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Abstract. We propose a symbolic algorithm to accurately predict atomicity vio-
lations by analyzing a concrete execution trace of a concurrent program. We use
both the execution trace and the program source code to construct a symbolic
predictive model, which captures a large set of alternativeinterleavings of the
events of the given trace. We use precise symbolic reasoningwith a satisfiabil-
ity modulo theory (SMT) solver to check the feasible interleavings for atomicity
violations. Our algorithm differs from the existing methods in that all reported
atomicity violations can appear in the actual program execution; and at the same
time the feasible interleavings analyzed by our model are significantly more than
other predictive models that guarantee the absence of falsealarms.

1 Introduction

Atomicity, or serializability, is a semantic correctness condition for concurrent pro-
grams. Intuitively, a thread interleaving is serializableif it is equivalent to a serial ex-
ecution, i.e. a thread interleaving which executes a transactional block without other
threads interleaved in between. The transactional blocks are typically marked explic-
itly in the code. Much attention has recently been focused onthree-accessatomicity
violations [1, 2], which involves one shared variable and three consecutive accesses to
the variable. Here we characterize consecutive accesses with respect to a shared vari-
able; these accesses can be separated by events over possibly other shared variables. If
two accesses in a local thread, which are inside a transactional block, are interleaved in
between by an access in another thread, this interleaving may be unserializable if the
remote access has data conflicts with the two local accesses.In practice, unserializable
interleavings often indicate the presence of subtle concurrency bugs in the program.

Known techniques for detecting atomicity violations fall into the following three
categories: static detection, runtime monitoring, and runtime prediction. Type-state or
other static analysis based methods [3, 4] try to identify potential violations at compile
time. These methods typically ignore data and most of the synchronization primitives
other than locks, and tend to report a large number of bogus errors. Runtime monitoring
aims at identifying atomicity violations exposed by a givenexecution trace [5, 1, 6–8].
However, it is a challenging task during testing to trigger the erroneous thread schedule
in the first place. In contrast, runtime prediction aims at detecting atomicity violations in
all feasible interleavings of events of the given trace. In other words, even if no violation
exists in that trace, but an alternative interleaving is erroneous, a predictive method [9,
2, 10–13] may be able to catch it without actually re-runningthe test.

Although there have been several predictive methods in the literature, they either
suffer from imprecision as a result of conservative modeling (or no modeling at all) of
the program data flow and consequently many false negatives [9, 2, 10], or suffer from



a very limited coverage of interleavings due to trace-basedunder-approximations [11–
13]. Previous efforts [4, 2, 10], for instance, focus on the control paths and model only
locks provided that they obey the nested locking discipline. Their model can be viewed
as abstracting other synchronization primitives into NOPs, including semaphores, bar-
riers, POSIX condition variables, and Java’s wait-notify1. Because of such approxima-
tions, the reported atomicity violations may not exist in the actual program. Although
potentialatomicity violations can serve as good hints for subsequentanalysis, they are
often not immediately useful to programmers, because manually deciding whether such
violations exist in the actual program execution itself is avery challenging task.

Fig. 1 provides two examples in which the transactions, marked by keywordatomic,
are indeed serializable, butatomizer[9] or methods in [2, 10] would report them as
atomicity violations. In each example, there are two concurrent threadsT1, T2 and a
shared variablex. Variablesa, b are thread-local and variablec is a condition variable,
accessible through POSIX-style signal/wait. The given trace is denoted by event se-
quencet1t2t3t4t5 and is a serial execution. If one ignores data and synchronizations,
there seems to be alternative interleavings,t1t3t4t5t2 in (a) andt1t4t5t2t3 in (b), that
are unserializable. However, these interleavings cannot occur in the actual program ex-
ecution, because of the initial valuex = 0 and the if-condition in the first example and
the signal/wait in the second example.

ThreadT1 ThreadT2

atomic{
t1 : a := x
t2 : x := a + 1
}

t3 : b := x
t4 : if(b > 0)
t5 : x := 5;

(a) first example

ThreadT1 ThreadT2

atomic{
t1 : x := 1
t2 : a := x + 1
}

t3 : signal(c)
t4 : wait(c)
t5 : x := 3;

(b) second example

Fig. 1. Ignoring data/synchronizations may lead to bogus errors. All variables are initialized to 0.

Methods using happens-before causalities [11, 12] often guarantee no bogus errors,
but tend to miss many real ones. Fig. 2 shows a model in this category—the maximal
causal model [12]—for the examples in Fig. 1. This model has been shown in [12] to
subsume many earlier happens-before causal models. Here events accessing the shared
variablex are represented by the actual values read/written in the given trace, and events
involving thread-local variables only are abstracted intoNOPs. The model admits all
interleavings in which theseconcrete eventsare sequentially consistent. In Fig. 2, for
example, the alternative sequences are deemed as sequentially inconsistent in both pro-
grams, because consecutive readst1, t3 in the first example return different values, and
in the second examplet2 reads in 1 fromx immediately aftert5 writing 3. Therefore,
this model can avoid reporting these two bogus errors. However, consider modifying the
programs in Fig. 1 by changingt4 in the first example intoif(b≥0), and removing the
signal/wait oft3, t4 in the second example. Now, the aforementioned alternativeinter-

1 These synchronization primitives cannot be simulated using only nested locks.



leavings expose real atomicity violations, but in both examples, the concrete read/write
events (Fig. 2) remain the same—these real violations will be missed.

