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Abstract. We present an extrapolation with care set operator to accelerate ter-
mination of reachability computation with polyhedra. At the same time, a coun-
terexample guided refinement algorithm is used to iteratively expand the care
set to improve the precision of the reachability computation. We also introduce
two heuristic algorithms called interpolate and restrict to minimize the polyhe-
dral representations without reducing the accuracy. We present some promising
experimental results from a preliminary implementation of these techniques.

1 Introduction

Static analysis based on abstract interpretation [9] and model checking [7, 27] are pop-
ular techniques for program verification. They both rely on fixpoint computation, with
the former heavily employing widening [11] to ensure termination. The precision of
a widening operator is crucial for the effectiveness of abstract interpretation. Often a
widening operator is carefully designed by the user a priori for an abstract domain, and
if it does not provide enough precision, the user either accepts the result as inconclusive
or has to redesign the operator. In this paper, we use counterexample guided refinement
developed in model checking to automatically improve the precision of reachability
computation using the polyhedral abstract domain.

Widening for convex polyhedra was introduced in [11] for numerical relational
analysis and later extended to verification of integer-valued programs [15] and linear
hybrid systems [16]. The operator was generalized in [5] and in [2] to powersets (or fi-
nite unions) of convex polyhedra. Approximation techniques were also studied in [17],
where an extrapolation operator is introduced. The difference between widening and
extrapolation is that the latter does not guarantee termination. The widening precision
can be increased by partitioning methods [20]. In [1], a widening algorithm was in-
troduced by combining several known heuristics and using convex widening as a last
resort. In all these previous works, there is no automatic refinement involved.

In model checking, counterexample guided refinement [21, 6, 3] has been used to-
gether with predicate abstraction [13] to verify software programs. Predicate abstrac-
tion relies on finite sets of predicates to define abstract domains, and therefore can be

* This is a newer version containing a correction to Algorithm 1. The original version of this pa-
per appeared in the Proceedings of CAV’07, in which Algorithm 1 was not presented correctly.
The problem was found and fixed before the conference presentation. The correct version was
presented in CAV’07.



viewed as an instance of domain refinement in abstract interpretation. However, finite
abstractions in general are not as powerful as an infinite abstract domains with widen-
ing for Turing equivalent programming languages [10]. Although our new procedure
uses a backward counterexample analysis similar to those in [3], our goal is to refine
the care set in the same abstract domain instead of creating a new abstract model (or a
new abstract domain).

In a recent work [14], Gulavani and Rajamani also proposed a counterexample
driven refinement method for abstract interpretation, which identifies the fixpoint steps
at which precision loss happens due to widening in forward fixpoint computation, and
then use the least upper bound (convex hull for convex polyhedra) instead of widening at
those steps. In effect, their refinement procedure simply skips the widening at particular
steps (the least upper bound of two consecutive sets P and (Q of a fixpoint computation
is actually @, since P C @). Our refinement procedure does not merely skip the over-
approximation; instead, it produces a refined care set to guide the direction-of-growth
in over-approximation at the next iteration of the refinement loop.

We define a new operator called extrapolation with a care set. Given two sets P T ()
and a care set C such that Q NC = (), the extrapolation of P with respect to Q under C
is a set S such that @ C S and S N C = (). In reachability computation, the care set C
is initially empty—in this case the new operator can be substituted by normal widening
whose result S = PVQ satisfies both @ € S and S N C = . If a given invariant
property ¢ holds in the over-approximated reachable set, then the property is proved.
Otherwise, we intersect this over-approximated set with -, pick a subset, and start a
precise backward analysis in order to build a counterexample. If a counterexample can
be found, then we report it as a real error; otherwise, it remains to be decided. In the
latter case, we analyze the spurious counterexample and produce a new care set C'. The
expanded care set C' is used with extrapolation to compute a new reachability fixpoint.
This iterative refinement process continues until either enough precision is achieved
to derive a conclusive result, or the computing resources are exhausted. Note that the
entire procedure is automatic, whereas for the existing widening techniques, typically
the user has to redesign the widening operator manually when a false bug is reported.

