
Symbolic Predictive Analysis for Concurrent Programs

Chao Wang1, Sudipta Kundu2, Malay Ganai1, and Aarti Gupta1

1 NEC Laboratories America, Princeton, NJ, USA
2 University of California, San Diego, La Jolla, CA, USA

Abstract. Predictive analysis aims at detecting concurrency errors during run-
time by monitoring a concrete execution trace of a concurrent program. In re-
cent years, various models based on happens-before causality relations have been
proposed for predictive analysis to improve the interleaving coverage while en-
suring the absence of false alarms. However, these models are based on only
the observed events, and typically do not utilize source code. Furthermore, the
enumerative algorithms they use for verifying safety properties in the predicted
execution traces often suffer from the interleaving explosion problem. In this pa-
per, we introduce a new symbolic causal model based on sourcecode and the
observed events, and propose a symbolic algorithm to check whether a safety
property holds in all feasible permutations of events in thegiven execution trace.
Rather than explicitly enumerating the interleavings, ouralgorithm conducts the
verification using a novel encoding of the causal model and symbolic reasoning
with a satisfiability modulo theory (SMT) solver. Our algorithm has a larger in-
terleaving coverage than known causal models in the literature. We also propose
a method tosymbolically boundthe number of context switches allowed in an
interleaving, to further improve the scalability of the algorithm.

1 Introduction

Predictive analysis aims at detecting concurrency errors by observing execution traces
of a concurrent program which may be non-erroneous. Due to the inherent nondeter-
minism in scheduling concurrent processes/threads, executing a program with the same
test input may lead to different program behaviors. This poses a significant challenge
in testing concurrent programs—even if a test input may cause a failure, the erroneous
interleaving manifesting the failure may not be executed during testing. Furthermore,
merely executing the same test multiple times does not always increase the interleav-
ing coverage. In predictive analysis, a concrete executiontrace is given, together with a
correctness property in the form of assertions embedded in the trace. The given execu-
tion trace need not violate the property, but there may existan alternative trace, i.e., a
feasible permutation of events of the given trace, that violates the property. The goal of
predictive analysis is detecting such erroneous traces bystaticallyanalyzing the given
execution trace without re-executing the program.

Existing predictive analysis algorithms can be classified into two categories based
on the quality of reported bugs. The first category consists of methods that do not miss
real errors but may report bogus errors. Historically, algorithms that are based on lockset
analysis [1–3] fall into the first category. They strive to cover all possible interleavings
that are feasible permutations of events of the given trace,but at the same time may
introduce some interleavings that can never appear in the actual program execution.



The second category consists of methods that do not report bogus errors but may miss
some real errors. Various causal models have been used by these methods [4–6], with
some inspired by Lamport’s happens-before causality relation [7]. They provide the
feasibility guarantee–that all the reported erroneous interleavings are actual program
executions, but they do not cover all interleavings allowedby the program source code.

This paper also focuses on predictive analysis algorithms with the feasibility guar-
antee. The given execution trace is regarded as a total orderon the events appearing in
the trace. Based on happens-before, one can derive a causal model—a partial order of
events—which admits not only the given trace but also many alternative permutations.
However, two significant problems need to be solved. First, checking all the feasible
interleavings allowed by a causal model for property violations is still a bottleneck.
Despite the long quest for more coverage in causal models, little has been done to im-
prove the underlying checking algorithms. Existing methods [4–6] often rely on explicit
enumeration of the predicted interleavings, which does notscale when the number of in-
terleavings is large. In reality, the more general a causal model is, the larger the number
of interleavings it admits. Second, these causal models often do not assume that source
code is available, and therefore rely on observing only theconcrete eventsduring exe-
cution. In a concrete event, typically the values read from or written to shared memory
locations are available, whereas the actual program code that produce the event is not
known. Consequently, often unnecessarily strong happens-before causality is imposed
to achieve the desired feasibility guarantee.

In this paper, we propose asymbolicpredictive analysis algorithm to address these
two problems. We assume that the source code is available forinstrumentation to ob-
tain symbolic eventsat runtime. We introduce a symbolic causal model based on pro-
gram source code and observed events in a trace, to achieve the goal of covering more
interleavings. This also facilitates a constraint-based modeling where various concur-
rency primitives or semantics (locks, semaphores, happens-before, sequential consis-
tency, etc.) are handled easily and uniformly. More specifically, we make the following
contributions:

– We introduce aconcurrent trace programas a symbolic predictive model to capture
feasible interleavings that can be predicted from a given execution trace.

– We propose a safety property checking algorithm using a concurrent static single
assignment (CSSA) based encoding and symbolic reasoning with a SMT solver.
The symbolic search automatically captures property- or goal-directed pruning,
through conflict analysis and learning features in modern SMT solvers.

– We propose a simple method to symbolically bound the number of context switches
in an interleaving, which further improves the scalabilityof our symbolic algorithm.

If desired, our symbolic algorithm can be further constrained to match the interleaving
coverage of known causal models in the literature. In effect, our new model has a larger
interleaving coverage than the existing models.

The remainder of this paper is organized as follows. In Section 2, we provide a
motivating example and illustrate our ideas. In Section 3, we define execution traces
and our predictive model. In Section 4, we present the SMT-based symbolic property
checking algorithm. In Section 5, we present the symbolic encoding to enforce context-
bounding. In Section 6, we demonstrate how our algorithm canbe constrained to match
a more restrictive causal model [6]. We present our experimental results in Section 7.
We review related work in Section 8 and give our conclusions in Section 9.



