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Abstract. We propose a new algorithm for precisely deciding a control state

reachability (CSR) problem in runtime verification of concurrent programs, where

the trace provides only limited observability of the execution. Under the assump-

tion of limited observability, we know only the type of each event (read, write,

lock, unlock, etc.) and the associated shared object, but not the concrete values of

these objects or the control/data dependency among these events. Our method is

the first sound and complete method for deciding such CSR in traces that involve

more than two threads, while handling both standard synchronization primitives

and ad hoc synchronizations implemented via shared memory accesses. It relies

on a new polygraph based analysis, which is provably more accurate than existing

methods based on lockset analysis, acquisition history, universal causality graph,

and a recently proposed method based the causally-precedes relation. We have

implemented the method in an offline data-race detection tool and demonstrated

its effectiveness on multithreaded C/C++ applications.

1 Introduction

The idea of using an offline analysis of the trace log to predict subtle bugs of a concur-

rent system has been the focus of intense research in recent years. The core problem in

this analysis is to decide an instance of the control state reachability (CSR) problem:

given a valid execution trace ρ, decide whether there exists an alternative interleaving

ρ′ of the events of the trace that can lead to a bad system state, e.g. one that manifests

a data-race, a deadlock, or an atomicity violation. Although there exists a large body of

work on trace based analysis for predicting concurrency bugs, e.g. using either under-

approximation [19, 20, 7, 24] or overapproximation [18, 26, 31, 4], none of the existing

methods can precisely decide CSR for input traces with limited observability.

Under the assumption of limited observability, the input trace records only the

global operations but not thread-local operations. Even for the global operations, such

as thread synchronizations and shared memory accesses, we only know the event types

and the associated shared objects, but not the concrete values of these objects or the

control/data dependency among the events. For instance, executing the code tmp:=X;

Y:=tmp+10;would produce events READ(X) and WRITE(Y) in the trace log. However,

we would not know the concrete values of X and Y , or whether WRITE(Y) is data-

dependent on READ(X). As another example, executing the code if(X==10) Y:=0

would produce the same READ(X) and WRITE(Y) events in the trace log.

Precisely deciding CSR under limited observability is challenging for two reasons.

First, we need to characterize the set of bugs that can be predicted, with certainty, by



analyzing only the input trace under limited observability. Second, we need to design

a new algorithm that can produce the exact set of predictable bugs. In other words, the

algorithm should report a bug in the trace if and only if the bug is guaranteed to show up

in some actual program execution. However, to the best of our knowledge, there does

not exist any method that can precisely decide this CSR problem. For example, classic

methods based on lockset analysis [18] may produce false alarms due to overapprox-

imation, whereas classic methods based on the happens-before causality relation [13]

may miss real bugs due to underapproximation.

For two threads synchronizing via nested locks only, Kahlon et al. [9] proposed the

first sound and complete algorithm for deciding CSR based on a lock acquisition history

(LAH) analysis. They subsequently proposed a lock causality graph (LCG) analysis [8],

which generalizes LAH to handle also non-nested, but finite-length, lock chains. The

theoretical significance of LAH and LCG is that they prove the decidability of CSR

under certain synchronization patterns even for concurrently running recursive proce-

dures. However, neither LAH nor LCG considers synchronization primitives other than

locks. Kahlon and Wang [10] proposed a universal causality graph (UCG) analysis,

which generalizes LCG to handle non-lock synchronization primitives as well. How-

ever, UCG is sound and complete for deciding CSR in traces that involve only two

threads. For more than two threads, UCG may produce false alarms.

In this paper, we propose the first sound and complete algorithm for deciding CSR

for input traces that involve more than two threads, while precisely handling both stan-

dard synchronizations and ad hoc synchronizations via shared memory accesses. We

introduce a new polygraph based analysis framework, which is provably more accurate

than the existing UCG analysis. The polygraph abstraction allows us to strengthen the

CSR decision procedure to make it sound and complete for traces that involve an ar-

bitrary, but fixed, number of threads. Note that, being part of a testing procedure, our

method do not guarantee to detect all bugs in the program. Instead, our sound and com-

plete argument is restricted to the set of predictable bugs for the given input execution

trace.

We also introduce a new predictive model to more accurately model not only stan-

dard synchronization primitives such as locks and wait/notify (as in UCG), but also

ad hoc synchronizations implemented using shared memory accesses. This can signif-

icantly increase the precision of bug detection. When being applied to data-race detec-

tion, for instance, our method will be provably more accurate than both UCG and a

more recent causally precedes (CP [24]) analysis. Similar to ours, the CP method does

not report false alarms. However, it accomplishes this by aggressively dropping valid

interleavings, in a way that may lead to missed bugs. Our method does not have this

problem.

We have implemented the new method in an offline data-race detection tool based

on the LLVM platform. Our experiments conducted on a set of multithreaded C/C++

applications show that the new method is indeed more accurate that the existing ones.