We propose a set of algorithms for implementing the new operator in the domain
of convex polyhedra. For two powersets P and () of convex polyhedra, we apply the
proposed operator to individual pairs P; € P and ); € Q) only when P; C Q);. In prac-
tice, the use of a care set can significantly increase the precision of program analysis in
the polyhedral powerset domain. We also introduce two new operators called interpo-
late and restrict to heuristically simplify the polyhedral representations. Applying these
two operators during forward and backward reachability fixpoint computations does not
cause a loss in precision.

There is an analogy between our widening criterion and the over-approximation in
interpolant-based model checking [24]. That is, both are goal-directed and may over-
approximate the reachable states by adding any state that cannot reach an error in a
given number of steps, or along a given path. Our method can benefit from other recent
improvements in widening-based approaches, such as lookahead widening [12]. Im-
proved ways of selecting extrapolation points can benefit us also. Overall, we believe



that our goal-directed approach for improving precision is complementary to these ap-
proaches based mostly on program structure.

2 Preliminaries
2.1 Abstract Interpretation

Within the general framework of abstract interpretation [9], the abstract postcondition
and precondition operations, as well as the least upper bound, may all induce approx-
imations. Widening is used to enforce and/or to accelerate the termination of fixpoint
computations since in general the computation may not have a fixpoint or have one that
cannot be reached in a finite number of iterations.

Widening (cf. [9]). A widening operator on a partial order set (L, C) is a partial func-
tion V : L x L — L such that

1. for each z,y € L such that xVy is defined, x C zVy and y C zVy;
2. for all ascending chains yo C y; C ..., the ascending chain defined by x¢ := yo
and x; 41 := x;Vy;41 for ¢ > 0 1is not strictly increasing.

An operator satisfying the first condition but not the strictly increasing requirement of
the second condition is called an extrapolation [17]. In the sequel, we use V to denote
both widening and extrapolation when the context is clear. Since there is more freedom
in choosing an actual implementation of an extrapolation operator than widening, it is
possible for extrapolation to produce a tighter upper-bound set than widening.

For program verification, we consider a powerset domain of convex polyhedra over
a linear target program, where only V causes the precision loss (i.e., precondition, post-
condition, and least upper bound are precise). We want to compute the reachability
fixpoint F' = pZ .1 U post(Z), where I is the initial predicate and post(Z) is the
postcondition of Z with respect to a set of transfer functions. In general, Z is a finite
union of convex polyhedra. We define 1 as a predicate that is expected to hold in the
program (i.e., the property of interest), then program verification amounts to checking
whether F' C 1. To apply widening/extrapolation in the reachability computation, let
Yi+1 = x; U post(x;); that is,

yo =1 xo=1

y1 =1 Upost(I) 1 =1 Vi
y2 = x1 U post(xq) T2 = 21VY2
Yz = ...

Reachability computation in the concrete domain, as is often used in symbolic model
checking [23], can be viewed as a special case (by making z; = y; for all ¢ > 0).

2.2 Polyhedral Abstract Domain

The polyhedral abstract domain was first introduced in [11] to capture numerical rela-
tions over integers. Let Z be the set of integer numbers and Z™ be the set of all n-tuples.
A linear inequality constraint is denoted by a” - x < b, where x, a € Z" are n-tuples (x



is the variable) and b € Z is a scalar constant. A polyhedron P is a subset of Z™ defined
by a finite conjunction of linear inequality constraints, P = {x € Z" | Vi : al -x < b;}.
We choose to use this constraint system representation in order to be consistent with
our actual implementation, which is based on the Omega library [25]. An alternative
would be to define P as a generator system comprising a finite set of vertices, rays, and
lines. Some implementations (e.g., [22]) choose to maintain both to take advantages of
their complementing strengths and to avoid the conversion overhead between the two.
The first widening operator for this abstract domain was introduced in [11], often
being termed as standard widening (we follow this convention for ease of reference).

Standard Widening. Let P and @) be two polyhedra such that P C @Q); the widening
of P with respect to (), denoted by PV (), is computed as follows: when P is empty,
return (Q; otherwise, remove from P all inequalities not satisfied by @) and return.

The intuition behind standard widening is to predict the directions of growth from P
to Q and then drop any constraint of P in these directions. The finiteness of the first
polyhedron (where widening starts) ensures termination.

Widening Up-to. Let P and (Q be two polyhedra such that P T @, and let M be
a finite set of linear constraints. The widening up-to operator, denoted by PV 5@, is
the conjunction of the standard widening PV () with all the constraints in M that are
satisfied by both P and Q.

