
Peephole Partial Order Reduction

Chao Wang1, Zijiang Yang2, Vineet Kahlon1, and Aarti Gupta1

1 NEC Laboratories America, Princeton, NJ
{chaowang,kahlon,agupta}@nec-labs.com

2 Western Michigan University, Kalamazoo, MI
zijiang.yang@wmich.edu

Abstract. We present a symbolic dynamic partial order reduction (POR) method
for model checking concurrent software. We introduce the notion of guarded in-
dependent transitions, i.e., transitions that can be considered as independent in
certain (but not necessarily all) execution paths. These can be exploited by using
a new peephole reduction method. A symbolic formulation of the proposed peep-
hole reduction adds concise constraints to allow automatic pruning of redundant
interleavings in an SMT/SAT solver based search. Our new method does not di-
rectly correspond to any explicit-state algorithm in the literature, e.g., those based
on persistent sets. For two threads, our symbolic method guarantees the removal
of all redundant interleavings (better than the smallest persistent-set based meth-
ods). To our knowledge, this type of reduction has not been achieved by other
symbolic methods.

1 Introduction

Verifying concurrent programs is hard due to the large number of interleavings of tran-
sitions from different threads. In explicit-state model checking, partial order reduction
(POR) techniques [7, 17, 20] have been be used to exploit the equivalence of interleav-
ings of independent transitions to reduce the search state space. Since computing the
precise dependence relation may be as hard as verification itself, existing POR methods
often use a conservative static analysis to compute an approximation. Dynamic partial
order reduction [6] and Cartesian partial order reduction [11] lift the need of apply-
ing static analysis a priori by detecting collision (data dependency) on-the-fly. These
methods in general can achieve more reduction due to the more accurate collision de-
tection. However, applying these POR methods (which were designed for explicit-state
algorithms) to symbolic model checking is not an easy task.

A major strength of SAT-based symbolic methods [2] is that property dependent and
data dependent search space reduction is automatically exploited inside modern SAT
or SMT (Satisfiability Modulo Theory) solvers, through the addition of conflict clauses
and non-chronological backtracking. Symbolic methods are often more efficient in rea-
soning about variables with large domains. However, combining classic POR methods
(e.g., those based on persistent-sets [8]) with symbolic algorithms has proven to be diffi-
cult [1, 15, 10, 3, 13]. The difficulty arises from the fact that symbolic methods typically
manipulate a large set of states implicitly as opposed to manipulating states individu-
ally. Capturing and exploiting transitions that are dynamically independent with respect
to a set of states is much harder than it is for individual states.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 382–396, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Peephole Partial Order Reduction 383

T1

i = foo() ;
...

A a[i] = 10 ;
B a[i] = a[i]+20;
C *p = a[j] ;

T2

j = bar() ;
...

α a[j] = 50 ;
β a[j] = a[j]+100;
γ *q = a[i] ;

Fig. 1. tA, tB are independent with tα, tβ when i �=
j; tC is independent with tγ when (p �= q).

A

A

A

A

B

B

B

C

C B

C

C

{ }

β γ

β

α

α

α

α

β

β

γ

γ

γ

{A, B, C, α, β, γ}

Fig. 2. The lattice of interleavings

For example, in Fig. 1 there are two concurrent threads accessing a global array
a[ ]. The two pointers p and q may be aliased. Statically, transitions tA, tB in thread
T1 are dependent with tα, tβ in T2. Therefore, POR methods relying on a static anal-
ysis may be ineffective. Note that when i �= j holds in some executions, tA, tB and
tα, tβ become independent, meaning that the two sequences tA; tB; tα; tβ; tC ; tγ ; and
tα; tβ ; tA; tB; tC ; tγ ; are equivalent. However, none of the existing symbolic partial or-
der reduction methods [1, 15, 10, 3, 13] takes advantage of such information1. Among
explicit-state POR methods, dynamic partial order reduction [6] and Cartesian partial
order reduction [11] are able to achieve some reduction by detecting conflicts on-the-fly;
in any individual state s, the values of i and j (as well as p and q) are fully determined,
making it much easier to detect conflicts. However, it is not clear how to directly apply
these techniques to symbolic model checking, where conflict detection is performed
with respect to a set of states.

Missing out these kind of partial-order reductions can be costly, since the symbolic
model checker needs to exhaustively search among the reduced set of execution se-
quences. The number of valid interleavings (sequences) can be large even for moderate
sized programs. For the running example, we can capture all possible interleavings us-
ing a lattice structure (Fig. 2). Let Q = {tA, tB, tC , tα, tβ , tγ} be the set of transitions
from both threads. Each vertex in the figure represents a distinct subset of Q, consisting
of the executed transitions up to that point. The top vertex is { } and the bottom ver-
tex is {tA, tB, tC , tα, tβ , tγ}. A path from top to bottom denotes a unique interleaving.
For example, the left-most path corresponds to tA; tB ; tC ; tα; tβ ; tγ . The set of vertices
forms a powerset 2Q.