ThreadT1 ThreadT2

atomic{
t1 : RD(x) : 0
t2 : WR(x) : 1
}

t3 : RD(x) : 1
t4 : NOP
t5 : WR(x) : 5

(a) first example

ThreadT1 ThreadT2

atomic{
t1 : WR(x) : 1
t2 : RD(x) : 1
}

t3 : signal(c)
t4 : wait(c)
t5 : WR(x) : 3

(b) second example

Fig. 2.Predictive models using under-approximations may miss real errors.

In this paper, we propose a more precise algorithm for predicting atomicity viola-
tions. Given an execution trace on which transactional blocks are explicitly marked, we
check all alternative interleavings of thesymbolic eventsof that trace for three-access
atomicity violations. The symbolic events are constructedfrom both the concrete trace
and the program source code. Compared to existing causal models, for example, [12],
our model covers more interleavings while guaranteeing no false alarms. Since the al-
gorithm is more precise than the methods in [9, 2], we envision the following procedure
in which it may be applied:

1. Run a test of the concurrent program to obtain an executiontrace.
2. Run a sound but over-approximate algorithm [9, 2] to detect all potentialatomicity

violations. If no violation is found, return.
3. Build the precise predictive model, and for each potential violation, check whether

it is feasible. If it is feasible, create a concrete and replayable witness trace.

More specifically, we formulate the checking in Step 3 as a satisfiability problem, by
constructing a formula which is satisfiable iff there existsa feasible and yet unseri-
alizable interleaving of events of the given trace. The formula is in a quantifier-free
first-order logic and is decided by a Satisfiability Modulo Theory (SMT) solver [14].

Our main contributions are applying the trace-based symbolic predictive model to
analyzing atomicity and encoding the detection of three-access violations on its inter-
leavings as an SMT problem, followed by the subsequent analysis using a SMT solver.
Our model for predicting atomicity violations tracks the actual data flow and models
all synchronization primitives precisely. The greater capability of covering interleav-
ings by our method is due to the use of concrete trace as well asthe program source
code. Furthermore, using symbolic techniques rather than explicit enumeration makes
the analysis less sensitive to the large number of interleavings.

The remainder of this paper is organized as follows. After establishing notation in
Section 2 and Section 3, we present the SMT-based algorithm for detecting atomicity
violations in Section 4. In Section 5, we explain how to search for an erroneous prefix
as opposed to a complete interleaving. We also relate our algorithm to various over-
approximations in existing methods (Appendix A). We present experimental results in
Section 6, review related work in Section 7, and give our conclusions in Section 8.



2 Preliminaries

Programs and Traces.A concurrent programhas a set ofthreadsand a setSV of
shared variables. Each threadTi, where1 ≤ i ≤ k, has a set oflocal variablesLV i.

– Let T id = {1, . . . , k} be the set of thread indices.
– Let Vi = SV ∪ LV i, where1 ≤ i ≤ k, be the set of variables accessible inTi.

The remaining aspects of a concurrent program are left unspecified, to apply more gen-
erally to different programming languages. Anexecution traceis a sequence of events
ρ = t1 . . . tn. An eventt ∈ ρ is a tuple〈tid, action〉, wheretid ∈ T id andaction is a
computation of the form(assume(c), asgn), i.e. aguarded assignment, where

– asgn is a set of assignments, each of the formv := exp, wherev ∈ Vi is a variable
andexp is an expression overVi.

– assume(c) means the conditional expressionc overVi must be true for the assign-
ments inasgn to execute.

Each eventt in ρ is a unique execution instance of a statement in the program.If a
statement in the textual representation of the program is executed multiple times, e.g.,
in a loop or a recursive function, each execution instance ismodeled as a separate
event. By defining the expression syntax suitably, the tracerepresentation can model
executions of any multithreaded program2.

The guarded assignment action has three variants: (1) when the guardc = true,
it models normal assignments in a basic block; (2) when the assignment setasgn is
empty,assume(c) models the execution of a branching statementif(c); and (3) with
both the guard and the assignment set, it can model the atomiccheck-and-setoperation,
which is the foundation of all concurrency/synchronization primitives.

Synchronization Primitives. We use the guarded assignments in our implementation
to model all synchronization primitives in POSIX Threads (or PThreads). This includes
locks, semaphores, condition variables, barriers, etc. For example, acquire of a mutex
lock l in the threadTi, wherei ∈ T id, is modeled as event〈i, (assume(l = 0), {l :=
i})〉; here 0 means the lock is available and thread indexi indicates the owner of the
lock. Release of lockl is accurately modeled as〈i, (assume(l = i), {l := 0})〉. Simi-
larly, acquire of a counting semaphorecs is modeled using(assume(cs > 0), {cs :=
cs − 1}), while release is modeled using(assume(cs ≥ 0), {cs := cs + 1}). Fig. 3
shows the symbolic representations of traces in Fig. 1. Notethat signal/wait in the sec-
ond example are modeled using guarded assignments as well. Specifically,wait(c)
is split into two eventst4 andt4′ , which first resetsc to 0, then waits forc to become
non-zero and in the same atomic action resetsc back to 0. This modeling conforms to
the POSIX standard, allowingt3 :signal(c) to be interleaved in between.

