
Coverage Guided Systematic Concurrency Testing

Chao Wang
NEC Laboratories America

Mahmoud Said
Western Michigan University

Aarti Gupta
NEC Laboratories America

ABSTRACT
Shared-memory multi-threaded programs are notoriously dif-
ficult to test, and because of the often astronomically large
number of thread schedules, testing all possible interleav-
ings is practically infeasible. In this paper we propose a
coverage-guided systematic testing framework, where we use
dynamically learned ordering constraints over shared object
accesses to select only high-risk interleavings for test execu-
tion. An interleaving is of high-risk if it has not be covered
by the ordering constraints, meaning that it has concurrency
scenarios that have not been tested. Our method consists
of two components. First, we utilize dynamic information
collected from good test runs to learn ordering constraints
over the memory-accessing and synchronization statements.
These ordering constraints are treated as likely invariants
since they are respected by all the tested runs. Second, dur-
ing the process of systematic testing, we use the learned or-
dering constraints to guide the selection of interleavings for
future test execution. Our experiments on public domain
multithreaded C/C++ programs show that, by focusing on
only the high-risk interleavings rather than enumerating all
possible interleavings, our method can increase the coverage
of important concurrency scenarios with a reasonable cost
and detect most of the concurrency bugs in practice.

1. INTRODUCTION
Real-world concurrent programs are notoriously difficult

to test because they often have an astronomically large num-
ber of thread interleavings. Furthermore, many concurrency
related bugs arise only in rare situations, making it difficult
for programmers to anticipate, and for testers to trigger,
these error-manifesting thread interleavings. In reality, the
common practice of running stress tests is not effective, since
the outcome is highly dependent on the underlying operat-
ing system which controls the thread scheduling. Merely
running the same test again and again does not guarantee
that the erroneous interleaving would eventually show up.
Typically, in each testing environment, the same interleav-

.

ings, sometimes with minor variations, tend to be exercised
since the scheduler performs context switches at roughly the
same program locations.

Systematic concurrency testing techniques [7, 12, 20, 18]
offer a more promising solution than stress tests. Although
the application settings are different, these techniques use
the same stateless model checking framework in order to
systematically test all possible interleavings with respect to
a program input. The model checking is stateless in that
it directly searches over the space of feasible thread sched-
ules, and in doing so, avoids storing the concrete program
states (characterized as combinations of values of the pro-
gram variables); this is in sharp contrast to classic model
checkers (e.g. [9, 8, 3]), which search over the concrete state
space—this is a well known cause of memory blowup.

In systematic concurrency testing, the model checker is of-
ten implemented by using a specialized scheduler process to
monitor, as well as control, the execution order of statements
of the program under test. A program state s is represented
implicitly by the sequence of events that leads the program
from the initial state to s. This is based on the assump-
tion that, in a program where interleaving is the only source
of nondeterminism, executing the same event sequence al-
ways leads to the same state. The state space exploration is
conducted implicitly by running the program in its real ex-
ecution environment again and again, but each time under
a different thread schedule. Therefore, systematic concur-
rency testing can handle programs written in full-fledged
programming languages such as C/C++ and Java.

Although systematic concurrency testing has advantages
over the common practice of running stress tests (where
we are at the mercy of the OS/thread library in trigger-
ing the right interleaving), it is based on a rather brute-
force and exhaustive search. The search covers all possi-
ble interleavings (w.r.t. a given test input) in a somewhat
pre-determined order, without favoring one interleaving over
another and without considering the characteristics of the
programs or properties to be tested. Systematic concurrency
testing has been shown to be very effective in unit level test-
ing (e.g. [12]). However, because of the often large number of
interleavings, such exhaustive search is practically infeasible
for realistic applications beyond unit testing.

Although there exist techniques to reduce the cost of ex-
haustive search in stateless model checking, such as dynamic
partial order reduction (DPOR [5]) and preemptive context
bounding (PCB [12]), they are not effective for large pro-
grams. For example, DPOR groups interleavings into equiv-
alence classes and tests one representative from each equiva-

lence class. It is a sound reduction in that it will not miss any
bug. However, in practice many equivalence classes them-
selves are redundant since they correspond to essentially the
same concurrency scenarios. Therefore exhaustively testing
them not only is expensive, but also rarely pays off.

We propose a coverage-guided selective search, where we
continuously learn the ordering constraints over shared ob-
ject accesses in the hope of capturing the already tested
concurrency scenarios; then we use the learned information
to guide the selection of interleavings to cover the untested
scenarios. Since in practice, programmers often make, but
sometimes fail to enforce, implicit assumptions regarding
concurrency control, e.g. certain blocks are intended to be
mutually exclusive, certain blocks are intended to be atomic,
and certain operations are intended to be executed in a spe-
cific order. Concurrency related program failures are often
the result of such implicit assumptions being broken, e.g.
data races, atomicity violations, order violations, etc. We
try to infer such assumptions dynamically from the already
tested interleavings, and use them to identify high-risk in-
terleavings for further testing, those interleavings that can
break some of the learned assumptions.

Although the programmer’s intent may come from many
sources, e.g. formal design documents and source code an-
notation, they are often difficult to get in practice. For ex-
ample, asking programmers to annotate code or write docu-
ments in a certain manner is often perceived as too much of a
burden. The more viable approach seems to be to infer them
automatically. Fortunately, the very fact that stress tests are
less effective in triggering bug-manifesting interleavings also
implies that it is viable to dynamically learn the ordering
constraints. The reason is that, if no program failure occurs
during stress tests, one can assume that the tested inter-
leavings are good—they satisfy the programmer’s implicit
assumptions [10, 21]. In addition, if the program source
code is available, the assumptions may also be mined from
the code (e.g. [19]).

In our coverage-guided selective search framework, we use
a metric called History-aware Predecessor-Set (HaPSet) to
capture the ordering constraints over the frequently occur-
ring (and non-erroneous) interleavings. HaPSets can cap-
ture common characteristics of a relatively large set of in-
terleavings. During systematic testing, we use HaPSets as
guidance to reduce the cost of systematic testing. Realizing
that it is practically infeasible to cover all possible interleav-
ings, we choose to execute only those interleavings that are
not yet covered by HaPSets. During systematic testing, we
also update the HaPSets by continuously learning from the
good interleavings generated in this process, untill there are
no more interleavings to explore or the desired bug coverage
is achieved.