In this paper, we present a new peephole partial order reduction method to exploit
the dynamic independence of transitions. To this end, we introduce a new notion of in-
dependence relation called guarded independence relation (GIR). It is an extension of

1 The method in [13] can reduce equivalent interleavings if we replace i=foo() and j=bar()
with i=1 and j=2, but not in the general case.



384 C. Wang et al.

the classic (conditional) independence relation [14, 8]: instead of defining independence
with respect to either a single state or for all global states, we define the GIR relation RG

with respect to a predicate over programs variables. Each 〈t1, t2, cG〉 ∈ RG corresponds
to a pair of transitions t1, t2 that are independent iff cG holds. A major advantage of GIR
is that it can be accurately computed by a simple traversal of the program structure. We
further propose a peephole reduction which concisely captures the guarded independent
transitions as constraints over a fixed number of adjacent transitions to restrict the satis-
fiability formula during symbolic search (e.g., in bounded model checking). The added
constraints allow the underlying SAT/SMT solver to prune search space automatically.
Adding these GIR constraints requires identification of a pattern in a fixed sized time
window only.

The basic observation exploited by various POR methods is that different execution
sequences may correspond to the same equivalence class. According to Mazurkiewicz’s
trace theory [16], two sequences are equivalent if they can be obtained from each other
by successively permuting adjacent independent transitions. In this sense, our peephole
POR method has the same goal as the classic POR methods[7, 17, 20, 6, 11]; however,
it does not directly correspond to any existing method. In particular, it is not a symbolic
implementation of any of these explicit-state methods. For a system with two threads,
our method can guarantee optimality in reduction; that is, all redundant interleavings
are removed (proof is in Section 3.2). To our knowledge, there has not been such guar-
antee among existing POR methods. We also show an example on which our method
achieves strictly more reduction than any persistent-set based method. Finally, the pro-
posed encoding scheme is well suited for symbolic search using SAT/SMT solvers.

To summarize, our main contributions are: (1) the notion of guarded independence
relation, which accurately captures independence between a pair of transitions in terms
of predicates on states; (2) a peephole partial order reduction that adds local constraints
based on the guarded independence relation, along with a symbolic formulation; (3) the
guarantee of removing all redundant interleavings for systems with two threads. This
kind of reduction has not been achieved by previous symbolic methods [1, 15, 10, 3, 13].

2 Guarded Independence Relation

In this section, we review the classic notion [14, 8] of independent transitions, and then
present the new notion of guarded independence relation.

Let Ti (1 ≤ i ≤ N ) be a thread with the set transi of transitions. Let trans =⋃N
i=1 transi be the set of all transitions. Let Vi be the set of local variables in thread

Ti, and Vglobal be the set of global variables. For t1 ∈ transi, we denote the thread
index by tidt1 , and denote the enabling condition by ent1 . If t1 is a transition in Ti

from control location loc1 to loc2 and is guarded by cond, then ent1 is defined as
(pci = loc1)∧cond. Here pci ∈ Vi is a special variable representing the thread program
counter. Let S be the set of global states of the system. A state s ∈ S is a valuation of

all local and global variables. For two states s, s′ ∈ S, s
t1→ s′ denotes a state transition

by applying t1, and s
ti...tj⇒ s′ denotes a sequence of state transitions.



Peephole Partial Order Reduction 385

2.1 Independence Relation

Definition 1 (Independence Relation [14, 8]). R ⊆ trans×trans is an independence
relation iff for each 〈t1, t2〉 ∈ R the following two properties hold for all s ∈ S:

1. if t1 is enabled in s and s
t1→ s′, then t2 is enabled in s iff t2 is enabled in s′; and

2. if t1, t2 are enabled in s, there is a unique state s′ such that s
t1t2⇒ s′ and s

t2t1⇒ s′.

In other words, independent transitions can neither disable nor enable each other, and
enabled independent transitions commute. As pointed out in [7], the definition has been
mainly of semantic use since it is not practical to check the above two properties for all
states to determine which transitions are independent. Instead, traditionally collision de-
tection often uses conservative but easy-to-check sufficient conditions. For instance, the
following properties [7] have been used in practice to compute independent transitions:

1. the set of threads that are active for t1 is disjoint from the set of threads that are
active for t2, and

2. the set of objects that are accessed by t1 is disjoint from the set of objects that are
accessed by t2.

Note that some independent transitions may be conservatively classified as dependent,
like t1:a[i] = e1 and t2:a[j] = e2 when i �= j, since it is not clear statically if a[i] and
a[j] refer to the same element. This can in turn lead to a coarser persistent set.

In the conditional dependence relation [14, 8], two transitions are defined as inde-
pendent with respect to a state s ∈ S (as opposed to for all s ∈ S). This extension
is geared towards explicit-state model checking, in which persistent sets are computed
for individual states. A persistent set at state s is a subset of the enabled transitions
that need to be traversed in adaptive search. A transition is added to the persistent set
if it has any conflict with a future operation of another thread. The main difficulty in
persistent set computation lies in detecting future collision with enough precision. Al-
though it is not practical to compute the conditional dependence relation for each state
in S for collision detection purposes, there are explicit-state methods (e.g., [6, 11]) to
exploit such dynamically independent transitions. However, these classic definitions of
independence are not well suited for symbolic search.

