)
4: {... i=i+1;}
5:
6:
7: while (S)
8: {... j=j+1;}
9: P = Q //Q = R&S
10: if (P)
11: ERROR

Figure 3: UNSAT core may not generate a good refinement.

• Lines 1, 2, 5, 6, 9 and 10,

• Lines 3, 7 and 10.

Although any of these UNSAT cores can be used to remove the
spurious counterexample, the last one is better since it immedi-
ately proves that ERROR is not reachable, as shown on the right.
The weakest precondition of P:(k<A+B) is Q:(i+j<A+B), which
is implied when both R:(i<A) and S:(j<B) are true. With these
four predicates, we can prove the property.

However, modern SAT solvers are likely to report one of the first
three UNSAT cores, due to the eager unit clause propagation used
during pre-processing to handle the assignments to constants (lines
1, 2, 5, and 6). In this example, WP computation has to consider
the (potentially complex) loop bodies. For instance, if the loops
contains i=i+1 and j=j+1, then using the first UNSAT core will
result in 1024 predicates derived from R.

We heuristically avoid this situation by formulating the satisfi-
ability problem in a slightly different way. For each assignment
statement of the form sti: v:=const in the spurious counterex-
ample, the constraint in the corresponding SAT problem is (vi =
const). We change this constraint to :

(vi = const ∨ q) ∧ (vi = const ∨ ¬q)

where q is a fresh Boolean variable. Note that the new constraint
implies (vi = const). However, the presence of the extra vari-
able q prevents the SAT solver from eagerly propagating the unit
clauses due to (vi = const) during pre-processing. This reduces
the chances of such constant assignments appearing in the UNSAT
core reported by the SAT solver. Therefore, although this approach
does not guarantee that the UNSAT core generated by the SAT
solver provides the best refinement solution, it can significantly in-
crease the chance of getting one.

This approach is similar to the lazy constraint method in [10],
where it was shown to be effective for finding good variable (latch)
hiding abstractions. Here, we apply it in the context of predicate
abstraction. Furthermore, the lazy constraints in [10] were applied
at the bit-level, for modeling only the initial state values of latches.
In contrast, we apply them at the word-level, to assignment state-
ments appearing anywhere in the high-level description of the de-
sign or program. Another difference to note is that the earlier work
used lazy constraints for the purpose of proof-based abstraction. In
that setting, the use of lazy constraints can sometimes be expen-
sive, especially on large problems corresponding to large concrete
designs. In our setting, we use lazy constraints only during refine-
ment, where the problem of checking the feasibility of an abstract
counterexample is significantly smaller.

7. Experiments
We have implemented the hybrid CEGAR procedure for mod-

els represented as CDFGs. We evaluated the proposed techniques
by comparing hybrid abstraction with the two existing abstraction
methods—variable hiding and predicate abstraction—in the same

CEGAR procedure. For the purpose of controlled experiments,
the model checking algorithms are kept the same; both predicate
abstraction and hybrid abstraction use the same weakest precondi-
tion based refinement algorithm to find new predicates, and variable
hiding uses an UNSAT core based refinement algorithm to identify
new visible variables. In our implementation, we used CUDD [21]
for BDD operations and a circuit SAT solver for SAT related oper-
ations. Our experiments were conducted on a workstation with a 3
GHz Pentium 4 and 2GB of RAM running Red Hat Linux.

We have instrumented a public Verilog front-end tool (called
Icarus Verilog) to translate Verilog designs into functionally equiv-
alent CDFGs. Our benchmarks include examples from [13] and the
VIS Verilog benchmarks [22]. All examples are available in public
domain. For these examples, we check invariant properties, which
are expressed as reachability of an error block. Among the test
cases, AR is an example computing the Fibonacci numbers (we set
the parameterized bit-width to 32, although in the original versions,
the bit-vectors have sizes of 500, 1000, and 2000 in all arithmetic
operations); pj icram is an example which models a RAM unit of
the PicoJava microprocessor; pj icu is an example which models
the Instruction Control Unit of the PicoJava microprocessor. The
sdlx example is a sequential DLX processor that uses a load-store
architecture. The arbiter example is a Tree Arbiter model from
[22], which has a counter of 8-bit width. tloop is a model contain-
ing three concurrently running submodules with long counters. The
itc99 examples are the Verilog versions (from [22]) of the Torino
benchmarks in ITC99-T.

