Symbolic Predictive Analysis for Concurrent Programs

Chao Wang, Sudipta Kundg, Malay Ganali, and Aarti Gupta

1 NEC Laboratories America, Princeton, NJ, USA
2 University of California, San Diego, La Jolla, CA, USA

Abstract. Predictive analysis aims at detecting concurrency errarsg run-
time by monitoring a concrete execution trace of a conctirpeogram. In re-
cent years, various models based on happens-before ¢tpuskitions have been
proposed for predictive analysis to improve the interleguioverage while en-
suring the absence of false alarms. However, these modelbamed on only
the observed events, and typically do not utilize sourceecédirthermore, the
enumerative algorithms they use for verifying safety props in the predicted
execution traces often suffer from the interleaving exiploproblem. In this pa-
per, we introduce a new symbolic causal model based on scod® and the
observed events, and propose a symbolic algorithm to chéwkher a safety
property holds in all feasible permutations of events ingiven execution trace.
Rather than explicitly enumerating the interleavings, algorithm conducts the
verification using a novel encoding of the causal model amabsyic reasoning
with a satisfiability modulo theory (SMT) solver. Our algbrn has a larger in-
terleaving coverage than known causal models in the litezatVe also propose
a method tesymbolically boundhe number of context switches allowed in an
interleaving, to further improve the scalability of the @lghm.

1 Introduction

Predictive analysis aims at detecting concurrency errgisiserving execution traces
of a concurrent program which may be non-erroneous. Duegantiierent nondeter-
minism in scheduling concurrent processes/threads, &rgauprogram with the same
test input may lead to different program behaviors. Thisepas significant challenge
in testing concurrent programs—even if a test input may eausilure, the erroneous
interleaving manifesting the failure may not be executedndutesting. Furthermore,
merely executing the same test multiple times does not awagrease the interleav-
ing coverage. In predictive analysis, a concrete exectitame is given, together with a
correctness property in the form of assertions embeddédtkitrace. The given execu-
tion trace need not violate the property, but there may existlternative trace, i.e., a
feasible permutation of events of the given trace, thatés the property. The goal of
predictive analysis is detecting such erroneous tracesdiically analyzing the given
execution trace without re-executing the program.

Existing predictive analysis algorithms can be classified two categories based
on the quality of reported bugs. The first category consitsathods that do not miss
real errors but may report bogus errors. Historically, athms that are based on lockset
analysis [1-3] fall into the first category. They strive tosepall possible interleavings
that are feasible permutations of events of the given triageat the same time may
introduce some interleavings that can never appear in thelapgrogram execution.

The second category consists of methods that do not repgusberrors but may miss
some real errors. Various causal models have been used $®y/ iethods [4—6], with
some inspired by Lamport's happens-before causalityiogld]. They provide the
feasibility guaranteethat all the reported erroneous interleavings are actuogrgm
executions, but they do not cover all interleavings allolwgdhe program source code.

This paper also focuses on predictive analysis algorithitistive feasibility guar-
antee. The given execution trace is regarded as a total ondire events appearing in
the trace. Based on happens-before, one can derive a caodal+a partial order of
events—which admits not only the given trace but also mateyrative permutations.
However, two significant problems need to be solved. Fits¢cking all the feasible
interleavings allowed by a causal model for property violas is still a bottleneck.
Despite the long quest for more coverage in causal models,Has been done to im-
prove the underlying checking algorithms. Existing meth@gd-6] often rely on explicit
enumeration of the predicted interleavings, which doesoale when the number of in-
terleavings is large. In reality, the more general a causalahis, the larger the number
of interleavings it admits. Second, these causal modets afdo not assume that source
code is available, and therefore rely on observing onlycthrecrete eventduring exe-
cution. In a concrete event, typically the values read fromvidtten to shared memory
locations are available, whereas the actual program caetbduce the event is not
known. Consequently, often unnecessarily strong happefe causality is imposed
to achieve the desired feasibility guarantee.

In this paper, we proposesymbolicpredictive analysis algorithm to address these
two problems. We assume that the source code is availabladtsumentation to ob-
tain symbolic eventat runtime. We introduce a symbolic causal model based on pro
gram source code and observed events in a trace, to acheegedhof covering more
interleavings. This also facilitates a constraint-basedi@efing where various concur-
rency primitives or semantics (locks, semaphores, happeftse, sequential consis-
tency, etc.) are handled easily and uniformly. More speadlficwe make the following
contributions:

— We introduce @oncurrent trace prograras a symbolic predictive model to capture
feasible interleavings that can be predicted from a givatetion trace.

— We propose a safety property checking algorithm using awwent static single
assignment (CSSA) based encoding and symbolic reasonthgawMT solver.
The symbolic search automatically captures property- @l-doected pruning,
through conflict analysis and learning features in moderi Shivers.

— We propose a simple method to symbolically bound the numtsor@ext switches
in an interleaving, which further improves the scalabitifypur symbolic algorithm.

If desired, our symbolic algorithm can be further constedito match the interleaving
coverage of known causal models in the literature. In effaat new model has a larger
interleaving coverage than the existing models.

The remainder of this paper is organized as follows. In $ac#, we provide a
motivating example and illustrate our ideas. In Section 8,define execution traces
and our predictive model. In Section 4, we present the SMseaymbolic property
checking algorithm. In Section 5, we present the symbolaoding to enforce context-
bounding. In Section 6, we demonstrate how our algorithmbeaconstrained to match
a more restrictive causal model [6]. We present our expetiai@esults in Section 7.
We review related work in Section 8 and give our conclusiorSection 9.