2.2 Guarded Independence Relation

Definition 2. Two transitions t1, t2 are guarded independent with respect to a condition
cG iff cG implies that the following properties hold:

1. if t1 is enabled in s and s
t1→ s′, then t2 is enabled in s iff t2 is enabled in s′; and

2. if t1, t2 are enabled in s, there is a unique state s′ such that s
t1t2⇒ s′ and s

t2t1⇒ s′.

This can be considered as an extension of the conditional dependence relation; instead
of defining 〈t1, t2, s〉 with respect to a state s ∈ S, we define 〈t1, t2, cG〉 with respect to
a predicate over local and global program variables. The independence relation is valid
for all states in which cG holds, i.e., it is valid with respect to a (potentially large) set of



386 C. Wang et al.

states. Unlike the previous definitions, when computing GIR, we are able to apply the
two properties in Definition 2 precisely.

The guard cG can be efficiently computed by a traversal of the structure of the pro-
gram. For a transition t, we use VRD(t) to denote the set of variables read by t, and
VWR(t) to denote the set of variables written by t. We define the potential conflict set
between t1 and t2 from different threads to be

Ct1,t2 = VRD(t1) ∩ VWR(t2) ∪ VRD(t2) ∩ VWR(t1) ∪ VWR(t1) ∩ VWR(t2) .

In our running example, CtA,tα = {a[i], a[j]}. For a C-like program, we list the different
scenarios under which we compute the guarded independence relation RG:

1. when Ct1,t2 = ∅, add 〈t1, t2, true〉 to RG;
2. when Ct1,t2 = {a[i], a[j]}, add 〈t1, t2, i �= j〉 to RG;
3. when Ct1,t2 = {∗pi, ∗pj}, add 〈t1, t2, pi �= pj〉 to RG;
4. when Ct1,t2 = {x}, consider the following cases:

a. RD-WR: if x ∈ VRD(t1) and the assignment x := e appears in t2, add
〈t1, t2, x = e〉 to RG;

b. WR-WR: if x := e1 appears in t1 and x := e2 appears in t2, add 〈t1, t2, e1 =
e2〉 to RG;

c. WR-C: if x appears in the condition cond of a branching statement t1, such as
if(cond), and x := e appears in t2, add 〈t1, t2, cond = cond[x → e]〉 to RG,
in which cond[x → e] denotes the replacement of x with e.

Overall the computational complexity is O(|trans|2), where |trans| is the number of
transitions. If desired, the set of rules can be easily extended to handle a richer set of
language constructs.

Rules 1,2, and 3 correspond to standard semantics of a program. Pattern 4(a) states
that two read/write operations to the same variable are guarded independent if the write
operation does not change its value. Pattern 4(b) states that two write operations to the
same variable are guarded independent if their newly assigned values are the same. In
these two cases, cG may evaluate to true more frequently than one may think, espe-
cially when these variables have small ranges and when they are used for branching
purposes. If b is a Boolean variable, then b := e1 and b := e2 independent in two of
the four possible cases. Pattern 4(c) is a special case of 4(a): clearly x = e implies
cond = cond[x → e]; however, there are cases when x �= e but cond = cond[x → e].
For example, let if(x < 10) be a transition in thread 1 and x := e be in thread
2. They are guarded independent if (x < 10) = (e < 10), even if x changes af-
ter the assignment. Multiple patterns can appear in the same pair of transitions. In such
cases, cG is a conjunction or disjunction of individual conditions. For example, consider
t1:if(a[i]>5) and t2:a[j]:=x. Here cG is defined as i �= j∨((a[i] > 5) = (x > 5)).

In symbolic search based on SMT/SAT solvers, the guarded independence relation
can be compactly encoded as symbolic constraints in the problem formulation, as de-
scribed in the next section. These constraints facilitate automatic pruning of the search
space.



Peephole Partial Order Reduction 387

3 Peephole Partial Order Reduction

After reviewing the basics of SMT/SAT based bounded model checking in Section 3.1,
we will present our new partial order reduction method in Section 3.2.

3.1 Bounded Model Checking (BMC)

Given a multi-threaded program and a reachability property, BMC can check the prop-
erty on all execution paths of the program up to a fixed depth K . For each step 0 ≤
k ≤ K , BMC builds a formula Ψ such that Ψ is satisfiable iff there exists a length-k
execution that violates the property. The formula is denoted Ψ = Φ ∧ Φprop, where Φ
represents all possible executions of the program up to k steps and Φprop is the con-
straint indicating violation of the property. (For more information about Φprop, refer to
[2].) In the following, we focus on the formulation of Φ.