2 Motivating Example

Fig. 1 shows a multithreaded program execution trace, modified from an example in
[6]. There are two concurrent threadsT1 andT2, three shared variablesx, y and z,
two thread-local variablesa andb, and a counting semaphorel. The semaphorel can
be viewed as an integer variable initialized to 1:acq(l) acquires the semaphore when
(l > 0) and decreasesl by one, whilerel(l) releases the semaphore and increasesl by
one. The initial program state isx = y = 0. The sequenceρ = t1–t11t13 of statements
denotes the execution order of the given trace. The correctness property is specified as
an assertion int12. The given traceρ does not violate this assertion. However, afeasible
permutationof this trace,ρ′ = (t1–t4)t9t10t11t12t13(t5–t8), exposes the error.

To our knowledge, none of thesoundcausal models in the literature, including [7,
4–6], can predict this error. By sound, we mean that the predictive technique does not
generate false alarms (most of the lockset based algorithmsare not sound). For instance,
if Lamport’s happens-before causality is used to define the feasible trace permutations
of ρ, the execution order of allread-after-writeevent pairs inρ, which are over the
same shared variable, must be respected. It means that eventt8 must be executed before
t10 and eventt7 must be executed beforet11. Thesehappens-beforeconstraints are
sufficient but often not necessary to ensure that the admitted traces are feasible—many
other feasible interleavings are left out.

Various causal models proposed subsequently aimed at lifting some of these happens-
before constraints without jeopardizing the feasibility guarantee [4–6]. However, when
applied to the example in Fig. 1, none of them can predict the erroneous traceρ′ =
(t1–t4)t9t10t11t12t13(t5–t8). Consider, for example, themaximal causal modelin [6].
The model relies on the axioms of semaphore and sequential consistency and is gen-
eral enough to subsume other known causal models. This modelallows all the classic
happens-before constraints to be lifted, except for the constraint stating that eventt7
must happen beforet11. As a result, the model in [6] cannot be used to predict the error
in ρ′.

The reason these sound models cannot predict the error in Fig. 1 is that they model
events inρ as the concrete values read from or written to shared variables. Suchconcrete
eventsare tied closely to the given trace. Considert11 :if(x>b), for instance; it is
regarded asan event that reads value1 from variablex. This is a partial interpretation
because other program statements, such asif(b>x), if(x>1), and even assignment
b:=x, may produce the same event. Consequently, unnecessarily strong happens-before
constraints are imposed over eventt11 to ensure the feasibility of all admitted traces,
regardless of what statement produces the event.

In contrast, we model the execution trace as a sequence ofsymbolic eventsby con-
sidering the program statements that produceρ and capturing abstract values (e.g. rel-
evant predicates). For instance, we model eventt11 in Fig. 1 asassume(x > b), where
assume(c) means the conditionc holds when the event is executed, indicating thatt11
is produced by a branching statement and(x > b) is the condition taken. We do not
use the happens-before causality to define the set of admitted traces. Instead, we allow
all possible interleavings of these symbolic events as longas the sequential consistency
semantics of a concurrent program execution is respected. In the running example, it
is possible to move symbolic eventst9–t12 ahead oft5–t8 while still maintaining the
sequential consistency. As a result, our new algorithm, while maintaining the feasibility
guarantee, is capable of predicting the erroneous behaviorin ρ′.



ThreadT1 ThreadT2

t1 : a := x
t2 : acq(l)
t3 : x := 2 + a
t4 : rel(l)
t5 : y := 1 + a
t6 : acq(l)
t7 : x := 1 + a
t8 : rel(l)

t9 : b := 0
t10 : acq(l)
t11 : if(x > b)
t12 : assert(y == 1)
t13 : rel(l)

Fig. 1. The sequence of executed program
statements (x=y=0 initially)

t1 : 〈1, (assume(true ), {a := x}) 〉
t2 : 〈1, (assume(l > 0), {l := l − 1}) 〉
t3 : 〈1, (assume(true ), {x := 2 + a}) 〉
t4 : 〈1, (assume(true ), {l := l + 1}) 〉
t5 : 〈1, (assume(true ), {y := 1 + a}) 〉
t6 : 〈1, (assume(l > 0), {l := l − 1}) 〉
t7 : 〈1, (assume(true ), {x := 1 + a}) 〉
t8 : 〈1, (assume(true ), {l := l + 1}) 〉

t9 : 〈2, (assume(true ), {b := 0}) 〉
t10 : 〈2, (assume(l > 0), {l := l − 1}) 〉
t11 : 〈2, (assume(x > b), { }) 〉
t12 : 〈2, (assert(y = 1) ) 〉
t13 : 〈2, (assume(true ), {l := l + 1}) 〉

Fig. 2. The symbolic representation of the
execution trace (x=y=0 initially)

3 Preliminaries

In this section, we define programs, execution traces, and concurrent trace programs.
Concurrent trace programs are our models for symbolic predictive analysis.

3.1 Programs and Execution Traces

A concurrent programhas a finite set ofthreadsand a finite setSV of shared variables.
Each threadTi, where1 ≤ i ≤ k, has a finite set oflocal variablesLV i.

– Let T id = {1, . . . , k} be the set of thread indices.
– Let Vi = SV ∪ LV i, where1 ≤ i ≤ k, be the set of variables accessible inTi.

The remaining aspects of a concurrent program, including the control flow and the
expression syntax, are intentionally left unspecified in order to be more general. Instead,
we directly define the symbolic execution traces.

An execution traceof a program is a finite sequence of eventsρ = t1 . . . tn. An
eventt ∈ ρ is a tuple〈tid, action〉, wheretid ∈ T id is a thread index andaction is an
atomic computation . An action in threadTi may be one of the following:

– (assume(c), asgn) is the atomicguarded assignmentaction, where
• asgn is a set of assignments, each of the formv := exp, wherev ∈ Vi is a

variable andexp is an expression overVi.
• assume(c) means the conditional expressionc over Vi must be true for the

assignments inasgn to execute.
– assert(c) is the assertion action. The conditional expressionc overVi must be true

when the event is executed; otherwise, an error is raised.