To sum up, we have made the following contributions:

– We propose a new polygraph based analysis for precisely deciding CSR in execu-

tion traces with only limited visibility. The method is sound and complete for an

arbitrary, but fixed, number of concurrent threads.
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– We implement the new method inside an offline data-race detection tool and demon-

strate that, in addition to being provably more accurate, it actually reports more real

bugs than CP and fewer false alarms than UCG.

2 Preliminaries

The control state reachability (CSR) problem arises from trace based analysis of mul-

tithreaded programs for detecting subtle concurrency bugs. Given a concrete execution

trace ρ of the program, this analysis typically consists of three steps:

1. Identify a set of potential bugs by scanning the trace ρ for known error patterns.

2. For each potential bug, create an error condition EC and check for feasibility, i.e.

EC can be satisfied by some valid interleaving ρ′ of the concurrent events in ρ.

3. Compute a thread schedule for each bug found in Step 2 for deterministic replay.

Our main contribution lies in step 2, where our new algorithm can precisely decide the

feasibility of EC. This is equivalent to deciding the CSR problem, where we are con-

cerned with the simultaneous reachability of some locations in the concurrent threads

communicating through standard and ad hoc synchronization operations.

Let the input trace be a sequence ρ = e1, . . . , en, where each event ei (1 ≤ i ≤ n)

models an operation in thread Ti of one of the following types:

– fork(thrd) for the creation of child thread thrd ; and

– join(thrd) for the join back of child thread thrd .

– acq(lk) for acquiring lock lk;

– rel(lk) for releasing lock lk;

– signal(cv) for sending signal via condition variable cv;

– wait(cv) for receiving signal via condition variable cv;

– R(sh) for reading from shared variable sh;

– W (sh) for writing to shared variable sh.

For example, the wait operation in POSIX threads is of the form wait(cv , lk), where

cv is a condition variable and lk is a lock. Based on the POSIX standard, this operation

consists of three substeps. First, the thread releases lk to allow other threads to acquire

lk and execute signal(cv). Next, the thread enters the sleep mode. Finally, after the

signal operation is executed by another thread, the thread wakes up and acquires lk

again. There, the entire wait operation is equivalent to rel(lk);wait(cv); acq(lk).
We assume that the input trace ρ is feasible because it represents a real execution.

If ρ itself exposes a bug, we are done. Otherwise, we check whether there exists a

permutation ρ′ that exposes a bug. Permutation ρ′ is feasible (or real) if ρ′ can appear

in some actual execution of the program. Furthermore, we assume that it is not possible

to run the original program again to test the validity of ρ′. Instead, we define a statically

checkable condition over ρ, under which permutation ρ′ is guaranteed to be feasible.

First, we define the condition for threads synchronizing via standard synchroniza-

tion primitives. Let ρ = e1, . . . , en be the input trace and ρ′ = e′1, . . . , e
′
n be a permu-

tation, where for all 1 ≤ i, j ≤ n, each event e′i maps to a unique ej and vice versa. Let

ei → ej denote that ei appears before ej when the two events are in different threads.

3



Let ei <PO ej denote that ei appears before ej in the same thread. The conditions for

ρ′ is to be feasible are as follows (c.f. [10]):

1. program order: events within each thread must follow their program order. That

is, ei <PO ej if ei appears before ej in ρ and both events are from the same thread.

2. fork/join order: events in a child thread t must appear after the fork(t) event, but

before the join(t) event, of the parent thread.

3. signal/wait order: events in each matching signal(cv) and wait(cv) pair must

appear in the same order as they appear in the input trace ρ.

4. acq/rel order: events from two matching lock/unlock pairs, e.g. (acq1, rel1) and

(acq2, rel2) over the same lock, must be mutually exclusive. Since critical sections

should not interleave, either rel1 → acq2 or rel2 → acq1.

For threads that do not synchronize via shared memory accesses, these are both suffi-

cient and necessary conditions for ρ′ to be feasible. However, in the general case, they

are only necessary conditions. That is, if any condition is violated, ρ′ is guaranteed to

be infeasible. But even if all of them are satisfied, ρ′ may still be infeasible. It is worth

pointing out that, since the input trace ρ is feasible, every lock acquired by a thread in

ρ must have been released by the same thread. To overcome the problem, we add the

following condition:

5. write/read order: events from two matching write/read pairs, e.g. (W1, R1) and

(W2, R2), where R1(x) reads the value set by W1(x) and R2(x) reads the value

set by W2(x), must not interfere. They should satisfy W1 → R1, W2 → R2, and

in addition, either R1 → W2 or R2 → W1.

This condition may not hold in all execution traces, but instead, is imposed by the given

input trace ρ. The condition ensures that, as long as ρ is feasible, ρ′ is also feasible,

even if we do not have any information about the program that generates the input trace

ρ. If there exist a write event in ρ that does not have any matching read event, we add a

dummy read event immediately after the write event.

We assume that ρ provides limited observability of the program. For example, we do

not know whether the read event R(x) comes from a:=x+5 or if(x>10) or if(x<0).

