Induction in CEGAR for Detecting Counterexamples

Chao Wang, Aarti Gupta, and Franjo Ivanci¢
NEC Labs America, Princeton, NJ 08540, U.S.A.

{chaowang, agupta, ivancic}@nec-labs.com

Abstract— Induction has been studied in model checking for
proving the validity of safety properties, i.e., showing the absence
of counterexamples. To our knowledge, induction has not been
used to refute safety properties. Existing algorithms including
bounded model checking, predicate abstraction, and interpolation
are not efficient in detecting long counterexamples. In this paper,
we propose the use of induction inside the counterexample guided
abstraction and refinement (CEGAR) loop to prove the existence
of counterexamples. We target bugs whose counterexamples are
long and yet can be captured by regular patterns. We identify
the pattern algorithmically by analyzing the sequence of spurious
counterexamples generated in the CEGAR loop, and perform
the induction proof automatically. The new method has little
additional overhead to CEGAR and this overhead is insensitive
to the actual length of the concrete counterexample.

I. INTRODUCTION

Induction techniques have been used in model checking to
prove safety properties in a state transition system. A property
is called safety if it can be refuted by examining a finite
computation path of the model. Properties of the form AG 1)
(i.e., © is an invariant) are an important special case since
a general safety property can be reduced to an invariant by a
compilation process [1]. Conceptually, one can prove invariant
properties by showing that ¢ holds in the initial states, and
is maintained by the transition relation. SAT based induction
methods [2], [3], for instance, rely on the observation that a
failing property has a simple path from an initial state to a
bad state. An invariant holds if all paths of length k or shorter
satisfy 1, and there is no simple path of length £ 4+ 1 or
longer from an initial state. Induction has a clear advantage
over other proof methods since it has to consider only paths
of a shorter length (up to k£ in k-induction) whereas bounded
model checking (BMC [4]), for instance, needs to check all
paths up to a completeness threshold.

However, induction has not been used to refute safety prop-
erties, that is, to show that a concrete counterexample exists.
Existing methods for finding bugs, including BMC, counterex-
ample guided abstraction refinement (CEGAR [5], [6], [7]),
and interpolation [8], are not efficient in the presence of long
concrete counterexamples. For example, BMC has been widely
regarded as effective in detecting shallow bugs in large models;
however, state-of-the-art BMC algorithms handle only up to
a few hundred unrollings on typical industrial-scale models.
When there are deep bugs, CEGAR and interpolation based
methods do not work well either, since they too rely on finding
a state-by-state match between the abstract and the concrete
counterexamples.

We propose an induction based refutation method for de-
tecting long counterexamples, whose computational overhead

(1) wunsigned i , n ; (1) bool P = % ;

(2) ... 2y ..

(3) n = 10000 ; (3) P = x;

(4) (4)

(5) 1 =0 ; (5) P =T ;

(6) while (i<=n) { (6) while (x) {

(7) assert (i<n) ; (7) assert (P) ;

(8) it+ ; (8) P=P72 % : F;
} }

Fig. 1. The original C program and the first Boolean abstraction

is independent of the actual counterexample length. Our main
observation is that deep bugs can often be captured by a regular
pattern in the counterexample of a family of systems obtained
by introducing a parameter to the system under analysis.
Instead of looking for a state-by-state match of the abstract
counterexample to a particular concrete counterexample, we
prove by induction that there always exists a counterexample
of that general pattern.

Consider the program in Fig. 1, which has a simple and yet
representative bug in line 7 (e.g., an array bound violation).
Detecting this bug is challenging for all aforementioned meth-
ods. For illustration purposes, a standard predicate abstraction
procedure would add the following predicates, p: (i<10000),
P1:(i<9999), P2:(i<9998), etc. The procedure needs n refine-
ment iterations in order to produce a concrete counterexample.
One may argue that CEGAR is not well suited for finding this
type of bugs. However, if the loop condition were (1 < n) and
the assertion never failed, then CEGAR is efficient in getting
the proof.

Our new method provides complementary strength (good for
refutation) to the popular CEGAR style abstraction algorithms
(good for proof). In Fig. 1, regardless of the initial value of
n, there is an assertion failure in Line 7. Furthermore, the
sequence of concrete counterexamples, in terms of the line
numbers leading to the failure, is

Mm@ e)r {emel™ 6

If we can prove that a counterexample of this regular pattern
exists for all n > 1, then it follows that there exists a
counterexample for n = 10000.

Although CEGAR is not efficient in detecting long coun-
terexamples, it can be useful in identifying the regular pattern
of the counterexample. We present an algorithm to identify
the regular pattern of the counterexample, by analyzing the
failed counterexample concretization attempts inside the CE-
GAR loop. The basic idea behind this algorithm is that the
regular pattern of a concrete counterexample is often shown
in the series of spurious counterexamples encountered in the
CEGAR loop. In Fig. 1, for instance, the set of spurious
abstract counterexamples produced by the CEGAR procedure

have the same regular pattern—they differ from the concrete
counterexample only in the number of copies of the recurring
segment (6) (7) (8).