The widening up-to operator was introduced in [15, 16] to improve standard widening
whenever the result is known to lie in a known subset. This subset, or up-to set M,
is defined as a set of constraints associated with each control state of a program. For
instance, if a variable x is declared to be of subrange type 1..10,then z > 1 and x < 10
are added into M. If there exists a loop for (x=0; x<5; x++), then the constraint
x < 51is also added into M. It is worth pointing out that the up-to setin [15, 16] is fixed.
It does not consider automatic refinement adaptive to the property under verification.

3 Extrapolation with a Care Set

We define the care set to be an area within which no extrapolation result should reside in
order to avoid false bugs. We use a precise counterexample guided analysis to gradually
expand the care set and therefore improve the precision of the extrapolation with care
set operator (defined below).

Definition 1. An extrapolation with a care set C on a partial order set (L,C) is a
-C
partial function V : L x L — L such that
-C -C -C
1. foreach x,y € L such that 'V y is defined, t T xVyandy C zVy;
2. for all ascending chains yo = y1 C ... such that y; N C = (, the ascending chain
-C
defined by xo := yo and x; 1 := x; V y;11 for i > 0 satisfies x; N C = ().

Definition 1 is generic since it is not restricted to any particular abstract domain.
In this paper, we consider an implementation for the domains of convex polyhedra and
their powersets. Figure 1 provides a motivating example, in which P; and @), are two
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Fig. 1. An example of using a care set with extrapolation

polyhedra and C is the care set. P, is represented by the shaded area in the middle, and
(1 is represented by the solid thick lines. From P; to (); there are two directions of
growth. The standard widening P, V()1 would generate the outer triangle that intersects
C, thereby introducing false bugs.

We prohibit the growth to the right by using the care set C' in extrapolation. By

expanding only towards the left, the extrapolation result, denoted by P, VCQl on the
left, and P» (shaded area) on the right, does not intersect C'. In the next fixpoint step,
we consider the extrapolation of P, with respect to Q5 (solid thick lines) under the care
set C. This time, the standard widening result would not intersect C'. Therefore, we
prefer that the result of extrapolation with a care set is the same as PoVQa.

3.1 Using the Care Set

We now present an algorithm to compute the extrapolation with care set for convex
polyhedra. In the sequel, a linear inequality constraint c is also referred to as a half-
space since it represents a set {x € Z"|aT-x < b}. Let c be a constraint of a polyhedron
P, and let ¢/ be another constraint (may or may not be in P); we use PS5 to denote
the new polyhedron after replacing ¢ with ¢’ in P, and use PS,. to denote the new
polyhedron after dropping c from P.

Algorithm 1 Let P C Q) be two polyhedra, and C' be a non-empty powerset such that
Q N C = (). The extrapolation of P with respect to Q under C'is computed as follows:

1. build a new polyhedron P’: for each constraint c of P whose half-space does not
contain @, if P&, N C =0, then drop c.

2. build a new polyhedron Q)': drop any constraint c of QQ whose half-space does not
contain P', if Q... N C = 0.

Return @)’ as the result.

An example of applying this algorithm is the extrapolation of P; with respect to (1
under the care set C' to generate P, in Figure 1. In this example, P’ is the polyhedron
formed by dropping the left-most constraint of P;; then all but the left-most constraint
of (Q are satisfied by P’, so the result Q’ is the polyhedron obtained by dropping the
left-most constraint of ()1 . It is clear that the result does not intersect with C'. In general,
the result S of Algorithm 1 satisfies Q = .S T PVQ.

Using this algorithm together with an iterative framework to improve the care set
can guarantee that after refinement, the previous precision loss will not appear again.



However, if all the directions of growth (indicated by standard widening) are forbidden
by the care set C, then Algorithm 1 will return @. This may lead to postponing the
widening operation forever (which may produce a non-terminating sequence). In theory,
if desired, we could remedy the termination problem by switching from Algorithm 1
back to standard widening after a sufficiently large (but finite) number of fixpoint steps.
Another alternative is to use the widening up-to operator instead of extrapolation, by
accepting the fact that the refinement of care set may stop making progress. However,
there is a trade-off between precision and termination, since program verification in
general is undecidable in the polyhedral domain. In practice, it is often possible for the
proposed technique to achieve both termination and increased precision.