We have implemented the proposed techniques in a sys-
tematic testing tool called Fusion, which is designed for test-
ing multithreaded C/C++ programs using Linux/POSIX
threads (PThreads). Using some public domain concurrent
applications as benchmarks, we show that by using HaPSets
as guidance in systematic concurrency testing, we can sig-
nificantly reduce the testing cost, while still maintaining the
capability of detecting most of the concurrency bugs in prac-
tice. More specifically, in our preliminary experiments, the
new selective search algorithm found all the bugs, and at
the same time was often orders-of-magnitude faster than
exhaustive search.

2. PRELIMINARIES

2.1 Concurrent Programs
We consider a concurrent program with a finite number of

threads as a state transition system. Threads may access lo-
cal variables in their own stacks, as well as global variables
in a shared heap. Program statements that read and/or
write global variables are called (shared) memory-accessing
statements. Program statements that access synchroniza-
tion primitives are called synchronization statements. Pro-
gram statements that read and/or write only local variables
are called local statements. For ease of presentation we as-
sume that there is only one statement per source code line.
Let Stmt be the set of all statements in the program. Then
each st ∈ Stmt corresponds to a unique pair of source code
file name and line number.

A statement st may be executed multiple times, e.g., when
it is inside a loop or a subroutine, or when st is executed
in more than one thread. Each execution instance of st is
called an event. Let e be an event and let stmt(e) denote the
statement generating e. An event is represented as a tuple
(tid, type, var), where tid is the thread index, type is the
event type, and var is a shared variable or synchronization
object. An event is of one of the following forms.

1. (tid, read, var) is a read from shared variable var;

2. (tid, write, var) is a write to shared variable var;

3. (tid, fork, var) creates the child thread var;

4. (tid, join, var) joins back the child thread var;

5. (tid, lock, var) acquires the lock variable var;

6. (tid, unlock, var) releases the lock variable var;

7. (tid, wait, var) waits on condition variable var;

8. (tid, notify, var) wakes up an event waiting on var;

9. (tid, notifyall, var) wakes up all events waiting on var.

In addition, we use the generic event (tid, access, var) to
capture all other shared resource accesses that cannot be
classified as any of the above types, e.g. accesses to a socket.
We do not monitor thread-local statements.

2.2 The State Space
We use S to denote the set of program states. A transition
S

e
→ S advances the program from one state to a successor

state by executing an event e. An event is enabled in state s

if it is allowed to execute according to the program seman-
tics. We use s

e
→ s′ to denote that event e is enabled in

s, and state s′ is the next state. Two events e1, e2 may be
co-enabled if there exists a state s in which both of them
are enabled. An execution ρ (interleaving) is a sequence
s0, . . . , sn of states such that for all 1 ≤ i ≤ n, there exists

a transition si−1

ei→ si.
During systematic concurrency testing, ρ is stored in a

search stack S. We call s ∈ S an abstract state, because
unlike a concrete program state, s does not store the ac-
tual valuation of all program variables. (Storing concrete
program states is less practical for large concurrent appli-
cations.) Instead, each s is implicitly represented by the
sequence of executed events leading the program from the

initial state s0 to s. This is based on the assumption that
executing the same event sequence leads to the same state.

Two concurrent transitions are independent if and only
if the two events can neither disable nor enable each other,
and swapping their order of execution does not change the
combined effect. For example, two events are dependent if
they access the same the object and at least one is a write
(modification); and a lock acquire is dependent with another
lock acquire over the same lock variable. In the literature
(e.g. [6]), two interleavings are considered as equivalent iff
they can be transformed into each other by repeatedly swap-
ping the adjacent and independent transitions.

2.3 Predecessor Sets
An execution ρ = s0 . . . sn defines a total order over the

set of memory-accessing and synchronization events. The
predecessor set (PSet [21]) was designed to efficiently cap-
ture the event ordering constraints common to a potentially
large set of executions. To this end, PSet was defined over
memory-accessing statements, i.e. between read/write op-
erations that may be executed adjacent to each other. Syn-
chronization statements are ignored (this does not suit our
purpose; we will extend in our definition of HaPSet).

Definition 1 (PSet). Given a set {ρ1, . . . , ρn} of in-
terleavings and a memory-accessing statement st ∈ Stmt.
The predecessor set, denoted PSet[st], is a set {st1, . . . , stk}
of statements such that, for all i : 1 ≤ i ≤ k, an event
produced by statement st is immediately dependent upon an
event produced by statement sti in some interleaving ρj,
where 1 ≤ j ≤ n.

Event e is immediately dependent upon ei if and only if ei

is the last event in its thread accessing the same object as
t, and it is also dependent with e. Both st and sti are
statements rather than events, which are distinct execution
instances of these statements. This is meant to keep PSets
general enough so that the PSets learned from one correct
interleaving remain valid for another correct interleaving,
possibly under a different program input.

PSets are powerful enough to characterize the common
bug patterns such as data races, atomicity violations, and
order violation. Since each PSet[st] has at most |Stmt| el-
ements, the space to store all PSets is O(|Stmt|2) in the
worst case. On average, however, the PSets learned from
real-world programs are usually very small. The study in
[21] showed that 95% of the program statements have an
empty PSet, and for well-designed test suites, typically it
takes less than 100 interleavings for PSet learning to con-
verge, i.e. few new updates are possible afterward.

3. ORDERING CONSTRAINTS
Although PSets are efficient in capturing ordering con-

straints common to a large set of thread interleavings, as
a coverage metric it does not suit our purpose well. This
is because the applications are different. In [21], PSets are
collected from good runs during testing and then treated
as program invariants during production runs. A special-
purpose microprocessor is designed to ensure that the PSets
are always obeyed (with checkpoints and rollbacks upon
PSet violations). The rationale is that, if PSets capture
the concurrency scenarios of the tested interleavings, then
by allowing only PSet-obeying interleavings in production

runs, one can steer away from program failures even if the
programs are still buggy.

In this paper, our goal is not runtime failure avoidance
as in [21] but to improve the coverage during testing. The
main difference is that, for failure avoidance, it is acceptable
if some already tested interleavings are not captured by the
PSets (as long as they are rare, disallowing them in pro-
duction runs will not hurt performance much). However,
for testing, it is crucial to capture what has already been
tested, since the purpose is to prevent the same concurrency
scenario from being tested again.

3.1 History-aware Predecessor Sets
We extend the idea of PSet to define a new coverage met-

ric called HaPSet1. There are two main differences between
HaPSets and PSets. First, we consider both synchronization
statements (e.g. lock acquires) as well as memory-accessing
statements in the definition of HaPSet. Second, for each
st ∈ Stmt, in addition to the fields file and line, we include
thr and ctx, where thr is the thread that executes st and ctx

is the call stack at the time st is executed. The reason is as
follows: With (file, line), there remains some degree of am-
biguity regarding the statement which produces an event at
run time. For example, the same statement may be executed
in multiple function/method call contexts, or from multiple
threads. In many cases, especially in object-oriented pro-
grams, such information is useful and should be included in
order to capture any meaningful ordering constraint.