Concurrent Trace Programs.The semantics of an execution trace is defined using a
state transition system. LetV = SV ∪

⋃
i LV i, 1 ≤ i ≤ k, be the set of all program

variables andVal be a set of values of variables inV . A stateis a maps : V → Val

assigning a value to each variable. We also uses[v] ands[exp] to denote the values of

2 Details on modeling generic language constructs, such as those in C/C++/Java, are not directly
related to concurrency; for more information refer to recent efforts in [15, 16].



t1 : 〈1, (assume(true ), {a := x })〉
t2 : 〈1, (assume(true ), {x := a + 1 })〉

t3 : 〈2, (assume(true ), {b := x })〉
t4 : 〈2, (assume(b > 0), { })〉
t5 : 〈2, (assume(true ), {x := 5 })〉

(a) first example

t1 : 〈1, (assume(true ), {x := 1 })〉
t2 : 〈1, (assume(true ), {a := x + 1 })〉
t3 : 〈1, (assume(true ), {c := 1 })〉

t4 : 〈2, (assume(true ), {c := 0 })〉
t
4′

: 〈2, (assume(c > 0), {c := 0 })〉
t5 : 〈2, (assume(true ), {x := 3 })〉

(a) second example

Fig. 3. The symbolic representations of concurrent execution traces

v ∈ V and expressionexp in states. We say that astate transitions
t
−→ s′ exists,

wheres, s′ are states andt is an event in threadTi, 1 ≤ i ≤ k, iff

– t = 〈i, (assume(c), asgn)〉, s[c] is true, and for each assignmentv := exp in asgn,
s′[v ] = s[exp] holds; statess ands′ agree on all other variables.

Let ρ = t1 . . . tn be an execution trace of programP . Thenρ can be viewed as a total
order on the set of symbolic events inρ. Fromρ one can derive a partial order called
the concurrent trace program (CTP). Previously, we have used CTPs [17, 18] to predict
assertion failures and to prune redundant interleavings instateless model checking.

Definition 1. Theconcurrent trace programwith respect toρ, denotedCTPρ, is a par-
tially ordered set(T,⊑) such that,

– T = {t | t ∈ ρ} is the set of events, and
– ⊑ is a partial order such that, for anyti, tj ∈ T , ti ⊑ tj iff tid(ti) = tid(tj) and

i < j (in ρ, eventti appears beforetj).

Intuitively, CTPρ orders events from the same thread by their execution order in ρ;
events from different threads are notexplicitly ordered with each other. In the sequel,
we will sayt ∈ CTPρ to mean thatt ∈ T is associated with the CTP.

We now definefeasible linearizationsof CTPρ. Let ρ′ = t′1 . . . t′n be a lineariza-
tion of CTPρ, i.e. an interleaving of events ofρ. We say thatρ′ is feasibleiff there exist
statess0, . . . , sn such that,s0 is the initial state of the program and for alli = 1, . . . , n,

there exists a transitionsi−1
t′i−→ si. This definition captures the standard sequential

consistency semantics for concurrent programs, where we modeled concurrency primi-
tives such as locks by using auxiliary shared variables.

3 Three-Access Atomicity Violations

An execution traceρ is serializableiff it is equivalent to a feasible linearizationρ′ which
executes the transactions without other threads interleaved in between. Informally, two
traces are equivalent iff we can transform one into another by repeatedly swapping ad-
jacent independent events. Here two events are considered as independentiff swapping
their execution order always leads to the same program state.

Atomicity Violations. Three-access atomicity violation is a special case of serializabil-
ity violations, involving an event sequencetc . . . tr . . . tc′ such that:



1. tc andtc′ are in a transactional block of one thread, andtr is in another thread;
2. tc andtr are data dependent; andtr andtc′ are data dependent.

The recent study in [1] shows that in practice atomicity violations account for a very
large number of concurrency errors. Depending on whether each event is aread or
write, there are eight combinations of the triplettc, tr, tc′ . While R-R-R, R-R-W, and
W-R-R are serializable, the remaining five may indicate atomicity violations.

Given theCTPρ and a transactiontrans = ti . . . tj , whereti . . . tj are events from
a thread inρ, we use the setPAV to denote all these potential atomicity violations.
Conceptually, the setPAV can be computed by scanning the traceρ once, and for
each remote eventtr ∈ CTPρ, finding the two local eventstc, tc′ ∈ trans such that
〈tc, tr, tc′〉 forms a non-serializable pattern.

The crucial problem of deciding whether an event sequencetc . . . tr . . . tc′ exists in
the actual program execution is difficult. However, over-approximate algorithms, such
as those based on Lipton’s reduction theory [9] or [10, 2], can be used to weed out event
triplets inPAV that are definitely infeasible. For example, the method in [2] reduces
the problem of checking (the existence of)tc . . . tr . . . tc′ to simultaneous reachability
under nested locking. That is, does there exist an eventtc′′ such that (1)tc′′ is within the
same thread and is located betweentc andtc′ and (2)tc′′ , tr are simultaneously reach-
able? Under nested locking, simultaneous reachability canbe decided by a composi-
tional analysis based on locksets andacquisition histories[19]. However, the analysis
in [2] is over-approximate in that it ignores the data flow andsynchronizations other
than nested locks3.

Guarded Independence.Sometimes, two events with data conflict may still be inde-
pendent with each other, although they areconflict-dependent. A data conflict occurs
when two events access the same variable and at least one of them is awrite. In the lit-
erature, conflict-independence between two events is defined as: (1) executing one does
not enable/disable another, and (2) they do not have data conflict. These conditions are
sufficient but not necessary for two events to beindependent. Consider eventt1:x=5 and
eventt2:x=5, for example. They have a data conflict but are semantically independent.
Here, we use a more preciseguarded independencerelation as follows (c.f. [20]).

Definition 2. Two eventst1, t2 are guarded independent with respect to a conditioncG,
denoted〈t1, t2, cG〉, iff the guardcG(t1, t2) implies that the following properties:

1. if t1 is enabled ins ands
t1→ s′, thent2 is enabled ins iff t2 is enabled ins′; and

2. if t1, t2 are enabled ins, there is a unique states′ such thats
t1t2⇒ s′ ands

t2t1⇒ s′.