This algorithm is defined for two convex polyhedra. In program verification, we
intend to represent reachable state sets by finite unions of convex polyhedra. We extend
the extrapolation operator to the powerset domain as follows: given two powersets P
and @, we apply Algorithm 1 only to individual convex polyhedra pairs P; € P and
®; € @ such that P, C @Q;. If P, € P is not contained in any @; € ) (no matching
pair), we simply use P;. The extrapolation result is also a powerset. This is similar to
the approach of Bultan ez al. [5], except that their work does not use the care set.

3.2 Refinement for Improving the Care Set

Let F' be the fixpoint of reachability computation achieved with extrapolation, and F' C
F be the set of actual reachable states. If the invariant property ¢ holds in F', then P
also holds in F'. If there exists s € (F N =), it remains to be decided whether s € F,
or s is introduced because of extrapolation. If s € F', then we can compute a concrete
counterexample. Otherwise, there is a precision loss due to extrapolation.

We compute F by extrapolation with care set as follows, starting with C' = —).

. L =C .
- Fiyq1 = F; V (F; Upost(F;)), for i > 0 until fixpoint.

When the care set C' is empty, the extrapolation with care set is equivalent to normal

widening. If there is an index f7 such that Fiy; N C' # (), we stop reachability computa-

tion and start the backward counterexample analysis (using precondition computations),
- B fi = F i C;

- Bi_1=F;,_4 ﬂpre(Bi) forall : < fZ andi > 0, if B; }é 0.

If By # (), we have found a concrete counterexample inside the sequence B, . . ., By;.
If B;_1 = () for an index i > 0, then the set B; is introduced by extrapolation.

Theorem 1. If there exists an index 0 < i < fi such that B;_1 = (), then B; must have
been introduced into F; by extrapolation during forward fixpoint computation.

. . -C . . .
Proof. Since F; = F;_1 V (F;—1 U post(F;_1)), the set B; C F; is added either by

postcondition or by extrapolation. Since B;_; = () and B;—1 = F;_1 N pre(B;), B; is
not reached from F;_; in one step. Therefore B; is introduced by extrapolation. g



Fig. 2. Two examples of applying widening up-to operator: M = {—c1, —c2, s}

We expand the care set (initially empty) by making C' = C U B,. After that, ex-
trapolation is allowed only if it does not introduce any erroneous state in ;. Recall
that extrapolation estimates directions of growth and then over-approximates growth in
these directions. B; provides hints about directions in which over-approximation should
be prohibited. With the expanded care set C, we can re-start reachability fixpoint com-
putation from F,_; where B;_1 = () and B; # (). The bad states in set £ N —) can
no longer be reached through the same counterexample. This set may either become
empty, or remain non-empty due to a different sequence of F’s. In the latter case, we
keep expanding the care set until one of the following happens: (1) a concrete coun-
terexample is found and we report that the property v fails; (2) the set Fn —) is empty
and we report that the property ¢ holds; (3) the limit of computing resources (CPU time
or memory) is exceeded; in this case, the property remains undecided.

The correctness of the iterative refinement method is summarized as follows: (1)
Since £’ remains an upper-bound of F', if a property fails in [, then it must fail in
F' as well. Therefore, a failing property will never be reported as true in our analysis.
(2) Since we report bugs only when the precise backward analysis reaches an initial
state, only failing properties can produce concrete counterexamples. Therefore, a pass-
ing property will never be reported as false in our analysis.

We have kept union exact in order to simplify the presentation of our refinement
algorithm. However, only the requirement of exact postcondition/precondition is nec-
essary. Union can be made less precise by, for instance, selectively merging convex
polyhedra in a powerset, as long as the resulting powerset does not immediately inter-
sect the care set. This precision loss can be recovered by using the same counterexample
guided refinement (the argument is similar to Theorem 1).