Since at run time, both the number of threads and the
number of distinct calling contexts can be large, to avoid
memory blowup, ctx only stores the most recent k (some
small number—5 in our experiments) entries in the call
stack, and thr only takes two values: 0 means it is the lo-
cal thread, and 1 means it is the remote thread. Let e and
e′ be two events in an interleaving such that stmt(e) = st

and stmt(e′) = st′, we have st.thr = 0 and st′.thr = 1
when tid(e) < tid(e′), and st.thr = 1 and st′.thr = 0 when
tid(e) > tid(e′). We do not consider tid(e) = tid(e′), since
it never triggers the HaPSet update. Formally, statement
st is now defined as a tuple (file, line, thr, ctx), where file

is the file name, line is the line number, thr ∈ {0, 1} is the
thread, and ctx is the truncated calling context.

Definition 2 (HaPSet). Given a set {ρ1, . . . , ρn} of
interleavings and a memory-accessing or synchronization state-
ment st ∈ Stmt. The History-aware Predecessor Set, or
HaPSet[st], is a set {st1, . . . , stk} of statements such that,
for all i : 1 ≤ i ≤ k, an event e produced by st is imme-
diately dependent upon an event ei produced by sti in some
interleaving ρj, where 1 ≤ j ≤ n.

Note that this metric includes both syntactic and seman-
tic elements. Data conflicts are at the heart of most con-
currency errors (data races, atomicity violations, etc.)–these
are tracked to make this metric relevant for the purpose of
finding bugs. However, a generalization is achieved by as-
sociating it syntactically with statements, rather than with
states. The thread index is again designed to distinguish
between two threads for catching bugs, but abstracts over
specific thread ids, thereby ensuring that it is scalable over
many threads. Finally, by including a bounded functional
context, we provide some measure of context-sensitivity–this
is especially useful for object-oriented programs.
1pronounced as “Happy Set.”

Thread T1 Thread T2

{ //alloc
e1 : p := &a;
}

{ //use
e2 : if (p 6= 0)
e3 : ∗ (p) := 10
}

{ //free
e4 : p := 0;
}

e4 : W (p)

e2 : R(p)

e1 : W (p)

e3 : R(p)

e3 : W (a)

Figure 1: A serial execution of the intended atomic
block (e2e3).

Example. Consider Figure 1, which has two threads T1, T2

sharing the pointer p. Assume that p = 0 initially. In the
given execution, p is first initialized in e1, then used in e2, e3,
and finally freed in e4. (We assume e1 − e4 are statements
in the form (file, line, thr, ctx).) Since e1 is the last state-
ment before e2 and they have a data conflict, we add e1

to HaPSet[e2]. For e3 we do not add any statement into
HaPSet[e3] because e2 is the last statement accessing p but
it is from the same thread (hence no conflict). We add e3 to
HaPSet[e4] since e3 precedes e4 in the given execution, and
they have a data conflict. To sum up, the HaPSets learned
from this execution are as follows,

HaPSet[e1] = { }, HaPSet[e2] = {e1},
HaPSet[e3] = { }, HaPSet[e4] = {e3}.

3.2 Why HaPSets are Useful?
We show that the seemingly simple HaPSets are capable

of capture subtle concurrency control patterns.

3.2.1 Atomicity Violation
Consider Figure 1 again. In this example, the block con-

taining e2, e3 is meant to be executed atomically—it first
checks whether the pointer p is null, and if it is not null,
assign 10 to the memory location pointed by p. Therefore,
whether e2 and e3 are two consecutive reads of an inter-
leaving is the key in deciding whether the interleaving is
buggy or not. Let us see how HaPSets capture this atomic-
ity constraint. First, note that in all good runs (where the
atomicity is not violated), HaPSet[e3] is always empty. This
is because, although e1, e4 can be executed either before
e2 or after e3, event e3 is always preceded by e2. There-
fore, neither e1 nor e4 can appear in HaPSet[e3]. Second,
e2 6∈ HaPSet[e4] because e3 (instead of e2) always precedes
e4. Therefore the HaPSets leaned from all the good runs are
as follows,

HaPSet[e1] = {e2}, HaPSet[e2] = {e1, e4},
HaPSet[e3] = { }, HaPSet[e4] = {e3}.

When using HaPSets as guidance during the systematic test-
ing, it would be more fruitful to test interleavings that have
not been covered by the above HaPSets. One such interleav-
ing is ρ′ = e1e2e4e3, which violates the atomicity and leads
to the dereference of a null pointer. Note that ρ′ corresponds
to HaPSet[e3] = {e4} and HaPSet[e4] = {e2}.

3.2.2 Busy Waiting

Thread T1

a do {
b lock(A)
c tmp = x;
d unlock(A)
e } while(tmp);

Thread T2

f lock(A)
g x = 1;
h unlock(A)

execution

c1: R(x)
...

c2: R(x)
...

g: W(x)
cn: R(x)

Figure 2: The busy waiting example. Without
HaPSet, systematic testing would result in exces-
sive backtracking.

HaPSets can be used to avoid excessive testing of redun-
dant interleavings—those that do not offer any new concur-
rency scenario. Consider Figure 2 as an example. There are
two threads T1, T2 communicating via variable x. Assume
that x = 0 initially. In the given execution {abcde}kfghabcde,
the loop in T1 is executed k times before g in thread T2 is
executed.

Without the HaPSet learning and guidance, systematic
testing would have to test a potentially large set of inter-
leavings, each with a different number of loop iterations.
This is because, strictly speaking, none of these interleav-
ings are equivalent to others; therefore, based on the theory
of partial order reduction, one needs to test all of them.
However, such tests are often wasteful since they rarely lead
to additional bugs. The HaPSets computed on the given
execution are

HaPSet[g] = {c}, HaPSet[c] = {g},
HaPSet[b] = {f}, HaPSet[f] = {b}.

since some instances of statement c (or f) are immediately
dependent on instances of g (or b), and vice versa. (Except
for recursive locks, we ignore unlock statements in the com-
putation of HaPSets.) When using HaPSets as guidance,
we can avoid the aforementioned excessive backtracking be-
cause none of these interleavings can offer a concurrency
scenario that has not been covered by the HaPSets.