The guardcG is computed by a static traversal of the control flow structure [20]. For
each eventt, let VRD(t) be the set of variables read byt, andVWR(t) be the set of
variables written byt. We define thepotential conflict setbetweent1, t2 ∈ CTPρ as

Ct1,t2 = VRD(t1) ∩ VWR(t2) ∪ VRD(t2) ∩ VWR(t1) ∪ VWR(t1) ∩ VWR(t2) .

For programs with pointers (∗p) and arrays (a[i]), we compute the guarded indepen-
dence relationRG as follows:

3 Programs with only nested locking can enforce mutual exclusion, but cannot coordinate thread
interactions because nested locks cannot simulate powerful primitives such as semaphores.



1. whenCt1,t2 = ∅, add〈t1, t2, true〉 to RG;
2. whenCt1,t2 = {a[i], a[j]}, add〈t1, t2, i 6= j〉 to RG;
3. whenCt1,t2 = {∗pi, ∗pj}, add〈t1, t2, pi 6= pj〉 to RG;
4. whenCt1,t2 = {x}, consider the following cases:

a. RD-WR: if x ∈ VRD(t1) andx := e is in t2, add〈t1, t2, x = e〉 to RG;
b. WR-WR: if x := e1 is in t1 andx := e2 is in t2, add〈t1, t2, e1 = e2〉 to RG;
c. WR-C: if x is in assume conditioncond of t1, andx := e is in t2, add
〈t1, t2, cond = cond[x → e]〉 to RG, in which cond[x → e] denotes the
replacement ofx with e.

This set of rules can be easily extended to handle a richer setof language constructs.
Note that among these patterns, the syntactic conditions based on data conflict (conflict-
independence) is able to catch the first pattern only. Also note that methods in [1, 2, 10]
use conflict-independence (henceconflict-serializable), whereas our method is based
on guarded independence. In symbolic search based on SMT/SAT solvers, the guarded
independence relation can be compactly encoded as constraints in the problem formu-
lation, as described in the next section.

4 Capturing the Feasible Interleavings

Given theCTPρ and a setPAV of event triplets as potential atomicity violations, we
check whether a violation exists in any feasible linearization of CTPρ. For this, we
create a formulaΦ which is satisfiable iff there exists a feasible linearization of CTPρ

that exposes the violation. LetΦ := ΦCTPρ
∧ ΦAV , whereΦCTPρ

captures all feasible
linearizations ofCTPρ andΦAV encodes the condition that one event triplet exists.

4.1 Concurrent Static Single Assignment

Our encoding is based on transformingCTPρ into a concurrent static single assignment
(CSSA) form. Our CSSA form, inspired by [21], has the property that each variable is
defined exactly once. Here adefinitionof variablev ∈ V is an event that modifiesv,
and auseof v is an event where it appears in a condition or in the right-hand side of an
assignment. Unlike in the classic sequential SSA form, we need not addφ-functions to
model the confluence of multiple if-else branches, because in CTPρ, each thread has a
single control path. All the branching decisions in the program have already been made
during the execution that generates the traceρ in the first place.

We differentiate the shared variables inSV from the thread-local variables inLVi,
1 ≤ i ≤ k. Each use ofv ∈ LVi corresponds to a unique preceding event in the same
threadTi that definesv. Each use ofv ∈ SV , in contrast, may map to multiple defini-
tions in the same or other threads, and aπ-function is added to model these definitions.

Definition 3. A π-function, added for a shared variablev before its use, has the form
π(v1, . . . , vl), where eachvi, 1 ≤ i ≤ l, is either the most recent definition ofv in the
same thread as the use, or a definition ofv in another concurrent thread.

The construction of the CSSA form consists of the following steps:

1. Create unique names for local/shared variables in their definitions.



2. For each use of a local variablev ∈ LVi, 1 ≤ i ≤ k, replacev with the most recent
(unique) definitionv′.

3. For each use of a shared variablev ∈ SV , create a unique namev′ and add the
definitionv′ ← π(v1, . . . , vl). Then replacev with the new definitionv′.

Fig. 4 shows the CSSA form of the CTP in Fig. 3(a). Note that event t0 is added to model
the initial values of all variables. We add namesπ1 andπ2 for the shared variable uses.
The assignment int1 becomesa1 := π1 because the value read fromx can be defined
as eitherx0 or x2, depending on the thread interleaving. The local variablea1 in t2, on
the other hand, is uniquely defined as int1.

t0 : 〈1, (assume(true ), {a0 := 0, b0 := 0, x0 := 0 })〉
t1 : 〈1, (assume(true ), {a1 := π1 })〉 whereπ1 ← π(x0, x2)
t2 : 〈1, (assume(true ), {x1 := a1 + 1 })〉

t3 : 〈2, (assume(true ), {b1 := π2 })〉 whereπ2 ← π(x0, x1)
t4 : 〈2, (assume(b1 > 0), { })〉
t5 : 〈2, (assume(true ), {x2 := 5 })〉

Fig. 4. The CSSA form of the concurrent trace program

The semantics ofπ-functions are defined as follows. Letv′ ← π(v1, . . . , vl) be
defined in eventt, and let each parametervi, 1 ≤ i ≤ l, be defined in eventti. The eval-
uation ofπ-function depends on the write-read consistency in a particular interleaving.
Intuitively, (v′ = vi) iff vi is the most recent definition before the use in eventt. More
formally, (v′ = vi), 1 ≤ i ≤ l, iff the following conditions hold,

– eventti, which definesvi, is executed before eventt; and
– any eventtj that definesvj , 1 ≤ j ≤ l andj 6= i, is executed either before the

definition inti or after the use int.