2 Motivating Example

Fig. 1 shows a multithreaded program execution trace, nastffiom an example in
[6]. There are two concurrent threads and 75, three shared variables y and z,
two thread-local variables andb, and a counting semaphokeThe semaphorécan
be viewed as an integer variable initialized toaty(l) acquires the semaphore when
(I > 0) and decreasdsy one, whilerel(l) releases the semaphore and increaggs
one. The initial program state is= y = 0. The sequence = t,—t;1t13 of statements
denotes the execution order of the given trace. The comestproperty is specified as
an assertion im;5. The given trace does not violate this assertion. Howeveigasible
permutationof this tracep’ = (t1—t4)toti0t11t12t13(t5—ts), €xposes the error.

To our knowledge, none of theundcausal models in the literature, including [7,
4—6], can predict this error. By sound, we mean that the ptieditechnique does not
generate false alarms (most of the lockset based algordhensot sound). For instance,
if Lamport’s happens-before causality is used to define ¢lasible trace permutations
of p, the execution order of alead-after-writeevent pairs inp, which are over the
same shared variable, must be respected. It means thatgwveunst be executed before
t1p and eventt; must be executed befotg,. Thesehappens-beforeonstraints are
sufficient but often not necessary to ensure that the adiitéees are feasible—many
other feasible interleavings are left out.

Various causal models proposed subsequently aimed aglgome of these happens-
before constraints without jeopardizing the feasibilibagantee [4—6]. However, when
applied to the example in Fig. 1, none of them can predict theneous trace’ =
(t1—ta)toti0t11t12t13(t5—ts). Consider, for example, thmaximal causal modénh [6].
The model relies on the axioms of semaphore and sequentialstency and is gen-
eral enough to subsume other known causal models. This ratidets all the classic
happens-before constraints to be lifted, except for thestcaimt stating that evertt
must happen beforg;. As a result, the model in [6] cannot be used to predict thererr
inp'.

The reason these sound models cannot predict the error.id Hdghat they model
eventsirp as the concrete values read from or written to shared vasaBlucltoncrete
eventsare tied closely to the given trace. Consider :i f (x>b), for instance; it is
regarded asn event that reads valuefrom variablex. This is a partial interpretation
because other program statements, sudhf é6>x) , i f (x>1) , and even assignment
b: =x, may produce the same event. Consequently, unnecessaoilg bappens-before
constraints are imposed over event to ensure the feasibility of all admitted traces,
regardless of what statement produces the event.

In contrast, we model the execution trace as a sequemsadiolic eventby con-
sidering the program statements that produead capturing abstract values (e.g. rel-
evant predicates). For instance, we model evgnin Fig. 1 asassume(z > b), where
assume(c) means the condition holds when the event is executed, indicating that
is produced by a branching statement &ad> b) is the condition taken. We do not
use the happens-before causality to define the set of adristees. Instead, we allow
all possible interleavings of these symbolic events as &milpe sequential consistency
semantics of a concurrent program execution is respeatettiel running example, it
is possible to move symbolic events—1o, ahead oft;—tg while still maintaining the
sequential consistency. As a result, our new algorithmlearhaintaining the feasibility
guarantee, is capable of predicting the erroneous behiavjior

ThreadT" ThreadT

: (1, (assume(true), {a:=x})

2 Zc:q:(g to : él (assumeEl >0), {l:=1-1}) i
t3:x:=24+a ts : (1, (assume(true), {z:=2+a}))
ty : rel(l) ty @ (1, (assume(true), {l:=1+1}))
ts:y:=1+a ts : (1, (assume(true), {y:=1+a}))
te : acq(l) te : (1, (assume(l > 0), {l:=1—1}))
tr:x:=1+a tr : (1, (assume(true), {z :=1+a}))
tg : rel(l) tg : (1, (assume(true), {l:=1+1}))
tg :b:=0 to : (2, (assume(true), {b:=0}))
t1o : acq(l) tio : (2, (assume(l > 0), {l:=1—-1}))
ti1 :if(z > b) t11 : (2, (assume(z > b), { }))
tio @ assert(y == 1) t12 @ (2, (assert(y = 1)))
t1s ¢ rel(l) tig : (2, (assume(true), {l:=1+1}))

Fig.1. The sequence of executed program Fig 2. The symbolic representation of the
statementsa(=y=0 initially) execution tracea=y=0 initially)

3 Preliminaries

In this section, we define programs, execution traces, andureent trace programs.
Concurrent trace programs are our models for symbolic ptigdianalysis.

3.1 Programs and Execution Traces

A concurrent progranias a finite set ahreadsand a finite sep' I of shared variables
Each thread’;, wherel < i < k, has a finite set dbcal variablesLV ;.

— LetTid ={1,...,k} be the set of thread indices.
— LetV; = SV U LV,;, wherel < i < k, be the set of variables accessiblelin

The remaining aspects of a concurrent program, includiregctimtrol flow and the
expression syntax, are intentionally left unspecified oteoto be more general. Instead,
we directly define the symbolic execution traces.

An execution traceof a program is a finite sequence of evepts- t;...¢,. An
eventt € pis a tuple(tid, action), wheretid € Tid is a thread index andction is an
atomic computation . An action in thredd may be one of the following:

— (assume(c), asgn) is the atomiguarded assignmeiatction, where
e asgn is a set of assignments, each of the farm= ezp, wherev € V; is a
variable ancexp is an expression over;.
e assume(c) means the conditional expressierover V; must be true for the
assignments insgn to execute.
— assert(c) is the assertion action. The conditional expressiomerV; must be true
when the event is executed; otherwise, an error is raised.

Each event in the execution trace is unique. If a statemethieinextual representation
of the program is executed multiple times, e.g., when it &de a loop or a routine
executed by multiple threads, each execution instance iefed as a separate event.

By defining the expression syntax suitably, the symbolicdreepresentation can
model the execution of any shared-memory multithreadedrara. Details on model-
ing generic C/C++ language constructs are not directlyed|to concurrency; for more
information refer to recent efforts in [8—10].