The existence of a parameterized counterexample can then
be proved by induction: (1) in the base step, we show that
a concrete counterexample of the given regular pattern exists
for n = 1; (2) as an induction hypothesis, we assume that for
n = k, a concrete counterexample of the given pattern exists.
(3) in the induction step, we extend the counterexample for
n = k to build a new counterexample for n = k + 1, and
show that the new counterexample exists. One of our main
contributions is proposing a goal containment check that is
sufficient to establish the induction proof for n = k4 1 based
on the induction hypothesis for n = k. In the goal containment
check, we align the common prefixes of the two consecutive
counterexamples for £ and k 4+ 1 and compare their suffixes.

We have implemented the proposed method in a standard
CEGAR procedure and conducted experiments on some soft-
ware examples from the public domain. The results show
that when augmented with the new induction based method,
CEGAR is able to find some very long counterexamples in
nontrivial examples, most of which would have eluded existing
model checking methods.

The rest of this paper is organized as follows. After review-
ing the related work and introducing the notation, we present
the algorithm for identifying a counterexample pattern in Sec-
tion IV. We present our symbolic method for establishing an
induction proof in Section V. We demonstrate the effectiveness
of our method through experiments in Section VII, and then
conclude this paper in Section VIII.

II. RELATED WORK

Detecting a long counterexample has been a well-known
problem in formal verification of both hardware and software
systems. In [9], Ho et al. attempt to solve the problem by
simulating up to a deep state and then searching around that
state exhaustively. This technique can be considered as a semi-
formal method, in that it combines directed random simulation
and model checking. A similar approach was adopted by
DART [10] in the context of program verification. Semi-formal
methods may miss bugs since they selectively, as opposed to
exhaustively, explore the state space.

In [11], Nanshi and Somenzi use guided pseudo-random
simulation in the search of a concrete counterexample,
where the guidance is provided by synchronous onion rings
(SORs [12]), a data structure that implicitly captures all
shortest abstract counterexamples. In [13], Bjesse and Kukula
present a repeat extender algorithm for counterexample gen-
eration within an abstraction refinement loop. They use the
abstract counterexample as backshell lighthouses without lim-
iting the BMC search to concrete counterexamples of the
same length. In [14], Kroening and Weissenbacher propose
a similar method targeting counterexamples with loops. After
heuristically identifying the loop, they put the assignment
statements of the loop body into a closed form representation,
and use a SAT solver to calculate a conservative bound on
the number of loop iterations. Then, they use BMC to iterate

through the loop exactly that number of times and derive a
concrete counterexample.

All these CEGAR based methods insist on finding a con-
crete path from an initial state leading to the bad state, which
makes them less scalable when the model is complex and the
counterexample is long.

In [15], Seghir and Podelski use transition abstraction to
shortcut the “transfinite” sequence of refinement steps. They
abstract not just states but also the state changes induced by
the structured language constructs including for and while
statements. In [16], Ball er al. analyze termination of loops
without refinement and without well-founded sets and ranking
functions. Their method is based on the symbolic reasoning
of abstract counterexamples; instead of using induction, they
try to identify must transitions in the abstract state transition
graph using conditions on the structure of the graph.

III. PRELIMINARIES
A. From CDFGs to Models

We represent the model under verification as a tuple M =
(S,T,I,Sg), where S is a set of states, T C S x S is the
transition relation, I C S is the set of initial states, and Sg C
S is the set of error states. Given a set X = {z1,...,2,} of
state variables, each state s € S is a valuation of the variables
in X. A concrete path is a sequence of states s ...s; such
that (s;,8;41) € T forall 1 <i < [.

We use a control and data flow graph (CDFG) as the
intermediate representation, where CDFGs may be derived
from either hardware designs or software programs [17].

Definition 1 A control and data flow graph (CDFG) is a 5-
tuple G = (B,E,V, A, 0) such that

o B={b1,...,br} is a finite set of basic blocks, where by
is the entry block.

o £ C B x B is a set of edges representing transitions
between basic blocks.

e V is a finite set of variables that consists of actual
design/program variables and the auxiliary variables
added for modeling the hardware/software semantics.

o A : B — 25w js q labeling function that labels each
basic block with a set of parallel assignments. Sqsqgn is
the set of possible assignments.

o 0 : & — Scong is a labeling function that labels each
edge with a conditional expression. S.onq is the set of
possible conditional expressions.

Figure 2 shows a sample C program and its CDFG. Each
rectangle is a basic block. Block 1 is the entry block and block
7 is the error block. Basic blocks are connected with each other
by edges, which are labeled by conditional expressions. For
example, the transition from block 3 to block 4 is guarded
by (a<100). Edges that are not labeled by any condition are
assumed to have a true label.

