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Abstract. We propose a symbolic algorithm to accurately predict atgynvio-
lations by analyzing a concrete execution trace of a coratiprogram. We use
both the execution trace and the program source code toraohst symbolic
predictive model, which captures a large set of alternatiterleavings of the
events of the given trace. We use precise symbolic reasamiihga satisfiabil-
ity modulo theory (SMT) solver to check the feasible intavii@gs for atomicity
violations. Our algorithm differs from the existing metisoieh that all reported
atomicity violations can appear in the actual program ettenpand at the same
time the feasible interleavings analyzed by our model apeifscantly more than
other predictive models that guarantee the absence ofdksms.

1 Introduction

Atomicity, or serializability, is a semantic correctness condition for concurrent pro-
grams. Intuitively, a thread interleaving is serializailbl# is equivalent to a serial ex-
ecution, i.e. a thread interleaving which executes a ti@iwseal block without other
threads interleaved in between. The transactional blogks$ypically marked explic-
itly in the code. Much attention has recently been focusethoge-accesstomicity
violations [1, 2], which involves one shared variable an@éhconsecutive accesses to
the variable. Here we characterize consecutive accesslesespect to a shared vari-
able; these accesses can be separated by events overypossilshared variables. If
two accesses in a local thread, which are inside a transattitock, are interleaved in
between by an access in another thread, this interleaviygbmainserializable if the
remote access has data conflicts with the two local accdssesactice, unserializable
interleavings often indicate the presence of subtle carogy bugs in the program.

Known techniques for detecting atomicity violations falta the following three
categories: static detection, runtime monitoring, andinu@ prediction. Type-state or
other static analysis based methods [3, 4] try to identifeptal violations at compile
time. These methods typically ignore data and most of thetsymization primitives
other than locks, and tend to report a large number of bogasseRuntime monitoring
aims at identifying atomicity violations exposed by a giescution trace [5, 1, 6-8].
However, it is a challenging task during testing to trigder €rroneous thread schedule
in the first place. In contrast, runtime prediction aims @aédeéng atomicity violationsin
all feasible interleavings of events of the given trace theowords, even if no violation
exists in that trace, but an alternative interleaving iseeous, a predictive method [9,
2,10-13] may be able to catch it without actually re-runrthmgtest.

Although there have been several predictive methods initdeature, they either
suffer from imprecision as a result of conservative modg(or no modeling at all) of
the program data flow and consequently many false negafiy@s10], or suffer from



a very limited coverage of interleavings due to trace-basetkr-approximations [11—
13]. Previous efforts [4, 2, 10], for instance, focus on tbatool paths and model only
locks provided that they obey the nested locking discipliffeeir model can be viewed
as abstracting other synchronization primitives into NORsuding semaphores, bar-
riers, POSIX condition variables, and Java’s wait-ndtifecause of such approxima-
tions, the reported atomicity violations may not exist ie #ictual program. Although
potentialatomicity violations can serve as good hints for subseqaealysis, they are
often not immediately useful to programmers, because nigridexiding whether such
violations exist in the actual program execution itself iseay challenging task.

Fig. 1 provides two examples in which the transactions, ety keywordatomic
are indeed serializable, batomizer[9] or methods in [2,10] would report them as
atomicity violations. In each example, there are two corenirthreadsl’;, 75 and a
shared variable. Variablesa, b are thread-local and variabids a condition variable,
accessible through POSIX-style signal/wait. The giveedrs denoted by event se-
quencetytotstyts and is a serial execution. If one ignores data and synchaibaizs,
there seems to be alternative interleavintgsst,tsto in (&) andtit4tstots in (b), that
are unserializable. However, these interleavings cancmtrdn the actual program ex-
ecution, because of the initial value= 0 and the if-condition in the first example and
the signal/wait in the second example.

ThreadT" ThreadT ThreadT’ ThreadT
atomic{ atomic{
t1: a:=ax t1: xz:=1
to: z:=a+1 to: a:=xz+1
ts:b:==x t3 : signalc)
ty 2 if(b > 0) ty @ wait(c)
ts 1 x:=5; ts 1 x = 3;
(a) first example (b) second example

Fig. 1.Ignoring data/synchronizations may lead to bogus errdisahiables are initialized to 0.

Methods using happens-before causalities [11, 12] oftemagqiee no bogus errors,
but tend to miss many real ones. Fig. 2 shows a model in théiggoag—the maximal
causal model [12]—for the examples in Fig. 1. This model hasnlshown in [12] to
subsume many earlier happens-before causal models. Hamtseccessing the shared
variabler are represented by the actual values read/written in tlemgrace, and events
involving thread-local variables only are abstracted iNtOPs. The model admits all
interleavings in which theseoncrete eventare sequentially consistent. In Fig. 2, for
example, the alternative sequences are deemed as setiyertansistent in both pro-
grams, because consecutive reads; in the first example return different values, and
in the second examplg reads in 1 fromr immediately aftert; writing 3. Therefore,
this model can avoid reporting these two bogus errors. Heweensider modifying the
programs in Fig. 1 by changirtg in the first example intdf ( b>0) , and removing the
signal/wait ofts, ¢4 in the second example. Now, the aforementioned alternatiee-

! These synchronization primitives cannot be simulatedgusitly nested locks.



leavings expose real atomicity violations, but in both eghes, the concrete read/write
events (Fig. 2) remain the same—these real violations wilinissed.