The guarded assignment action has the following threemzriél) when the guard
¢ = true, it can model normal assignments in a basic block; (2) whem#isignment set
asgn is empty,assume(c) or assume(—c) can model the execution of a branching state-
menti f (¢) - el se; and (3) with both the guard and the assignment set, it caremod
the atomiacheck-and-setperation, which is the foundation of all types of concucyen
primitives. For example, acquiring a counting semaplasn be modeled as the action
(assume(l > 0),{l:=1—-1}).

Example.Fig. 2 shows an example symbolic execution trace represamtavhich cor-
responds te in Fig. 1. Note that the synchronization primitiweg(l) in ¢, is modeled
as an atomic guarded assignment action. The normal assigmtg is modeled with
assume(true). Thei f-statement irt;; is modeled withusgn being an empty set.

3.2 Concurrent Trace Programs

The semantics of a symbolic execution trace is defined ussigta transition system.
LetV = SV U, LV;, 1 <i < k, be the set of all program variables aid! be a
set of values of variables ivi. A stateis a maps : V' — Val assigning a value to each
variable. We also us€gv] ands[exp] to denote the values af € V' and expressioazp

in states. We say that atate transitions -, ¢ exists, wheres, s’ are states antlis
an eventin thread;, 1 < i < k, iff one of the following conditions holds:

— t = (1, (assume(c), asgn)), slc] is true, and for each assignmédntl := exp in
asgn, s'[lval] = s[exp] holds; states ands’ agree on all other variables.

— t = (i, assert(c)) ands|c| is true. Whens[c] is false, an attempt to execute event
raises an error.

Letp = t;...t, be a symbolic execution trace of a concurrent progranit defines
a total order on the symbolic events. Frgmve can derive a partial order called the
concurrent trace program (CTP).

Definition 1. The concurrent trace prograwf p is a partially ordered seCTP, =
(T, C) such that,

— T = {t|t € p} is the set of events, and
— L is a partial order such that, for ang;, t; € T, t; C t; iff tid(t;) = tid(t;) and
i < j (in p, event; appears before;).

In the sequel, we will say a transitiane C'I'P, to mean that € T is associated with
the CTP. IntuitivelyCT P, orders events from the same thread by their execution order
in p; events from different threads are re¢plicitly ordered with each other. Keeping
events symbolic and allowing events from different thre@md®main un-ordered with
each other is the crucial difference from existing soundsahmodels [7, 4—6].

We guarantee the feasibility of predicted traces throughniition offeasible lin-
earizationsof CTP,. A linearization of this partial order is an alternativegrieaving

of events inp. Letp’ = ¢} ...t be a linearization o€T P,. We say thap’ is afea-
sible linearizationiff there exist statesy, ..., s, such that,s, is the initial state of

the program and for all = 1,...,n, there exists a transitios;_, N s;. Note that
this definition captures the standard sequential consigteamantics for concurrent
programs, where we modeled concurrency primitives suchas by using auxiliary
shared variables in atomic guarded assignment events.

4 Symbolic Predictive Analysis Algorithm

Given an execution trace we derive the model’l’ P, andsymbolicallycheck all its

feasible linearizations for property violations. For thi@ create a formul@crp, such

that®crp, is satisfiable iff there exists a feasible linearization4f P, that violates
the property. Specifically, we use an encoding that create$ormula in a quantifier-
free first-order logic to facilitate the application of dffe-shelf SMT solvers [11].

4.1 Concurrent Static Single Assignment

Our encoding is based on transforming the concurrent tremgrgm into a concurrent
static single assignment (CSSA) form, inspired by [12]. T&SA form has the prop-
erty that each variable is defined exactly once. Hedefinitionof variablev € V' is

an event that modifies, and auseof v is an event where it appears in an expression.
In our case, an event definesff v appears in the left-hand-side of an assignment; an
event uses iff v appears in a condition (assume or theassert) or the right-hand-side

of an assignment.

Unlike in the classic sequential SSA form, we need not addnctions to model
the confluence of multiple if-else branches because in awrosrtt trace program, each
thread has a single control path. The branching decisioresdleeady been made during
program execution resulting in the trace

We differentiate shared variables #1/ from local variables inLV;, 1 < i < k.
Each use of variable € LV; corresponds to a unique definition, a preceding event in
the same thread; that defines). For shared variables, however, each use of variable
v € SV may map to multiple definitions due to thread interleavingr#unction is
added to model the confluence of these possible definitions.

Definition 2. A w-function, introduced for a shared variableimmediately before its
use, has the formr(v,...,v;), where eachy;, 1 < i < [, is either the most recent
definition ofv in the same thread as the use, or a definitiom @ another concurrent
thread.

Therefore, the construction of CSSA consists of the follaypsteps:

1. Create unique names for local/shared variables in tledinitions.

2. For each use of a local variahles LV;, 1 < i < k, replacev with the most recent
(unique) definitiony’.

3. For each use of a shared variablee SV, create a unique name and add the
definitionv’ « 7 (v1,...,v;). Then replace with the new definition’.

Example. Fig. 3 shows the CSSA form of the CTP in Fig. 2. We add namlesr’
and r-functions for the shared variable uses. The condition> b) in t1; becomes
(77 > by) wheren” «— m(x0, 21, 72) denotes the current value of shared variable
andb, denotes the value of local varialdlelefined intg. The names, x1, v» denotes
the values ofr defined intg, t3 andt;, respectively. Event, is added to model the
initial values of the variables.