The CDFG is regarded as an explicit representation of
the concrete model. To represent the CDFG symbolically as
a verification model M = (S,T,1,Sg), we add a special
Program Counter (PC) variable x,. whose domain is the set

void main ()

a

=1
NS =
=0

D*D

LOOP:
if (a 4 b > 200)
ERROR

a=a.NS;
goto LOOP;
}

goto LOOP

Fig. 2. The control and data flow graph

of basic block indexes B = {b1,...,b,}. Furthermore, we
assume in the model M that X = {z,.} UV is the set of state
variables (V' consists of the original variables from the model).
If the entry block is by € B and the error block is b, € B,
then we have I = (z,. = b1) and Sg = (pe = berr).

B. Parameterized Counterexamples

An abstract model M can be derived from an over-
approximated pair (T I) such that T C T and I C 1. Given
a CDFG representation, a natural way of creating an abstract
model M is to over-approximate the assignment statements.
For instance, if we ignore the assignment statements (by
assuming that arbitrary values can be assigned to the left-
hand side variables), the remaining control flow graph can
be regarded as an abstract model. In this abstract model M,
an abstract state is represented by the set §; = (zpe = bi),
where b; € B. Since all the guards in M can be either true or
false, M has all the behaviors of M and p0551bly more. An
abstract path is a sequence of abstract states T =5, ..., ;.

Definition 2 A parameterized abstract counterexample £ is an
abstract path of the form

§:§1-'-§i—1{§i-- 7}
such that 57 C I and 5, C SE. The recurring segment is
Ty = S8;...8;, the finite prefix is m, = §1...5;—1, and the
finite suffix is g = 541 ...5;. The integer n is the number of
copies of .

7+1)

Any of the three segments in £ can be empty. For example, if
¢ is used to match the concrete counterexample in a state-by-
state way, we assume that 7, may be an empty segment.

Given a set () of states, the post-condition (pre-condition) of
@ with respect to 71" consists of all successors (predecessors)
of (). Formally,

pre (Q)= {s |3 €Q:(s,s) €T},
post(Q)= {s' |3s €Q:(s,8)eT} .
The definition can be extended transitively with respect to a
control path 7 = §;,...,5; as follows,

pre* (m,Q) = {s | there is a concrete run inside 7
from s to s’ such that s’ € (QNS;)}
post*(mw, Q) = {s’| there is a concrete run inside 7

from s to s’ such that s € (QN3;)} .

Given a control path 7, the transitive version of pre-condition
can be computed as follows: let Z = §; N Q, and then
repeatedly compute Z = §; N pre(Z) for all i < j.

Function f(V) is called disjunctively decomposable with
respect to the partition V =V, UV}, if

fV) = (@Vaf (Va, Vo)) A (Ve f (Va, Vb))

C. The CEGAR Procedure

Counterexample guided abstraction refinement is an itera-
tive procedure consisting of three phases: abstraction, model
checking, and refinement. Algorithm 1 shows the pseudo code
of a generic CEGAR procedure. Typically, one starts with
a coarse initial abstraction M and applies model checking.
If the property holds in M, it also holds in M and the
property is proved. If the property fails and the model checker
returns an abstract counterexample (ACE), a concretization
procedure is used to check whether a concrete counterexample
(CCE) exists. If a concrete counterexample exists, the property
is refuted. Otherwise, the spurious counterexample is used
during refinement to identify the needed information currently
missing in the abstraction.

Algorithm 1 CEGAR(M,)

1: M = INITIAL_ABSTRACTION(M,);
2: while (1) do
ACE = MODEL._ CHECKING(M Y);
if (ACE is empty) then
return TRUE;
end if
CCE = CONCRETIZECEX (M, ACE);
if (CCE not empty) then
return (FALSE, CCE);
10: end if
11: M = REFINEMENT(M, ACE);
12: end while

RN R W

One inefficiency of CEGAR in detecting long counterex-
amples is due to its concretization algorithm. Algorithm 2 is
a standard concretization procedure which takes the abstract
counterexample 7 = 31, ..., §; as input. It starts from the error
states §; and repeatedly computes pre-conditions. If the pre-
condition ¢; is non-empty, a concrete counterexample has been
found. If the precondition becomes empty before 7 decreases
to 1, concretization fails and the abstract counterexample is
marked as spurious. After the counterexample is declared as
spurious, the refinement step follows to improve the abstract
model by analyzing the spurious counterexample. The CEGAR
loop continues until either the property is proved (no abstract
counterexample), or a concrete counterexample is found, or
the procedure runs out of computing resources.

It may take a large number of refinement iterations for
the CEGAR procedure to produce an abstract counterex-
ample whose length matches the length of the concrete
counterexample—before that, all the abstract counterexamples
are declared as spurious. If the concrete counterexample has
a parameterized pattern, using Algorithm 2 to concretize it
is inefficient. Recall that £ = mp{m,}"m,. When { contains
a large number of copies of 7., the pre- and post-condition
computations over £ can be expensive.