Similarly, we do not know whether the write event W (x) comes from x:=10 or x:=0.

Given the sequenceR(x) . . .W (sh), we do not know whetherW (sh), which may come

from a:=sh, is control-dependent on R(x), which may come from if(x>0). Assume

that a and b are thread-local, traces from the following programs are indistinguishable:

– program 1: if (x==0) { b:=0; } a:=sh; or

– program 2: if (x!=0) { a:=sh; } or

– program 3: { b:=x; a:=sh; }

Nevertheless, we show that, by requiring each R1(x) in ρ′ to read from the same W1(x)
as in ρ, we can ensure that R(sh) will be executed in ρ′, regardless of the expression in

the if-condition, and whether the if-condition is guarding R(sh).
We want to stress that the core analysis procedure proposed in this paper is not tied

up to whether the write/read order (Condition 5) is used or not. To make our subsequent

presentation clear, we define the following two types of predictive models:
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– The CSR model includes Conditions 1, 2, 3, and 4, but not Condition 5.

– The CDSR model includes Conditions 1, 2, 3, 4, and 5.

The CSR model considers only standard synchronizations, whereas the CDSR model

also considers ad hoc synchronizations implemented by using shared memory accesses.

In the sequel, we shall present our new polygraph based analysis method for the CSR

model first, and then extend it the CDSR model.

3 Polygraph Based Causality Analysis

Deciding the feasibility of an error condition EC is challenging mainly due to inter-

leaving explosion – the number of possible interleavings is often exponentially large.

Therefore, naively enumerating the feasible interleavings and checking them against

EC is not practical. Instead, we rely on checking a new polygraph where deciding the

feasibility of EC is equivalent to deciding the absence of cycles in the graph.

3.1 From Input Trace ρ to Polygraph Gρ

A polygraph is a generalization of a directed graph that we use to capture all feasible

interleavings of the events of an input trace. The term was coined by Papadimitriou [16]

while studying view serializability: nodes in his polygraph are requests and responses

of database transactions, whereas in our case, they are events of a multithreaded pro-

gram. Let the input trace be ρ. The ρ-induced polygraph, denoted Gρ = (V,E,Epoly),
consists of a set V of nodes, a set E of edges, and a set Epoly of polyedges:

– Each node in V models an event in ρ.

– Each edge in E, denoted a → b, means a must appear before b. Initially, these edges

come from the program order, fork/join, and signal/wait as defined in Section 2.

– Each polyedge in Epoly , denoted (a → b, c → d), represents an either-or choice,

meaning that either a appears before b, or c appears before d.

For the CSR model (Section 2), the polyedges come from the acq-rel event pairs:

– For any two acq-rel event pairs over lock lk, say (acq1 , rel1 ) and (acq2 , rel2 ), their

mutual exclusion demands that either rel1 appears before acq2, or rel2 appears

before acq1. In Gρ, this is modeled by polyedge (rel1 → acq2 , rel2 → acq1 ).

This defines the set of interleavings in the CSR model, for which we set out to design a

sound and complete algorithm for checking the feasibility of EC.

Later, in Section 5, we will add another type of polyedges for modeling the non-

interference properties of the write-read pairs (the CDSR model in Section 2). If the

threads synchronize solely via standard synchronization primitives – without using

shared variable accesses – the CSR model would be precisely for predicting all the

real bugs (w.r.t. the input trace). Otherwise, we need to consider the CDSR model. Re-

gardless, our core analysis procedure works for both models.
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3.2 From Error Condition EC to Polygraph Gρ(EC)

Given an error condition EC, e.g. representing a potential data-race, we construct a

new polygraph Gρ(EC), which is a specialization of Gρ for checking EC. We model

EC by adding a set of new edges to Gρ, and then perform a slicing of Gρ, to remove all

polyedges that are irrelevant to satisfying EC. Below are examples for modeling some

typical concurrency bugs:

– Data-race: Let (a, b) be the events that have a potential data-race. These potential

data-races may be computed using standard lockset analysis [18]. That is, we com-

pute the set of locks held by a thread at each of its program locations. Then, for

any two events a and b that access the same memory from different threads without

holding a common lock, there is a potential data-race. Let a′ and b′ be the immedi-

ate preceding events of a and b in the two threads, respectively. The error condition

EC consists of edges a′ → b and b′ → a.

– Atomicity violation: Let a and b be two events that are intended to execute atomi-

cally in one thread, and c be an interfering event in another thread. Here, c interferes

with a (and b) if and only if they access the same memory location with at least one

write event. In such case, the event order a < c < b indicates a violation. The error

condition EC consists of edges a → c and c → b.
– Order violation: Let the event sequence a1, . . . , ak be an unintended execution

order. The error condition EC consists of edges a1 → a2, a2 → a3 ..., and

ak−1 → ak, since the violation is exposed when all these edges are satisfied.