: (1, (assume(true), {zo:=0,y0 :=0,lp:=1}))

(

ti: (1, (assume(true), {ai:=7w'})) whererr! — 7 (x0)

to : (1, (assume(w? > 0), {l; := 72 —1}))y wherer? « w(lo, l5, l6)

ts : (1, (assume(true), {z1:=2+a1})

ta: (1, (assume(true), {l2:=m>+1}) y wheren® «— (11,15, lg)

ts : (1, (assume(true), {y1:=1-+ai}))

to : (1, (assume(n* > 0), {l3:==* —1}) Y wherer? « w(ls, 5, l6)

tr : (1, (assume(true), {z2:=1+4+a1})

ts : (1, (assume(true), {ly := 7" +1})) wheren® «— 7 (I3, 15, l6)

to : (2, (assume(true), {by :=0}))

tio : (2, (assume(7® > 0), {l5:= 7% —1}) Y wheren «— 7 (lo, 1,12, 13,14)

ti1: (2, (assume(m” > b1), { }) Y wherer” — wt(zo,x1,z2)

tio: (2, (assert(x® = 1)) y wheren® — 7 (yo,y1)

ti3: (2, (assume(true), {lg :=n° +1}) ywherer® «— 7w (lo, 11, 12,13, 14,15)
Fig. 3. The CSSA form of the concurrent trace program

Semantics ofr-Functions. Let v’ — 7 (v, ..., v;) be defined in evertt and eachy;,

1 < ¢ <1, be defined in evertt. Ther-function may return any of the parameters as the
result depending on the write-read consistency in a pdatiéaterleaving. Intuitively,

(v = v;) in an interleaving iffv; is the most recent definition before eveéniMore
formally, (v' = v;), 1 <4 <, holds iff the following conditions hold,

— eventt;, which defines;, is executed before evefitand
— any event; that defines;, 1 < i <[andj # 14, is executed either before the
definitiont; or after the use.

4.2 CSSA-based SAT Encoding

We construct the quantifier-free first-order logic formdla;p* based on the notion
of feasible linearizations of CTP (in Section 3.2) and #heinction semantics (in Sec-
tion 4.1). The construction is straightforward and follathsir definitions. The entire
formula®c7p consists of the following four subformulas:

berp = Ppo NPyp ANPpr AN ~Pprp

where®po encodes the program orddr;, , encodes the variable definition8p;
encodes the-functions, andPprp encodes the property.
To help present the encoding algorithm, we use the followioigtions:

1 We omit the subscrigt in CT P, where it is understood from the context.

— first eventts,s:: we add a dummy event,s; to be the first executed event in the
CTP. Thatisyt € CT P andt # tg.s, €ventt must be executed afteg,;

— last eventt,;: we add a dummy everit,s; to be the last executed event in the
CTP. ThatisyVt € CT P andt # t.s, €ventt must be executed befotgs:;

— first eventt}, ., of thread T;: for eachi € T'id, this is the first event of the thread;

— last eventt{,, of thread T;: for eachi € T'id, this is the last event of the thread;

— thread-local preceding event:for each event, we define its thread-local preced-
ing eventt’ as follows:tid(t') = tid(t) and for any other event’ ¢ CT P such
thattid(t”) = tid(t), eithert” C” ' ort C ¢”.

— HB-constraint: we useH B(t,t’) to denote that everitis executed before event
t’. The actual constraint comprisidgB(t,t’) is described in the next section.

Path Conditions. For each event € C'T P, we define path condition(t) such that
is executed iffy(¢) is true. The path conditions are computed as follows:

1. If t = tfist, Ot = ti, . Wherei € Tid, letg(t) := true.
2. Otherwisef has a thread-local preceding evént
— if t has actior(assume(c), asgn), letg(t) := c A g(t');
— if t has actiorassert(c), let g(t) := g(¢).
Note that an assert event does not contribute to the pathtmond

Program Order (®po). Formula®d po captures the event order within each thrdad.
does not impose any inter-thread constralret & po := true initially. For each event
teCTP,

. If t = t5st, do nothing;
It =t} ., wherei € Tid, let®po := Ppo A HB (thirst, thye,);

If t = thast, l€tPpo := Ppo A /\VzeTzd HB(tIast , Llast)
4. Otherwiset has a thread-local preceding evéiplet $pp := po A HB(t,t).

Variable Definition (& p). Formulady p is the conjunction of all variable definitions.
Let®y p := true initially. For each event € CTP,

1. If ¢ has action(assume(c), asgn), for each assignment := exp in asgn, let
dyp :=Dyp A (’U = exp);
2. Otherwise, do nothing.

The w-Function (@ p;). Eachr-function defines a new variablé, and®p; is a con-
junction of all these variable definitions. Létp; := true initially. For eachv’ «—
m(v1,...,v) defined in event, wherev’ is used; also assume that eaghl < i <,
is defined in event;. Let

l l
Bpr:=Ppr A\ (V' =vi) Ag(ti) NHB(ti,) A\ (HB(t;,t:) vV HB(1,1;))
i=1 j=1,5#1i
Intuitively, the w-function evaluates to; iff it chooses the-th definition in ther-set

(indicated byg(t;) A HB(t;,t)), such that any other definitian, 1 < j <[andj # 4,
is either before;, or after this use of; in ¢t.

Assertion Property (Pprp). Lett € CTP be the event with actioassert(c), which
specifies the correctness property.

Pprp = (9(t) — ¢)

Intuitively, the assertion condition must hold if¢ is executed. Recall thapgp is
negated inbcrp, to search for property violations.

Example Fig. 4 illustrates the CSSA-based encoding of the examplagn3, where
the subformulas that fordipo and®y p are listed. In the figureyg, t14 are the dummy
entry and exit event@prp (atto) is defined as g2 vV (7 = 1). The subformulain
&p; for i — 7w(xg, w1, 22) in t17 is defined as follows:

t11 : (7T7 = 2o A\ (true) /\HB(tu, tg) /\I‘IB(ifu7 t7)
v’ :ml/\gg/\HB(t37t11) Atrue /\HB(t117t7)
vl =x2 Agr A HB(t7,t11) Atrue Atrue)

Note that some HB-constraints evaluate to condtdsdt andtrue—such simplification
is frequent and is performed in our implementation to redhedormula size.