Algorithm 2 CoNCRETIZECEX(M,)

1: =1

2: q; =553

3: while (:# 1) do
4 qi—1=pre(q) NSi—1;
5: if (qi,1 75 @) then
6: i =1—1;
7: else

8 return no concrete counterexample;
9: end if

10: end while

11: return a concrete counterexample;

IV. IDENTIFYING COUNTEREXAMPLE PATTERNS

To augment the standard CEGAR procedure, we add an
induction proof attempt right after concretization fails, but
before refinement. Our procedure tries to identify a regular
pattern from the set of abstract counterexamples by analyzing
the failed concretization attempts. The counterexample pattern
becomes a hypothesis, which subsequently will be validated by
an induction step. If we can prove that for all induction param-
eter values (including the one in the concrete counterexample),
an instance of the parameterized counterexample exists, then
the property is refuted. If this added induction proof attempt
does not succeed, we fall back upon the standard CEGAR loop
and continue with refinement.

A. The Recurring Segment

To characterize £, we need to identify the head and tail states
of 7, from a given abstract path 7 = 57 ...3;. We accomplish
this by modifying the standard concretization procedure. We
rely on the fact that if the concrete counterexample is an in-
stance of a parameterized abstract counterexample ﬂ'p{m}"ﬂ's,
then the CEGAR procedure is likely to generate a series of
spurious counterexamples of the following form:

iteration 1: =«
iteration 2: 7w
iteration 3: 7

=mp Tp T,

=mp T Tp Tg,

=Tp Ty Tp Tpr Ts,

the sequence continues until the number of copies of 7,
matches the value in the concrete counterexample.

Recall that for a spurious abstract path # = 53 ...5;, the
concretization procedure in Algorithm 2 will find a failing
index i such that 1 < ¢ < [and pre(¢;+1) N'S; = 0. In
Fig. 3, for instance, the failing index is ¢ since g; is empty. In
Algorithm 2, once a failing index ¢ is found, 7 is declared as
spurious and the concretization stops.

pre(ge) NS;

qk

S; Sit1 Sk 55

Fig. 3. Backleap to identify the counterexample pattern

We modify Algorithm 2 to allow the search for a potentially
longer concrete counterexample by using a “backleap” strat-
egy. The new concretization procedure is given in Algorithm 3,
in which the additional steps (with respect to the standard
algorithm) are listed in lines 8-19. Cip,cs is a predetermined
threshold denoting the maximum number of backleaps allowed
in a concretization attempt.

The idea is to start from the failing index ¢ and search
backward for a transition (5;,5;) with ¢ < k < j < |
such that in the concrete model §; is reachable from §j in
one step. If k£ and j exist, the concretization retreats from
gi+1 back to gr and makes a successful backleap from ¢y
to s;; after that we continue the concretization process from
pre(qr) N'S;. At the same time, we record 5; as a candidate
tail state of m, and S; as a candidate head state of m,. In
this modified concretization procedure, we can make backleaps
more than once (bounded by the constant C'p,..s)—therefore,
it is possible to find a concrete counterexample that is longer
than the abstract counterexample to be concretized.

Algorithm 3 CoNCRETIZECEX BACKLEAP(M,)
I:i=1;q; =35y

2: MbLeap = 0;

3: while (: #1) do

4 g1 =pre(q) NSi—1;

5 if (qgi—1 #0) then

6: i =1—1;

7 else

8 find k and j such that ¢ < k < j <1 and pre(qi) N5; # 0.
9 if (k and j do not exits, or Nyreap > Cihres) then

10: if (PROVE_CEX_BY_INDUCTION()) then

11: return a concrete counterexample; //proved
12: else

13: return no concrete counterexample;

14: end if

15: end if

16: q; = pre(gx) N353

17: P =7;

18: MbLeap + 13)

19: add segment 7k to a list of candidates of 7y;
20: end if

21: end while
22: return a concrete counterexample;

If after making Cyp,es backleaps, the new concretization
procedure fails to find a concrete counterexample but some
Ty = Sk ... §j have been recognized, we enter the induction
proof mode (lines 9-15). In Algorithm 3, induction proof is
implemented in the function PROVE_CEX_BY_INDUCTION.

B. The Induction Parameter

Given a recurring segment m, = Sj...5;, we need to
identify the potential induction parameter associated with 7,
before calling PROVE_CEX_BY_INDUCTION. We will show
in the next section that checking whether the induction proof
holds is cheap computationally (compared to model checking),
and only a correct induction parameter (paired with a true
recurring segment) allows the induction proof to hold. The
naive approach is to blindly try all the program variables one
by one as the induction parameter, and under that assumption
check whether the induction proof holds. The naive approach
can be costly, but it does not affect the correctness of the
overall CEGAR procedure.

In practice, however, we need to reduce the overhead of
identifying induction variable. We first compute a list of
promising candidate variables, that is, the program variables
in V that are likely to be induction parameters. Then we try
the candidate variables one by one, to see whether treating
each of them as the induction parameter makes the induction
proof go through.

We use the following criteria to filter out non-induction
variables. Let m, = Sj,...,5; and g(V) be the conditional
expression guarding the transition from §; to S (the back
edge). For a program variable n to be the induction parameter,
n needs to be in the transitive support of the expression
g(V'). Furthermore, all the guard expressions inside 7, must
be monotonic with respect to variable n—this guarantees that
as long as a transition (of 7,.) is valid for n = k, it is valid
also for the n = k 4 1 counterexample instance.