ThreadT’, ThreadT> ThreadT ThreadT>
atomic{ atomic{
t1: RD(z):0 t1: WR(z):1
to: WR(z):1 to: RD(z):1
}
ts: RD(z) : 1 ts : signal(c)
ta : NOP ta : wait(c)
ts : WR(x) : 5 ts : WR(x) : 3
(a) first example (b) second example

Fig. 2. Predictive models using under-approximations may midserears.

In this paper, we propose a more precise algorithm for ptiedi@tomicity viola-
tions. Given an execution trace on which transactionalks@ee explicitly marked, we
check all alternative interleavings of tesgmbolic eventsf that trace for three-access
atomicity violations. The symbolic events are construéteth both the concrete trace
and the program source code. Compared to existing causalsyddr example, [12],
our model covers more interleavings while guaranteeingaisefalarms. Since the al-
gorithm is more precise than the methods in [9, 2], we enritie following procedure
in which it may be applied:

1. Run atest of the concurrent program to obtain an exectraoe.

2. Run a sound but over-approximate algorithm [9, 2] to detbpotentialatomicity
violations. If no violation is found, return.

3. Build the precise predictive model, and for each potéwitdation, check whether
it is feasible. If it is feasible, create a concrete and rggiide witness trace.

More specifically, we formulate the checking in Step 3 as sfsability problem, by
constructing a formula which is satisfiable iff there exiatéeasible and yet unseri-
alizable interleaving of events of the given trace. The falans in a quantifier-free
first-order logic and is decided by a Satisfiability Moduloebiny (SMT) solver [14].

Our main contributions are applying the trace-based syimipoédictive model to
analyzing atomicity and encoding the detection of thremess violations on its inter-
leavings as an SMT problem, followed by the subsequent aisalging a SMT solver.
Our model for predicting atomicity violations tracks thdwad data flow and models
all synchronization primitives precisely. The greaterafaifity of covering interleav-
ings by our method is due to the use of concrete trace as wétleagrogram source
code. Furthermore, using symbolic techniques rather thplicé enumeration makes
the analysis less sensitive to the large number of inteirigav

The remainder of this paper is organized as follows. Aftéaldshing notation in
Section 2 and Section 3, we present the SMT-based algorithmetecting atomicity
violations in Section 4. In Section 5, we explain how to shdar an erroneous prefix
as opposed to a complete interleaving. We also relate ooritdgn to various over-
approximations in existing methods (Appendix A). We preésperimental results in
Section 6, review related work in Section 7, and give our @gsions in Section 8.



2 Preliminaries

Programs and Traces.A concurrent progranmhas a set ofthreadsand a setS'V of
shared variablesEach thread’;, wherel < i < k, has a set obcal variablesLV ;.

— LetTid ={1,...,k} be the set of thread indices.
— LetV; = SV U LV,;, wherel < i < k, be the set of variables accessiblelin

The remaining aspects of a concurrent program are left wifsgub to apply more gen-
erally to different programming languages. Arecution traces a sequence of events
p=t...t,. Aneventt € pis atuple(tid, action), wheretid € Tid andaction is a
computation of the fornfassume(c), asgn), i.e. aguarded assignmenivhere

— asgn is a set of assignments, each of the farm= exp, wherev € V; is a variable
andexp is an expression oveér;.

— assume(c) means the conditional expressionverV; must be true for the assign-
ments inasgn to execute.

Each event in p is a unique execution instance of a statement in the progifaan.
statement in the textual representation of the programesuged multiple times, e.g.,
in a loop or a recursive function, each execution instanamadsleled as a separate
event. By defining the expression syntax suitably, the trapeesentation can model
executions of any multithreaded program

The guarded assignment action has three variants: (1) wieeguarde = true,
it models normal assignments in a basic block; (2) when tkeggament setisgn is
empty,assume(c) models the execution of a branching statemeéitc) ; and (3) with
both the guard and the assignment set, it can model the athmak-and-setperation,
which is the foundation of all concurrency/synchronizatimitives.

Synchronization Primitives. We use the guarded assignments in our implementation
to model all synchronization primitives in POSIX ThreadsRd hread$. This includes
locks, semaphores, condition variables, barriers, etcekample, acquire of a mutex
lock [ in the threadl;, wherei € T'id, is modeled as evert, (assume(l = 0), {I :=
i})); here 0 means the lock is available and thread indiexlicates the owner of the
lock. Release of lockis accurately modeled g8, (assume(l = i), {l := 0})). Simi-
larly, acquire of a counting semaphareis modeled usingassume(cs > 0), {cs :=
cs — 1}), while release is modeled usirjgssume(cs > 0), {cs := ¢s + 1}). Fig. 3
shows the symbolic representations of traces in Fig. 1. Natesignal/wait in the sec-
ond example are modeled using guarded assignments as wedlifiSally, wai t (c)

is split into two events, andts, which first resets to 0, then waits for: to become
non-zero and in the same atomic action resdiack to 0. This modeling conforms to
the POSIX standard, allowing :si gnal (c) to be interleaved in between.