Slicing Gρ(EC) with respect to EC broadens the coverage and allows more real

bugs to be detected. Recall that our goal is to find a valid interleaving that can lead to

the satisfaction of all edges in EC. However, the valid interleaving does not have to be a

permutation of the whole input trace ρ. Instead, a subsequence or prefix, from the initial

state to EC, would suffice. Therefore, we remove from Gρ(EC) any happens-before

obligation (edges and polyedges) that are not needed for satisfying EC.

3.3 Resolving the Polyedges to Detect Cycles

Since each edge in Gρ(EC) represents a precedence relation that must be satisfied, a

cycle in this graph means that no valid interleaving exists. Therefore, we decide the

feasibility of EC by detecting cycles in Gρ(EC). Sometimes, Gρ(EC) has no cycle

initially, but existing edges may force the either-or decisions of some polyedges, which

in turn lead to cycles. This polyedge resolution process is often triggered by the addition

of the EC edges. It is iterative because resolving one polyedge may introduce a new

regular edge that triggers the resolution of another polyedge.

For the CSR model (Section 2), we use the following polyedge resolution rule:

Rule 1: For any polyedge (rel1 → acq2, rel2 → acq1), if there already exists a regular

edge s → t such that acq1 <PO s and t <PO rel2, we remove the polyedge and add

regular edge rel1 → acq2 (see the three cases in Fig. 1). The reason is that, the other

choice rel2 → acq1 would have formed a cycle with s → t.

Therefore, our procedure starts by resolving all polyedges whose choices are forced

by some existing edges. It repeats the process until (1) a cycle is detected, meaning that
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acq2
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e1
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rel2

acq1
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e2

acq2

rel2

acq1

rel1
e3

s

t
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t

t

T1 T2 T1 T2 T1

Fig. 1. Polyedge resolution due to existing edge s → t, which adds rel1 → acq2.

no feasible interleaving exists in Gρ(EC); (2) all polyedges are resolved, meaning that

a feasible interleaving is found; or (3) there are still some unresolved polyedges. In the

third case, the problem remains undecided.

By now, our new polygraph based procedure matches the precision of the UCG [10],

although the underlying decision mechanisms are drastically different. UCG does not

rely on polygraph, but instead on a set of custom made inference rules. Our use of

polygraph allows the new analysis framework to be easily extended to handle not only

standard synchronization primitives but also ad hoc synchronizations such as shared

memory read/write accesses.

If the goal is to design an over-approximated analysis, the undecided EC in Case

3 may be reported as a potential bug. If the goal is to design an under-approximated

analysis, the undecided EC in Case 3 may be dropped. Both would lead to a loss of

precision. In the next section, we shall propose a new method for resolving the third

case, thereby avoiding the precision loss.

4 Generalizing the Algorithm to k Threads

We start by proving that the polyedge resolution algorithm in Section 3.3 (Rule 1) is

sound and complete for two threads communicating via standard synchronizations.

Then, we show why it does not work for traces with more than two threads. Finally,

we extend Rule 1 to make it sound and complete for traces with more than two threads.

Theorem 1. If our algorithm defined in Section 3.3 generates a cycle in Gρ(EC), there

does not exist any valid interleaving in the CSR predictive model that satisfies EC.

The proof is straightforward because all edges in Gρ(EC) represent precedence rela-

tions that must hold at all time. Thus, a cycle meaning that EC is not satisfiable. �

Theorem 2. If our algorithm defined in Section 3.3 does not generate a cycle inGρ(EC),
for 2 threads, a valid interleaving always exists in the CSR predictive model.

The proof consists of two cases. First, if all polyedges are resolved at the end of the

iterative process and there is no cycle, since nondeterminism is removed completely,
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EC is satisfiable. Second, if some polyedges still remain un-resolved at the end of the

iterative process, we show that they can always be resolved as follows:

1. Pick a polyedge arbitrarily and replace it with one of the either-or edges.

2. Apply Rule 1 to resolve the affected polyedges.

3. Repeat the above steps until all polyedges are resolved.

We prove, by contradiction, that the above process would not create any cycle for two

threads. Assume that resolving polyedge 〈rel1 → acq2, rel2 → acq1〉 into regular edge

rel1 → acq2 creates a cycle subsequently. With two threads, the cycle must involve

edges rel1 → acq2 <PO s → t <PO rel1, where s → t is an existing edge. However,

based on Rule 1, since edge s → t already exists, it should have resolved the polyedge

already. Therefore, our assumption is not correct. The theorem is proved.�

A byproduct is that, for two threads, the schedule reconstruction procedure as described

above can always generate a valid thread interleaving in polynomial time.

4.1 From 2 Threads to 3 Threads

T1

rel1

s

t

s′

t′

acq1 acq2

rel2

T2 T3

p

q

Fig. 2. Example (3 threads): There is no valid interleaving and the polygraphs have no cycle.

The proof in Theorem 2 does not work for trees with 3 threads, as shown in Fig. 2.