C. Counterexample Instances

In order to prove that £ exists for all n > 1, we need
to control the value of m in the model to produce a set
of parameterized counterexample instances. Conceptually this
is accomplished by finding inside m, the last assignment
statement to n, and replacing it with a statement assigning
a symbolic value k& to n.

In Fig. 1, for instance, the prefix segment is
Tp =(1)(2)(3) (4)(5) and the last assignment statement
to n is in line 3. A simple static analysis can locate the
statement n=1000 at line 3 and rewrite it into n=x, where k
remains a parameterized symbolic value. When setting k to
1, we can check whether £ exists for the induction basis n-1.

In practice, when £ and n are given, we have implemented
a procedure to locate the last assignment statement to n
inside m,, followed by an automatic rewriting of CDFG
representation of the concrete model'.

V. PROVING THE EXISTENCE OF COUNTEREXAMPLES

In this section we explain the underlying algorithm for
the function PROVE_CEX_BY_INDUCTION. Recall that before
entering the induction proof mode, we have already identi-
fied a potential parameterized abstract counterexample ¢ =

mp{ w7 s

A. Induction Proof

The induction hypothesis is that there exists a concrete path
inside the abstract counterexample 7, {7, }¥7s. We divide the
counterexample instance into 7, {7, }* and 7, and define the
intermediate pre-condition and post-conditions as follows:

G = post*(mp, I)
F = post*(m, {m - }*, 1)
B = pre* (ms, SE)

To rephrase the induction hypothesis,

FnB #0 .

UIf n does not appear in 7p, e.g., when loop condition is (i<CONST) and
we rewrite it as (i<n), we assume that n = k holds in the initial state.

That is, there exists s € (F'N B) such that s is reachable from
1 through ﬂ'p{m}k and can reach Sg through 7.

We want to prove that there also exists a concrete path
inside the abstract counterexample 7, {m, }*+17,. Similar to
the previous case, we divide the counterexample instance
into two parts: ﬂ'p{ﬂ'r}k and m,.7ms. The corresponding pre-
conditions and post-conditions are defined as follows:

G’ = post*(mp, I)
F' = post*(m, {m}F, 1)
B’ = pre* (7Tr 7757SE)

The existence of a concrete counterexample is rephrased as
follows,
F'nB #0 .

The induction step says that, if there exists a concrete state
s € (FN B) when n = k, then there exists a concrete state
s’ € (F'NB’) when n = k+ 1. With a little abuse of notation
(F as a set and F(V) as a formula), we express the induction
step formally as follows,

IV . F(V)AB(V) — 3V . F'(V)AB/(V) .

Here V is the set of program variables. However, we shall
never compute F/(V') and F (V') explicitly since they are over
parameterized segment (expensive to compute). Instead, we
rely on the analysis of G(V') and G’(V) to derive sufficient
conditions under which the induction holds.

B. Induction Condition

We partition the set V' of variables into V =V, UV,;. V}
contains the induction parameter n and variables which are
assigned in 7, to values that depends on n, and V, contains
the remaining variables. To get an induction proof, consider
the following requirement on V, and V;, (CO0):

e in m,, variables in V}, do not appear in any assignment
(neither in left-hand side nor in right-hand side);
o guards g(V,, V4) in 7, are monotonic with respect to V5.

In such cases, pre- and post-conditions over 7, can be
computed by updating functions for V,, and V}, separately (a
Cartesian product). This characteristic has been captured by
the notion of a disjunctively decomposable function described
in Section III.

Given G and G’, we define

Gy =3V . G(Va, Vi)
Gy =3V, .GV, Vp)
G, =3V, . G'(Va,Vp)
Gy, =3IV, . G (Va,Vs)

The induction holds if the following conditions are satisfied:
C1: G and G’ differ only in the valuations of Vj:

G =G.(Vo) NGp(Vp),
G =G(Va) AGy(Vh),
G, =G

C2: B and B’ satisfy the following goal containment check:

W, .GyAB — IV, .GyAB .

All conditions can be checked algorithmically in the CDFG
model by a combination of static analysis (for checking the
partition of V') and pre-condition and post-condition compu-
tations over finite counterexample segments.

C. Proof of Correctness

The correctness of the induction proof is established by
Theorem 3. The proof is illustrated pictorially in Fig. 4.

Theorem 3 If F N B # (and conditions C0,C1,C2 are
satisfied, then F' N B’ # ().

Proof: Since G and G’ are disjunctively decomposable,
V}, variables do not change their values in 7., and V,, variables
are updated independently from Vj, in 7., we know that F' and
F' are also disjunctively decomposable; that is,

F =F,(Vo) NFo(Vy) = Fo (Vo) AGy(V),
F' =F(Vo) NF{(W) = F,(Va) NGL(W),

and F, = F. (because of G, = G'). From condition C2,

W,.GyAB C 3V,.G,AB
WV, F,(Vo)AGyAB C AV, F/(VJ))AGLAB' |
W, FAB C IV,.F'AB .
WV.F(V)AB(V) C 3V.F'(V)AB(V) .