Each event in the execution trace is unique. If a statement inthe textual representation
of the program is executed multiple times, e.g., when it is inside a loop or a routine
executed by multiple threads, each execution instance is modeled as a separate event.



By defining the expression syntax suitably, the symbolic trace representation can
model the execution of any shared-memory multithreaded program. Details on model-
ing generic C/C++ language constructs are not directly related to concurrency; for more
information refer to recent efforts in [8–10].

The guarded assignment action has the following three variants: (1) when the guard
c = true, it can model normal assignments in a basic block; (2) when the assignment set
asgn is empty,assume(c) or assume(¬c) can model the execution of a branching state-
mentif(c)-else; and (3) with both the guard and the assignment set, it can model
the atomiccheck-and-setoperation, which is the foundation of all types of concurrency
primitives. For example, acquiring a counting semaphorel can be modeled as the action
(assume(l > 0), {l := l − 1}).

Example.Fig. 2 shows an example symbolic execution trace representation, which cor-
responds toρ in Fig. 1. Note that the synchronization primitiveacq(l) in t2 is modeled
as an atomic guarded assignment action. The normal assignment in t1 is modeled with
assume(true). Theif -statement int11 is modeled withasgn being an empty set.

3.2 Concurrent Trace Programs

The semantics of a symbolic execution trace is defined using astate transition system.
Let V = SV ∪

⋃
i LV i, 1 ≤ i ≤ k, be the set of all program variables andVal be a

set of values of variables inV . A stateis a maps : V → Val assigning a value to each
variable. We also uses[v] ands[exp] to denote the values ofv ∈ V and expressionexp

in states. We say that astate transitions
t
−→ s′ exists, wheres, s′ are states andt is

an event in threadTi, 1 ≤ i ≤ k, iff one of the following conditions holds:

– t = 〈i, (assume(c), asgn)〉, s[c] is true, and for each assignmentlval := exp in
asgn, s′[lval ] = s[exp] holds; statess ands′ agree on all other variables.

– t = 〈i, assert(c)〉 ands[c] is true. Whens[c] is false, an attempt to execute eventt
raises an error.

Let ρ = t1 . . . tn be a symbolic execution trace of a concurrent programP . It defines
a total order on the symbolic events. Fromρ we can derive a partial order called the
concurrent trace program (CTP).

Definition 1. Theconcurrent trace programof ρ is a partially ordered setCTPρ =
(T,⊑) such that,

– T = {t | t ∈ ρ} is the set of events, and
– ⊑ is a partial order such that, for anyti, tj ∈ T , ti ⊑ tj iff tid(ti) = tid(tj) and

i < j (in ρ, eventti appears beforetj).

In the sequel, we will say a transitiont ∈ CTPρ to mean thatt ∈ T is associated with
the CTP. Intuitively,CTPρ orders events from the same thread by their execution order
in ρ; events from different threads are notexplicitly ordered with each other. Keeping
events symbolic and allowing events from different threadsto remain un-ordered with
each other is the crucial difference from existing sound causal models [7, 4–6].

We guarantee the feasibility of predicted traces through the notion offeasible lin-
earizationsof CTPρ. A linearization of this partial order is an alternative interleaving



of events inρ. Let ρ′ = t′1 . . . t′n be a linearization ofCTPρ. We say thatρ′ is a fea-
sible linearizationiff there exist statess0, . . . , sn such that,s0 is the initial state of

the program and for alli = 1, . . . , n, there exists a transitionsi−1
t′i−→ si. Note that

this definition captures the standard sequential consistency semantics for concurrent
programs, where we modeled concurrency primitives such as locks by using auxiliary
shared variables in atomic guarded assignment events.

4 Symbolic Predictive Analysis Algorithm

Given an execution traceρ, we derive the modelCTPρ andsymbolicallycheck all its
feasible linearizations for property violations. For this, we create a formulaΦCTPρ

such
thatΦCTPρ

is satisfiable iff there exists a feasible linearization ofCTPρ that violates
the property. Specifically, we use an encoding that creates the formula in a quantifier-
free first-order logic to facilitate the application of off-the-shelf SMT solvers [11].

4.1 Concurrent Static Single Assignment

Our encoding is based on transforming the concurrent trace program into a concurrent
static single assignment (CSSA) form, inspired by [12]. TheCSSA form has the prop-
erty that each variable is defined exactly once. Here adefinitionof variablev ∈ V is
an event that modifiesv, and auseof v is an event where it appears in an expression.
In our case, an event definesv iff v appears in the left-hand-side of an assignment; an
event usesv iff v appears in a condition (anassume or theassert) or the right-hand-side
of an assignment.

Unlike in the classic sequential SSA form, we need not addφ-functions to model
the confluence of multiple if-else branches because in a concurrent trace program, each
thread has a single control path. The branching decisions have already been made during
program execution resulting in the traceρ.

We differentiate shared variables inSV from local variables inLVi, 1 ≤ i ≤ k.
Each use of variablev ∈ LVi corresponds to a unique definition, a preceding event in
the same threadTi that definesv. For shared variables, however, each use of variable
v ∈ SV may map to multiple definitions due to thread interleaving. Aπ-function is
added to model the confluence of these possible definitions.

Definition 2. A π-function, introduced for a shared variablev immediately before its
use, has the formπ(v1, . . . , vl), where eachvi, 1 ≤ i ≤ l, is either the most recent
definition ofv in the same thread as the use, or a definition ofv in another concurrent
thread.