The first three columns of Table 1 provide statistics on the exam-
ples: the first column shows the names of the designs; the second
column shows the numbers of binary state variables (or registers)
in the cone of influence, and the third column indicates whether the
property is true. The next three columns compare the CPU time of
the CEGAR procedure with different abstraction methods—varhide
denotes variable hiding, predabs denotes predicate abstraction, and
hybrid denotes the hybrid abstraction. The next three columns
compare the number of iterations of the CEGAR procedure needed
to prove the properties. The next three columns compare the final
abstract models in terms of (Vars/Preds), i.e., the number of vis-
ible variables and the number of predicates, respectively. (Here a
final abstract model is a model on which the property can be de-
cided.) The last three columns show the results for the VCEGAR
tool [13]—the CPU time, the number of iterations, and the size of
the final abstract models. We ran all the experiments using the lat-
est binary of VCEGAR (version 1.1).

Overall, the hybrid abstraction makes the CEGAR procedure
more robust. The performance of hybrid consistently matched the
better of the two existing methods varhide and predabs. For half
of the examples, hybrid obtained the best runtime performance
among the three. We believe that this is due to the hybrid model
being more concise than either of the two extremes. It is interesting
to note that even though our currently implemented refinement ap-
proach is slightly biased toward predicates (converting predicates to
visible variables, and not vice versa), the final abstract model in all
examples included a non-trivial number of visible variables (other
than xpc). Note also that our implementation of pure predicate ab-
straction has a runtime performance comparable to VCEGAR, al-
though it computes abstractions at a significantly finer granularity.

More specifically, note that predicate abstraction timed out on
the arbiter example, since a large number of predicates of the form
(i+counter <=127) such that i = 1, 2, . . . is required (exponen-
tial in the bit-width of variable counter). The itc99-d example
is also hard for pure predicate abstraction, since it has a very long
counterexample and requires a large number of predicates. Pure



Table 1: Comparing the three abstraction methods in the same CEGAR procedure (TO—timed out after 1 hour)
Test Case CPU Time (s) Iterations Vars / Preds VCEGAR

name bvars prop varhide predabs hybrid varhide predabs hybrid varhide predabs hybrid (v/p) Time Iters Preds
AR 96 T 3.4 0.5 0.5 3 6 5 96 6 0 / 6 0.5 3 4
pj icram 243 T 4.4 3.5 3.6 8 8 9 107 21 13 / 8 21.5 2 3
pj icu 8060 T 84 68 23 2 2 2 1228 46 37 / 9 0.7 2 6
sdlx 124 T 39 20 14 14 15 15 42 28 24 / 4 42.6 20 43
tloop 127 T TO 3.3 3.1 - 6 6 - 15 9 / 6 TO - -
arbiter 121 T 435 TO 401 13 - 20 50 - 13 / 37 TO - -
itc99-a 9 F 0.2 0.6 0.3 3 5 4 2 6 4 / 2 0.6 2 12
itc99-b 74 T 32 73 17 11 13 11 60 47 32 / 3 7.5 8 35
itc99-c 71 F 7.9 18 9.0 7 10 8 24 28 22 / 1 2.7 4 17
itc99-d 71 F 225 TO 692 11 - 16 65 - 45 / 8 TO - -

variable hiding abstraction worked well on these two examples, be-
cause it is able to localize the property to a small subset of vari-
ables (the final abstract model for arbiter, including the variable
counter, has 50 Boolean state variables). The hybrid abstraction
uses the same WP-based refinement algorithm as in predicate ab-
straction, but achieved a runtime performance and final sizes simi-
lar to variable hiding.

On the other hand, pure variable hiding was the slowest on the
AR example, since it added all the variables of the model to prove
the property (the final abstraction has 96 Boolean state variables).
In contrast, both predicate abstraction and hybrid abstraction pro-
duced much smaller final abstract models (with only 6 Boolean
state variables). Variable hiding also timed out on the tloop ex-
ample, which has a CDFG structure similar to the one in Figure 3;
variable hiding is inefficient for this example because the abstract
model contains several complex arithmetic operations (large adders).
Our implementations of both predicate abstraction and hybrid ab-
straction completed this example. VCEGAR did not complete the
tloop example because its refinement is based on the standard UN-
SAT core reported by zChaff, which results in the addition of a
number of predicates. In contrast, we used the lazy constraint
heuristic refinement described in Section 6.2 to obtain a more use-
ful UNSAT core. This allowed us to build a simpler abstract model
and therefore complete this example quickly.

8. Conclusions
We have presented a hybrid abstraction method that combines

variable hiding with predicate abstraction in the same counterexam-
ple guided abstraction refinement loop. We use refinement based
on weakest preconditions to add new predicates, and under cer-
tain conditions trade in the predicates for visible variables in the
abstract model. We present heuristics for improving the overall
performance, based on static analysis to identify useful candidates
for visible variables, and use of lazy constraints to find more ef-
fective refinement. Our experiments show that hybrid abstraction
frequently outperforms the existing abstraction methods—it makes
the CEGAR procedure more robust. For future work, we will ex-
plore the use of more static analysis techniques to speed up the
abstraction computation and to help computing better refinements.
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