3.3 Learning from Good Runs
For our guided search to be effective, we need to learn

HaPSets from a diversified set of interleavings. The quality
of the learned HaPSets will be affected by both the test cases
and the thread schedules. To diversify the thread schedules,
we add randomized delays. In this testing environment, the
program is executed under the control of a scheduler process,
which is capable of controlling the order of operations from
different threads. These control points are inserted into the
program source code automatically via an instrumentation
phase, before the source code is compiled into an executable.

For HaPSet learning, we maintain the following data struc-
tures: a set HaPSet[st] for each statement st ∈ Stmt; and
a search stack S of abstract states s0 . . . sn, where s0 is the
initial state and sn is the final state of the interleaving. Re-
call that each s ∈ S is an abstract state because s does not
store the actual valuations of program variables. Let si.sel

be the event executed at si in the given interleaving in order
to reach si+1.

The pseudo code of our HaPSet learning is presented in
Algorithm 1. The procedure randCTest takes the initial
state s0 as input and generates the first interleaving with a
randomized thread schedule. Each state s ∈ S is associated
with a set s.enabled of events. Recall, for example, that

a lock acquire would be considered as disabled at s, if the
lock is held by another thread. Similarly, a wait would be
considered as disabled at s, if the notification has not been
sent. At each execution step, we randomly pick an event
e ∈ s.enabled, execute it from s, which leads to state s′.

Note that the thread schedules ultimately are still deter-
mined by the underlying operating system. This ensures
that all the generated interleavings are real. If any of them
can trigger a program failure, then it is a real bug. Other-
wise, all of them are assumed to be good runs, in that they
expose the desired program behavior.

Algorithm 1 Learning from good test runs

1: Initially: For all statements st, HaPSet[st] is empty;
2: S is an empty stack; randCTest(s0)

3: randCTest(s) {
4: S.push(s);
5: LearnHaPSets(s); // learning HaPSets

6: while (s.enabled is not empty) {
7: Let e be a randomly chosen item from s.enabled;
8: Delay thread tid(e) for a randomly chosen period;
9: Let s.sel = e;

10: Let s′ be the new state after executing s
e
→ s′;

11: randCTest(s′);
12: }
13: S.pop(s);
14: }

15: LearnHaPSets(s) {
16: if (s 6= s0)){
17: Let sp ∈ S be the state preceding s;
18: Traverse stack S, for each thread, find the last state

sd. where sd.sel and sp.sel access the same object;
19: if (sd.sel and sp.sel have a data conflict) {
20: Let stp =stmt(sp.sel);
21: Let std =stmt(sd.sel);
22: HaPSet[stp]← HaPSet[stp] ∪ {std}
23: }
24: }
25: }

During each run, we invoke learnHaPSets at every ex-
ecution step. The input to this procedure is the newly
reached state s. Let sp be the state prior to reaching the
current state s, and sp.sel be the event executed between sp

and s. For each thread, we find the last executed event sd.sel

such that (1) sd.sel and sp.sel access the same object, (2)
they are executed by different threads, and (3) there is a data
conflict (read-write, write-write, lock-lock, or wait-notify).
If such an sd.sel exists, we add the statement stmt(sd.sel)
into the HaPSet of stmt(sp.sel).

4. SYSTEMATIC TESTING
As we mentioned earlier, systematically testing all pos-

sible interleavings can be achieved using stateless model
checking. It can be viewed as a natural extension of rand-
CTest in Algorithm 1. However, unlike randomized testing,
here the scheduler has total control in deciding and enforcing
the actual thread schedule.

4.1 Overall Algorithm

The overall algorithm is illustrated in Algorithm 2 by pro-
cedure sysCTest. It checks all possible thread schedules of
the program for a given test input.

Algorithm 2 Systematic concurrency testing framework

1: Initially: S is an empty stack; sysCTest(s0)

2: sysCTest(s) {
3: S.push(s);
4: UpdateBacktrack(s);
5: let τ ∈ T id such that ∃t ∈ s.enabled : tid(t) = τ ;
6: s.backtrack ← {τ};
7: s.done← ∅;
8: while (∃t: tid(t) ∈ s.backtrack and t 6∈ s.done) {
9: s.done← s.done ∪ {t};

10: let s.sel = t;

11: let s′ be the new state after executing s
t
→ s′;

12: sysCTest(s′);
13: }
14: S.pop();
15: }

16: UpdateBacktrack(s) {
17: for each t ∈ s.enabled {
18: let sd ∈ S and sd.sel be the latest event such that

sd.sel is dependent and may be co-enabled with t,
19: if (such sd exists){
20: sd.backtrack ← sd.backtrack∪ BtSet(sd, t)
21: }
22: }
23: }

In addition to s.enabled, each state s is also associated
with a set s.done ⊆ s.enabled of already executed events; it
records the scheduling choices made at s in some previous
test runs. Furthermore, each state s is associated with a set
s.backtrack, consisting of a subset of the enabled threads
at s. Each τ ∈ s.backtrack represents a future scheduling
choice at s, i.e. thread τ will be executed at s in some future
test run.

The procedure sysCTest takes state s as input, where s0

is used for the initial call. At each execution step, it first in-
vokes subroutine updateBacktrack to update backtrack-
ing points at some previous state s′ ∈ S. (Backtracking will
be explained in the next paragraph.) Then from s.backtrack

it picks an enabled thread τ to execute, leading to a dis-
tinct thread interleaving down the line. The recursive call
at Line 11 returns only after the interleaving ends and we
have backtracked to state s. At this point, s.backtrack must
have been updated by some previous call to sysCTest; it
may contain some threads other than τ , meaning that exe-
cuting them (as opposed to τ) from state s may lead to dif-
ferent interleavings. The entire procedure terminates when
we backtrack from state s0 eventually. Since we do not store
the concrete program states in S, backtracking to a state s′

is implemented by re-starting the test run and then applying
the same thread schedule till state s′ is reached again.

In the naive approach, at every state s ∈ S, s.backtrack

consists of all the enabled threads. The set of interleavings
generated by this naive algorithm is the same as the set
of possible interleavings generated by the actual program
execution. However, the naive approach may end up test-

ing many redundant interleavings. updateBacktrack(s)
is designed to remove some of the redundant interleavings.
It takes the current state as input and iterates through all
the enabled event t ∈ s.enabled to find the latest event sd.sel

that is dependent and may be co-enabled with t. If such an
sd exists, it means that if we flip the execution order from
sd.sel . . . t to t . . . sd.sel, the new interleaving will not be
equivalent to the current one. In practice, the various sys-
tematic concurrency testing tools differ mainly in their ways
of computing the backtrack set.