Therefore, the construction of CSSA consists of the following steps:

1. Create unique names for local/shared variables in their definitions.
2. For each use of a local variablev ∈ LVi, 1 ≤ i ≤ k, replacev with the most recent

(unique) definitionv′.
3. For each use of a shared variablev ∈ SV , create a unique namev′ and add the

definitionv′ ← π(v1, . . . , vl). Then replacev with the new definitionv′.



Example. Fig. 3 shows the CSSA form of the CTP in Fig. 2. We add namesπ1–π9

andπ-functions for the shared variable uses. The condition(x > b) in t11 becomes
(π7 > b1) whereπ7 ← π(x0, x1, x2) denotes the current value of shared variablex
andb1 denotes the value of local variableb defined int9. The namesx0, x1, x2 denotes
the values ofx defined int0, t3 andt7, respectively. Eventt0 is added to model the
initial values of the variables.

t0 : 〈1, (assume(true ), {x0 := 0, y0 := 0, l0 := 1}) 〉
t1 : 〈1, (assume(true ), {a1 := π1}) 〉 whereπ1 ← π(x0)
t2 : 〈1, (assume(π2 > 0 ), {l1 := π2 − 1}) 〉 whereπ2 ← π(l0, l5, l6)
t3 : 〈1, (assume(true ), {x1 := 2 + a1}) 〉
t4 : 〈1, (assume(true ), {l2 := π3 + 1}) 〉 whereπ3 ← π(l1, l5, l6)
t5 : 〈1, (assume(true ), {y1 := 1 + a1}) 〉
t6 : 〈1, (assume(π4 > 0 ), {l3 := π4 − 1}) 〉 whereπ4 ← π(l2, l5, l6)
t7 : 〈1, (assume(true ), {x2 := 1 + a1}) 〉
t8 : 〈1, (assume(true ), {l4 := π5 + 1}) 〉 whereπ5 ← π(l3, l5, l6)

t9 : 〈2, (assume(true ), {b1 := 0}) 〉
t10 : 〈2, (assume(π6 > 0 ), {l5 := π6 − 1}) 〉 whereπ6 ← π(l0, l1, l2, l3, l4)
t11 : 〈2, (assume(π7 > b1), { }) 〉 whereπ7 ← π(x0, x1, x2)
t12 : 〈2, (assert(π8 = 1) ) 〉 whereπ8 ← π(y0, y1)
t13 : 〈2, (assume(true ), {l6 := π9 + 1}) 〉 whereπ9 ← π(l0, l1, l2, l3, l4, l5)

Fig. 3. The CSSA form of the concurrent trace program

Semantics ofπ-Functions.Let v′ ← π(v1, . . . , vl) be defined in eventt, and eachvi,
1 ≤ i ≤ l, be defined in eventti. Theπ-function may return any of the parameters as the
result depending on the write-read consistency in a particular interleaving. Intuitively,
(v′ = vi) in an interleaving iffvi is the most recent definition before eventt. More
formally, (v′ = vi), 1 ≤ i ≤ l, holds iff the following conditions hold,

– eventti, which definesvi, is executed before eventt; and
– any eventtj that definesvj , 1 ≤ i ≤ l andj 6= i, is executed either before the

definitionti or after the uset.

4.2 CSSA-based SAT Encoding

We construct the quantifier-free first-order logic formulaΦCTP
1 based on the notion

of feasible linearizations of CTP (in Section 3.2) and theπ-function semantics (in Sec-
tion 4.1). The construction is straightforward and followstheir definitions. The entire
formulaΦCTP consists of the following four subformulas:

ΦCTP := ΦPO ∧ ΦV D ∧ ΦPI ∧ ¬ΦPRP

whereΦPO encodes the program order,ΦV D encodes the variable definitions,ΦPI

encodes theπ-functions, andΦPRP encodes the property.
To help present the encoding algorithm, we use the followingnotations:

1 We omit the subscriptρ in CTPρ where it is understood from the context.



– first event tfirst: we add a dummy eventtfirst to be the first executed event in the
CTP. That is,∀t ∈ CTP andt 6= tfirst, eventt must be executed aftertfirst;

– last eventtlast: we add a dummy eventtlast to be the last executed event in the
CTP. That is,∀t ∈ CTP andt 6= tlast, eventt must be executed beforetlast;

– first event ti
first

of thread Ti: for eachi ∈ T id, this is the first event of the thread;
– last eventti

last
of thread Ti: for eachi ∈ T id, this is the last event of the thread;

– thread-local preceding event: for each eventt, we define its thread-local preced-
ing eventt′ as follows:tid(t′) = tid(t) and for any other eventt′′ ∈ CTP such
thattid(t′′) = tid(t), eithert′′ ⊑ t′ or t ⊑ t′′.

– HB-constraint: we useHB(t, t′) to denote that eventt is executed before event
t′. The actual constraint comprisingHB(t, t′) is described in the next section.

Path Conditions.For each eventt ∈ CTP , we define path conditiong(t) such thatt
is executed iffg(t) is true. The path conditions are computed as follows:

1. If t = tfirst, or t = ti
first

wherei ∈ T id, let g(t) := true.
2. Otherwise,t has a thread-local preceding eventt′.

– if t has action(assume(c), asgn), let g(t) := c ∧ g(t′);
– if t has actionassert(c), let g(t) := g(t′).

Note that an assert event does not contribute to the path condition.