4.2 Encoding Feasible Linearizations

We constructΦCTPρ
based on the notion of feasible linearizations (defined in Sec-

tion 2). It consists of the following subformulas:

ΦCTP := ΦPO ∧ ΦV D ∧ ΦPI ,

whereΦPO encodes the program order,ΦV D encodes the variable definitions, andΦPI

encodes theπ-functions.
To ease the presentation, we use the following notations.

– Event tfirst: we add a dummy eventtfirst to be the first event executed in the CTP.
– Event ti

first
: for eachi ∈ T id, this is the first event of the threadTi;

– Preceding event: for each eventt, we define its thread-local preceding eventt′ as
follows: tid(t′) = tid(t) and for any other eventt′′ ∈ CTP such thattid(t′′) =
tid(t), eithert′′ ⊑ t′ or t ⊑ t′′.

– HB-constraint: we useHB(t, t′) to denote that eventt is executed beforet′.



The detailed encoding algorithm is given as follows:

– Path Conditions.For each eventt ∈ CTPρ, we define the path conditiong(t) which
is true iff t is executed.
1. If t = tfirst, or t = ti

first
wherei ∈ T id, let g(t) := true.

2. Otherwise, letg(t) := c ∧ g(t′), wheret′ : (assume(c), asgn) is the thread-
local preceding event.

– Program Order (ΦPO). ΦPO captures the event order within threads. LetΦPO :=
true initially. For each eventt ∈ CTPρ,
1. if t = tfirst, do nothing;
2. if t = ti

first
, wherei ∈ T id, let ΦPO := ΦPO ∧HB(tfirst, t

i
first

);
3. otherwise,t has a thread-local preceding eventt′; letΦPO := ΦPO∧HB(t′, t).

– Variable Definition (ΦV D). Let ΦV D := true initially. For each eventt ∈ CTPρ,
1. if t has action(assume(c), asgn), for each assignmentv := exp in asgn, let

ΦV D := ΦV D ∧ (v = exp);
– The π-Function (ΦPI ). Let ΦPI := true initially. For each assignmentv′ ←

π(v1, . . . , vl), wherev′ is used in eventt, and eachvi, 1 ≤ i ≤ l, is defined in
eventti; let

ΦPI := ΦPI ∧
l∨

i=1

(v′ = vi)∧g(ti)∧HB(ti, t)∧
l∧

j=1,j 6=i

(HB(tj , ti)∨HB(t, tj))

This encodes that theπ-function evaluates tovi iff it chooses thei-th definition
in the π-set (indicated byg(ti) ∧ HB(ti, t)), such that any other definitionvj ,
1 ≤ j ≤ l andj 6= i, is defined either beforeti, or after this use ofvi in t.

4.3 Encoding Atomicity Violations

Given a setPAV of potential violations, we build formulaΦAV as follows: Initialize
ΦAV := false. Then for each event triplet〈tc, tr, tc′〉 ∈ PAV , wheretc and tr are
guarded independent undercG(tc, tr), andtr and tc′ are guarded independent under
cG(tr, tc′), as defined in Section 3, let

ΦAV := ΦAV ∨ ( g(tc) ∧ g(tr) ∧ g(tc′) ∧ ¬cG(tc, tr) ∧ ¬cG(tr, tc′)
∧HB(tc, tr) ∧HB(tr, tc′) )

Recall that for two eventst andt′, the constraintHB(t, t′) denote thatt must be ex-
ecuted beforet′. Consider a model where we introduce for each eventt ∈ CTP a
fresh integer variableO(t) denoting its position in the linearization (execution time). A
satisfiable assignment toΦCTPρ

therefore induces values ofO(t), i.e., positions of all
events in the linearization.HB(t, t′) is defined as follows:

HB(t, t′) := O(t) < O(t′)

In satisfiability modulo theory,HB(t, t′) corresponds to a special subset ofInteger
Difference Logic (IDL), i.e.O(t) < O(t′), or simplyO(t) −O(t′) ≤ −1. It is special
in that the integer constantc in the IDL constraint(x− y ≤ c) is always−1. Deciding
this fragment of IDL is easier because consistency can be reduced to cycle detection



in the constraint graph, which has a linear complexity, rather than the more expensive
negative-cycle detection [22].

Fig. 5 illustrates the CSSA-based encoding of CTP in Fig. 4. Note that it is com-
mon for many path conditions, variable definitions, and HB-constraints to be constants.
For example,HB(t0, t1) andHB(t0, t5) in Fig. 4 are alwaystrue, while HB(t5, t0)
andHB(t1, t0) are alwaysfalse—such simplifications are frequent and will lead to
significant reduction in formula size.

Path Conditions:

t0 : g0 = true

t1 : g1 = true

t2 : g2 = g1

t3 : g3 = true

t4 : g4 = g3 ∧ (b1 > 0)
t5 : g5 = g4

Program Order:

HB(t0, t1)
HB(t1, t2)

HB(t0, t3)
HB(t3, t4)
HB(t4, t5)

Variable Definitions:

(a0 = 0) ∧ (b0 = 0) ∧ (x0 = 0)
a1 = π1

x1 = a1 + 1

b1 = π2

x2 = 5

The π-Functions:
t1 : (π1 = x0) ∧ g0 ∧HB(t0, t1) ∧(HB(t5, t0) ∨HB(t1, t5))
∨ (π1 = x2) ∧ g5 ∧HB(t5, t1) ∧(HB(t0, t5) ∨HB(t1, t0))

t3 : (π2 = x0) ∧ g0 ∧HB(t0, t1) ∧(HB(t5, t0) ∨HB(t1, t5))
∨ (π2 = x1) ∧ g2 ∧HB(t2, t1) ∧(HB(t0, t2) ∨HB(t1, t0))

Fig. 5. The CSSA-based encoding ofCTPρ in Fig. 4

For synchronization primitives such as locks, there are even more opportunities to
simplify the formula. For example, ifπ1 ← π(l1, . . . , ln) denotes the value read from
a lock variablel during lock acquire, then we know that(π1 = 0) must hold, since
the lock need to be available. This means for non-zeroπ-parameters, the constraint
(π1 = li), where1 ≤ i ≤ n, always evaluates tofalse. And due to the mutex lock
semantics, for all1 ≤ i ≤ n, we knowli = 0 iff li is defined by a lock release.