Here, we have four regular edges (s → p, s′ → p, q → t′, and q → t) and one

polyedge 〈rel1 → acq2, rel2 → acq1〉. While there is no feasible interleaving, there is

no cycle either. The reason why there is no feasible interleaving is due to the transitive

precedence constraints s  t and s′  t′. However, notice that none of the regular

edges alone can resolve the polyedge based on Rule 1. Furthermore, both choices of the

polyedge would create a cycle.

A straightforward way to strengthen the algorithm is to include transitive edges such

as s t in Rule 1. For example, in Fig. 2, one transitive edge is s → p <PO q → t and

another is s′ → p <PO q → t′. With the modified Rule 1, these two transitive edges

would lead to a cycle. Unfortunately, although this fix works for traces with 3 threads,

it does not work for traces with 4 threads, as shown by Fig. 3.

Fig. 3 has two polyedges that cannot be resolved by the existing edges and their

transitive edges. Therefore, the polygraph is cycle-free. However, there does not exist
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a feasible interleaving either. Consider all four cases for resolving the two polyedges –

all would lead to contradictions (cycles):

– If we select rel′1 → acq′2 from the second polyedge, transitive edge s → q1 <PO

rel′1 → acq′2 <PO p2 → t would induce rel1 → acq2; bug transitive edge s′ →
q1 <PO rel′1 → acq′2 <PO p2 → t′ would induce rel2 → acq1.

– If we select rel′2 → acq′1 from the second polyedge, transitive edge s → q2 <PO

rel′2 → acq′1 <PO p1 → t would induce rel1 → acq2; but transitive edge s′ →
q2 <PO rel′2 → acq′1 <PO p1 → t′ would induce rel2 → acq1.

Therefore, we need to strengthen the algorithm further for traces with 4 or more threads.

T4

rel2

acq2

rel1

acq1

rel′
1

rel′
2

acq′
1

acq′
2

q2t

p1s′s p2

q1
t′

T1 T2 T3

Fig. 3. Example (4 threads): There is no valid interleaving and the polygraphs have no cycle.

4.2 Heuristics for Resolving the Remaining Polyedges

Before continuing our effort on strengthening Rule 1, let us pause for a moment to

consider the current polygraph Gρ(EC), which (1) has no cycle, and also (2) has some

unresolved polyedges. Therefore, either it has a feasible interleaving, or it does not.

Recall that Rule 1 is geared toward proving infeasibility (by finding a cycle). What if

EC actually is feasible? In this case, the best strategy is not to find a cycle (since it

does not exist) but to find a valid interleaving. Toward this end, we must resolve the

remaining polyedges in a consistent fashion, for example, by employing our schedule

reconstruction algorithm proposed as part of the proof for Theorem 2.

Recall that in the proof for Theorem 2, for each unresolved polyedge, we arbitrarily

pick one of the either-or choices and then apply Rule 1 to propagate its impact on the

remaining polyedges. If we can resolve all polyedges without creating a cycle, we have

proved the feasibility of the EC. However, since the schedule reconstruction algorithm

resolves polyedges arbitrarily, it may not be the best strategy for finding a feasible

interleaving if there exists one.

Fig. 4 shows that, if we make the wrong decision, by choosing rel1 → acq2 first to

resolve the polyedge on the left-hand side, it would lead to a cycle regardless of how we

resolve the second polyedge. Notice that in this example, there actually exists a feasible
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T4

rel2

acq2

rel1

acq1

rel′
1

rel′
2

t′

s′

acq′
1

acq′
2

q1 q2

p1 p2

T1 T2 T3

Fig. 4. There exists a valid interleaving, but arbitrarily selecting edges from unresolved polyedges,

e.g. rel1 → acq2, may lead to a cycle. Note that s′  t′ always holds.

interleaving: it is possible to resolve both polyedges, e.g. by picking rel2 → acq1 and

rel′2 → acq′1, while avoiding the creation of any cycle.

Therefore, we use a causally precedes (CP) relation [24] as guidance to increase the

success rate of the schedule reconstruction. That is, we impose a strict precedence order

between any two critical sections that share conflicting data accesses – two accesses of

the same memory location and at least one of them is a write. Enforcing the CP relation

takes a polynomial time w.r.t. the trace length, and the main advantage is that, if the

graph remains acyclic, EC is guaranteed to be feasible (c.f. [24]). More specifically,

our use of the CP relation based heuristic is as follows:

– For any unresolved polyedge 〈rel1 → acq2, rel2 → acq1〉, if rel1 <CP acq2,

where <CP means causally-precedes [24], we replace it with edge rel1 → acq2;

If the above heuristic search finds a valid interleaving, we are done. Otherwise, we

resolve it in the the next step. Therefore, our overall method is at least as accurate as

the CP-only method [24] for detecting bugs. In Section 6, we will show that in practice,

our method is often significantly better.