Program Order (ΦPO). FormulaΦPO captures the event order within each thread.It
does not impose any inter-thread constraint.Let ΦPO := true initially. For each event
t ∈ CTP ,

1. If t = tfirst, do nothing;
2. If t = ti

first
, wherei ∈ T id, let ΦPO := ΦPO ∧HB(tfirst, t

i
first

);
3. If t = tlast, let ΦPO := ΦPO ∧

∧
∀i∈Tid HB(ti

last
, tlast );

4. Otherwise,t has a thread-local preceding eventt′; let ΦPO := ΦPO ∧HB(t′, t).

Variable Definition (ΦV D). FormulaΦV D is the conjunction of all variable definitions.
Let ΦV D := true initially. For each eventt ∈ CTP ,

1. If t has action(assume(c), asgn), for each assignmentv := exp in asgn, let
ΦV D := ΦV D ∧ (v = exp);

2. Otherwise, do nothing.

The π-Function (ΦPI ). Eachπ-function defines a new variablev′, andΦPI is a con-
junction of all these variable definitions. LetΦPI := true initially. For eachv′ ←
π(v1, . . . , vl) defined in eventt, wherev′ is used; also assume that eachvi, 1 ≤ i ≤ l,
is defined in eventti. Let

ΦPI := ΦPI ∧

l∨

i=1

(v′ = vi) ∧ g(ti) ∧HB(ti, t) ∧

l∧

j=1,j 6=i

(HB(tj , ti) ∨HB(t, tj))

Intuitively, theπ-function evaluates tovi iff it chooses thei-th definition in theπ-set
(indicated byg(ti)∧HB(ti, t)), such that any other definitionvj , 1 ≤ j ≤ l andj 6= i,
is either beforeti, or after this use ofvi in t.



Assertion Property (ΦPRP ). Let t ∈ CTP be the event with actionassert(c), which
specifies the correctness property.

ΦPRP := (g(t)→ c)

Intuitively, the assertion conditionc must hold if t is executed. Recall thatΦPRP is
negated inΦCTPρ

to search for property violations.

Example Fig. 4 illustrates the CSSA-based encoding of the example inFig. 3, where
the subformulas that formΦPO andΦV D are listed. In the figure,t0, t14 are the dummy
entry and exit events.ΦPRP (at t12) is defined as¬g12 ∨ (π8 = 1). The subformula in
ΦPI for π7 ← π(x0, x1, x2) in t11 is defined as follows:

t11 : ( π7 = x0 ∧ (true) ∧HB(t11, t3) ∧HB(t11, t7)
∨π7 = x1 ∧ g3 ∧ HB(t3, t11) ∧true ∧HB(t11, t7)
∨π7 = x2 ∧ g7 ∧ HB(t7, t11) ∧true ∧true)

Note that some HB-constraints evaluate to constantfalse andtrue—such simplification
is frequent and is performed in our implementation to reducethe formula size.

Path Conditions:

t0 :
t1 : g1 = true

t2 : g2 = g1 ∧ (π2 > 0)
t3 : g3 = g2

t4 : g4 = g3

t5 : g5 = g4

t6 : g6 = g5 ∧ (π4 > 0)
t7 : g7 = g6

t8 : g8 = g7

t9 : g9 = true

t10 : g10 = g9 ∧ (π6 > 0)
t11 : g11 = g10 ∧ (π7 > b1)
t12 : g12 = g11

t13 : g13 = g13

t14 :

Program Order:

HB(t0, t1)
HB(t1, t2)
HB(t2, t3)
HB(t3, t4)
HB(t4, t5)
HB(t5, t6)
HB(t6, t7)
HB(t7, t8)

HB(t0, t9)
HB(t9, t10)
HB(t10, t11)
HB(t11, t12)
HB(t12, t13)
HB(t8, t14) ∧HB(t13, t14)

Variable Definitions:

x0 = 0 ∧ y0 = 0 ∧ l0 = 1
a1 = π1

l1 = π2 − 1
x1 = 2 + a1

l2 = π3 + 1
y1 = 1 + a1

l3 = π4 − 1
x2 = 1 + a1

l4 = π5 + 1

b1 = 0
l5 = π6 − 1

l6 = π9 + 1

Fig. 4. The CSSA-based symbolic encoding of the CTP in Fig. 3

Let n be the number of events in a CTP,nπ be the number of shared variable uses,
andlπ be the maximal number of parameters in anyπ-function. Our encoding produces
a formula of sizeO(n + nπ × l2π). Although in the worst case—when each eventreads
and writesshared variables—the size becomesO(n3), it is rare in realistic applications.
The reason is that shared variable accesses in a concurrent program are often kept few
and far in between, especially when compared to computations within threads, to mini-
mize the synchronization overhead. In contrast, conventional bounded model checking
(BMC) algorithms, e.g. [13], would generate significantly larger formulas. To cover all
feasible interleavings in a CTP, the BMC unrolling depth needs to ben, which results in
the sameO(n3) complexity. However, the BMC formula size cannot be easily reduced
even iflπ andnπ are significantly smaller thann. In Section 7, we will present experi-
mental comparison of our CSSA-based encoding with the BMC algorithm in [13].



4.3 Proof of Correctness

Recall that for two arbitrary eventst andt′, the constraintHB(t, t′) denote thatt must
be executed beforet′. Consider a model where we introduce for each eventt ∈ CTP
a fresh integer variableO(t) denoting its execution time2. A satisfiable solution for
ΦCTPρ

therefore induces values ofO(t), i.e., times of all events in the linearization.
The constraintHB(t, t′) is captured as follows:

HB(t, t′) := O(t) < O(t′)

We now state the correctness of our encoding.

Theorem 1. FormulaΦCTP is satisfiable iff there exists a feasible linearization of the
CTP that violates the assertion property.

Proof: The encoding closely follows our definitions of CTP, feasible linearizations, and
the semantics ofπ-functions. The proof is straightforward and is omitted forbrevity.