The encoding ofΦ = ΦCTPρ
∧ΦAV closely follows our definitions of CTP, feasible

linearizations, and the semantics ofπ-functions. We now state its correctness. The proof
is straightforward and is omitted for brevity.

Theorem 1. FormulaΦ = ΦCTPρ
∧ ΦAV is satisfiable iff there exists a feasible lin-

earization of the CTP that violates the given atomicity property.

Let n be the number of events inCTPρ, let nπ be the number of shared variable
uses, letlπ be the maximal number of parameters in anyπ-function, and letltrans be the
number of shared variable accesses intrans. We also assume that each event inρ ac-
cesses at most one shared variable. The size of(ΦPO∧ΦV D ∧ΦPI ∧ΦAV ) in the worst
case isO(n+n+nπ× l2π +nπ× ltrans). We note that shared variable accesses in typ-
ical concurrent programs are often few and far in between, especially when compared
to computations within threads, to minimize the synchronization overhead. This means
that lπ, nπ, andltrans are typically much smaller thann, which significantly reduces
the formula size4. In contrast, in conventional bounded model checking (BMC)algo-
rithms for verifying concurrent programs, e.g. [20], whichemploy an explicitscheduler

4 Our experiments show thatlπ is typically in the lower single-digit range (the average is4).



variable at each time frame, the BMC formula size quadratically depends onn, and
cannot be easily reduced even iflπ, nπ, andltrans are significantly smaller thann.

5 Capturing Erroneous Trace Prefixes

The algorithm presented so far aims at detecting atomicity violations in all feasible
linearizations of a CTP. Therefore, a violation is reportediff (1) a three-access atomicity
violation occurs in an interleaving, and (2) the interleaving is a feasible linearization
of CTPρ. Sometimes, this may become too restrictive, because the existence of an
atomicity violation often leads to the subsequent execution of a branch that is not taken
by the given traceρ (hence the branch is not inCTPρ).

Consider the example in Fig. 6. In this trace, eventt4 is guarded by(a = 1). There
is a real atomicity violation under thread schedulet1t5t2 . . .. However, this trace prefix
invalidates the condition(a = 1) in t3—eventt4 will be skipped. In this sense, the trace
t1t5t2 . . . does not qualify as a linearization ofCTPρ. In our aforementioned symbolic
encoding, theπ-constraint int6 will become invalid.

t6 : (π2 = x1) ∧ g1 ∧HB(t1, t6) ∧(HB(t4, t1) ∨HB(t6, t4)) ∧ (HB(t5, t1) ∨HB(t6, t5))
∨ (π2 = x2) ∧ g4 ∧HB(t4, t6) ∧(HB(t1, t4) ∨HB(t6, t1)) ∧ (HB(t5, t4) ∨HB(t6, t5))
∨ (π2 = x3) ∧ g5 ∧HB(t5, t6) ∧(HB(t1, t5) ∨HB(t6, t1)) ∧ (HB(t4, t5) ∨HB(t6, t4))

Note that in the interleavingt1t5t2 . . ., we haveg4, HB(t4, t1), HB(t6, t4), HB(t4, t5),
HB(t6, t4) all evaluated tofalse. This rules out the interleaving as a feasible lineariza-
tion of CTPρ, although it has exposed a real atomicity violation.

ThreadT1 ThreadT2

atomic{
t1 : x := 0
t2 : a := x + 1
}

t3 : if(a = 1)
t4 : x := 2

t5 : x := 3
t6 : b := x;

(a) the given trace

t1 : 〈1, (assume(true ), {x1 := 0 })〉
t2 : 〈1, (assume(true ), {a1 := π1 + 1 })〉

t3 : 〈1, (assume(a1 = 1), { })〉
t4 : 〈1, (assume(true ), {x2 := 2 })〉

t5 : 〈2, (assume(true ), {x3 := 3 })〉
t6 : 〈2, (assume(true ), {b1 := π2 })〉

(b) erroneous prefix

Fig. 6.The atomicity violation leads to a previously untaken branch.

We now extend our notion of feasible linearizations of a CTP to all prefixes of its
feasible linearizations, or thefeasible linearization prefixes. The extension is straight-
forward. LetFeaLin(CTPρ) be the set of feasible linearizations ofCTPρ. We define
the setFeaPfx(CTPρ) of feasible linearization prefixes as follows:

FeaPfx(CTPρ) := {w | w is a prefix ofρ′ ∈ FeaLin(CTPρ)}

We extend our symbolic encoding to capture these erroneous trace prefixes (as op-
posed to entire erroneous traces). We extend the symbolic encoding in Section 4 as



follows. Let event triplet〈tc, tr, tc′〉 ∈ PAV be the potential violation. We modify the
construction ofΦPI (for theπ-function in eventt) as follows:

ΦPI := ΦPI ∧ ( HB(tc′ , t)∨∨l

i=1
(v′ = vi) ∧ g(ti) ∧ HB(ti, t) ∧

∧l

j=1,j 6=i(HB(tj , ti) ∨ HB(t, tj)))

That is, if the atomicity violation has already happened in some prefix, as indicated
by HB(tc′ , t), i.e. when the eventt associated with thisπ-function happens aftertc′ ,
then we do not enforce any read-after-write consistency. Otherwise, read-after-write
consistency is enforced as before, as shown in the second line in the formula above.
The rest of the encoding algorithm remains the same. We now state the correctness of
this encoding extension. The proof is straightforward and is omitted for brevity.