This means that if s € F N B exists, then s’ € F' N B’
exists. Note that s and s’ may differ only in their valuations
of variables in Vj,. [|

Fig. 4. The normal induction condition.

VI. GOAL CONTAINMENT CHECKING
A. The Working Example

In Fig. 1, when the set of predicates is empty (the ini-
tial abstraction), the abstract counterexample produced by
the CEGAR procedure is 7 =(1)...(5) (6) (7). This abstract
counterexample cannot be concretized by the standard con-
cretization procedure or our backleap algorithm. Furthermore,
our concretization algorithm cannot detect any counterexample
pattern; at line 8 in Algorithm 3 there does not exist a valid
index pair (j, k) for backleap.

After the first refinement iteration (which removes the spu-
rious counterexample), the induction proof attempt becomes
possible. Algorithm 3 will return the following counterex-
ample pattern: § = m,{m,}"m, such that m, =1)...(5),
T =(6) (7) (8), and Ts = (6) (7).

The set V' of program variables is partitioned into V, = {i}
and V;, = {n}. Inside =,., all the LHS variables are included in
V., and the only variable in V}, does not change. Furthermore,
inside 7, the guard ¢ : (i < n) is monotonic with respect to
n.

For the first two conditions,

G =@{E=0A(m=k),
G ={l1=0A(n=k+1).

Let G, = G, = (i=0), G, = (n=k), and G} =
(n =%+ 1); both G and G’ are disjunctively decomposable.
For the last condition,

B =pre*(ms,i > n) =(i=n)
B =pre*(mms,i>n) =(i+1=n)
Therefore,
W, .Gy AB = (i=k)
AV, . GyAB =(i+1=k+1)

This proves the goal containment,

AV, . GyAB — 3V, . GyAB' .

B. Goal Containment

Sets B’ and B are regarded as the goals of postcondition
computations over the common prefix 7,{m,}*. The goal
containment check requires a decision procedure that supports
quantified formulas. In our implementation, we use a mixed
model checking procedure [18] which incorporates both bit-
level and word-level symbolic representations. If all program
variables are assumed to be in finite domains, one can also
choose to use standard BDD-based fixpoint algorithms

Since we always consider a single program path (a finite
prefix or suffix), the pre- and post-condition computations
can be made efficient in practice. Although the CDFG may
have many branching statements, when computing post*() and
pre*() over m, and m,, we do not need to consider more
than one branch at each pre or post step. For instance, given
T = 8;,...,5; and a propositional formula ¢, the weakest
liberal pre-condition [19] of ¢ with respect to 7, denoted by
wlp(r, @), is computed as follows,

« For a statement s: v = ¢, wip(s,) = ¢(e/v);
o For a statement s: assume (c), wilp(s,d) = ¢ A ¢;
« For a sequence of statements s1; s2, wip(sl : s2,¢) =

wlp(s1, wip(s2, §)).

For a single CDFG path, there are only two types of
statements: assignment statements and branching statements
(assume (c) comes from ir(c)). Complex C statements involv-
ing pointers, arrays, structures, function calls, etc. can be
rewritten into simple statements involving scalar variables only
during a preprocessing phase of the CDFG representation [20].
Therefore, the pre- and post-condition results over a single
CDFG path do not blow up. In practice, the time spent on
computing G, G’, B, B’ is often negligible when compared to
other phases of the CEGAR procedure.

C. Strengthening Induction

The conditions can be strengthened by imposing a restricted
area within which goal containment should hold. This step
is optional, but may increase the chance of getting a proof.
Specifically, we identify a state subspace Fi., C S such that
goal containment within F,, can establish the proof. We define
F as the union of F for all k > 1,

Foo = U post(mp{m-}*, 1) .
k=1
By definition, F A Fow = F and F' A Foo = F7.
Assume that F' A B # (). We now prove that if 3V},. (Gp A
BAFy) — IV, (G, ANB' A F), then

F'AB #90 .
Since goal containment holds inside F,

V. Fu A(GyABANFy) C 3V, F,AN(Gy, ANB' A Fy)
W, (FABAFy) C 3V, (FPAB' AFy)
IVy. (FAB) C 3V,. (F'AB')

This is further illustrated in Fig. 5. We call it a strengthening
because goal containment with F, increases the chance of
getting a proof.

Fig. 5. The strengthened induction condition.

Our use of F,, is similar to the method in [21] on
strengthening BMC induction proof with over-approximated
reachable states. To ensure termination when computing Fi,
we compute exact post-conditions over 7, {, }* up to a finite
set of values of k£ and then switch to widening [22]. In the
working example, for instance, Fio, = ¢ < n.

D. Composition of Parameterized Traces

Extending the induction method to handle more complex
counterexample patterns is possible. For counterexamples in-
volving concatenation and embedding of recurring segments,
we have identified sufficient conditions (special cases) in
which goal containment can be check efficiently. Due to page
limit, we omit the discussion on these complex patterns; an
extended version of this paper is available upon request.