4.3 Generalizing the Resolution Rule for k Threads

When the CP heuristic based search in Section 4.2 encounters a cycle, it does not mean

that EC is infeasible, since the cycle may be created by a wrong decision. Therefore,

we should backtrack and try again. However, a naive backtracking algorithm can be

expensive: for |Epoly| polyedges, it may take O(2|Epoly|) time.

Instead, we propose a bounded lookahead search whose complexity remains poly-

nomial in |Epoly|. Let k be the number of threads. We propose to strengthen Rule 1 with

an exhaustive lookahead of k polyedges, to explore both of the either-or choices of all

k polyedges. The goal is to identify hidden implications such as the ones in Fig. 3. In

particular, Rule 1 is modified as follows:

Rule 1 (strengthened): For any polyedge 〈rel1 → acq2, rel2 → acq1〉, we also check

if there exists a path from s to t such that (1) it involves ≤ k polyedges along the
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way and (2) all the 2k ways of revolving this polyedges lead to s < t. If such path

exists (s → t is only a special case), we remove the polyedge and add regular edge

rel1 → acq2, since it is implied.

This strengthened rule directly leads to the proof of the following theorem.

Theorem 3. If our strengthened algorithm as defined in this section does not generate

a cycle in Gρ(EC), a valid interleaving always exists in the CSR predictive model.

It is polynomial in |Epoly | for two reasons. First, in a graph with |V | nodes, there

are at most O(|V |2) edges to add, which bounds the number of iterations. Furthermore,

adding one such edge requires a graph analysis which takes O(|V |+ |E|) time. Second,

with k threads, we only need to check for cycles that involve at most k threads and

therefore k polyedges, because larger cycles can be decomposed into these smaller cy-

cles. Checking all possible combinations of k polyedges takes O(2k) time. With |Epoly |
polyedges, there are at most O(|Epoly |

k) distinct cycles that need to be inspected in the

k-step lookahead.

Therefore, the overall method takes O(|V |2 (|V | + |E|) 2k |Epoly |
k) time, which

is polynomial in |V | and E. Note that in an offline trace based analysis, the number of

threads k is fixed, and often small, whereas the trace length |V | can be arbitrarily large.

Therefore, it is advantageous to have a worst-case complexity polynomial in |V |.

4.4 The Overall Flow

The overall algorithm is illustrated in Fig. 5. Given an input trace ρ, we first construct a

polygraph Gρ and compute a set of potential error conditions. For each error condition

EC, we construct the specialized polygraph Gρ(EC) and resolve polyedges. If there

exists a cycle in Gρ(EC), we conclude that the error condition cannot be satisfied.

Otherwise, we search for a valid schedule using the CP heuristic. If a valid schedule is

found, it is a real bug. Otherwise, we switch to the lookahead search.

When the number of events |V | is large and the number of threads is more than 2,

the lookahead search may become expensive. In such case, other practical tricks may be

needed, together with our new algorithm, to control the execution time. For example, a

popular technique in runtime verification of large applications is to restrict the analysis

to a sliding window of say, 5000 events, as opposed to the entire trace.

Even in such case, our generalized algorithm is valuable for two reasons. First,

it provides useful insight for us to understand the various sources of precision loss

in the CSR analysis. Second, it provides a unified framework for us to progressively

increase the precision of the CSR analysis in the practical implementation. For example,

when we set the lookahead depth to 1, 2, 3, ..., our algorithm would become precise

automatically for traces that involve an increasing number of threads.

5 Applying the New Algorithm to CDSR Model

For the second predictive model defined in Section 2, namely the CDSR model, our

polygraph Gρ contains not only the acq-rel polyedges (Section 3.2) but also another

type of polyedges, called the write-read polyedges:
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Fig. 5. Overall flow of our polygraph based prediction method.

– For any two write-read event pairs, denoted (W1, R1) and (W2, R2), where R1(x)
reads from W1(x), and R2(x) reads from W2(x) in ρ, we maintain their write-to-

read correspondence by requiring that either R1 appears before W2, or R2 appears

before W1. The polyedge is denoted 〈R1 → W2, R2 → W1〉.

The new polyedges ensure that all the R(x) events get the same W (x) events as in the

input trace ρ. Although this is not required by the program semantics, it is required by

the CDSR model to ensure that ρ′ is feasible whenever ρ is feasible.

Interestingly, there is an analogy between the write-read polyedge and the acq-rel

polyedge. The non-interference property of write-read event pairs is similar in its form

– although not in its meaning – to the mutual exclusion property of the critical sections

defined by the acq-rel event pairs.

s

W2

R1
R2

e1
W2

R1
R2R1

R2

W1
W1

W2

W1

t

s

s

e2
t t

e3

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

Fig. 6. Polyedge resolution due to existing edge s → t, which adds edge R1 → W2.
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Therefore, similar to Rule 1 in Section 3.3, we define a new polyedge resolution

rule as follows:

Rule 2. For any polyedge 〈R1 → W2, R2 → W1〉, we check if there exists an edge

s → t in the graph that forces the resolution of the either-or choice.