Let V = Vglobal ∪
⋃

Vi, where Vglobal are global variables and Vi are local variables
in Ti. For every local (global) program variable, we add a state variable to Vi (Vglobal).
Array and pointer accesses need special handling. For an array access a[i], we add sep-
arate variables for the index i and for the content a[i]. Similarly, for a pointer access ∗p,
we assign separate state variables for (∗p) and p. We add a pci variable for each thread
Ti to represent its current program counter. To model nondeterminism in the sched-
uler, we add a variable sel whose domain is the set of thread indices {1, 2, . . . , N}. A
transition in Ti is executed only when sel = i.

At every time frame we add fresh copies of the set of state variables. Let vi ∈ V i

denote the copy of v ∈ V at the i-th time frame. To represent all possible length-
k interleavings, we first encode the transition relations of individual threads and the
scheduler, and unfold the composed system exactly k time frames.

Φ := I(V 0) ∧
k∧

i=0

⎛

⎝SCH(V i) ∧
N∧

j=1

TRj(V i, V i+1)

⎞

⎠

where I(V 0) represents the set of initial states, SCH represents the constraint on the
scheduler, and TRj represents the transition of thread Tj . Without any partial order
reduction, SCH(V i) := true, which means that sel takes arbitrary values at every
step. This default SCH considers all possible interleavings. Partial order reduction can
be implemented by adding constraints to SCH to remove redundant interleavings.

We now consider the formulation of TRj . Let V Sj = Vglobal ∪ Vj denote the set of
variables visible to Tj . At the i-th time frame, for each t ∈ transj (a transition between
control locations loc1 and loc2), we create tri

t. If t is an assignment v := e, then tri
t :=

pci
j = loc1 ∧ pci+1

j = loc2 ∧ vi+1 = ei ∧ (V Si+1
j \ vi+1) = (V Si

j \ vi) .

If t is a branching statement2 assume(c), as in if(c), then tri
t :=

pci
j = loc1 ∧ pci+1

j = loc2 ∧ ci ∧ V Si+1
j = V Si

j .

2 We assume that there is a preprocessing phase in which the program is simplified to have only
assignments and branching statements, as in tools like FSoft [12].



388 C. Wang et al.

Overall, TRi
j is defined as follows:

TRi
j :=

⎛

⎝seli = j ∧
∨

t∈transj

tri
t

⎞

⎠ ∨
(
seli �= j ∧ V i+1

j = V i
j

)

The second term says that if Tj is not selected, variables in Vj do not change values.

3.2 Peephole Partial Order Reduction

SCH initially consists of all possible interleavings of threads. If multiple length-k se-
quences are in the same equivalence class, only one representative needs to be checked
for property violation. To facilitate such reduction, we add constraints for each pair of
guarded independent transitions to restrict the scheduler.

For each 〈t1, t2, cG〉 ∈ RG such that tidt1 < tidt2 , we conjoin the following con-
straint to SCH ,

ent1(V
k) ∧ ent2(V

k) ∧ cG(V k) → ¬(selk = tidt2 ∧ selk+1 = tidt1)

Here, ent1(V k) and ent2(V k) are the enabling conditions for t1 and t2 at the k-th time
frame. The above constraint says that, if independent transitions t1 and t2 are enabled,
sequences starting with both t1; . . . and t2; . . . are allowed to be explored. However,
among the sequences starting with t2; . . ., we forbid t2; t1;... through the addition of
constraint ¬(selk = tidt2 ∧ selk+1 = tidt1). In essence, the above constraint enforces
a fixed order on the priority of scheduling two independent transitions t1, t2. We always
prefer sequences in which two adjacent independent transitions t1, t2 are scheduled in
their thread index order, i.e., t1 ahead of t2 if tidt1 < tidt2 . The alternative sequences
are removed, as illustrated in Fig. 3.

In the running example, the new SCH(V k) is
(
pck

1 = A ∧ pck
2 = α ∧ (ik �= jk) → ¬(selk = 2 ∧ selk+1 = 1)

)
∧(

pck
1 = A ∧ pck

2 = β ∧ (ik �= jk) → ¬(selk = 2 ∧ selk+1 = 1)
)
∧(

pck
1 = B ∧ pck

2 = α ∧ (ik �= jk) → ¬(selk = 2 ∧ selk+1 = 1)
)
∧(

pck
1 = B ∧ pck

2 = β ∧ (ik �= jk) → ¬(selk = 2 ∧ selk+1 = 1)
)
∧(

pck
1 = C ∧ pck

2 = γ ∧ (ik �= jk ∧ pk �= qk) → ¬(selk = 2 ∧ selk+1 = 1)
)

When i �= j, the above constraint removes sequences containing tα; tA; . . . .

Theorem 1. All interleavings removed by the peephole reduction are redundant.