VII. EXPERIMENTS

We have implemented the new method in the F-Soft ver-
ification platform [23] and integrated with a CEGAR proce-
dure [24]. F-Soft is a tool for analyzing safety properties in
C programs by checking whether certain labeled statements

are reachable. It has a preprocessing phase in which complex
C statements (such as pointers, arrays, function calls, etc.)
are rewritten into simple statements involving scalar variables
only. For the simplified C program, it builds a CDFG repre-
sentation, which is taken as input by subsequent analysis pro-
cedures, including CEGAR and our induction based method.

Our test cases are several software benchmarks in the public
domain. For each test case, we run both standard CEGAR
and the augmented version (with our induction method) of the
same CEGAR procedure. All the experiments were conducted
on a workstation with 3 GHz Pentium 4 processor and 2GB
of RAM running Red Hat Linux 7.2.

A. The GNU bc Example

Our first test case comes from the GNU bc package
(bc-1.06), which implements a Unix command line calculator
with arbitrary precision. There is a known array bounds viola-
tion bug in line 176 of the file storage.c. The bug is illustrated
in the last line of Fig. 6, where the guard (indx<v_count) should
be changed to (indx<a_count). This bug is inherently difficult
to find with testing [25], since the corrupted heap does not
always cause an immediate crash—it often causes a crash
when another sometimes unrelated ma1ioc() is called.

a_count = 256;

old_count = a_count;
a_count = a_count + STORE_INCR;

bc_malloc (a_countxsizeof (bc_var_arrayx));
bc_malloc (a_count*sizeof (char*));

arrays
names

for (indx=1; indx<old_count; indx++)
arrays([indx] = old_ary[indx];

for (; indx < v_count; indx++)

arrays[indx] = NULL; //failure

Fig. 6. Code in more_arrays () of the GNU bc example

This bug cannot be detected using standard CEGAR when
a_count=256. However, if a_count iS set to some small value,
standard CEGAR may find a concrete counterexample. In our
experiments, a_count is set to various values starting with 1,
2, 3, ... The result is given in Fig. 7. With a small initial
value, standard CEGAR found the concrete counterexample,
but it demonstrates poor runtime performance and is clearly
not scalable.

The CEGAR procedure augmented with our induction
method was able to identify and prove the existence of

bc
16000 a_count time (s)

1 2.1

1000 - 2 3.6
J e 3 59
/ 7 4 10
w004 4 e 5 14
/ 6 27

r/ e 7 49
10 L heon 8 85

R — ftpd 9 135

10 522

L ‘ ‘ ‘ 11 885

0 20 40 60 80 12 5256

Fig. 7. Run time of the standard CEGAR procedure: z-axis: values of n;
y-axis: run time in seconds.

a parameterized counterexample within 10 seconds. This is
slightly slower than standard CEGAR for a_count=3. However,
the proof is valid (i.e., a concrete counterexample instance
exists) for all a_count=1,2, ..., k.

B. The Aeon Example

Our second test case comes from the Linux mail transfer
agent aeon 0.02a. There is a buffer overflow inside the func-
tion getcontfig, wWhenever it calls strepy to duplicate a string
returned by the function getenv to a buffer with size wax_rew.
This bug is representative for many buffer overflows leading
to possible security breaches. This example was also studied
by Kroening and Weissenbacher in [14].

We applied standard CEGAR as well as the augmented
version to this example. When vax_Len=512, our implementation
of standard CEGAR failed to detect the bug within 4 hours
(BLAST [26] and SLAM [7] also timed out, as reported in
[14]). Our induction based method was able to identify and
prove the existence of a parameterized counterexample within
6 seconds. In comparison, the loop detection method in [14]
detected the bug within 254.5 seconds; the runtime of their
method will keep increasing as vax.ien becomes larger (its
runtime was 25.0 seconds when vax Lex-25). In contrast, our
proof is valid (i.e., a concrete counterexample instance exists)
for all vaxLen= 1,2, ..., k.

C. The ftpd Example

Our third test case comes from the wu-ftpda-2.6.2 package.
There is a buffer overrun inside ftprestart.c when the function
newtile is called. The induction parameter is nuntiles, which
is 1024 in the concrete counterexample. This example was
also studied in [27]. Standard CEGAR failed to detect the
bug (although it can find a bug when we set numfiles to
smaller values, as is shown in Fig. 7), whereas our induction
augmented CEGAR procedure found the bug in 22 seconds.

VIII. CONCLUSIONS

We have presented an induction based method for proving
the existence of long counterexamples. The method avoids
a state-by-state match of the abstract counterexample during
the search for concrete counterexamples. It provides comple-
mentary strengths to the popular CEGAR methods. For future
work, we want to extend the induction method to handle more
complex counterexample patterns.

REFERENCES

[1] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in Systems Design, vol. 19, no. 3, pp. 291-314, 2001.