Theorem 2. FormulaΦ = ΦCTPρ
∧ ΦAV is satisfiable iff there exists a feasible lin-

earization prefix of the CTP that violates the given atomicity property.

6 Experiments

We have implemented the proposed algorithm in a tool calledFusion. Our tool is ca-
pable of handling execution traces generated by multi-threaded C programs using the
Linux PThreadslibrary. We use CIL [23] for instrumenting the C source code and use
the YicesSMT solver [14] to solve the satisfiability formulas. Our experiments were
conducted on a PC with 1.6 GHz Intel processor and 2GB memory running Fedora 8.

We have conducted preliminary experiments using the following benchmarks5: The
first set of examples mimic two concurrency bug patterns fromthe Apache web server
code (c.f. [1]). The original programs,atom001and atom002, have atomicity viola-
tions. We generated two additional programs,atom001aand atom002a, by adding
code to the original programs to remove the violations. The second set of examples
are Linux/Pthreads/C implementation of the parameterizedbankexample [24]. We in-
stantiate the program with the number of threads being 2,3,. . .. The original programs
(bank-av) have nested locks as well as shared variables, and have known bugs due
to atomicity violations. We provided two different fixes, one of which (bank-nav) re-
moves all atomicity violations while another (bank-sav) removes some of them. We
used both condition variables and additional shared variables in our fixes. Although
the original programs (bank-av) does not show the difference in the quality of various
prediction methods (because violations detected by ignoring data and synchronizations
are actually feasible), the precision differences show up on the programs with fixes.
In these cases, some atomicity violations no longer exist, and yet methods based on
over-approximate predictive models would still report violations.

Table 1 shows the experimental results. The first three columns show the statistics
of test cases, including the program name, the number of threads, and the number of
shared variables that are accessed in the given trace. The next two columns show the
length of the trace, in both the original and the simplified versions, and the number of
transactions (regions). Our simplification consists of trace-based program slicing, dead
variable removal, and constant folding; furthermore, variables defined as global, but
not accessed by more than one thread in the given trace, are not counted as shared in
the table (svars). The next four columns show the statistics of our symbolic analysis,

5 Examples are available at http://www.nec-labs.com/∼chaowang/pubDOC/atom.tar.gz



Table 1.Experimental results of predicting atomicity violations

Test Program The Given Trace Symbolic Analysis w/o Data [2]
name thrdssvars simplify/ original regions orig-pavshb-pavssym-avssym-time (s) pavs
atom001 3 14 50 / 88 1 8 2 1 0.03 1
atom001a 3 16 58 / 100 1 8 2 0 0.03 1
atom002 3 24 349 / 462 1 212 34 33 20.4 33
atom002a 3 26 359 / 462 1 212 34 0 17.6 33
bank-av-2 3 109 278 / 748 2 24 8 8 0.1 8
bank-av-4 5 113 527 / 1213 4 48 16 16 0.6 16
bank-av-6 7 117 770 / 1672 6 72 24 24 2.3 24
bank-av-8 9 121 1016 / 2134 8 96 32 32 2.5 32
bank-sav-2 3 119 337 / 852 2 24 8 4 0.2 8
bank-sav-4 5 123 642 / 1410 4 48 16 8 0.9 16
bank-sav-6 7 127 941 / 1960 6 72 24 12 3.8 24
bank-sav-8 9 131 1243 / 2517 8 96 32 16 4.6 32
bank-nav-2 3 119 341 / 856 2 24 8 0 0.2 8
bank-nav-4 5 123 647 / 1414 4 48 16 0 0.2 16
bank-nav-6 7 127 953 / 1972 6 72 24 0 3.7 24
bank-nav-8 9 131 1163 / 2362 8 96 32 0 140.6 32

including the size ofPAV (orig-pavs), the number of violations after pruning using
a simple static must-happen-before analysis (hb-pavs), the number of real violations
(sym-avs) reported by our symbolic analysis, and the runtime in seconds. In the last
column, we provide the number of (potential) atomicity violations if we ignore the data
flow and synchronizations other than nested locking.

The results show that, if one relies on only static analysis,the number of reported
violations (inorig-pavs) is often large, even for a prediction based on a single trace. Our
simple must-happen-before analysis utilizes the semantics of threadcreateandjoin, and
seems effective in pruning away event triplets that are definitely infeasible. In addition,
if one utilizes the nested locking semantics, as inw/o Data [2], more spurious event
triplets can be pruned away. However, note that the number ofremaining violations can
still be large. In contrast, our symbolic analysis prunes away all the spurious violations
and reports much fewer atomicity violations. For each violation that we report, we also
produce a concrete execution trace exposing the violation.This witnesstrace can be
used by the thread scheduler inFusion, to re-run the program and replay the actual
violation. We also note that the runtime overhead of our symbolic analysis is modest.
The algorithm can be used in the context of a post-mortem analysis.