Path Conditions: Program Order: Variable Definitions:
to : 2o =0Ayo=0AIlp=1
ty: g1 = true , HB(to,tl) ay = ol

ta: g2 =g1 A(m" >0) HB(t1,t) =21

t3 : g3 = g2 HB(t2,t3) T =2+a;

ty : ga = g3 HB(t37t4) l2:7r3+1

ts : gs = g4 4 HB(t4,t5) =1+ a1

té: ge=gs A (7" >0) HB(ts, tg) A

lz: g7 =ge HB(te, t7) ;:1+a

ts: gs =gr HB(t7,ts) l42—_7r5 L 11

tg g9 = true HB(to,tg) b — 0

tio: gi0o =go A (% > 0) HB(tg, t10) ll: 64

tin: g1 =gioA(n >b) HB(tio, t11) 5 =7 =

ti2: gi2 = g1 HDB(t11,t12) 9

tiz: g13 = g13 HB(t12,t13) le=m"+1

tig : HB(ts,tia) N HB(t13,t14)

Fig. 4. The CSSA-based symbolic encoding of the CTP in Fig. 3

Letn be the number of events in a CTB, be the number of shared variable uses,
andl, be the maximal number of parameters in anfunction. Our encoding produces
a formula of sizeD(n + n, x I2). Although in the worst case—when each evesatds
and writesshared variables—the size becoriés?), it is rare in realistic applications.
The reason is that shared variable accesses in a concurogmam are often kept few
and far in between, especially when compared to computatigthin threads, to mini-
mize the synchronization overhead. In contrast, conveatibounded model checking
(BMC) algorithms, e.g. [13], would generate significandyder formulas. To cover all
feasible interleavings in a CTP, the BMC unrolling depthdse® ben, which results in
the sameD(n?) complexity. However, the BMC formula size cannot be easifyuced
even ifl,, andn, are significantly smaller tham. In Section 7, we will present experi-
mental comparison of our CSSA-based encoding with the BM@Grahm in [13].

4.3 Proof of Correctness

Recall that for two arbitrary eventsaandt’, the constrainf/ B(¢,¢') denote that must
be executed beforg. Consider a model where we introduce for each eventCT P

a fresh integer variabl®(¢) denoting its execution tinfe A satisfiable solution for
dcrp, therefore induces values dl(t), i.e., times of all events in the linearization.
The constrainff B(¢, t') is captured as follows:

HB(t,t') := O(t) < O(t")
We now state the correctness of our encoding.

Theorem 1. Formula®crp is satisfiable iff there exists a feasible linearizationlod t
CTP that violates the assertion property.

Proof: The encoding closely follows our definitions of CTéadible linearizations, and
the semantics of-functions. The proof is straightforward and is omitted foevity.

5 Symbolic Context Bounding

In this section, we present a symbolic encoding that effetibounds the number of
context switches allowed by an interleaving.

Traditionally, acontext switchs defined as the computing process of storing and
restoring the CPU state (context) when executing a concupregram, such that mul-
tiple processes or threads can share a single CPU resoureédda of using context
bounding to reduce complexity in verifying concurrent piags was introduced by
Qadeer and Rehof [14]. Several subsequent studies havensedf[15, 16] that con-
currency bugs in practice can often be exposed in intemgawvith a surprisingly small
number of context switches.

Example. Consider the running example in Fig. 1. If we restrict the benof context
switches of an interleaving to 1, there are only two possibs:

pl = (tth NN tg)(tgtlo RPN tlg)
= (tgtlo .. .t13)(t1t2 .. tg)

In both cases the context switch happens when one threadle@sits execution.
However, none of the two traces is erroneous; aghds not even feasible. When we

increase the context bound to 2, the number of admitted@aeings remains small but
now the following trace is included:

p/// = (tthtg)(tgtlotlltlg)(t4 e tg)
The trace has two context switches and exposes the ertor {wherey = 0).

2 The execution time is an integer denoting its position inlithearization.

5.1 Reuvisiting the HB-Constraints

We definedH B(t,t') asO(t) < O(t') earlier. However, thestrictly-less-thancon-
straint is sufficient, but not necessary, to ensure the coress of our encoding. To
facilitate context bounding, we modify the definition&iB (¢, ') as follows:
1. HB(t,t') := O(t) < O(t') if one of the following conditions holdtid(t) =
tid(t'), Ort = tfist, OFt' = tiaet.
2. HB(t,t') := O(t) < O(t') otherwise.

Note first that, if two events, ¢’ are from the same thread, the execution tithe)
need not be strictly less thafi(¢') to enforceH B(¢,t'). This is because the CSSA
form, through the renaming of definitions and uses of thiead!} variables, already
guarantees thidbow-sensitivitywithin each thread; that is, implicitly, a definition always
happens before the subsequent uses. Therefore, tilign = tid(t'), we relax the
definition of H B(t, ') by usingless than or equal to

Second, if events, ¢’ are from two different threads (ard# tgsc andt # t1as1),
according to our encoding rules, the constrdihB(¢,¢') must be introduced by the
subformula®p; encodingr-functions. In such casd/ B(t,t') means that there ist
least one context switdbetween the execution efand¢’. Therefore, wherid(t) #
tid(t"), we force event to happerstrictly beforeeventt’ in time.

5.2 Adding the Context Bound

Let b be the maximal number of context switches allowed in an ie¢ésing. Given the
formula®crp, as defined in the previous section, we construct the comigxided
formula®crp, (b) as follows:

Pcrp, (b) :=Porp, N (O(tiast) — O(tsirst) <)

The additional constraint states that;, the unique exit event, must be executed no
more tharb steps later thaty;s;, the unique entry event.