4.2 Backtracking: Baseline and Variations
The baseline algorithm is only slightly different from the

naive algorithm. That is,

BTSet← {tid(q) | q ∈ sd.enabled}

It is still more efficient than the naive algorithm, since it
adds BTSet only at state sd (as opposed to every state).
For example, consider the case where sd does not exist in
Line 18. In this case, t is independent with all the previously
executed events (sd.sel for all sd ∈ S), and swapping the
execution order of t and sd.sel would not lead to a new
equivalence class. The baseline algorithm would not add
any backtrack point for such cases.

4.2.1 Preemptive Context-Bounding (PCB)
Traditionally, a context switch is defined as the comput-

ing process of storing and restoring the CPU state (context)
when executing a concurrent program, such that multiple
processes or threads can share the same CPU resource. The
idea of using context bounding to reduce complexity of soft-
ware verification was first introduced by Qadeer and Wu [14]
for static program analysis and later extended to testing [12].
It has since become an influential techniques since in prac-
tice many concurrency bugs can be exposed by interleavings
with few context switches. In this setting,

BTSet← {tid(q) | q ∈ sd.enabled, and cb(sd, q) ≤ mcb}

where cb(sd, q) is the number of context switches after exe-
cuting q at sd, and mcb is the maximal number of preemp-
tive context switches allowed in an interleaving. From state
sd, one can execute event q only if the number of context
switches will not exceed the bound.

Although PCB allows us to skip many interleavings, for
those with ≤ mcb context switches, it still needs to test them
using brute-force exhaustive search. For large programs,
even with small context bound (e.g. 4 or 5), the number of
thread interleavings can still be extremely large.

4.2.2 Dynamic Partial Order Reduction (DPOR)
Partial order reduction is based grouping interleavings

into equivalence classes and then testing only one represen-
tative from each equivalence class. It is a well studied topic
in model checking. For concurrency testing, the most ad-
vanced technique is the DPOR algorithm by Flanagan and
Godefroid [5]. BTSet is computed by Algorithm 3. First,
we search for an event q ∈ sd.enabled such that there ex-
ists a happens-before relation between q and the currently
enabled event t. Intuitively, q happens before t in an in-
terleaving if either (a) we cannot execute t before q due to
program semantics, or (b) swapping the execution order of q

and t would lead to a different equivalence class. Obviously
q happens before t if they are from the same thread. Other

examples include (1) q and t are from different threads but
have data conflict over a shared object; and (2) there exist
events r, s in the interleaving such that, q happens before r,
r happens before s, and s happens before t. The happens-
before relation is transitive (cf. [5]).

Algorithm 3 Computing the backtrack set in DPOR.

1: let q ∈ sd.enabled such that either tid(q) = tid(t), or
there is a happens-before relation between q and t }

2: if (such q exists)
3: BTSet ← {tid(q)};
4: else
5: BTSet ← {tid(q) | q ∈ sd.enabled};

If such q exists, then we have a reduction—we only need
to add tid(q) to sd.backtrack, since executing thread tid(q)
is necessary for the purpose of swapping t and sd.sel. (In
POR theory, this backtrack set is called a persistent set.)
Otherwise, we do not have reduction and have to resort
to the baseline to add all enabled threads to sd.backtrack.
Although partial order reduction is sound in that it never
misses real bugs, in practice, the number of interleavings
after DPOR can still be very large.

5. GUIDING SYSTEMATIC TESTING
Our coverage-guided search algorithm builds on the sys-

tematic testing framework in Algorithm 2. In contrast to
the exhaustive search strategies used by DPOR and PCB,
we use HaPSets learned from the already tested (good) runs
to select high-risk interleavings for future testing. In this
section, we first explain how to use HaPSets to guide the
interleaving selection, and then explain how to continuously
update the HaPSets.

5.1 Guiding Interleaving Selection
We achieve this by modifying the implementation of sub-

routine updateBacktrack. Recall that in Algorithm 2,
Line 18 of updateBacktrack searches through the stack
S to find the last event sd.sel that is dependedent and may
be co-enabled with t. If such an sd.sel exists, it means that
swapping the execution order from sd.sel . . . t to t . . . sd.sel

would produce a different interleaving. In the modified ver-
sion, we insist that in addition to the condition in Line 18,
the following HaPSet related condition must hold: stmt(t) 6∈
HaPSet[stmt(sd.sel)].

Note that if stmt(t) is not in the HaPSet of stmt(sd.sel),
it means that in all tested runs, the statement that gener-
ates sd.sel has never been immediately dependent upon the
statement that generates t. In this case, the new execution
order t . . . sd.sel represents a concurrency scenario that has
never been covered by the previous test runs. On the other
hand, if stmt(t) is already in the HaPSet of stmt(sd.sel),
the new interleaving would have a lower risk because this
concurrency scenario has been covered previously.

Algorithm 4 illustrates our new procedure UpdateBack-
track for HaPSet guided selective search. One of the main
advantages of our HaPSet guided search is that, it fits natu-
rally into the existing flow of systematic testing. The addi-
tion of HaPSet guided search requires only small changes to
the software architecture. The guidance from HaPSets affect
only our selection of state sd (Line 4). Once sd is selected,
the backtrack set can be computed independently. This

Algorithm 4 Guiding the systematic testing (with DPOR)

1: UpdateBacktrack(s) {
2: for each t ∈ s.enabled {
3: let sd ∈ S and sd.sel be the latest event such that

(1) sd.sel is dependent and may be co-enabled with
t,

(2) stmt(t) 6∈ HaPSet[stmt(sd.sel)]; // guiding

4: if (such sd exists){
5: sd.backtrack ← sd.backtrack∪ BtSet(sd, t)
6: }
7: }
8: }

means we can choose to use the various existing methods to
compute BTSet. In practice, we have found that both PCB
and DPOR work well under the guidance of HaPSets, al-
though combining HaPSet with DPOR often performs slightly
better. Note that HaPSet guidance effectively prunes away
large subspaces in the search. Unlike DPOR, this pruning
is not safe, i.e. it may miss errors. This is the basic tradeoff
we make to gain scalability and improved performance.

At this point, one may contemplate the possibility of us-
ing HaPSets with both DPOR and PCB. We caution that
there is a theoretical difficulty in soundly combining PCB
with DPOR (or any persistent-set based POR) in the first
place. PCB and DPOR fundamentally are not compatible,
because if you use both, and also set the context bound is
k, some equivalence classes may be missed completely even
if they actually contain some interleavings with CB ≤ k. In
[11], Musuvathi and Qadeer designed a method to combine
a sleep-set based POR with context bounding (and method
is quite involved), but to our knowledge, there has been
no method for soundly combining PCB with persistent-set
based POR (such as DPOR).