– When each write-read event pair comes from the same thread, non-interference is

similar to mutual exclusion – hence the new rule is the same as Rule 1 (see the three

cases in Fig. 1), except for substituting acq with W and rel with R.

– When the events from a write-read pair come from two different threads, the rule

is slightly different (see the three cases in Fig. 6). In all of the three cases, if there

exists an edge s → t in the graph that forces the resolution of the either-or choice,

we replace the polygraph with edge R1 → W2. More specifically, we look for edge

s → t such that W1 < s and t < R2. There are two ways to satisfy W1 < s. One

is W1 <PO s as illustrated by the source nodes of edges e1 and e2 in Fig. 6. The

other is R1 <PO s, which together with W1 → R1 leads to W1 < s as illustrated

by the source node of edge e3.

Similar to the original Rule 1, the above rule works only for two threads. To han-

dle traces with more than two threads, we strengthen Rule 2 in the same way as we

strengthen Rule 1 in Section 4.3. That is, in the Strengthened Rule 2, we check for not

only an edge s → t, but also a path from s to t such that (1) it involves ≤ k polyedges

along the way and (2) all the 2k ways of revolving these polyedges lead to s < t. If such

a path exists, we must replace the polyedge 〈R1 → W2, R2 → W1〉 with the regular

edge R1 → W2 since it is implied.

The proof of correctness is almost identical to the one for the CSR model and there-

fore is omitted. We give the two theorems as follows:

Theorem 4. If our algorithm defined in this section generates a cycle in Gρ(EC), there

does not exist any valid interleaving in the CDSR model that satisfies EC.

Theorem 5. If our algorithm does not generate a cycle inGρ(EC), a valid interleaving

always exists in the CDSR model.

By now, our new polygraph based analysis is already provably more accurate than

the UCG analysis [10] in the following sense. First, it works not only for two threads –

as in UCG – but also for an arbitrary (but fixed) number of threads. Second, the CDSR

model is more accurate than the one used in UCG. Recall that UCG has only inference

rules that are equivalent to our Rule 1, whereas our new method also has Rule 2.

6 Running Examples

In this section, we demonstrate the application of our new decision procedure in an

offline predictive analysis for detecting data-races. We use a popular programming id-

iom in POSIX threads to illustrate some application specific optimizations that we made

during our implementation in contrast to both UCG and CP. The program in Fig. 7 (left)

shows a typical scenario for using condition variable c, which ensures that assignment
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x:=1 in thread T1 always appears before a:=x in thread T2. Here, lock l protects the

concurrent accesses to the condition variable c since it is shared by both threads.

According to the POSIX standard, if T2 enters the critical section (l7 . . . l12) first,

the execution of wait(c,l) would release lock l and block. At this time, thread T1

has to execute signal(c) and then unlock(l) at l6. After that, T2 wakes up from

wait(c,l), re-acquires lock l and then continues. This thread interleaving is shown

by Trace 1 in the middle, where the wait(c, l) operation splits into three distinct events

rel(l);wait(c); acq(l).

Thread T1

l1 : x = 1;
l2 : y = 2;
l3 : lock(l);
l4 : signal(c);
l5 : z = 1;
l6 : unlock(l);

Thread T2

l7 : lock(l);
l8 : y = 3;
l9 : if(z == 0)
l10 : wait(c, l);
l11 : a = x;
l12 : unlock(l);

Two concurrent threads synchro-

nize through the lock l, condition

variable c, and shared variable z.

RHS are the two execution traces.

T1 T2

l1 : W (x)
l2 : W (y) l7 : acq(l)

l8 : W (y)
l9 : R(z)
l′
10

: rel(l)
l3 : acq(l)
l4 : signal(c)
l5 : W (z)
l6 : rel(l) l′′

10
: wait(c)

l′′′
10

: acq(l)
l11 : R(x)
l12 : rel(l)

T1 T2

l1 : W (x)
l2 : W (y)
l3 : acq(l)
l4 : nop
l5 : W (z)
l6 : rel(l)

l7 : acq(l)
l8 : W (y)
l9 : R(z)

l11 : R(x)
l12 : rel(l)

trace 1 trace 2

Fig. 7. UCG would report a bogus race on x on trace 2; CP would miss the real race on y.

The use of variable z is crucial in ensuring that wait(c,l) is executed only when

T1 has not yet executed signal(c). If T1 enters the critical section (l3 . . . l6) and

executes signal(c) first, since T2 is not waiting, the signal sent by T1 would be lost. In

this case, T2 must skip wait(c,l) based on checking z’s value. Otherwise, executing

wait(c,l) would cause T2 to hang. This second interleaving is shown in Trace 2.

Also note that the two input traces provide only limited observability. That is, we

know l8 is a write to y in trace 1 but not the value written (or the right-hand-side expres-

sion). We know that both l′10 and l11 happen after l9, but do not know that l10 is guarded

by l9 but l11 is not. These are reasonable assumptions in many real-world applications,

where getting more detailed program information is expensive or impossible, e.g. when

the execution trace logs are generated during production runs on the client site.