3.3 Improving the Up-To Set

Once the care set C' is computed, it can be used to derive the up-to set M for the widen-
ing up-to operator. In our iterative refinement framework, the extrapolation operator can
be replaced by V ,—this is an alternative way of implementing our iterative widening
refinement procedure. In [15, 16], the original V s operator relies on a fixed set M of
linear constraints, which are often derived statically from control conditions of the target
program. Given a care set C', we can negate individual constraints of its polyhedra and
add them into the up-to set M ; thatis, M = {—c¢; | ¢; is a constraint of a polyhedron in C'}.
In widening up-to computation PV ,(Q), the half-space of a constraint in M, or
—¢;, does not have to contain P and Q. If —¢; contains P and @, the definition of V 5,
demands that —¢; also contains PV ;;Q. However, if —¢; does not contain P and @,
then —¢; does not need to contain PV 5;Q either. Figure 2 shows two examples for this



computation, where C'is the care set and M is the derived up-to set. In the left example,
since both —¢; and —cy (representing areas above the two lines) contain ) (hence P),
the result of PV ;@ is the conjunction of —c¢y, —ce, and standard widening PV Q; the
constraint —c3 (representing the area below the line) does not contain (). In the right
example, since none of the three constraints —cj, —ca, —c3 contains @, the widening
result is simply PVQ itself, and therefore (PV ,Q) N C # (.

In general, the up-to set M is weaker than the care set C in restricting the ways
to perform overapproximation, so there is no guarantee that the widing up-to result
does not intersect C'. Therefore, it is possible that the reachability fixpoint computation
(with widening up-to) after the refinement of care set generates a previously inspected
spurious counterexample. As a result, although each individual forward reachability
fixpoint computation always terminates, the overall iterative refinement loop may stop
making progress (a tradeoff).

4 Optimizations

Counterexample analysis using precise precondition computations may become compu-
tationally expensive. In this section, we present several optimizations to make it faster.

4.1 Under-Approximating Backward Analysis

The overhead of counterexample analysis can be reduced by under-approximating the
set B; for ¢ < fi and ¢ > 0; that is, at each backward step, we use a non-empty subset
B! C B,. For instance, B/ could be a single convex polyhedron when B; is a finite
union of polyhedra. The simplified counterexample analysis is given as follows:

1. Byi = (Fy; N —)) and B}, = SUBSET(By;);

2. Bi_1=F,_4 ﬂpre(Bl'-) and Bll-71 = SUBSET(Bi_l) for all 7 < f’i, if B; 75 0.

The correctness of this simplification, that the proof of Theorem 1 still holds after
we replace B; with BY, is due to the following two reasons. First, the precondition is
precise in our powerset domain (it would not hold, for instance, in the convex poly-
hedral lattice where LUB may lose precision). Second, the overall iterative procedure
remains correct by adding each time B} instead of B; into the care set C—the differ-
ence between this simplified version and the original counterexample analysis is that
the simplified one uses a more lazy approach for refinement, and it may need more than
one refinement pass to achieve the same effect as using B;. When using B} instead of
B; to compute the care set, we may not be able to remove the spurious set B; \ B
right away. However, if spurious counterexamples leading to B; \ B} appear again after
refinement, SUBSET(B; \ B}) will be picked up to start computing the new care set.

Finally, if B}, # 0, it guarantees that there is a real counterexample since all precon-
dition computation results, although underapproximated, are accurate. What we miss
is the guarantee to find a concrete counterexample during the earliest possible pass,
because there may be cases where B; # () but B, = ().
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4.2 Simplifications of Polyhedral Representations

We now present two heuristic algorithms for simplifying the representations of polyhe-
dra without reducing the accuracy of fixpoint computation. These are orthogonal to the
use of extrapolation with a care set.

Definition 2 (Interpolate). Let P and Q) be two sets such that P T Q. The interpolate
PAQ is a new set such that P C (PAQ) C Q.

The interpolate can be used to simplify the from set, i.e., the set for which we compute
the postcondition during the reachability computation. Let F;_1 C F; be two consec-
utive sets in this computation. We use (F \ Fl_l)AF instead of F} (or the frontier
E; \ F} 1) to compute the postcondition. In principle, any set S such that P C S C Q
can be used as the from set without reducing the accuracy of the reachability result. We
prefer one with a simplier polyhedral representation.

Algorithm 2 Let P @ be two convex polyhedra. We compute a new polyhedron S
by starting with S = P and keep dropping its constraints c as long as S, T Q. We
return, between @) and S, the one with the least number of constraints.

This heuristic algorithm tries to minimize the representation of P by inspecting every
constraint greedily. Figure 3 (a) gives an example for applying this algorithm, where
dropping any constraints in PAQ makes the result grow out of ).