5.2 Continuous Learning
In our guided search framework, the quality of HaPSets

is very important. Although we try to diversify the thread
schedules via randomization, the training runs may still miss
crucial concurrency scenarios. The interleaving encountered
during the guided search may contain these missing con-
currency scenarios, and therefore are complementary to the
initial learning. Therefore, we propose to update the initial
HaPSets during systematic testing by continuously learning
from the tested (good) interleavings. Continuous learning is
made possible by the fact that, unless a bug is detected, the
interleaving checked by systematic testing is always a good
run.

Algorithm 5 illustrates the overall selective search algo-
rithm, wherein the call to learnHaPSets at Line 4 allows
for continuous learning of HaPSets. The learning subrou-
tine is the same as the one used during the initial learning
in Algorithm 1.

The nice thing about continuous learning is that, the good
interleavings produced by systematic testing are freely avail-
able, since they are byproducts of the search. The more
concurrency scenarios we capture using the HaPSets, the
less number of interleavings would need to be tested in the
future. This ensures progress with respect to the HaPSet
coverage metric. Therefore, on-the-fly updating HaPSets al-
lows the guided search to become a self-improving process,

Algorithm 5 Continuous learning within systematic testing

1: Initially: S is an empty stack; guidedCTest(s0)

2: guidedCTest(s) {
3: S.push(s);
4: LearnHaPSets(s); // continuous learning

5: UpdateBacktrack(s);
6: let τ ∈ T id such that ∃t ∈ s.enabled : tid(t) = τ ;
7: s.backtrack ← {τ};
8: s.done← ∅;
9: while (∃t: tid(t) ∈ s.backtrack and t 6∈ s.done) {

10: s.done← s.done ∪ {t};

11: let s′ be the new state after executing s
t
→ s′;

12: guidedCTest(s′);
13: }
14: S.pop();
15: }

making the whole process converge much faster.

Example. Consider Figure 2 again. Assume that the first

interleaving is ρ1 = s0
a
→ s1

f
→ s2

g
→ . . . s5

b
→ s6

c
→

The HaPSets computed from ρ1 via continuous learning
are HaPSet[c] = {g}, HaPSet[b] = {f}. Furthermore, the
DPOR backtrack sets will be s1.backtrack = {1, 2} and
s2.backtrack = {2}, since thread 1 is disabled at state s2.
According to our guided search algorithm, the next inter-

leaving to be executed is ρ2 = s0

a
→ s1

b
→ The new

HaPSets computed from ρ2 are HaPSet[g] = {c}, HaPSet[f] =
{b}. After that, however, our guided search algorithm will
allow no other interleavings. The key point here is that, in
many cases the pruning actually happens at states like s1,
where the locking statements are executed, not at the states
where the memory-accessing statements (c, g) are executed.
This is why we need to include synchronizations in the def-
inition of HaPSet. In fact, if we use only memory-accessing
statements (as in the definition of PSet [21]), there will be
no pruning possible for Figure 2.

6. EXPERIMENTS
We have implemented the proposed method in a tool called

Fusion. The tool is capable of testing multithreaded C/C++
programs written using the POSIX thread library. We use
source code instrumentation to add the monitoring and con-
trol points to the program, in order to control the memory-
accessing and synchronization statements at run time. Our
implementation is based on the C/C++ front-end from Edi-
son Design Group. The instrumentation consists of two
steps: (1) before each shared memory access, it inserts a
request to the scheduler asking for permission to execute;
(2) before each PThreads library routine, it inserts a re-
quest to the scheduler. Since identifying a priori the set
of memory locations that may be shared by more than one
thread is difficult for realistic C/C++ programs (due to the
widespread use of pointers and heap allocated data struc-
tures), we use a light-weight intra-procedural escape analy-
sis to conservatively decide whether a statement may access
the shared memory. This is a sound approximation because
treating a local statement as if it is shared poses no threat
to the correctness of our testing tool—it merely increases
the monitoring/control overhead at runtime.

In addition, any system/library function calls that may
block the calling thread also need to be monitored. This in-
cludes, for example, system calls for socket communication
(e.g. select, send, recv). This also includes system calls
using realtime information (e.g. usleep(), sched yield(),

pthread cond timedwait()). Such system calls need to be
properly modeled by the scheduler of the testing tool.

We conducted experiments on some real-world C/C++
applications written for the Linux/PThreads platform. All
benchmarks are from the public domain, accompanied by
test cases to facilitate concrete execution. Our experiments
were conducted on a workstation with 2.8 GHz Pentium D
processor and 2GB memory. We have compared the runtime
performance as well as the bug-detecting capability of the
following methods: HaPSet, DPOR, and PCB. Here HaPSet
is our guided search algorithm. DPOR is the original DPOR
algorithm [5]. For PCB [12], we have set the context switch
bounds from 0 to 4. For a fair comparison of the three
testing methods, we skipped a priori HaPSet learning ses-
sions, while relying solely on continuous learning to infer the
HaPSets.

6.1 The Thrift C++ Library
Our first set of benchmarks come from the Thrift C++

library. Thrift is a software framework used by Facebook
for scalable cross-language services development. The li-
brary has 18.5K lines of C++ code. We used the version
checked out directly from the main development trunk (as
of the paper submission time). The test program is also from
the main trunk, as part of the make check script. There is
a deadlock error inside the concurrency package, which it-
self is a thin C++ layer wrapping up PThreads mutex and
condition variable routines to support thread pool and task
management.

The original test program was written for stress tests. It
upfront creates hundreds of worker threads and tens of thou-
sands of tasks to run in parallel. This is a typical way of cre-
ating a heavy workload, hoping to increase the odds of trig-
gering some rare and bug-manifesting interleavings. With
systematic testing, we do not need that many threads/tasks
to expose bugs. Therefore, we set the number of threads
from 2 to 5, and with on average 5 tasks per threads.

We compared the performance of the three methods. The
results are shown in Table 1. The first four columns show
the name, the lines of code, the number of threads, and the
bug type. Here thrift-lib-w2-5t, for example, stands for the
test case with 2 worker threads and 5 tasks per worker. The
remaining columns show the performance of each method,
including the number of interleavings tested and the run
time in seconds. We set the time bound to 10 minutes per
method, i.e. TO in the table means timed out in 600 seconds
without finding a bug.

The results show that HaPSet found all the bugs and was
also fast. Furthermore, it scaled well as we increased the
number of concurrent threads. In comparison, DPOR found
a bug for the 2-worker case, while timed out for the other
cases. For PCB0 (with mcb = 0), it terminated in 247.2
seconds and missed the bug. (Our experience shows that in
general PCB0 is not effective since it frequently misses real
bugs.) With context bound set to 1, PCB found the bugs
for the 2-worker and 3-work cases. However, PCB did not
scale as well when we increased the number of threads or
the context bound.