The execution times of the events in a trace always form ademmeasing sequence.
Furthermore, the execution time is forced to increase weme context switch hap-
pens, i.e., as a result &f B(t,t') whentid(t) # tid(t'). In the above constraint, such
increases of execution time is limited to less than or ecuif.t

Theorem 2. Let)y’ be a feasible linearization af'7'P,. LetC'B(p’) be the number of
context switches ip’. If CB(p’) < b andp’ violates the correctness property, then
Pcrp, () is satisfiable.

Proof. Let m = CB(p’). We partitionp’ into m + 1 segmentsegy segi . .. s€gm
such that each segment is a subsequence of events withdektcewitch. Now we
assign an execution time (integer) for alie p’ as follows:O(t) = i iff ¢ € seg;,
where0 < ¢ < m. In our encoding, only thé/ B-constraints inPpo and®p; and the
context-bound constraint refer to tli¥t) variables. The above variable assignment is
guaranteed to satisfy these constraints. Therefopéyiblates the correctness property,
thendcrp, (b) is satisfiable. a

By the same reasoning,@B(p’) > b, tracep’ is excluded by formul@crp, ().
3 WhenH B(t,t') is a constant, we replace it with true or false.

* In CHESS [15], whose exploration algorithm is purely exjpliather than symbolic, a variant
is used to count only thpreemptivecontext switches.

5.3 Lifting the CB Constraint

In the context bounded analysis, one can empirically chadseundb,,,,,, and check
the satisfiability of formulabcrp, (bnae). Alternatively, one can iteratively sét =
1,2,..., bmae; and for eachh, check the satisfiability of the formula

Pcrp, N (O(tast) — O(tirst) = b)

In both cases, if the formula is satisfiable, an error has bmard. Otherwise, the SMT
solver used to decide the formula can return a subset of tle dgormula as groof
of unsatisfiability More formally, the proof of unsatisfiability of a formujg which is
unsatisfiable, is a subformufa,,s.; of f such thatf,.....; itself is also unsatisfiable.
The proof of unsatisfiabilityf,,,s«; can be viewed as a generalization of the given

formula f; it is more general because some of the constrainfsrofy not be needed
to prove unsatisfiability. In our method, we can check whethe context-bound con-
straint appears iff,,sq¢- If the context-bound constraint does not appeaf ifq:, it
means that, even without context bounding, the forndigda p, itself is unsatisfiable. In
other words, we have generalized the context-bounded prtmé proof of the general
case—that the property holds in all the feasible interiegsi

6 Relating to Other Causal Models

In this section, we show that our symbolic algorithm can ighter constrained to match
known causal models in the literature. By doing this exexcige also demonstrate that
our algorithm has a larger interleaving coverage. Sincartagimal causal model [6],
proposed recently by Serbanuta, Chen and Rosu, has theiligpof capturing more
feasible interleavings than prior sound causal models, ifaige it as an example. In
this case, our algorithm provides a symbolic property chmecklgorithm, in contrast
to their model checking algorithm based on explicit enuri@na

We assume that during the program execution, only eventdvimg shared objects
are monitored, and except for synchronization primitiths, program code that pro-
duces the events are not available. Therefore, an evenbisinf the following forms:

— A concurrency synchronization/communication primitive;
— Reading valueal from a shared variable € SV;

— Writing valuewval to a shared variable € SV'.

— An assertion event (the property);

Example. We slightly modify the example in Fig. 1 as followse replacets : = :=
2+ awitht; : x := 1+ a. The sequence of concrete eventgiis shown in Fig. 5.
There still exists an erroneous trace that violates therta®sean ¢,,. The difference
between the two examples is subtle: in the original exantpkegrroneous trace in
Section 2 cannot be predicted by the maximal causal modedreds in the modified
example, the erroneous trace can be predicted by the mag@usil model. The reason
is that in the modified example, the program codé;iand¢; produce identical events
in p: Writing value 1 to the shared variable Thereforef;; can be moved ahead of
ts but aftert4 (the permutation satisfies the sequential consistencyraxicsed in the
maximal causal model).

ThreadT; ThreadT

t1 : reading O frome * %ty : (1, (assume(z = 0), { D)
to : acq(l) to: (1, (assume(l >0), {l:=1—-11}))
ts : writing Ltox xxty (1, (assume(true), {z:= D)
tq : rel(l) ty: (1, (assume(true), {l:=1 + 11}))
ts : writing 1toy * ok ts 1, (assume(true), {y := D)
te : acq(l) te : (1, (assume(l >0), {l:=1—-11}))
t7 : writing 1tox * o t7 o (1, (assume(true), {z := D)
tg @ rel(l) ts : (1, (assume(true), {l:= l +11}))
to : nop **tg : (2, (assume(true), { D)
t10 : acq(l) ti0: (2, (assume(l >0), {l:=1—-11}))
t11 : reading 1 frome **t11 : (2, (assume(z = 1), { D)
ti2: assert(y == 1) tig: 2, (assert(y = 1)))
tiz : rel(l) t1z : (2, (assume(true), {l:=1+4+11}))
Fig. 5. The concrete event sequence Fig. 6. The reduced causal model

Let CTP, = (T,C) be the model as in Definition 1. We derive the constrained
model CM, as shown in Fig. 6. Whenever an event has a different forre'i,
from the one inCTP, (Fig. 2), we mark it with the symbok«. Note that all the
semaphore events remain symbolic, whereas the rest areappdeximated into con-
crete values. For instance, eventis reduced from(1, (assume(true), {a := z})) to
(1, (assume(x = 0),{ })), because value 0 is being read from the shared variaivie
the given trace. Similarly, event’, is reduced from{1, (assume(true), {z := 1+ a}))
to (1, (assume(true), {z := 1})), because the right-hand-side expression evaluates to
1 in p. These events are no longer symbolic. Note that concretg®eerrespond to
constant values, which can be propagated to further siynihlé constraints in our en-
coding. However, these also result in less coveragent, thanCT'P,.