Proof. Let π = π0π1... be a valid sequence that is forbidden by the peephole reduction.
Then there exists at least one index k in π such that cG holds, πk and πk+1 are inde-
pendent. By swapping the two adjacent independent transitions, we produce another
sequence π′ such that π′

k = πk+1, π′
k+1 = πk, and π′

i = πi for all i �= k and i �= k + 1.
π′ is (Mazurkiewicz) equivalent to π. (1) If π′ is not forbidden by the peephole reduc-
tion, π is redundant and we have a proof. (2) If π′ is also forbidden, then there exists
an index k in π′ such that π′

k, π′
k+1 are guarded independent—because otherwise π′

cannot be removed by the peephole reduction. Due to the finiteness of the sequence, if



Peephole Partial Order Reduction 389

we continue the find-and-swap process, eventually we will find a sequence π′′ that is
not forbidden by the peephole reduction. In this case π is redundant (equivalent to π′′)
and we complete the proof. ��

Theorem 2. For two threads, the peephole reduction removes all the redundant inter-
leavings.

Proof. We prove by contradiction. Assume π, π′ are two remaining sequences and they
are (Mazurkiewicz) equivalent. By definition, π and π′ have the same set of transitions;
π′ is a permutation of π. Let πj in π be the first transition from T2 that is swapped to
be π′

i in π′ (where i < j). Then π and π′ share a common prefix up to i (Fig. 4). Fur-
thermore, all transitions πi, . . . , πj−1 in π belong to T1. This is because if any of them
belongs to T2, it would not be possible to move πj ahead of π′ – the order of transitions
from the same thread cannot be changed. Therefore, there are only two cases regard-
ing πj−1 from T1 and πj from T2: (1) if they are dependent, swapping them produces
a non-equivalent sequences; (2) if they are independent, the fact that πj appears after
πj−1 in π means that tidπj > tidπj−1 . This implies that tidπj > tidπi , and π′ would
have been removed. Since both cases contradict the assumption, the assumption is not
correct. ��

For more than two threads, the proposed peephole reduction does not always guarantee
the removal of all redundant interleavings. For example, let transitions tA, tα, tx be-
long to threads T1, T2, T3, respectively. Assume that tA and tx are dependent, but tα is
guarded independent with both tA and tx. When the guard is true, the following two
interleavings are equivalent,

tx; tA;tα; . . .
tα; tx; tA; . . .

Both sequences conform to the GIR constraints, since the segment (tA;tα; ) conforms to
tidtA < tidtα and the segment (tα; tx;) conforms to tidtα < tidtx . The three transitions
can be grouped into two independent sets: {tA, tx} and {tα}. The non-optimality arises
from the fact that there is not an order of the two sets in which the pairwise independent

X = trans \ {t1, t2}

t1
X

t1 t2
Xt2

t2
t1

Fig. 3. We remove only redundant inter-
leavings

in thread 1

in thread 2

πj

π′

πj

πj−1

πi

πi

π

πj−1

Fig. 4. For two threads, we remove all re-
dundant interleavings



390 C. Wang et al.

transitions are ordered in a way consistent with the ordered thread indices3 . If we
arrange the threads in a different order, tA, tx, tα are in T1, T2, T3, then the sequence
tα; tx; tA; . . . would be removed by our reduction. Extending the peephole reduction to
guarantee the removal of all redundant interleavings in the more general cases may be
possible. However, any such extension is likely to be more expensive than the peephole
reduction proposed here. In practice, there is a tradeoff between the encoding overhead
and the amount of achievable reduction.

3.3 Comparison with Persistent-Set Based Methods

The peephole reduction add only local constraints, i.e., constraints over a fixed number
of adjacent time steps. The reduction relies on whether two transitions t1, t2 are locally
(guarded) independent, for which the precise information is available (Section 2.2).
This is in contrast to persistent set based methods relying on detecting future conflicts
(for which precise information in general is expensive to compute). Persistent set based
methods were designed to be used in adaptive search during explicit-state model check-
ing. Depending on the order in which transitions are picked during persistent set com-
putation, there can be more than one persistent set. Some persistent sets achieve more
reduction than others. In practice, computing the smallest persistent set at each step of
the adaptive search can be costly. The following example shows that even if the small-
est persistent sets were available at each step of the adaptive search (in a hypothetical
algorithm), there would still be redundant interleavings.

Fig. 5 is derived from the running example by assuming i = 1, j = 2, and p �= q.
Since tA has a collision with a future transition of thread T2 (transition tγ), and similarly
tα has a collision with tC , the smallest persistent set at the starting point is PS(s) =
{tA, tα}. This allows both tA; . . . and tα; . . . to be explored. In the reduced lattice in
Fig. 5, there are many redundant sequences (paths over solid thick lines). In fact, the
only reduction is achieved by the persistent set PS(s′) = {C}, which is a strict subset
of the enabled set {C, γ}.

In our peephole POR method, since tA and tα are independent and tidtA < tidtα ,
we remove the sequences starting with tα; tA;... but allow the sequences starting with
tα; tβ ; .... As shown by the reduced lattice in Fig. 6, the following adjacent transitions
are forbidden: (tα, tA), (tβ ; tA), (tα; tB), (tβ ; tB), and (tγ ; tC). The forbidden com-
binations of adjacent independent transitions are depicted by dotted arrows. The last
dotted arrow in Fig. 6 deserves more explanation: our method forbids tC only when tγ
is the previous transition, but allows tC to execute if the previous transition is tB (both
tC and tB are from T1). Note that there is no redundant interleaving.