We note that similar ideas and algorithms exist for BDDs [4] and are routinely used
in symbolic model checking [23]. Our definition of Aisa generalization of these ideas
for abstract domains. Also note that since the purpose here is heuristic simplification,
any cheap convex over-approximation technique (instead of a tight convex-hull) can be
used to first compute a convex set from Fl \ EH.

Definition 3 (Restrict). Let P and Q be two sets. The restrict P | Q is defined as the
newset{x € Z" |x € PNQ, orx ¢ Q}.

Restrict computes a simplified set S for P such that (1) its intersection with (), or
SN Q,equals PN Q and (2) S may contain an arbitrary subset of —(). Restrict can
be used to simplify the from set in precondition computation, with respect to a known
F'. In counterexample analysis, when computing B; 1 = F;_; N pre(B.), we use
pre(Bl | F) instead of pre(B}). As is shown in Figure 3 (b), adding s € —F' does not
add any erroneous states into Fpfor0<k< (t—1).
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Algorithm 3 Let P and Q) be convex polyhedra. We define the computation of (P | Q)
as follows: If P = Z™ or if Q = 0, return Z". Otherwise, in the recursive step, choose
a constraint ¢ from P: if =c N Q is empty, return (PS5, | Q), else return ¢ N (P& |

(@nNa)).

This algorithm is inspired by the gist operator [26], which itself is a restrict operator
on polyhedra. In particular, gist P given () returns a conjunction containing a minimal
subset of constraints in P such that (gist P given Q) N Q = P N Q. However, gist
in its original form is expensive and not suitable for fast heuristic simplification. In
Algorithm 3, we have safely dropped the minimal subset requirement by checking the
emptiness of ~¢ N @ (instead of P°, N @ as in [26]). This may sometimes produce a
less compact representation: in Figure 4, for example, P | @ (right) has two constraints
while the gist result has only one. However, the computation of P | () is more efficient
and the result remains a generalized cofactor [29].

S Application in Program Verification

We have implemented the proposed techniques in the F-SOFT [19, 18] platform. F-
SOFT is a tool for analyzing safety properties in C programs by using both static anal-
ysis and model checking. Static analysis is used to quickly filter out properties that can
be proved in a numerical abstract domain [28]. Unresolved properties are then given to
the model checker. Despite the combination of different analysis engines, in practice
there are still many properties that (1) cannot be proved by static analysis techniques
with standard widening, and (2) symbolic model checking takes a long time to terminate
because of the large sequential depth and state explosion. Our work aims at resolving
these properties using extrapolation with an iteratively improved care set.

Implementation We incorporated the proposed technique into a symbolic analysis
procedure built on top of CUDD [30] and the Omega library [25], as described in [32].
It begins with a C program and applies a series of source-level transformations [18],
until the program state is represented as a collection of simple scalar variables and each
program step is represented as a set of parallel assignments to these variables (each
program step corresponds to a basic block). The transformations produce a control flow
structure that serves as the starting point for both static analysis and model checking.
We use BDDs to track the control flow logic (represented as Boolean functions) and
polyhedral powersets to represent numerical constraints of the target program.

The reachable sets (e.g. F}) are decomposed and maintained as powersets at the
individual program locations (basic blocks), so that each location [ is associated with a
subset F. Bach location [ is also associated with a care set C!. Extrapolation with the
care set C' is applied only locally to F! and F! U post!(F;), where post!(F;) denotes
the subset of postcondition of F; that resides at the program location [.

During forward reachability computation, we apply extrapolation selectively at cer-
tain program locations: We identify back-edges in the control flow graph whose removal
will break all the cycles in the control flow. Tails of back-edges serve as the synchro-
nization points in the fixpoint computation. A lock-step style [32] fixpoint computation
is conducted as follows: we use transfer functions on the forward-edges only in the fix-
point computation until it terminates; we propagate the reached state set simultaneously
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Table 1. Comparing methods for computing reachability fixpoint (? means unknown)

Test Program Analysis Result Total CPU Time (s)
name | loc | vars |blks || widen | extra | MIX | BDD || widen | extra | MIX | BDD
only |refine] m.c. | m.c. || only |refine | m.c. | m.c.