7 Related Work

We have mentioned in Section 1 some of the static methods [3, 4], runtime monitor-
ing [5, 1, 6–8], and runtime prediction [9, 2, 10–13] for detecting atomicity violations.
Lu et al. [1] used access interleaving invariants to capture patterns of test runs and then
monitor production runs for detecting three-access atomicity violations. Xu et al. [5]
used a variant of the two-phase locking algorithm to monitorand detect serializability
violations. Both methods were aimed at detecting, not predicting, errors in the given
trace. In [4], Farzan and Madhusudan introduced the notion of causal atomicityin a
static program analysis focusing on the control paths; subsequently they used execution
traces for predicting atomicity violations [10, 2]. Wang and Stoller [6] also studied the



prediction of serializability violations under the assumptions of deadlock-freedom and
nested locking; their algorithms are precise for checking violations involving one or
two transactions but incomplete for checking arbitrary runs.

Our symbolic encoding for detecting atomicity violations is related to, but is dif-
ferent from, the SSA-based SAT encoding [15], which is popular for sequentialpro-
grams. Our analysis differs from the context-bounded analysis in [25, 26, 16] since they
a priori fix the number of context switches in order to reduce concurrent programs
to sequential programs. In contrast, our method in Section 4is for the unbounded
case, although context-bounding constraints may be added to further improve perfor-
mance. We directly capture the partial order indifference logic, therefore differing from
CheckFence [27], which explicitly encodes ordering between all pairs of events in pure
Boolean logic. In [28], a non-standard synchronous execution model is used to sched-
ule multiple events simultaneously whenever possible instead of using the standard in-
terleaving model. Furthermore, all the aforementioned methods were applied to whole
programs and not to concurrent trace programs (CTPs). In previous works [17, 18] we
have used the notion of CTP, but the context was stateless model checking to prune
redundant interleavings in the former, and predicting assertion failures in the later.

The quantifier-free formulas produced by our encoding are decidable due to the
finite size of the CTP. When non-linear arithmetic operations appear in the symbolic
execution trace, they are treated as bit-vector operations. This way, the rapid progress
in SMT solvers can be directly utilized to improve performance in practice. In the pres-
ence of unknown functions, trace-based abstraction techniques as in [29], which uses
concrete parameter/return values to model library functions, are employed to derive the
predictive model, while ensuring that the analysis resultsremain precise.

8 Conclusions

In this paper, we propose a symbolic algorithm for detectingthree-access atomicity
violations in all feasible interleavings of events in a given execution trace. The new
algorithm uses a succinct encoding to generate an SMT formula such that the violation
of an atomicity property exists iff the SMT formula is satisfiable. It does not report
bogus errors and at the same time achieves a better interleaving coverage than existing
methods for predictive analysis.
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A Appendix: Relating to the Predictive Model in [2, 10]

We show that our symbolic algorithm can be further constrained to mimic a known
predictive model [2, 10] in the literature. This model has been used by Farzan and Mad-
husudan for a meta-analysis of atomicity violations. This predictive method focuses
on modeling the control paths under nested locking, while ignoring the data and syn-
chronizations other than nested locks. Therefore, anif(c)...else statement in the pro-
gram can be viewed as being abstracted intoif(∗)...else to allow the execution of both
branches; an assignmentx := expr, wherex ∈ SV is shared, can be viewed as being
abstracted into WR(x); and an assignmenta := x, wherea is thread-local andx ∈ SV
is shared, can be viewed as being abstracted into RD(x). The actual values read/written
are not modeled.

We can reduceCTPρ to CAMρ, by ignoring the data flow, to mimic this model.
For events inCTPρ involving no synchronization primitives,

1. assume(c) becomesassume(∗), meaning that the condition always holds;
2. sv := expr becomessv := ∗, meaning that the actual value written to shared

variablesv ∈ SV is ignored;
3. lv := sv becomes∗ := sv, meaning that the actual value read from shared variable

sv ∈ SV (and then written to local variablelv ∈ LV ) is ignored.

For events inCTPρ involving synchronization primitives, such as locks, semaphores,
barriers, they remain the same inCAMρ.

t1 : 〈1, (assume(true ), {∗ := x}) 〉
t2 : 〈1, (assume(true ), {x := ∗}) 〉

t3 : 〈2, (assume(true ), {∗ := x}) 〉
t4 : 〈2, (assume(∗), { }) 〉
t5 : 〈2, (assume(true ), {x := ∗}) 〉

(a) first example

t1 : 〈1, (assume(true ), {x := ∗}) 〉
t2 : 〈1, (assume(true ), {∗ := x + 1}) 〉
t3 : 〈1, (assume(true ), {c := 1}) 〉

t4 : 〈2, (assume(true ), {c := 0}) 〉
t4 : 〈2, (assume(c > 0), {c := 0}) 〉
t5 : 〈2, (assume(true ), {x := ∗}) 〉

(b) second example

Fig. 7. Using CTP to mimic the predictive model in [2, 10]

SinceCAMρ shares the same form of symbolic representation asCTPρ, the sym-
bolic algorithm in Section 4 remain applicable. Due to the over-approximations in
CAMρ, our algorithm may report bogus violations.

Fig. 7 shows the reduced models for CTPs in Fig. 3. Note that both assume(∗) and
x := ∗ would lead to SMT constraints that are constanttrue, since∗ means arbitrary
value. They do not add cost to the SMT encoding. Our symbolic analysis would report
a bogus violation in the first example (data is ignored), but would not report any vio-
lation in the second example (signal/wait are modeled precisely). In this sense,CAMρ

remains more accurate than the model in [2, 10].
We note that the purpose of this exercise is to highlight the differences between

CTPρ and the existing predictive models, rather than posing themas competing meth-
ods. In practice, we suggest the use of both collaboratively: one can use over-approximate
models to quickly weed out spurious violations, and use the more preciseCTPρ to
check the remaining ones.