Concurrent Trace Programs. The semantics of an execution trace is defined using a
state transition system. L&t = SV U, LV, 1 <i < k, be the set of all program
variables andVal be a set of values of variables in. A stateis a maps : V — Val
assigning a value to each variable. We also ¢jsfands|exzp] to denote the values of

2 Details on modeling generic language constructs, suctoag in C/C++/Java, are not directly
related to concurrency; for more information refer to reaforts in [15, 16].



t1: (1, (assume(true ), {a: ==z 1ol t1 : (1, (assume(true ), {z:=1 13

to @ (1, (assume(true ), {z:=a+1 })) to @ (1, (assume(true ), {a:=z+1 }))
ts : (1, (assume(true ), {c:=1 0

ts : (2, (assume(true ), {b: ==z D)

tq : (2, (assume(b > 0), { D) tq @ (2, (assume(true ), {c:=0 D)

ts : (2, (assume(true ), {z :=5 ) ty : (2, (assume(c > 0), {c:=0 )
ts : (2, (assume(true ), {z :=3 )

(a) first example (a) second example

Fig. 3. The symbolic representations of concurrent executioretrac

v € V and expressioazp in states. We say that astate transitions L, ¢ exists,
wheres, s’ are states andis an event in thread;, 1 < i < k, iff

— t = (i, (assume(c), asgn)), s[c] is true, and for each assignmeni= exp in asgn,
s'[v] = slexp] holds; states ands’ agree on all other variables.

Letp = t;...t, be an execution trace of prografh Thenp can be viewed as a total
order on the set of symbolic eventsgnFrom p one can derive a partial order called
the concurrent trace program (CTP). Previously, we have G3é°s [17, 18] to predict
assertion failures and to prune redundant interleavingtaiteless model checking.

Definition 1. Theconcurrent trace prograwith respect tg, denoted”I’'P,, is a par-
tially ordered se{ 7', C) such that,

— T = {t|t € p} is the set of events, and
— Cis a partial order such that, for any;, t; € T', ¢; C ¢; iff tid(t;) = tid(¢;) and
i < j (in p, event; appears before;).

Intuitively, CT P, orders events from the same thread by their execution ordey i
events from different threads are retplicitly ordered with each other. In the sequel,
we will sayt € CT P, to mean that € T is associated with the CTP.

We now defindfeasible linearizationsf CTP,. Letp’ =t} ...t;, be a lineariza-
tion of CT'P,, i.e. an interleaving of events pf We say thap’ is feasibleiff there exist
statessy, . . ., s, such thatg is the initial state of the program and for ak=1, ..., n,

. -, t . - .
there exists a transitios,_; —— s;. This definition captures the standard sequential
consistency semantics for concurrent programs, where vekelad concurrency primi-
tives such as locks by using auxiliary shared variables.

3 Three-Access Atomicity Violations

An execution trace is serializabléff it is equivalent to a feasible linearizatigr which
executes the transactions without other threads intexteavbetween. Informally, two
traces are equivalent iff we can transform one into anothieepeatedly swapping ad-
jacent independent events. Here two events are considenedegpendeniff swapping
their execution order always leads to the same program state

Atomicity Violations. Three-access atomicity violation is a special case of lszalzl-
ity violations, involving an event sequente . . t,. . ..t such that:



1. t. and¢. are in a transactional block of one thread, ants in another thread;
2. t. andt, are data dependent; ahdandt. are data dependent.

The recent study in [1] shows that in practice atomicity atmins account for a very
large number of concurrency errors. Depending on whetheln esent is aead or
write, there are eight combinations of the triplett,., t... While R-R-R, R-R-W, and
W-R-R are serializable, the remaining five may indicate atagnviolations.

Given theC'T P, and a transactiotrans = t; .. . t;, wheret; . . . t; are events from
a thread inp, we use the seP AV to denote all these potential atomicity violations.
Conceptually, the seP AV can be computed by scanning the tracence, and for
each remote eventt € CTP,, finding the two local events., t.» € trans such that
(t., t,t.) forms a non-serializable pattern.

The crucial problem of deciding whether an event sequéncet,. .. .t. existsin
the actual program execution is difficult. However, ovepaximate algorithms, such
as those based on Lipton’s reduction theory [9] or [10, 2},lsa used to weed out event
triplets in PAV that are definitely infeasible. For example, the method Jrr¢@uces
the problem of checking (the existence of) . . ¢, .. .t. to simultaneous reachability
under nested locking. That is, does there exist an gyerstuch that (1).~is within the
same thread and is located betwegandt. and (2)t.-, t,. are simultaneously reach-
able? Under nested locking, simultaneous reachabilitybeadecided by a composi-
tional analysis based on locksets amuisition historieg19]. However, the analysis
in [2] is over-approximate in that it ignores the data flow aydchronizations other
than nested locks

Guarded Independence Sometimes, two events with data conflict may still be inde-
pendent with each other, although they aomflict-dependen®A data conflict occurs
when two events access the same variable and at least orenofgtawrite. In the lit-
erature, conflict-independence between two events is dkdisig1) executing one does
not enable/disable another, and (2) they do not have datbatomhese conditions are
sufficient but not necessary for two events tariependentConsider event; :x=5 and
eventt,:x=5, for example. They have a data conflict but are semanticadlgpendent.
Here, we use a more precigaarded independencelation as follows (c.f. [20]).