[2] M. Sheeran, S. Singh, and G. Stalmarck, “Checking safety properties
using induction and a SAT-solver,” in Formal Methods in Computer
Aided Design. Springer, 2000, pp. 108-125, LNCS 1954.

[3] L. de Moura, H. RueB, and M. Sorea, “Bounded model checking
and induction: From refutation to verification,” in Computer Aided
Verification (CAV’03). Springer, 2003, pp. 1-13, LNCS 2725.

[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Tools and Algorithms for Construction and Analysis
of Systems (TACAS’99), Mar. 1999, pp. 193-207, LNCS 1579.

[5]1 R. P. Kurshan, Computer-Aided Verification of Coordinating Processes.
Princeton, NJ: Princeton University Press, 1994.

[6] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Computer Aided Verification
(CAV’00). Springer, 2000, pp. 154-169, LNCS 1855.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of C programs,” in Programming Language Design
and Implementation (PLDI’01), June 2001, pp. 203-213.

K. L. McMillan, “Interpolation and SAT-based model checking,” in
Computer Aided Verification (CAV’03). Springer, July 2003, pp. 1-
13, LNCS 2725.

P-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco,
J. Taylor, and J. Long, “Smart simulation using collaborative formal and
simulation engines,” in International Conference on Computer-Aided
Design, San Jose, CA, Nov. 2000, pp. 120-126.

P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing.” in Programming Language Design and Implementation
(PLDI’05), June 2005, pp. 213-223.

K. Nanshi and F. Somenzi, “Guiding simulation with increasingly
refined abstract traces.” in Proceedings of ACM/IEEE Design Automation
Conference, 2006, pp. 737-742.

C. Wang, B. Li, H. Jin, G. D. Hachtel, and F. Somenzi, “Improving Ari-
adne’s bundle by following multiple threads in abstraction refinement,”
in International Conference on Computer-Aided Design, Nov. 2003, pp.
408-415.

P. Bjesse and J. Kukula, “Using counter example guided abstraction
refinement to find complex bugs,” in Design, Automation and Test in
Europe (DATE’04), Mar. 2004, pp. 10 156-10 161.

D. Kroening and G. Weissenbacher, “Counterexamples with loops
for predicate abstraction,” in Computer Aided Verification (CAV’06).
Springer, 2006, pp. 152-165, LNCS 4144.

M. N. Seghir and A. Podelski, “ACSAR: Software model checking
with transfinite refinement,” in International SPIN Workshop on Model
Checking Software. Springer, 2007, LNCS 4595.

T. Ball, O. Kupferman, and M. Sagiv, “Leaping loops in the presence of
abstraction,” in Computer Aided Verification (CAV’07). Springer, 2007,
pp. 491-503, LNCS 4590.

C. Wang, H. Kim, and A. Gupta, “Hybrid CEGAR: Combining vari-
able hiding and predicate abstraction,” in International Conference on
Computer Aided Design (ICCAD’07), 2007, to appear.

Z. Yang, C. Wang, F. Ivanci¢, and A. Gupta, “Mixed symbolic repre-
sentations for model checking software programs,” in Formal Methods
and Models for Codesign (MEMOCODE’06), July 2006, pp. 17-24.
E. Dijkstra, A Discipline of Programming. NI: Prentice Hall, 1976.
F. Ivanci¢, 1. Shlyakhter, A. Gupta, M. Ganai, V. Kahlon, C. Wang, and
Z. Yang, “Model checking C program using F-Soft,” in International
Conference on Computer Design, Oct. 2005, pp. 297-308.

A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar, “Abstraction
and BDDs complement SAT-based BMC in DiVer,” in Computer Aided
Verification (CAV’03). Springer, 2003, pp. 206-209, LNCS 2725.

C. Wang, Z. Yang, A. Gupta, and F. Ivanci¢, “Using counterexamples for
improving the precision of reachability computation with polyhedra,” in
Computer Aided Verification (CAV’07). Springer, 2007, pp. 352-265,
LNCS 4590.

F. Ivancié, Z. Yang, 1. Shlyakhter, M. Ganai, A. Gupta, and P. Ashar, “F-
SOFT: Software verification platform,” in Computer-Aided Verification.
Springer, 2005, pp. 301-306, LNCS 3576.

H. Jain, F. Ivancié, A. Gupta, I. Shlyakhter, and C. Wang, “Using stati-
cally computed invariants inside the predicate abstraction and refinement
loop,” in Computer Aided Verification (CAV’06). Springer, 2006, pp.
137-151, LNCS 4144.

A. X. Zheng, M. 1. Jordan, B. Liblit, M. Naik, and A. Aiken, “Statistical
debugging: simultaneous identification of multiple bugs.” in Interna-
tional Conference on Machine Learning, 2006, pp. 1105-1112.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstrac-
tion,” in Principles of programming languages (POPL’02), 2002, pp.
58-70.

V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek, “Buffer
overrun detection using linear programming and static analysis.” in ACM
Conference on Computer and Communications Security, Oct. 2003, pp.
345-354.