5 Symbolic Context Bounding

In this section, we present a symbolic encoding that effectively bounds the number of
context switches allowed by an interleaving.

Traditionally, acontext switchis defined as the computing process of storing and
restoring the CPU state (context) when executing a concurrent program, such that mul-
tiple processes or threads can share a single CPU resource. The idea of using context
bounding to reduce complexity in verifying concurrent programs was introduced by
Qadeer and Rehof [14]. Several subsequent studies have confirmed [15, 16] that con-
currency bugs in practice can often be exposed in interleavings with a surprisingly small
number of context switches.

Example.Consider the running example in Fig. 1. If we restrict the number of context
switches of an interleaving to 1, there are only two possibilities:

ρ′ = (t1t2 . . . t8)(t9t10 . . . t13)
ρ′′ = (t9t10 . . . t13)(t1t2 . . . t8)

In both cases the context switch happens when one thread completes its execution.
However, none of the two traces is erroneous; andρ′′ is not even feasible. When we
increase the context bound to 2, the number of admitted interleavings remains small but
now the following trace is included:

ρ′′′ = (t1t2t3)(t9t10t11t12)(t4 . . . t8)

The trace has two context switches and exposes the error int12 (wherey = 0).

2 The execution time is an integer denoting its position in thelinearization.



5.1 Revisiting the HB-Constraints

We definedHB(t, t′) asO(t) < O(t′) earlier. However, thestrictly-less-thancon-
straint is sufficient, but not necessary, to ensure the correctness of our encoding. To
facilitate context bounding, we modify the definition ofHB(t, t′) as follows:

1. HB(t, t′) := O(t) ≤ O(t′) if one of the following conditions hold:tid(t) =
tid(t′), or t = tfirst, or t′ = tlast.

2. HB(t, t′) := O(t) < O(t′) otherwise.

Note first that, if two eventst, t′ are from the same thread, the execution timeO(t)
need not be strictly less thanO(t′) to enforceHB(t, t′). This is because the CSSA
form, through the renaming of definitions and uses of thread-local variables, already
guarantees theflow-sensitivitywithin each thread; that is, implicitly, a definition always
happens before the subsequent uses. Therefore, whentid(t) = tid(t′), we relax the
definition ofHB(t, t′) by usingless than or equal to3.

Second, if eventst, t′ are from two different threads (andt 6= tfirst andt 6= tlast),
according to our encoding rules, the constraintHB(t, t′) must be introduced by the
subformulaΦPI encodingπ-functions. In such case,HB(t, t′) means that there isat
least one context switchbetween the execution oft andt′. Therefore, whentid(t) 6=
tid(t′), we force eventt to happenstrictly beforeeventt′ in time.

5.2 Adding the Context Bound

Let b be the maximal number of context switches allowed in an interleaving. Given the
formulaΦCTPρ

as defined in the previous section, we construct the context-bounded
formulaΦCTPρ

(b) as follows:

ΦCTPρ
(b) := ΦCTPρ

∧ (O(tlast)−O(tfirst) ≤ b)

The additional constraint states thattlast, the unique exit event, must be executed no
more thanb steps later thantfirst, the unique entry event.

The execution times of the events in a trace always form a non-decreasing sequence.
Furthermore, the execution time is forced to increase whenever a context switch hap-
pens, i.e., as a result ofHB(t, t′) whentid(t) 6= tid(t′). In the above constraint, such
increases of execution time is limited to less than or equal to b4.

Theorem 2. Letρ′ be a feasible linearization ofCTPρ. LetCB(ρ′) be the number of
context switches inρ′. If CB(ρ′) ≤ b and ρ′ violates the correctness property, then
ΦCTPρ

(b) is satisfiable.

Proof. Let m = CB(ρ′). We partitionρ′ into m + 1 segmentsseg0 seg1 . . . segm

such that each segment is a subsequence of events without context switch. Now we
assign an execution time (integer) for allt ∈ ρ′ as follows:O(t) = i iff t ∈ segi,
where0 ≤ i ≤ m. In our encoding, only theHB-constraints inΦPO andΦPI and the
context-bound constraint refer to theO(t) variables. The above variable assignment is
guaranteed to satisfy these constraints. Therefore, ifρ′ violates the correctness property,
thenΦCTPρ

(b) is satisfiable. ⊓⊔

By the same reasoning, ifCB(ρ′) > b, traceρ′ is excluded by formulaΦCTPρ
(b).

3 WhenHB(t, t′) is a constant, we replace it with true or false.
4 In CHESS [15], whose exploration algorithm is purely explicit rather than symbolic, a variant

is used to count only thepreemptivecontext switches.



5.3 Lifting the CB Constraint

In the context bounded analysis, one can empirically choosea boundbmax and check
the satisfiability of formulaΦCTPρ

(bmax). Alternatively, one can iteratively setb =
1, 2, . . . , bmax; and for eachb, check the satisfiability of the formula

ΦCTPρ
∧ (O(tlast)−O(tfirst) = b)

In both cases, if the formula is satisfiable, an error has beenfound. Otherwise, the SMT
solver used to decide the formula can return a subset of the given formula as aproof
of unsatisfiability. More formally, the proof of unsatisfiability of a formulaf , which is
unsatisfiable, is a subformulafunsat of f such thatfunsat itself is also unsatisfiable.

The proof of unsatisfiabilityfunsat can be viewed as a generalization of the given
formulaf ; it is more general because some of the constraints off may not be needed
to prove unsatisfiability. In our method, we can check whether the context-bound con-
straint appears infunsat. If the context-bound constraint does not appear infunsat, it
means that, even without context bounding, the formulaΦCTPρ

itself is unsatisfiable. In
other words, we have generalized the context-bounded proofinto a proof of the general
case—that the property holds in all the feasible interleavings.