This example suggests that the benefit of peephole reduction is separate from the
benefit of accurate guarded independence relation. In this example, both the persistent
set method and the peephole reduction can use the most precise independence rela-
tion, yet our method can forbid more interleavings. Therefore, the advantages of our
approach in general come from two distinct sources: the peephole reduction and the
accurate guarded independence relation.

3 There are eight distinct scenarios of the pairwise dependency of 〈tA, tα, tx〉, each of which
corresponds to six interleavings. The proposed reduction removes all the redundant sequences
except one.



Peephole Partial Order Reduction 391

T1

A a[1] = 10 ;
B a[1] = a[1]+20;
C m = a[2] ;

T2

α a[2] = 50 ;
β a[2] = a[2]+100;
γ n = a[1] ;

A

B

C

C

C

C

B

B

B

A

A

A

PS(s′) = {C}

β

β

γ

γ

β

β

α

α

PS(s) = {A, α}

PS = {C, α}

PS = {B, α}

α

γ

α

Fig. 5. Smallest persistent-sets do not remove all redundant interleavings

B

B

B

B

C

C

C

C

A

A

A

A

γ

α

α

α

α

β

γβ

β

β

γ

Our method add constraints to SCH
to disallow sequences containing the
following fragments:

α; A;
β; A;
α; B;
β; B;
γ; C;

Fig. 6. Our method removes all the redundant interleavings

Persistent set computation looks only into current and future transitions of other
threads. The methods based on sleep set [9] also consider past transitions when com-
puting reduction. Our peephole POR method differs from sleep sets in two aspects:
First, the peephole reduction guarantees the optimality for two threads. Second, the en-
coding in peephole reduction is memoryless in that there is no need to store information
about past transitions (and to carry the information around) explicitly.

4 Reducing the Overhead of GIR Constraints

For the symbolic formulation outlined in the previous section, the number of GIR con-
straints added is linear in the number of guarded independent transition pairs (which can
be quadratic in the number of transitions). These constraints need to be added at each
time frame, which may pose a significant overhead for the SMT/SAT solver. On the
other hand, missing out these reductions can be costly, since the model checker needs
to explore all allowed execution sequences, which can be many. In practice, there is a
tradeoff between the encoding overhead and the amount of achievable reduction. Hav-
ing said that, there are techniques to reduce the encoding overhead in practical settings.



392 C. Wang et al.

Tj

B βconflict

transC
i = {A, B} transC

j = {α, β}

A

αconflict

Ti

Fig. 7. Using dependent transitions to simplify encoding

First, if a cheap static analysis can be used to figure out statically independent tran-
sitions, based on which high quality persistent sets can be computed, then it should be
used before proceeding to the more advanced reduction. In principle, one can reserve
peephole reduction to transitions that are not statically independent (or those that can-
not be easily identified statically). Furthermore, when programs have clearly specified
synchronization disciplines, e.g., all shared variables are protected by locks, transaction
based methods [18, 19, 5] can be used to reduce the search space. These methods are or-
thogonal to our peephole reduction, and in principle transactions can be exploited along
with our proposed reduction techniques. In addition to these conventional techniques,
we present the following simplifications.

Merging GIR Constraints. If transition t1 ∈ transi is guarded independent with
respect to all transitions t2 ∈ transj , we do not need to add constraints separately for
all 〈t1, t2〉 pairs. Instead, we merge all these GIR constraints as

ent1(V
k) ∧ cG(V k) → ¬(selk = j ∧ selk+1 = i) .

As a simple case, this simplification can be applied when t1 is a local transition (in-
dependent with all other threads). In this case, the effect captured is similar to that ob-
tained from detecting transactions. However, the above rule is not restricted only to such
simple cases. As a more general case, consider N dining philosophers in which all tran-
sitions in one philosopher (thread) are visible to two adjacent philosophers (threads).
There is no local transition per se. However, for any two non-adjacent philosophers, a
transition t1 in the i-th philosopher is always independent with all transitions in the j-th
philosopher. Therefore the above simplification can be applied.

Encoding Dependent Transitions. For loosely coupled threads, the number of inde-
pendent transition pairs are significantly larger than the number of dependent transition
pairs (conflicts). In such cases, we can use an alternative encoding scheme. Instead of
adding a constraint for every independent transition pair, we focus on dependent tran-
sition pairs. For threads Ti and Tj (i < j), we use transC

i ⊆ transi and transC
j ⊆

transj to denote the subsets of transitions that may be guarded dependent4 with the
other thread. By definition, ∀t1 ∈ (transi \ transC

i ) and ∀t2 ∈ (transj \ transC
j ),

4 In 〈t1, t2, cG〉, if cG is not constant true, then t1 and t2 may be dependent.



Peephole Partial Order Reduction 393

t1 and t2 are always independent. This is illustrated in Fig. 7. To encode the GIR con-
straints, first, we define enableTi for thread Ti as follows,

enableTi :=
∨

t∈(transi\transC
i )

ent .