Definition 2. Two events,, t» are guarded independent with respect to a conditign
denoted(t1, t2, ci), iff the guardes (1, t2) implies that the following properties:

1. ift; is enabled ins and s 5 s’, thents is enabled ins iff ¢, is enabled ins’; and
2. ift1,t5 are enabled irs, there is a unique stat€ such thats 1l o ands 2

The guardeg is computed by a static traversal of the control flow strue{@0]. For
each event, let Vixp(t) be the set of variables read byand Viy r(t) be the set of
variables written by. We define thgotential conflict sebetweert;, ¢, € CTP, as

Cit = Vep(t1) N Viwr(t2) U Vep(t2) N Vivr(t1) U Vivr(t) N Vivr(te) .

For programs with pointers«p) and arrays(]:]), we compute the guarded indepen-
dence relatiorR as follows:

3 Programs with only nested locking can enforce mutual eimiy$ut cannot coordinate thread
interactions because nested locks cannot simulate pdvpeitfiuitives such as semaphores.



whenCy, 1, = 0, add{t1, ta, true) to Rg;
whenC,, ., = {ali], a[j]}, add(t1, 2,7 # j) t0 R¢;
whenCy, ¢, = {*pi, *p;}, add(t1, t2, p; # p;) t0 Rg;
whenCy, ¢, = {z}, consider the following cases:
a. RD-WR: if z € Vgp(t1) andx := eisints, add(t1, t2, x = €) t0 Rg;
b. WR-WR: if z := eq isin t1 andz := €9 isin to, add<t1,t2, e = €2> to Rg;
c. WR-C: if z is in assume conditiomond of ¢;, andz := e is in t, add
(t1,t2,cond = condlx — e]) 10 R¢, in which cond[x — e]| denotes the
replacement of with e.

PnE

This set of rules can be easily extended to handle a richefdahguage constructs.
Note that among these patterns, the syntactic conditiosedhan data conflict (conflict-
independence) is able to catch the first pattern only. Alde timt methods in [1, 2, 10]
use conflict-independence (henmanflict-serializabl® whereas our method is based
on guarded independence. In symbolic search based on SNIB@xers, the guarded
independence relation can be compactly encoded as caonstiraihe problem formu-
lation, as described in the next section.

4 Capturing the Feasible Interleavings

Given theCT P, and a setP AV of event triplets as potential atomicity violations, we
check whether a violation exists in any feasible linearwabf C'T'P,. For this, we
create a formul#@ which is satisfiable iff there exists a feasible lineariaatdf CT P,
that exposes the violation. Lét:= ¢crp, A Pay, Wheredcrp, captures all feasible
linearizations ofC"I"' P, and¢® 4 encodes the condition that one event triplet exists.

4.1 Concurrent Static Single Assignment

Our encoding is based on transformiti@ P, into a concurrent static single assignment
(CSSA) form. Our CSSA form, inspired by [21], has the prop#nat each variable is
defined exactly once. Heredefinitionof variablev € V is an event that modifies,
and auseof v is an event where it appears in a condition or in the rightdreade of an
assignment. Unlike in the classic sequential SSA form, weelmet adds-functions to
model the confluence of multiple if-else branches, becau€¥iP,, each thread has a
single control path. All the branching decisions in the pemg have already been made
during the execution that generates the tragethe first place.

We differentiate the shared variablesSiy from the thread-local variables iV},
1 < i < k. Each use ob € LV, corresponds to a unique preceding event in the same
threadT; that defines). Each use of € SV, in contrast, may map to multiple defini-
tions in the same or other threads, and-unction is added to model these definitions.

Definition 3. A w-function, added for a shared variablebefore its use, has the form
w(v1,...,v), where each;, 1 < i <, is either the most recent definition@fn the
same thread as the use, or a definitiorvah another concurrent thread.

The construction of the CSSA form consists of the followiteps:

1. Create unique names for local/shared variables in tledinitions.



2. For each use of a local variahlec LV;, 1 < i < k, replacev with the most recent
(unigue) definitionv’.

3. For each use of a shared variablee SV, create a unique nameé and add the
definitionv’ < m(vy,...,v;). Then replace with the new definition/.

Fig. 4 shows the CSSA form of the CTP in Fig. 3(a). Note thahétgis added to model
the initial values of all variables. We add nameésand~? for the shared variable uses.
The assignment ity becomes:; := 7! because the value read francan be defined
as eitherr, or zo, depending on the thread interleaving. The local variablia ¢5, on
the other hand, is uniquely defined agin

to : (1, (assume(true ), {ap :=0,bg := 0,29 :=0 }))
t1: (1, (assume(true ), {a1 := 7" 1)) wherer! — 7(zo, x2)
to @ (1, (assume(true ), {z1:=a1 +1 )
tz : (2, (assume(true ), {by := 7> 1)) wherer? «— m(xo, x1)
tq : (2, (assume(by > 0), { )
ts : (2, (assume(true ), {z2:=5 )

Fig. 4. The CSSA form of the concurrent trace program

The semantics ofr-functions are defined as follows. Let «— x(vq,...,v;) be
defined in event, and let each parametey, 1 < i < [, be defined in everi. The eval-
uation ofr-function depends on the write-read consistency in a pdatiénterleaving.
Intuitively, (v = v;) iff v; is the most recent definition before the use in eveMore
formally, (v' = v;), 1 <4 <, iff the following conditions hold,

— eventt;, which defines;, is executed before evefitand
— any event; that definesy;, 1 < j < landj # ¢, is executed either before the
definition int; or after the use in.