bakery | 94 | 10 | 26 ? true | true | true 18 5 13 2
tcas-1 | 1652 | 59 | 133 true | true | true 18 34 128 433
tcas-2 | 1652 | 59 | 133 true | true | true 18 37 132 644
tcas-3 | 1652 | 59 | 133 true | true | true 18 49 135 433
tcas-4 | 1652 | 59 | 133 true | true | true 18 19 137 212
tcas-5 | 1652 | 59 | 133 ? false | false | false 18 80 150 174
appl-a | 1836 | 78 | 307 || true | true ? ? 17 22 |>1800|>1800
appl-b | 1836 78 | 307 ? false | false 11 94 277 | >1800
appl-c | 1836 | 78 | 307 ? false | false 13 111 80 | >1800
appl-d | 1836 78 | 307 ? false | false 13 68 78 | >1800

2| 2| 2|

through the back-edges; we then perform forward computation again. Inside this reach-
ability computation framework, we apply extrapolation only at the tails of back-edges
and only when we propagate the state sets through back-edges.

Experiments Our experiments were conducted on a set of control intensive C pro-
grams. Among the test cases, bakery is a C model of Leslie Lamport’s bakery protocol,
with a mutual exclusion property. The fcas examples are various versions of the Traffic
alert and Collision Avoidance System [8] with properties originally specified in linear
temporal logic; we model these properties by adding assertions to the source code to
trap the corresponding bugs, i.e., an error exists only if an unsafe statement becomes
reachable. The appl examples are from an embedded software application for a portable
device. Most of the properties cannot be resolved directly by conventional static analy-
sis techniques (due to the low widening precision).

Our experiments were conducted on a Linux machine with 3 GHz Pentium 4 CPU
and 2GB of RAM. The results are given in Table 1, wherein we list in Columns 1-4
the name, the lines of C code, the number of variables, and the number of basic blocks.
These numbers are collected after the test programs have been aggressively simplified
using program slicing and constant value propagation. Columns 5-8 indicate the analy-
sis result of four different methods: widen-only denotes an implementation of the stan-
dard widening algorithm, extra-refine denotes our new iterative refinement method with
the use of care set, MIX-mc denotes a model checking procedure using a combination
of BDDs and finte unions of polyhedra [32], and BDD-mc denotes a symbolic model
checker using only BDDs that has been tuned specifically for sequential programs [31].
We have tried SAT-based BMC also, but our BDD-based algorithm outperforms BMC
on these examples (experimental comparison in [31, 32]). Columns 9-12 compare the
runtime of different methods.

Among the four methods, widen-only is the fastest but also the least precise in terms
of the analysis result—it cannot prove any of true properties except appl-a. BDD and
MIX are symbolic model checking algorithms, which often take a longer time to com-
plete and are in general less scalable. In contrast, the new method extra-refine achieves
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a runtime comparable to widen-only and at the same time is able to prove all these true
properties. For false properties, widen-only always reports them as “potential errors.”
The other three methods, extra-refine, MIX, and BDD, are able to produce concrete
counterexamples if they complete. Due to state explosion and the large sequential depth
of the software models, BDD does not perform well on these properties. Both MIX
and extra-refine find all the counterexamples, due to their use of Integer-level represen-
tations internally. The method extra-refine has a run time performance comparable to
(often slightly better than) that of MIX on these properties, although in appl-c it takes
more time to produce a counterexample than MIX due to the overhead of performing
multiple forward-backward refinement passes.

Unlike common programming errors such as array bound violations, most proper-
ties in the above examples are at the functional level and are harder to prove by using
a general-purpose static analyzer only. Although our new method is also based on ab-
stract interpretation, the precision of its extrapolation operator is adaptive and problem-
specific, i.e., it adapts to the property at hand through use of counterexamples.

6 Conclusions

We have presented a new refinement method to automatically improve the precision of
extrapolation in abstract interpretation by iteratively expanding a care set. We propose,
for the polyhedral domain, a set of algorithms for implementing extrapolation with a
care set and for refining the care set using counterexample guided analysis. Our prelim-
inary experimental evaluation shows that the new extrapolation based method can retain
the scalability of static analysis techniques and at the same time achieve an accuracy
comparable to model checking. For future work, we plan to investigate the use of care
sets in other numerical abstract domains including the octagon and interval domains.
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