6 Relating to Other Causal Models

In this section, we show that our symbolic algorithm can be further constrained to match
known causal models in the literature. By doing this exercise, we also demonstrate that
our algorithm has a larger interleaving coverage. Since themaximal causal model [6],
proposed recently by Serbănută, Chen and Rosu, has the capability of capturing more
feasible interleavings than prior sound causal models, we will use it as an example. In
this case, our algorithm provides a symbolic property checking algorithm, in contrast
to their model checking algorithm based on explicit enumeration.

We assume that during the program execution, only events involving shared objects
are monitored, and except for synchronization primitives,the program code that pro-
duces the events are not available. Therefore, an event is inone of the following forms:

– A concurrency synchronization/communication primitive;
– Reading valueval from a shared variablev ∈ SV ;
– Writing valueval to a shared variablev ∈ SV .
– An assertion event (the property);

Example. We slightly modify the example in Fig. 1 as follows:we replacet3 : x :=
2 + a with t′3 : x := 1 + a. The sequence of concrete events inρ is shown in Fig. 5.
There still exists an erroneous trace that violates the assertion in t12. The difference
between the two examples is subtle: in the original example,the erroneous traceρ′ in
Section 2 cannot be predicted by the maximal causal model; whereas in the modified
example, the erroneous trace can be predicted by the maximalcausal model. The reason
is that in the modified example, the program code int′3 andt7 produce identical events
in ρ: Writing value 1 to the shared variablex. Therefore,t11 can be moved ahead of
t5 but aftert4 (the permutation satisfies the sequential consistency axioms used in the
maximal causal model).



ThreadT1 ThreadT2

t1 : reading 0 fromx
t2 : acq(l)
t′
3

: writing 1 tox
t4 : rel(l)
t5 : writing 1 toy
t6 : acq(l)
t7 : writing 1 tox
t8 : rel(l)

t9 : nop
t10 : acq(l)
t11 : reading 1 fromx
t12 : assert(y == 1)
t13 : rel(l)

Fig. 5.The concrete event sequence

⋆ ⋆ t1 : 〈 1, (assume(x = 0), { }) 〉
t2 : 〈 1, (assume(l > 0 ), {l := l− 1 }) 〉

⋆ ⋆ t′
3

: 〈 1, (assume(true ), {x := 1 }) 〉
t4 : 〈 1, (assume(true ), {l := l + 1 }) 〉

⋆ ⋆ t5 : 〈 1, (assume(true ), {y := 1 }) 〉
t6 : 〈 1, (assume(l > 0 ), {l := l− 1 }) 〉

⋆ ⋆ t7 : 〈 1, (assume(true ), {x := 1 }) 〉
t8 : 〈 1, (assume(true ), {l := l + 1 }) 〉

⋆ ⋆ t9 : 〈 2, (assume(true ), { }) 〉
t10 : 〈 2, (assume(l > 0 ), {l := l− 1 }) 〉

⋆ ⋆ t11 : 〈 2, (assume(x = 1), { }) 〉
t12 : 〈 2, (assert(y = 1) ) 〉
t13 : 〈 2, (assume(true ), {l := l + 1 }) 〉

Fig. 6. The reduced causal model

Let CTPρ = (T,⊑) be the model as in Definition 1. We derive the constrained
model CMρ as shown in Fig. 6. Whenever an event has a different form inCMρ

from the one inCTPρ (Fig. 2), we mark it with the symbol⋆⋆. Note that all the
semaphore events remain symbolic, whereas the rest are underapproximated into con-
crete values. For instance, eventt1 is reduced from〈1, (assume(true), {a := x})〉 to
〈1, (assume(x = 0), { })〉, because value 0 is being read from the shared variablex in
the given traceρ. Similarly, eventt′3 is reduced from〈1, (assume(true), {x := 1+a})〉
to 〈1, (assume(true), {x := 1})〉, because the right-hand-side expression evaluates to
1 in ρ. These events are no longer symbolic. Note that concrete events correspond to
constant values, which can be propagated to further simplify the constraints in our en-
coding. However, these also result in less coverage inCMρ thanCTPρ.

Semantics of the Constrained CTP.SinceCMρ shares the same symbolic represen-
tation asCTPρ, the notion offeasible linearizationsof a CTP, defined in Section 3.2,
and the symbolic algorithm in Section 4 remain applicable. In the running example, the
erroneous traceρ′ = (t1t2t

′
3t4)t9t10t11t12t13(t5–t8) is admitted byCMρ.

7 Experiments

We have implemented the proposed symbolic predictive analysis algorithm in a tool
calledFusion. Our tool is capable of handling symbolic execution traces generated by
arbitrary multi-threaded C programs using the LinuxPThreadslibrary. We use theYices
SMT solver [11] to solve the satisfiability formulas.

We have conducted preliminary experiments using the following benchmarks. The
first set consists of C variants of thebankingexample [17] with known bugs due to
atomicity violations. Unlike previous work [3, 5, 6], we directly check the functional
correctness property, stating the consistency of all bank accounts at the end of the exe-
cution; this is a significantly harder problem than detecting data races [5, 6] or atomicity
violations [3] (which may not cause a violation of the functional property). The second
set of benchmarks are theindexerexamples from [18], which we implemented using
C and the LinuxPThreadslibrary. In these examples, multiple threads share a hash ta-
ble with 128 entries. With less than 12 threads, there is no hash table collision among



different threads—although this fact cannot be easily inferred by purely static analysis.
With more than 12 threads, the number of irredudant interleavings (after partial order
reduction) quickly explodes. In our experiments, we set thenumber of threads to 15,
20, and 25, respectively. Our properties are assertions stating that no collision has hap-
pened on a particular hash table entry. The experiments5 were conducted on a PC with
1.6 GHz Intel processor and 2GB memory running Fedora 8.