4.2 Encoding Feasible Linearizations

We construcbcrp, based on the notion of feasible linearizations (defined io- Se
tion 2). It consists of the following subformulas:

bcrp :=Ppo NPyvp APpr

where® p encodes the program ordér, p encodes the variable definitions, abgd;
encodes the-functions.
To ease the presentation, we use the following notations.

— Eventtgs: we add a dummy eveny,s; to be the first event executed in the CTP.

— Eventt},,: foreachi € Tid, this is the first event of the thredd;

— Preceding event:for each event, we define its thread-local preceding eve&rds
follows: tid(t') = tid(t) and for any other event € C'T P such thatid(t") =
tid(t), eithert” C ¢/ ort C t”.

— HB-constraint: we useH B(t, ') to denote that eventis executed beforg.



The detailed encoding algorithm is given as follows:

— Path ConditionsFor each evertte C'T' P, we define the path conditigrit) which
is true iff ¢ is executed.
1. If t = thrs, OFt = th,, Wherei € T'id, let g(t) := true.
2. Otherwise, ley(t) := ¢ A g(t'), wheret’ : (assume(c), asgn) is the thread-
local preceding event.
— Program Order ¢ pp). ®po captures the event order within threads. &gy :=
true initially. For each event € CTP,,
Lift = tirst, do nothing;
. ift =t} ., wherei € Tid, let®po := Ppo A HB(tfiest, ther);
3 otherwiset has a thread-local preceding evéntet & pp := Ppo NHB(t', t).
— Variable Definition ¢y p). Let @y p := true initially. For each event € C'T P,
1. if ¢t has action(assume(c), asgn), for each assignment:= exp in asgn, let
dyvp :i=DPyp A (’U = eacp);

— The w-Function @p;). Let &p; := true initially. For each assignment’ «
m(v1,...,v;), wherev' is used in event, and eachy;, 1 < ¢ < [, is defined in
eventt;; let

l l
Dpy:=Ppr N\/ (V' =vi) Ag(t:) NHB(t;,t) A [\ (HB(t;,t;)V HB(t,t;))
i=1 J=1,5#1

This encodes that the-function evaluates te; iff it chooses thei-th definition
in the 7-set (indicated byy(¢;) A HB(t;,t)), such that any other definition;,
1 < j <landj # i, is defined either beforg, or after this use of; in ¢.

4.3 Encoding Atomicity Violations

Given a setP AV of potential violations, we build formul 4, as follows: Initialize
&,y := false. Then for each event triplet., t,,t) € PAV, wheret. andt, are
guarded independent undex (t., t,), andt,, andt., are guarded independent under
ca(ty, ter), as defined in Section 3, let

Py i =Day V ( g(tC) A g(tr) A g(tc’) A jCG(tca tr) A ﬁCG(tra tc’)
NHB(to, t,) A HB(tr, 1) )

Recall that for two eventsandt’, the constrainfd B(¢,t') denote that must be ex-
ecuted before’. Consider a model where we introduce for each eveat CTP a

fresh integer variabl®(¢) denoting its position in the linearization (execution tjm&

satisfiable assignment tbcrp, therefore induces values 6f(t), i.e., positions of all
events in the linearizatiorf/ B(t, t’) is defined as follows:

HB(t,t") := O(t) < O(t")

In satisfiability modulo theoryH B(t,t") corresponds to a special subsetlotfeger
Difference Logic (IDL)i.e. O(t) < O(t'), or simplyO(t) — O(t') < —1. It is special
in that the integer constantn the IDL constrain{xz — y < ¢) is always—1. Deciding
this fragment of IDL is easier because consistency can hécegtito cycle detection



in the constraint graph, which has a linear complexity,eathan the more expensive
negative-cycle detection [22].

Fig. 5 illustrates the CSSA-based encoding of CTP in Fig. dteNhat it is com-
mon for many path conditions, variable definitions, and HBtraints to be constants.
For example H B(to, t1) and H B(to, t5) in Fig. 4 are alwaysrue, while H B(t5, to)
and HB(t1,t9) are alwaysfalse—such simplifications are frequent and will lead to
significant reduction in formula size.

Path Conditions: Program Order: Variable Definitions:
to: go = true (ap = 0) A (bg = 0) A (zg = 0)
t1: g1 = true HB(to,t1) a1 =
ta: go=aq1 HB(t1,t2) 21 =ag + 1
ts: gs = true HB(to,t3) by = 2
ty: ga=g3 A (b1 >0) HB(ts,ta)
ts: g5 = ga HB(ta,ts5) 2s =5

The w-Functions:

t (7! = 20) Ago A HB(to,t1) A(HB(ts,t0) VHB(t1,t5))
\% (71"l = Iz) N gs N HB(t5,t1) /\(HB(to,t5) \/HB(tl, tg))
t3 (7% = 20) Ago A HB(to,t1) A(HB(ts,t0) VHB(t1,t5))

V(72 =x1) A g2 A HB(t2, t1) A(HB(to, t2) VHB(t1,t0))

Fig. 5. The CSSA-based encoding 6fT' P, in Fig. 4

For synchronization primitives such as locks, there are emere opportunities to
simplify the formula. For example, it! «— =(ly,...,1,) denotes the value read from
a lock variablel during lock acquire, then we know that! = 0) must hold, since
the lock need to be available. This means for non-zefarameters, the constraint
(=t = 1;), wherel < i < n, always evaluates tfalse. And due to the mutex lock
semantics, for all <i < n, we knowl; = 0 iff /; is defined by a lock release.