Semantics of the Constrained CTPSinceC' M, shares the same symbolic represen-
tation asC'T'P,, the notion offeasible linearizationsf a CTP, defined in Section 3.2,
and the symbolic algorithm in Section 4 remain applicalsiéhke running example, the
erroneous tracg’ = (t1tathta)totiot11t12t13(t5—ts) is admitted byC'M,.

7 Experiments

We have implemented the proposed symbolic predictive amsablgorithm in a tool
calledFusion Our tool is capable of handling symbolic execution tracesegated by
arbitrary multi-threaded C programs using the LifRikhreaddibrary. We use th&ices
SMT solver [11] to solve the satisfiability formulas.

We have conducted preliminary experiments using the fatigbenchmarks. The
first set consists of C variants of th@nkingexample [17] with known bugs due to
atomicity violations. Unlike previous work [3,5, 6], we datly check the functional
correctness property, stating the consistency of all bankunts at the end of the exe-
cution; this is a significantly harder problem than detegtiata races [5, 6] or atomicity
violations [3] (which may not cause a violation of the fuctal property). The second
set of benchmarks are thedexerexamples from [18], which we implemented using
C and the LinuxPThreaddibrary. In these examples, multiple threads share a hash ta
ble with 128 entries. With less than 12 threads, there is 3t teble collision among

different threads—although this fact cannot be easilyriefé by purely static analysis.
With more than 12 threads, the number of irredudant inteiheg (after partial order
reduction) quickly explodes. In our experiments, we setrthmber of threads to 15,
20, and 25, respectively. Our properties are assertiotingthat no collision has hap-
pened on a particular hash table entry. The experimevgse conducted on a PC with
1.6 GHz Intel processor and 2GB memory running Fedora 8.

Table 1. Experimental results of symbolic predictive analysis (M@mory out 800 MB)

The Test Program [[The Given Trac Run Time (s) Run Time (s)
program namghread$shared / var$property length| slicing [predict [predict-ch{BMC[13][Explicit
banking-2 2 97/ 264| passed 843| 1.4 0.1 0.1 0.3 36.5
banking-2a 2 97/ 264|| error 843| 1.4 0.1 0.1 7.2 1.2
banking-5 5 104/ 331f| passed 1622| 1.7 0.3 0.1 2.7 >600
banking-5a 5 104/ 331| error 1622 1.7 0.1 0.1 >600 1.8
banking-10 10 114/ 441 passed 2725 7.0 1.6 0.6 31.8 | >600
banking-10a | 10 114/ 441} error 2725 7.0 0.1 0.1 MO 2.8
indexer-10 10 285/539| passed 3000| 1.1 0.1 0.1 0.1 12.8
indexer-15 15 305/ 669| passed 4277 2.3 0.1 0.1 >600 | >600
indexer-15a 15 305/ 669| error 4277 2.2 0.4 0.2 >600 | >600
indexer-20 20 325/ 799| passed 5647 4.0 0.4 0.1 MO >600
indexer-20a | 20 325/799| error 5647| 4.1 3.2 0.7 MO >600
indexer-25 25 345/ 829| passed 7482| 6.0 0.9 0.1 MO >600
indexer-25a | 25 345/829| error | 7482 6.1 26.1 9.8 MO >600

Table 1 shows the results. The first three columns show thistgta of the test
cases, including the name, the number of threads, and theeruwh shared and total
variables (that are accessed in the trace). The next tworn@show whether the given
(non-erroneous) trace has an erroneous permutation, artcatte length after slicing.
The next three columns show the run times of trace captundghcing, our symbolic
analysis, and our context-bounded symbolic analysis (Withnd 2). The final two
columns show the run times of a BMC algorithm [13] with thealling depth set to
the trace length and an explicit search algorithm enhang&@H©OR [18].

The slicing in our experiments is thread-sensitive andrteets after slicing consist
of mostly irreducible shared variable accesses—for eachsag there exists at least
one conflicting access from a concurrent thread. The numbequivalence classes
of interleavings is directly related to the number of suchrsd accesses (worst-case
double-exponential [14]). In thedexerexamples, for instance, since there is no hash
table collision with fewer than 12 threads, the problem seyao solve. (In [18], such
cases were used to showcase the power of the DPOR algoritiynamically detecting
these non-conflicting variable accesses). However, whemtimber of threads is set
to 15, 20, and 25, the number of collisions increases rapl@iy results show that
purely explicit algorithms, even with DPOR, does not scaédl W such cases. This is
likely a bottleneck for other explicit enumeration basegraaches as well. The BMC
algorithm did not perform well because of its large formuitzs as a result of explicitly
unrolling the transition relation. In contrast, our symbadallgorithm remains efficient
in navigating the large search space.

5 Examples're available at http://www.nec-labs.cemhaowang/pubDOC/predict-example.tar.

8 Related Work

The fundamental concept used in this paper is the partia@rayder the events in an
execution trace. This is related to thappens-beforeausality introduced by Lamport
in [7]. However, Lamport's happens-before causality, ab agethe various subsequent
causal models [4—6], has a strictly less interleaving cagerthan our model. Our use
of the HB constraints to specify the execution order amorentyvis related to, but is
more abstract than, the logical clocks [7] and the vectarkdd19, 20].

Our symbolic encoding is related to, but is different frohre SSA-based SAT en-
coding [8], which is popular fosequentiaprograms. We usdifference logido directly
capture the partial order. This differs from CheckFencé,[@hich explicitly encodes
ordering between all pairs of relevant events (shared bigrccesses) in pure Boolean
logic. Furthermore, it does not create a causal mode, betttirenumerates the feasi-
ble interleavings (with respect to a given memory semanticSBMC [22] also uses
context-bounding in their symbolic encoding. Howeverasoa priori fix the number
of bounded context switches. In contrast, our method ini@edtis for the unbounded
case—the context-bounding constraint in Section 5 is aptiand is used to further
improve performance. Furthermore, all the aforementiomethods were applied to
whole programs and not to trace programs.