Table 1.Experimental results of symbolic predictive analysis (MO–memory out 800 MB)

The Test Program The Given Trace Run Time (s) Run Time (s)
program namethreadsshared / varsproperty length slicing predict predict-cb BMC[13] Explicit
banking-2 2 97 / 264 passed 843 1.4 0.1 0.1 0.3 36.5
banking-2a 2 97 / 264 error 843 1.4 0.1 0.1 7.2 1.2
banking-5 5 104 / 331 passed 1622 1.7 0.3 0.1 2.7 >600
banking-5a 5 104 / 331 error 1622 1.7 0.1 0.1 >600 1.8
banking-10 10 114 / 441 passed 2725 7.0 1.6 0.6 31.8 >600
banking-10a 10 114 / 441 error 2725 7.0 0.1 0.1 MO 2.8
indexer-10 10 285 / 539 passed 3000 1.1 0.1 0.1 0.1 12.8
indexer-15 15 305 / 669 passed 4277 2.3 0.1 0.1 >600 >600
indexer-15a 15 305 / 669 error 4277 2.2 0.4 0.2 >600 >600
indexer-20 20 325 / 799 passed 5647 4.0 0.4 0.1 MO >600
indexer-20a 20 325 / 799 error 5647 4.1 3.2 0.7 MO >600
indexer-25 25 345 / 829 passed 7482 6.0 0.9 0.1 MO >600
indexer-25a 25 345 / 829 error 7482 6.1 26.1 9.8 MO >600

Table 1 shows the results. The first three columns show the statistics of the test
cases, including the name, the number of threads, and the number of shared and total
variables (that are accessed in the trace). The next two columns show whether the given
(non-erroneous) trace has an erroneous permutation, and the trace length after slicing.
The next three columns show the run times of trace capturing and slicing, our symbolic
analysis, and our context-bounded symbolic analysis (withbound 2). The final two
columns show the run times of a BMC algorithm [13] with the unrolling depth set to
the trace length and an explicit search algorithm enhanced by DPOR [18].

The slicing in our experiments is thread-sensitive and the traces after slicing consist
of mostly irreducible shared variable accesses—for each access, there exists at least
one conflicting access from a concurrent thread. The number of equivalence classes
of interleavings is directly related to the number of such shared accesses (worst-case
double-exponential [14]). In theindexerexamples, for instance, since there is no hash
table collision with fewer than 12 threads, the problem is easier to solve. (In [18], such
cases were used to showcase the power of the DPOR algorithm indynamically detecting
these non-conflicting variable accesses). However, when the number of threads is set
to 15, 20, and 25, the number of collisions increases rapidly. Our results show that
purely explicit algorithms, even with DPOR, does not scale well in such cases. This is
likely a bottleneck for other explicit enumeration based approaches as well. The BMC
algorithm did not perform well because of its large formula sizes as a result of explicitly
unrolling the transition relation. In contrast, our symbolic algorithm remains efficient
in navigating the large search space.

5 Examples’re available at http://www.nec-labs.com/∼chaowang/pubDOC/predict-example.tar.



8 Related Work

The fundamental concept used in this paper is the partial order over the events in an
execution trace. This is related to thehappens-beforecausality introduced by Lamport
in [7]. However, Lamport’s happens-before causality, as well as the various subsequent
causal models [4–6], has a strictly less interleaving coverage than our model. Our use
of the HB constraints to specify the execution order among events is related to, but is
more abstract than, the logical clocks [7] and the vector clocks [19, 20].

Our symbolic encoding is related to, but is different from, the SSA-based SAT en-
coding [8], which is popular forsequentialprograms. We usedifference logicto directly
capture the partial order. This differs from CheckFence [21], which explicitly encodes
ordering between all pairs of relevant events (shared variable accesses) in pure Boolean
logic. Furthermore, it does not create a causal mode, but directly enumerates the feasi-
ble interleavings (with respect to a given memory semantics). TCBMC [22] also uses
context-bounding in their symbolic encoding. However, it has toa priori fix the number
of bounded context switches. In contrast, our method in Section 4 is for the unbounded
case—the context-bounding constraint in Section 5 is optional and is used to further
improve performance. Furthermore, all the aforementionedmethods were applied to
whole programs and not to trace programs.

The quantifier-free formulas produced by our encoding are decidable due to the
finite size of the CTP. When non-linear arithmetic operations appear in the symbolic
execution trace, they are treated as bit-vector operations. Although the formulas may be
hard to solve in some cases, the rapid progress in SMT solverscan be directly utilized
to improve performance in practice.

At a high level, our work also relates to dynamic model checking [23, 15, 24, 13].
However, these algorithms need to re-execute the program when exploring different
interleavings, and in general, they are not property-directed. Our goal is to detect errors
without re-executing the program. In our previous work [25], we have used the notion of
concurrent trace program but the goal was to prune the searchspace in dynamic model
checking. In this work, we use the CTP and the CSSA-based encoding for predictive
analysis. To our knowledge, this is the first attempt at symbolic predictive analysis.

9 Conclusions

In this paper, we propose a symbolic algorithm for detectingconcurrency errors in all
feasible permutations of events in a give execution trace. The new algorithm uses a suc-
cinct concurrent static single assignment (CSSA) based encoding to generate an SMT
formula such that the violation of an assertion property exists iff the SMT formula is sat-
isfiable. We also propose a symbolic method to bound the number of context switches
in an interleaving. The new algorithm can achieve a better interleaving coverage, and
at the same time is more scalable than the explicit enumeration algorithms used by the
various existing methods for predictive analysis.
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