Then, we summarize constraints for the always independent transition pairs.

enableTi(V
k) ∧ enableTj(V

k) → ¬(selk = j ∧ selk+1 = i) .

Finally, some transitions in transC
i and transC

j may still be independent from each
other. For each t1 ∈ transC

i and t2 ∈ transC
j , if 〈t1, t2, cG〉 ∈ RG, we add the GIR

constraint as in Section 3.2. As an example, if two threads are completely independent,
only one constraint needs to be added to SCH .

5 Experiments

We have implemented the new methods in an SMT-based bounded model checker us-
ing the Yices SMT solver [4]. Yices is capable of deciding satisfiability formulae with
a combination of theories including propositional logic, integer linear arithmetic, and
arrays. We performed experiments with three variants of the peephole reduction, and a
baseline BMC algorithm with no POR. The three variants represent different tradeoffs
between the encoding overhead and the amount of achievable reduction. The first one
is static POR, in which constraints are added only for statically independent transitions.
The second one is simple PPOR, which adds constraints also for guarded independent
transitions covered by GIR cases 1-3 (in Section 2.2). The third one is full PPOR, which
adds constraints for all guarded independent transitions covered by GIR cases 1-4. Our
experiments were conducted on a workstation with 2.8 GHz Xeon processor and 4GB
memory running Red Hat Linux 7.2.

Parameterized Examples. The first set of examples are parameterized versions of din-
ing philosopher and indexer. For dining philosopher, we used a version that guarantees
the absence of deadlocks. Each philosopher (thread) has its own local state variables,
and threads communicate through a shared array of chop-sticks. When accessing the
global array, threads may have conflicts (data dependency). The first property (pa) we
checked is whether all philosophers can eat simultaneously (the answer is no). The sec-
ond property (pb) is whether it is possible to reach a state in which all philosophers
have eaten at least once (the answer is yes). For the indexer example, we used the ver-
sion from [6]. In this example, concurrent threads manipulate a shared hash table. Each
thread needs to write four distinct values into the hash table. An atomic compare-and-
swap instruction is used to check if a hash entry is available; if so, it writes the value;
otherwise, the thread changes the hash key before retry. The property we checked is
whether it is possible to reach a state in which all threads have completed. This exam-
ple is interesting because there is no collision in accessing the hash table with up to 11
threads. However, such information cannot be detected by a static analysis.

For dining philosopher, with 2 threads we set the unrolling depths to 15,30,. . .,120,
and compared the runtime of the four methods as well as the number of backtracks of



394 C. Wang et al.

Fig. 8. Comparing runtime (left) and the number of backtracks in the SMT solver (right); per-
formed on two philosophers with the property pa

Table 1. Comparing the performance of four symbolic partial order reduction techniques

Test Program Total CPU Time (s) #Conflicts (k) #Decisions (k)
name steps sat none static s-ppor f-ppor none static s-ppor f-ppor none static s-ppor f-ppor

phil2-pa 15 no 0.3 0.1 0.1 0.1 0.5 0.1 0.1 0.9 1.1 0.6 0.6 0.4
phil3-pa 22 no 27 6 1.2 0.7 17 5 2 1 23 8 4 1
phil4-pa 29 no 69 50 26 28 39 28 13 13 54 41 21 20
phil2-pb 15 yes 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.6 0.4 0.3
phil3-pb 22 yes 1.7 0.8 0.4 1.4 2 1.1 0.4 1.0 3 2 1 3
phil4-pb 29 yes 19 17 1.5 2.9 12 9 1 2 17 15 4 5
indexer2 10 no 0.3 0.2 0.1 0.1 0.3 0.3 0.1 0.1 1 1 1 1
indexer3 15 no 31 23 0.4 0.3 14 14 0.4 0.3 183 183 1 1
indexer4 20 no T/O 1791 1.2 1.7 - 344 1 1 - 395 2 2
indexer5 25 no T/O T/O 5.1 6.6 - - 2 2 - - 6 6
indexer2 11 yes 3 2 0.4 0.7 1.5 1.5 0.3 0.6 54 54 15 33
indexer3 16 yes 22 17 4 3 5 5 1 1 163 163 77 127
indexer4 21 yes 179 177 12 6 283 283 3 2 432 432 181 139
indexer5 26 yes T/O T/O 38 35 - - 4 4 - - 579 427

the SMT solver. The results are given in Fig. 8. The x-axis is the unrolling depths. The
y-axis are the BMC runtime in seconds (left figure), and the number of backtracks (right
figure). The y-axis is in logarithmic scale. The number of decisions of the SMT solver
looks similar to the runtime curves; we omit it for brevity. These results show that both
simple PPOR and full PPOR have shown significant performance improvement over
static. Due to its larger encoding overhead, the runtime of full PPOR is less consistent
and is sometimes inferior to simple PPOR.