The encoding o = @crp, AP av closely follows our definitions of CTP, feasible
linearizations, and the semanticsefunctions. We now state its correctness. The proof
is straightforward and is omitted for brevity.

Theorem 1. Formula® = @crp, A Pay is satisfiable iff there exists a feasible lin-
earization of the CTP that violates the given atomicity @y

Let n be the number of events 67T P,, let n, be the number of shared variable
uses, let,. be the maximal number of parameters in anfunction, and let;,.,.., be the
number of shared variable accessesriins. We also assume that each evenpiac-
cesses at most one shared variable. The sizé gh APy p APp;r AP 4y ) in the worst
case isO(n+n+ng x 12 +ny X lirans). We note that shared variable accesses in typ-
ical concurrent programs are often few and far in betweqre@ally when compared
to computations within threads, to minimize the synchration overhead. This means
thatl,, n,, andl;..,s are typically much smaller tham, which significantly reduces
the formula siz& In contrast, in conventional bounded model checking (BMIg)p-
rithms for verifying concurrent programs, e.g. [20], whiiploy an explicischeduler

4 Our experiments show that is typically in the lower single-digit range (the averagd)s



variable at each time frame, the BMC formula size quadratically degemn, and
cannot be easily reduced even,if n,., andl;,..,s are significantly smaller tham.

5 Capturing Erroneous Trace Prefixes

The algorithm presented so far aims at detecting atomidaiations in all feasible
linearizations of a CTP. Therefore, a violation is repoified) a three-access atomicity
violation occurs in an interleaving, and (2) the interleayis a feasible linearization
of CTP,. Sometimes, this may become too restrictive, because tisterze of an
atomicity violation often leads to the subsequent exeauticaa branch that is not taken
by the given trace (hence the branch is not ®7'P,).

Consider the example in Fig. 6. In this trace, evgris guarded bya = 1). There
is a real atomicity violation under thread schedulgts . . .. However, this trace prefix
invalidates the conditiofu = 1) in ts—event, will be skipped. In this sense, the trace
titsto . .. does not qualify as a linearization 6f"P,,. In our aforementioned symbolic
encoding, ther-constraint intg will become invalid.

te : (7T2 = :El) A g1 /\HB(tl,te‘,) /\(HB(t4,t1) VHB(tg,t4)) A (HB(t5,t1) VHB(tg,t5))
V (72 = w2) A ga A HB(ta, t) A(HB(t1,t1) V HB(te,t1)) A (HB(t5,ta) V HB(ts, t5))
\ (7T2 = :E';) A gs /\HB(t5,t6) /\(HB(tl,t5) VHB(tg,tl)) AN (HB(t4,t5) VHB(tg,t4))

Note that in the interleaving tsts . . ., we haveyy, H B(tq, t1), HB(ts,t4), HB(t4,t5),
H B(tg, t4) all evaluated tdalse. This rules out the interleaving as a feasible lineariza-
tion of C'T'P,, although it has exposed a real atomicity violation.

ThreadT; ThreadT’,
atomic{ t1 : (1, (assume(true ), {z1:=0 )
tiy: x:=0 to : (1, (assume(true ), {ay:=n'+11}))
to a:=xz+1
} tz : (1, (assume(a; = 1), { m
tg:if(a = 1) ty : (1, (assume(true ), {z2:=2 )
tg: x:=2
ts :x:=3 ts : (2, (assume(true ), {z3:=3 m
tg : b= x; te : (2, (assume(true ), {by :=m? D)
(a) the given trace (b) erroneous prefix

Fig. 6. The atomicity violation leads to a previously untaken branc

We now extend our notion of feasible linearizations of a Ca Rt prefixes of its
feasible linearizations, or thfeasible linearization prefixeIhe extension is straight-
forward. LetFealin(CT'P,) be the set of feasible linearizations©f"' P,. We define
the setFeaPfx(CT P,) of feasible linearization prefixes as follows:

FeaPfx(CTP,) := {w | w is a prefix ofp’ € FeaLin(CTP,)}

We extend our symbolic encoding to capture these erroneacs prefixes (as op-
posed to entire erroneous traces). We extend the symbaiimdérg in Section 4 as



follows. Let event triplet¢., ¢, t..) € PAV be the potential violation. We modify the
construction of? p; (for thew-function in event) as follows:

bpr i =Ppr N ( HB(tc/,t)\/
Vi (' =) Ag(t:) AHB(ti,t) AN (HB(tj,t:) v HB(t,t;)))

=1

That is, if the atomicity violation has already happenedams prefix, as indicated
by HB(t.,t), i.e. when the eventassociated with thig-function happens aftet.,
then we do not enforce any read-after-write consistenche@itise, read-after-write
consistency is enforced as before, as shown in the secomdhlithe formula above.
The rest of the encoding algorithm remains the same. We rat& #ie correctness of
this encoding extension. The proof is straightforward anahnitted for brevity.