All three algorithms have significant runtime overhead in
comparison to a native test execution. Depending on the
types of target programs, i.e. CPU-bound or communication-
bound, the slowdown ranges from 10X to 100X. This over-
head comes from two sources. First, in order to control
the nondeterminism in executing concurrent programs, the
scheduler insists that at any time, only one thread is al-
lowed to execute. This essentially serializes a concurrent
execution. Second, the monitoring and control of memory-
accessing events often have large overhead.

For thrift-lib-w2-5t, although HaPSet checked 14 runs,
it actually spent more time than what DPOR spent on
checking 23 runs. This is because not all these 14 runs are
included in the 23 runs; and each run may execute a dif-
ferent set of statements and therefore may take a different
amount of time. Furthermore, both HaPSet learning and
guiding have some computational overhead.

6.2 The aget/pbzip/pfscan Benchmarks
Our second set of benchmarks are medium-size multi-

threaded applications downloaded from the sourceforge.com
website. They include aget-0.4, a ftp client capability of
concurrently downloading different segments of a large file,
pbzip2-0.9.4, a parallel implementation of bzip2 for file com-
pression and decompression, and pfscan-1.0, a concurrent
file scanner that combines the functionality of find, xargs

and fgrep. First we compared the performance of the three
methods. The results are shown in Table 2. For these ex-
ampels, HaPSet found all the bugs and was also the fastest,
whereas both DPOR and PCB2 timed out on pbz2-f and
pfscan .

Table 2: Comparison of HaPSet, DPOR, and PCB2
on the aget/pbzip2/pfscan examples

Test Program HaPSet DPOR PCB2
name LoC bug thr runs time runs time runs time

aget 1.2k race 6 14 36.9 96 173 94 172
pbzip2 1.9k order 7 2 0.5 2 0.5 2 0.5
pbz2-f 1.9k race 7 8 2.6 608 TO 631 TO
pfscan 960 deadlk 3 28 2.8 1541 TO 2867 TO

In aget, there is a data race over a variable called bwritten

which is shared by the multiple downloading worker threads
and a separate thread updating the progress bar. In pbzip2,
there is an order violation between the main thread and the
consumer threads, sometimes causing a segmentation fault
as a result of null pointer dereferencing. After fixing this bug
(pbz2-f), our tool found a previously unreported data race
over variables OutputBuff[i].buf and OutputBuff[i].bufSize

between the consumer threads and the fileWriter thread.
This is a real bug that may cause corrupted file output.
In pfscan, there is an injected order violation [21], where a
variable called aworkers, if initialized too late in time, may
cause the main thread to hang.

On aget, we also compared the various settings of PCB
(with mcb from 0 to 4), to assess its scalability. The results
in Table 3 show that, PCB0 timed out after 10 minutes with-
out finding the bug. With all the other settings, PCB found
the bug. Although PCB1 has the best performance for this
example, we caution that in general one needs at least PCB2
since even the simplest atomicity violations need at least two

Table 1: Comparison of HaPSet, DPOR, and PCB with various bounds on the thrift-lib-cpp example.
Test Program HaPSet DPOR PCB0 PCB1 PCB2 PCB3

name LoC thrds bug type runs time(s) runs time(s) runs time(s) runs time(s) runs time(s) runs time(s)

thrift-lib-w2-5t 18.5k 3 deadlk 14 27.8 23 18.6 512(no) 247.2 26 29.2 215 146.9 871 TO
thrift-lib-w3-5t 18.5k 4 deadlk 18 27.5 733 TO 1301 TO 399 229.7 876 TO 742 TO
thrift-lib-w4-5t 18.5k 5 deadlk 22 33.7 665 TO 1111 TO 980 TO 677 TO 639 TO
thrift-lib-w5-5t 18.5k 6 deadlk 25 38.1 572 TO 899 TO 670 TO 582 TO 573 TO

context switches to trigger—with PCB1, no program failure
caused by atomicity violation can be detected.

Table 3: PCB with various context bounds on aget

PCB0 PCB1 PCB2 PCB3 PCB4
runs time runs time runs time runs time runs time

286 TO 12 24.9 94 172 151 277 95 174

On aget, we also assessed the scalability of HaPSet by
gradually increasing the number of worker threads from 2
to 10. The results in Table 4 show that the number of in-
terleavings tested by HaPSet (before the bug is detected)
grows only modestly. This is mainly due to the abstrac-
tion over specific thread ids that we use in the definition of
HaPSets. This is in contrast to both DPOR and PCB, where
the number of interleavings typically grow exponentially as
we increase the number of threads.

Table 4: HaPSet on various threads of aget

2 threads 3 threads 4 threads 5 threads 6 threads
runs time runs time runs time runs time runs time

3 3.1 7 10.0 12 21.4 14 36.9 16 54.2

7 threads 8 threads 9 threads 10 threads
runs time runs time runs time runs time

18 80.9 20 116.4 22 159.9 24 256.9

6.3 Extracted Mozilla/MySQL Bugs
Recall that DPOR is a sound reduction whereas both PCB

and HaPSet are unsound and in theory may miss bugs. Our
results in previous subsections show that the reduction by
HaPSet can be significant. Therefore, a natural question
is, would it reduce too much to miss many bugs? To an-
swer this question, we conducted experiments on a set of
extracted bug samples. Each sample is a small program
showcasing a bug extracted from the real code of Mozilla
and MySQL. These examples were kindly provided by the
authors of [21]. For testing purposes, we randomly inserted
some shared memory accesses and locking statements to
make them nontrivial for our tool.

Since the programs are small, the emphasis here is not
on comparing the runtime performance, since all three com-
peting methods can finish quickly. Rather, we would like to
compare their bug-finding capability.

Table 5 shows the experimental results. The first two
columns show the names and the bugs targeted by the test
case. Here atom means an atomicity violation, order means
an order violation, and deadlk means a deadlock. Eventu-
ally, the program failures caused by these atomicity/order

Table 5: Comparison on extracted (but real) bugs

Test Program HaPSet DPOR PCB2
name bug runs time runs time runs time

MysqlLog atom 5 0.3 22 1.2 12 0.7
NodeState order 5 0.3 22 1.5 12 0.8
Loadscript atom 5 1.0 79 6.0 27 2.1
SeekToItem atom 3 0.2 127 9.8 22 1.6
UpdateTimer atom 3 0.2 128 11.2 10 1.0
FileTransport deadlk 5 0.2 22 1.2 12 0.9
CreateThread order 5 0.2 22 1.1 12 0.6
ReadWriteProc order 5 1.9 175 12.0 20 2.8
OpenInputStr deadlk 5 0.3 1409 107.7 42 3.1
HttpConnect order 5 3.3 37 28.5 16 12.0
TimerThread deadlk 3 0.2 101 7.3 18 1.2

violations are either segmentation faults or corrupted data.
The next six columns compare the number of interleavings
and the run time (in seconds). HaPSet not only is fast but
also finds all the bugs, despite that it skips most of the in-
terleavings explored by DPOR and PCB2. This provides
strong evidence supporting our claim that, in practice, the
drastic interleaving reduction achieved by HaPSet does not
cause systematic testing to miss many real bugs.