We also set the number of threads to 2, 3, 4 for both dining philosopher and indexer
examples and compared the four methods. In these experiments the BMC unrolling
depths are chosen to be large enough (larger than the estimated reachable diameters [2]),
so that the verification results are conclusive. The detailed results are given in Table 1.
In Table 1, Columns 1-3 show the name of the examples, the number of BMC unrolling
steps, and whether the property is true or not. Columns 4-7 report the runtime of the
four methods. Columns 8-11 and Columns 12-15 report the number of backtracks and
the number of decisions of the SMT solver.



Peephole Partial Order Reduction 395

The Daisy Example. The second set of examples come from a much larger concurrent
program called Daisy. Daisy has been used before as a benchmark for verifying con-
current programs. The version we used is written in C and has been verified previously
in [13]. The parsing and encoding of these examples were performed automatically.
Note that in [13] there already exists a state-of-the-art symbolic POR method based
on persistent sets, advanced static analysis techniques, and the exploitation of nested
locks. Our peephole POR method was implemented on top of these techniques. The
two properties we checked are data race conditions (both are reachable).

For comparison purposes, we implemented the peephole reduction on the same SAT-
based BMC procedure as in [13]. Compared with the previous method, our peephole
POR method can significantly reduce the BMC runtime in detecting these data races.
In particular, for the first property, the new method was able to find a counterexample
of length 132 and reduced the BMC runtime from 519 seconds to 374 seconds. For the
second property, the new method was able to find a counterexample of length 136 and
reduced the BMC runtime from 1540 seconds to 998 seconds.

6 Conclusions

We have presented a peephole partial order reduction method for model checking
concurrent systems, based on a new notion of guarded independence relation between
transitions. We have presented a concise symbolic encoding of local dynamically inde-
pendent transition pairs which is well suited for using SMT/SAT solvers to find property
violations. We have shown that the new peephole POR method can achieve significantly
more reduction compared to other existing methods. For a system with two concurrent
threads, our method guarantees the removal of all redundant interleavings. For future
work, we plan to investigate additional techniques for simplifying the GIR constraints.

References

[1] Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order reduc-
tion in symbolic state-space exploration. Formal Methods in System Design 18(2), 97–116
(2001)

[2] Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, Springer, Hei-
delberg (1999)

[3] Cook, B., Kroening, D., Sharygina, N.: Symbolic model checking for asynchronous
boolean programs. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 75–90.
Springer, Heidelberg (2005)

[4] Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for dpll(t). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

[5] Dwyer, M.B., Hatcliff, J., Robby, Ranganath., V.P.: Exploiting object escape and locking
information in partial-order reductions for concurrent object-oriented programs. Formal
Methods in System Design 25(2-3), 199–240 (2004)

[6] Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software.
In: Principles of programming languages (POPL 2005), pp. 110–121 (2005)

[7] Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032. Springer, Heidelberg (1996)



396 C. Wang et al.

[8] Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verification meth-
ods. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 438–449. Springer, Heidel-
berg (1993)

[9] Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of deadlock
freedom and safety properties. Formal Methods in System Design 2(2), 149–164 (1993)

[10] Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided underapproximation-
widening for multi-process systems. In: Principles of programming languages (POPL
2005), pp. 122–131 (2005)

[11] Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction. In:
Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112. Springer,
Heidelberg (2007)

[12] Ivančić, F., Shlyakhter, I., Gupta, A., Ganai, M.K., Kahlon, V., Wang, C., Yang, Z.: Model
checking C program using F-Soft. In: International Conference on Computer Design, Oc-
tober 2005, pp. 297–308 (2005)

[13] Kahlon, V., Gupta, A., Sinha, N.: Symbolic model checking of concurrent programs using
partial orders and on-the-fly transactions. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 286–299. Springer, Heidelberg (2006)

[14] Katz, S., Peled, D.: Defining conditional independence using collapses. Theor. Comput.
Sci. 101(2), 337–359 (1992)

[15] Lerda, F., Sinha, N., Theobald, M.: Symbolic model checking of software. Electr. Notes
Theor. Comput. Sci. 89(3) (2003)

[16] Mazurkiewicz, A.W.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN
1986. LNCS, vol. 255, pp. 279–324. Springer, Heidelberg (1987)

[17] Peled, D.: All from one, one for all: on model checking using representatives. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)

[18] Stoller, S.D.: Model-checking multi-threaded distributed java programs. International Jour-
nal on Software Tools for Technology Transfer 4(1), 71–91 (2002)

[19] Stoller, S.D., Cohen, E.: Optimistic synchronization-based state-space reduction. In: Gar-
avel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 489–504.
Springer, Heidelberg (2003)

[20] Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) APN
1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)


	Introduction
	Guarded Independence Relation
	Independence Relation
	Guarded Independence Relation

	Peephole Partial Order Reduction
	Bounded Model Checking (BMC)
	Peephole Partial Order Reduction
	Comparison with Persistent-Set Based Methods

	Reducing the Overhead of GIR Constraints
	Experiments
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