Theorem 2. Formula® = &crp, A @ ay is satisfiable iff there exists a feasible lin-
earization prefix of the CTP that violates the given atomipibperty.

6 Experiments

We have implemented the proposed algorithm in a tool cdilesion Our tool is ca-
pable of handling execution traces generated by multiaited C programs using the
Linux PThreaddibrary. We use CIL [23] for instrumenting the C source codd ase
the YicesSMT solver [14] to solve the satisfiability formulas. Our eximents were
conducted on a PC with 1.6 GHz Intel processor and 2GB menuonying Fedora 8.

We have conducted preliminary experiments using the fotigysenchmarks The
first set of examples mimic two concurrency bug patterns filoenApache web server
code (c.f. [1]). The original programstom00land atom002 have atomicity viola-
tions. We generated two additional prograratgm00laand atom002a by adding
code to the original programs to remove the violations. Témad set of examples
are Linux/Pthreads/C implementation of the parametefimatkexample [24]. We in-
stantiate the program with the number of threads being 2,3 he original programs
(bank-ay have nested locks as well as shared variables, and havenkbogs due
to atomicity violations. We provided two different fixes,eof which pank-nay re-
moves all atomicity violations while anothebgnk-say removes some of them. We
used both condition variables and additional shared vimsain our fixes. Although
the original programshiank-ay does not show the difference in the quality of various
prediction methods (because violations detected by iggatata and synchronizations
are actually feasible), the precision differences show mpghe programs with fixes.
In these cases, some atomicity violations no longer exist, y&et methods based on
over-approximate predictive models would still reportlatmns.

Table 1 shows the experimental results. The first three codushow the statistics
of test cases, including the program name, the number oddisteand the number of
shared variables that are accessed in the given trace. Khéwwecolumns show the
length of the trace, in both the original and the simplifiedsi@ns, and the number of
transactionsrégiong. Our simplification consists of trace-based programrsfjcdead
variable removal, and constant folding; furthermore, alales defined as global, but
not accessed by more than one thread in the given trace, apomoated as shared in
the table §varg. The next four columns show the statistics of our symbatialgsis,

5 Examples are available at http://www.nec-labs.cenflaowang/pubDOC/atom.tar.gz



Table 1. Experimental results of predicting atomicity violations

Test Program The Given Trace Symbolic Analysis w/o Data [2]
name thrddsvarg|simplify/ originallregiong|orig-pavshb-pav$sym-avssym-time (s pavs
atom001 3 14 50/ 88 1 8 2 1 0.03 1
atom00la| 3 16 58 /100 1 8 2 0 0.03 1
atom002 3 24 349/ 462 1 212 34 33 20.4 33
atom002a| 3 26 359/ 462 1 212 34 0 17.6 33
bank-av-2| 3 | 109 2781748 2 24 8 8 0.1 8
bank-av-4| 5 | 113 52711213 4 48 16 16 0.6 16
bank-av-6| 7 | 117 770171672 6 72 24 24 2.3 24
bank-av-8| 9 | 121| 1016/2134 8 96 32 32 2.5 32
bank-sav-2 3 | 119 337 /852 2 24 8 4 0.2 8
bank-sav-4 5 | 123 642/ 1410 4 48 16 8 0.9 16
bank-sav-6 7 | 127 941/ 1960 6 72 24 12 3.8 24
bank-sav-8 9 | 131| 1243/2517 8 96 32 16 4.6 32
bank-nav-2 3 | 119 341/ 856 2 24 8 0 0.2 8
bank-nav-4 5 | 123 647/ 1414 4 48 16 0 0.2 16
bank-nav-6 7 | 127 953 /1972 6 72 24 0 3.7 24
bank-nav-8 9 | 131f| 1163/ 2362 8 96 32 0 140.6 32

including the size ofPAV (orig-pavg, the number of violations after pruning using
a simple static must-happen-before analybis-pav$, the number of real violations
(sym-av¥ reported by our symbolic analysis, and the runtime in sdsoim the last
column, we provide the number of (potential) atomicity widns if we ignore the data
flow and synchronizations other than nested locking.

The results show that, if one relies on only static analykis,number of reported
violations (inorig-pavy is often large, even for a prediction based on a single ti@Qae
simple must-happen-before analysis utilizes the senmotithreactreateandjoin, and
seems effective in pruning away event triplets that are delyrinfeasible. In addition,
if one utilizes the nested locking semantics, asvio Data[2], more spurious event
triplets can be pruned away. However, note that the numb@mnodining violations can
still be large. In contrast, our symbolic analysis pruneayell the spurious violations
and reports much fewer atomicity violations. For each viotathat we report, we also
produce a concrete execution trace exposing the violalibis witnesstrace can be
used by the thread schedulerRuoision to re-run the program and replay the actual
violation. We also note that the runtime overhead of our sylilmlanalysis is modest.
The algorithm can be used in the context of a post-mortenyaisal