7. RELATED WORK
The notion of predecessor set was first introduced by Yu

and Narayanasamy [21]. Their goal was runtime failure
avoidance, for which the PSets learned during testing were
encoded into the program’s executable. Then they designed
a special-purpose microprocessor for such executables to en-
sure that during the production runs, the PSet constraints
are always obeyed, in the hope of steering away from untested
concurrency scenarios. In this paper, our goal is not run-
time failure avoidance but to improve the coverage of test-
ing. We use systematic testing to try to trigger the previ-
ously untested concurrency scenarios. To this end we have
extended their idea to define the new metric called HaPSet.

As we have already explained in the previous sections,
our work is related to the various systematic testing tech-
niques [7, 12, 20, 18] based on stateless model checking.
These tools are all based on brute-force exhaustive search
in that their interleaving selection is not guided heuristi-
cally by any coverage metric. Among classic model check-
ers, SPIN [9] and Java PathFinder [8] are closely related,
and they can also handle real code written in C/C++ or
Java. However, they are based on the manipulation of con-
crete program states rather than stateless model checking.

CTrigger [13] and CalFuzzer [16] are two testing tools
that also use dynamically collected information. CTrigger is
based on the notion of access invariants, i.e. the atomicity of
two consecutive memory-accessing events, and CalFuzzer is

based on detecting potential data races. In comparison, the
HaPSets used in our method are more general since they can
characterize concurrency patterns that subsume data races
and three-access atomicity violations. More importantly, in
our method, the interleaving selection is systematic and each
test run is guaranteed to exercise a not-yet-tested interleav-
ing; whereas in the other two methods, interleaving selec-
tion is achieved by inserting sleep() statements to certain
program points, to increase the odds of triggering certain
interleavings. Therefore they do not have a guarantee of
progress.

Our method is also related to the various runtime error
detection algorithms, e.g. [15] and [17, 2]. These methods
focus on analyzing a given interleaving, to either detect bugs
in that interleaving or predict bugs in some other related in-
terleavings. These methods are orthogonal to ours, since
our method can systematically generate new interleavings
to feed to these methods. Our method is also different
from the various testing techniques based on randomization,
e.g. IBM’s Contest [4] and [1], although randomization can
be used to diversify the input to our HaPSet learning.

8. CONCLUSIONS
We have proposed a coverage-guided systematic concur-

rency testing algorithm, where ordering constraints learned
from the good test runs are used to guide the selection of
high-risk interleavings for future test execution. We pro-
pose HaPSets to capture these ordering constraints and use
them as a metric to cover important concurrency scenarios.
This selective search strategy, in comparison to exhaustively
testing all possible interleavings, can significantly increase
the coverage of important concurrency scenarios with a rea-
sonable cost, while maintaining the capability of detecting
subtle bugs manifested only by rare interleavings.

9. REFERENCES
[1] S. Burckhardt, P. Kothari, M. Musuvathi, and

S. Nagarakatte. A randomized scheduler with
probabilistic guarantees of finding bugs. In
Architectural Support for Programming Languages and
Operating Systems, pages 167–178, 2010.

[2] F. Chen, T. Serbanuta, and G. Rosu. jPredictor: a
predictive runtime analysis tool for java. In
International Conference on Software Engineering,
pages 221–230. ACM, 2008.

[3] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Pasareanu, Robby, and H. Zheng. Bandera:
Extracting finite-state models from Java source code.
In International Conference on Software Engineering,
pages 439–448, 2000.

[4] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns
and how to test them. In Parallel and Distributed
Processing Symposium, page 286, 2003.

[5] C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. In Principles of
programming languages, pages 110–121, 2005.

[6] P. Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems - An Approach to
the State-Explosion Problem. Springer, 1996. LNCS
1032.

[7] P. Godefroid. Software model checking: The VeriSoft
approach. Formal Methods in System Design,

26(2):77–101, 2005.

[8] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. Software Tools for
Technology Transfer (STTT), 2(4), 2000.

[9] G. Holzmann, E. Najm, and A. Serhrouchni. SPIN
model checking: An introduction. STTT,
2(4):321–327, 2000.

[10] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting
atomicity violations via access interleaving invariants.
In Architectural Support for Programming Languages
and Operating Systems, pages 37–48, 2006.

[11] M. Musuvathi and S. Qadeer. Partial-order reduction
for context-bounded state exploration. Technical
Report MSR-TR-2007-12, Microsoft Research, Dec.
2007.

[12] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In Operating
Systems Design and Implementation, pages 267–280,
2008.

[13] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing
atomicity violation bugs from their hiding places. In
Architectural Support for Programming Languages and
Operating Systems, pages 25–36. ACM, 2009.

[14] S. Qadeer and D. Wu. KISS: keep it simple and
sequential. In Programming Language Design and
Implementation, pages 14–24, 2004.

[15] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Trans. Comput.
Syst., 15(4):391–411, 1997.

[16] K. Sen. Race directed random testing of concurrent
programs. In Programming Language Design and
Implementation, pages 11–21. ACM, 2008.

[17] K. Sen, G. Rosu, and G. Agha. Detecting errors in
multithreaded programs by generalized predictive
analysis of executions. In Formal Methods for Open
Object-Based Distributed Systems, pages 211–226,
2005.

[18] S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and
R. M. Kirby. ISP: a tool for model checking mpi
programs. In Principles and Practice of Parallel
Programming, pages 285–286. ACM, 2008.

[19] M. Xu, R. Bod́ık, and M. D. Hill. A serializability
violation detector for shared-memory server programs.
In Programming Language Design and
Implementation, pages 1–14, 2005.

[20] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A
Runtime Model Checker for Multithreaded C
Programs. Technical Report UUCS-08-004, University
of Utah, 2008.

[21] J. Yu and S. Narayanasamy. A case for an interleaving
constrained shared-memory multi-processor. In
International Symposium on Computer Architecture,
pages 325–336, 2009.