The quantifier-free formulas produced by our encoding addéle due to the
finite size of the CTP. When non-linear arithmetic operatiappear in the symbolic
execution trace, they are treated as bit-vector operatfdtieough the formulas may be
hard to solve in some cases, the rapid progress in SMT sateerbe directly utilized
to improve performance in practice.

At a high level, our work also relates to dynamic model chegk3, 15, 24, 13].
However, these algorithms need to re-execute the prograemweRkploring different
interleavings, and in general, they are not property-tiedOur goal is to detect errors
without re-executing the prograrmn our previous work [25], we have used the notion of
concurrent trace program but the goal was to prune the sspgate in dynamic model
checking. In this work, we use the CTP and the CSSA-baseddamgor predictive
analysis. To our knowledge, this is the first attempt at sylinlpoedictive analysis.

9 Conclusions

In this paper, we propose a symbolic algorithm for detectiogcurrency errors in all
feasible permutations of events in a give execution trabe.flew algorithm uses a suc-
cinct concurrent static single assignment (CSSA) basedding to generate an SMT
formula such that the violation of an assertion propertgtiff the SMT formulais sat-
isfiable. We also propose a symbolic method to bound the nuoflimntext switches
in an interleaving. The new algorithm can achieve a betterleaving coverage, and
at the same time is more scalable than the explicit enunoaratgorithms used by the
various existing methods for predictive analysis.

References

1. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Aswie T.: Eraser: A dynamic data
race detector for multithreaded programs. ACM Trans. Cdirpyst.15(4) (1997) 391-411

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atorpicfiecker for multithreaded pro-

grams. In: Parallel and Distributed Processing Symposi®DRS), IEEE (2004)

. Wang, L., Stoller, S.D.: Runtime analysis of atomicity foultithreaded programs. |IEEE

Trans. Software Eng2(2) (2006) 93—-110

. Sen, K., Rosu, G., Agha, G.: Detecting errors in multitldesd programs by generalized

predictive analysis of executions. In: Formal Methods f@e® Object-Based Distributed
Systems, Springer (2005) 211-226 LNCS 3535.

. Chen, F., Rosu, G.: Parametric and sliced causality. bmgiter Aided Verification,

Springer (2007) 240-253 LNCS 4590.

. Serbanuta, T.F., Chen, F., Rosu, G.: Maximal causaktsddr multithreaded systems. Tech-

nical Report UIUCDCS-R-2008-3017, University of Illinas Urbana-Champaign (2008)

. Lamport, L.:. Time, clocks, and the ordering of events insributed system. Commun.

ACM 21(7) (1978) 558-565

. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checki@dNSI-C programs. In: Tools

and Algorithms for Construction and Analysis of Systemgijr&er (2004) 168-176 LNCS
2988.

. Ivanti¢, F., Shlyakhter, I., Gupta, A., Ganai, M., Kam| V., Wang, C., Yang, Z.: Model

checking C program using F-Soft. In: International Confieeeon Computer Design. (Oc-
tober 2005) 297-308

Lahiri, S., Qadeer, S.: Back to the future: revisitinggise program verification using SMT
solvers. In: Principles of Programming Languages, ACM @Q71-182

Dutertre, B., de Moura, L.: A fast linear-arithmetic\aal for dpli(t). In: Computer Aided
Verification, Springer (2006) 81-94 LNCS 4144.

Lee, J., Padua, D., Midkiff, S.: Basic compiler algamthfor parallel programs. In: Princi-
ples and Practice of Parallel Programming. (1999) 1-12

Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole phdrder reduction. In: Tools
and Algorithms for Construction and Analysis of Systemsiji&er (2008) 382-396 LNCS
4963.

Qadeer, S., Rehof, J.: Context-bounded model checKiognzurrent software. In: Tools
and Algorithms for Construction and Analysis of Systems;iiger (2005) 93-107 LNCS
3440.

Musuvathi, M., Qadeer, S.: CHESS: Systematic stresimgesf concurrent software. In:
Logic-Based Program Synthesis and Transformation, Seri(@006) 15-16 LNCS 4407.
Lal, A., Reps, T.W.: Reducing concurrent analysis ural@ontext bound to sequential
analysis. In: Computer Aided Verification, Springer (2088)-53 LNCS 5123.

Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns aod o test them. In: Parallel and
Distributed Processing Symposium. (2003) 286

Flanagan, C., Godefroid, P.: Dynamic partial-ordeuotidn for model checking software.
In: Principles of programming languages. (2005) 110-121

Fidge, C.J.: Logical time in distributed computing syss. IEEE Compute24(8) (1991)
28-33

Mattern, F.: Efficient algorithms for distributed snlapts and global virtual time approxi-
mation. J. Parallel Distrib. Comput8(4) (1993) 423-434

Burckhardt, S., Alur, R., Martin, M.: CheckFence: chiagkconsistency of concurrent data
types on relaxed memory models. In: Programming LanguagggBe@nd Implementation,
ACM (2007) 12-21

Rabinovitz, I., Grumberg, O.: Bounded model checkingasfcurrent programs. In: Com-
puter Aided Verification, Springer (2005) 82-97 LNCS 2988.

Godefroid, P.: Software model checking: The VeriSoffrapch. Formal Methods in System
Design26(2) (2005) 77-101

Yang, Y., Chen, X., Gopalakrishnan, G.: Inspect: A RuetiModel Checker for Multi-
threaded C Programs. Technical Report UUCS-08-004, Usityesf Utah (2008)

Wang, C., Chaudhuri, S., Gupta, A., Yang, Y.: Symbolduion of dynamic executions of
concurrent programs. In: (submission)