7 Related Work

We have mentioned in Section 1 some of the static methodg, [8Jdtime monitor-
ing [5, 1, 6-8], and runtime prediction [9, 2, 10-13] for deteg atomicity violations.
Lu et al.[1] used access interleaving invariants to capture patteftest runs and then
monitor production runs for detecting three-access atilymolations. Xuet al. [5]
used a variant of the two-phase locking algorithm to moraiwd detect serializability
violations. Both methods were aimed at detecting, not ptedj, errors in the given
trace. In [4], Farzan and Madhusudan introduced the notfateasal atomicityin a
static program analysis focusing on the control paths;emisntly they used execution
traces for predicting atomicity violations [10, 2]. Wangda®toller [6] also studied the



prediction of serializability violations under the assuiops of deadlock-freedom and
nested locking; their algorithms are precise for checkimmgations involving one or
two transactions but incomplete for checking arbitrarystun

Our symbolic encoding for detecting atomicity violatiossrelated to, but is dif-
ferent from, the SSA-based SAT encoding [15], which is papfbr sequentialpro-
grams. Our analysis differs from the context-bounded aisly [25, 26, 16] since they
a priori fix the number of context switches in order to reduce conaiqpeograms
to sequential programs. In contrast, our method in Sectids fér the unbounded
case, although context-bounding constraints may be add&dther improve perfor-
mance. We directly capture the partial ordedifierence logictherefore differing from
CheckFence [27], which explicitly encodes ordering betwalepairs of events in pure
Boolean logic. In [28], a non-standard synchronous exenutiodel is used to sched-
ule multiple events simultaneously whenever possiblesasbf using the standard in-
terleaving model. Furthermore, all the aforementionechoes were applied to whole
programs and not to concurrent trace programs (CTPs). queworks [17, 18] we
have used the notion of CTP, but the context was statelesglnsbdcking to prune
redundant interleavings in the former, and predicting dissefailures in the later.

The quantifier-free formulas produced by our encoding aciddéle due to the
finite size of the CTP. When non-linear arithmetic operatiappear in the symbolic
execution trace, they are treated as bit-vector operatidms way, the rapid progress
in SMT solvers can be directly utilized to improve perforroaim practice. In the pres-
ence of unknown functions, trace-based abstraction tgaksias in [29], which uses
concrete parameter/return values to model library funstiare employed to derive the
predictive model, while ensuring that the analysis regeitsain precise.

8 Conclusions

In this paper, we propose a symbolic algorithm for detecthmge-access atomicity
violations in all feasible interleavings of events in a givexecution trace. The new
algorithm uses a succinct encoding to generate an SMT farsudh that the violation
of an atomicity property exists iff the SMT formula is satidfie. It does not report
bogus errors and at the same time achieves a better int@ijeaawerage than existing
methods for predictive analysis.
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A Appendix: Relating to the Predictive Model in [2, 10]

We show that our symbolic algorithm can be further conse@dito mimic a known
predictive model [2, 10] in the literature. This model hasfased by Farzan and Mad-
husudan for a meta-analysis of atomicity violations. Thisdictive method focuses
on modeling the control paths under nested locking, whiteitng the data and syn-
chronizations other than nested locks. Therefore,fdn)...else statement in the pro-
gram can be viewed as being abstracted irf{@)...clse to allow the execution of both
branches; an assignment= expr, wherex € SV is shared, can be viewed as being
abstracted into WRY); and an assignmeat : = x, whereua is thread-local and € SV
is shared, can be viewed as being abstracted intasRDbe actual values read/written
are not modeled.

We can reduc€T P, to CAM,, by ignoring the data flow, to mimic this model.
For events inC7T' P, involving no synchronization primitives,

1. assume(c) becomesssume(x), meaning that the condition always holds;

2. sv := expr becomessv := *, meaning that the actual value written to shared
variablesv € SV is ignored,;

3. lv := sv becomes := sv, meaning that the actual value read from shared variable
sv € SV (and then written to local variable € LV) is ignored.

For events inC'T" P, involving synchronization primitives, such as locks, sphmares,
barriers, they remain the sameG ..

t1 : (1, (assume(true ), {x := *}) )

t1 : (1, (assume(true ), {* :=x}) ) to @ (1, (assume(true ), {* :=ax +1}) )

to @ (1, (assume(true ), {z :=x}) ) ts : (1, (assume(true ), {c:=1}) )

ts : (2, (assume(true ), {x:=z})) ty : (2, (assume(true ), {c:=0}) )

ta : (2, (assume(x), { } ) tq = (2, (assume(c > 0), {c:=0}) )

ts : (2, (assume(true ), {z := x}) ) ts : (2, (assume(true ), {x := x}) )
(a) first example (b) second example

Fig. 7. Using CTP to mimic the predictive model in [2, 10]

SinceC' AM,, shares the same form of symbolic representatiof’&%,, the sym-
bolic algorithm in Section 4 remain applicable. Due to thereapproximations in
CAM,, our algorithm may report bogus violations.

Fig. 7 shows the reduced models for CTPs in Fig. 3. Note théit &ume(x) and
x := x would lead to SMT constraints that are constangt, sincex means arbitrary
value. They do not add cost to the SMT encoding. Our symbalkidysis would report
a bogus violation in the first example (data is ignored), botild not report any vio-
lation in the second example (signal/wait are modeled pety). In this sense/AM,,
remains more accurate than the model in [2, 10].

We note that the purpose of this exercise is to highlight tifferénces between
CT P, and the existing predictive models, rather than posing thelwompeting meth-
ods. In practice, we suggest the use of both collaboratieely can use over-approximate
models to quickly weed out spurious violations, and use tleeenpreciseC'T' P, to
check the remaining ones.