There are two potential data-races on variables x and y, respectively. Here a data-

race refers to the simultaneous accesses of the same memory location by two concurrent

threads, where at least one access is a write. These potential data-races can be identified

by a standard lockset analysis, because the thread locations (11, l11) and (l2, l8) are not

protected by the same lock.

When the input is Trace 1, both UCG and CP would correctly decide that the data-

race on y is real and the data-race on x is bogus, due to the signal-to-wait edge l4 → l′′10.

However, when the input is Trace 2, UCG would incorrectly classify (l1, l11) as being

reachable (bogus) and CP would incorrectly classify (l2, l8) as unreachable (missed).
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The imprecision of UCG for Trace 2 is due to the fact that UCG considers only

standard synchronization operations while ignoring ad hoc synchronization events such

as W (z) andR(z). Since l1 and l11 are not protected by a common lock, and not ordered

by signal/wait, UCG assumes that they can be executed simultaneously.

The imprecision of CP for Trace 2 is due to its dropping of valid interleavings too

aggressively. That is, whenever two critical sections share conflicting data accesses –

such as W (z) and R(z) in Trace 2 – it imposes a causally-precedes relation, effectively

adding l6 <CP l7. Although this removes the bogus data-race on x, it also removes

the real data-race on y because it forbids any interleaving in which the order of the

two critical section is swapped. Indeed, the constraint l5 <CP l6 is too strong, because

according to the semantics of the locks, l6 can actually happen before l5.

Our method, in contrast, can correctly classify both cases in Fig. 7. It improves

over UCG by adding the new Rule 2. The addition of write/read consistency, in partic-

ular, is responsible for the correct classification of the data-race on x. It also improves

over CP by applying the goal (EC) directed polyedge slicing (Section 3.2), goal di-

rected polyedge resolution (Section 3.3), before resorting to the use of CP heuristic

(Section 4.2). Therefore, it may be able to find a feasible solution without using the

(often more restrictive) CP relation at all. Indeed, this is the reason why we can still

detect the data-race on y whereas the original CP method cannot.

7 Experiments

We have implemented the new procedure in an offline data-race prediction tool based

on the LLVM platform. The tool is capable of analyzing traces generated by arbitrary

concurrent C/C++ programs written using the POSIX threads. It is worth pointing out

that other instrumentation tools, such as the PIN binary instrumentation tool, may also

be used to generate the input traces.

We have conducted experiments on two sets of benchmarks. The first set is a col-

lection of traces from small multithreaded programs in the recent literature (e.g. [10,

24]). The main purpose is to confirm that our implementation is indeed more accurate

than existing methods. For example, the benchmark cp7 comes from an example used

in [24] to illustrate why there is no CP-predictable data-race and how CP can avoid

false alarms. Our tool discovers that it actually has a real and predictable data-race un-

der the CDSR predictive model. We were surprised initially by the data-race reported

by our tool, but confirmed subsequently that this was indeed a real data-race, although

it could not be detected by using the CP method.

The second set of benchmarks is a collection of traces from various open-source

projects with known bugs, which we use to demonstrate the effectiveness of our method.

The set contains bug samples extracted from applications such as Mozilla and MySQL,

as well as two open-source projects (aget-0.4 and pfscan-1.0) downloaded from

the sourceforge.net website. Some of the extracted examples are kindly provided by

the authors of [32], whereas others are used in some prior publications (e.g. [15]). All

benchmarks are accompanied by test cases to facilitate concrete execution.

We compare the performance of three methods: UCG [10], CP [24], and Poly. All

methods were implemented in the same data-race prediction tool to facilitate a fair
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comparison. (Recall that the original CP algorithm [24] was for Java.) Our experiments

were conducted on a workstation with 2.8 GHz Pentium D processor and 2GB memory.

Table 1. Comparing our new method with UCG [10] and CP [24] for predicting data-races.

Test Program Partial Trace Num. Data-races Time (sec/race)

name LOC thr lks cvs vars evs lkevs coevs rwevs ( r / w ) r-p r-ucg r-poly r-cp t-ucg t-new t-cp

cp1 79 3 1 0 2 21 4 0 6 ( 2/4 ) 5 1 0 0 0.021 0.029 0.002

cp2b 113 3 1 0 4 27 4 0 12 ( 5/7 ) 11 3 1 1 0.020 0.043 0.005

cp2 113 3 1 0 4 27 4 0 12 ( 5/7 ) 11 3 1 1 0.030 0.044 0.002

cp4 67 3 1 0 1 18 4 0 3 ( 0/3 ) 3 1 1 1 0.015 0.019 0.002

cp5 168 4 3 0 3 45 14 0 14 ( 4/10 ) 12 1 0 0 0.042 0.049 0.006

cp5b 144 4 3 0 3 42 14 0 11 ( 2/9 ) 9 1 1 0 0.029 0.035 0.003

cp6 255 5 6 0 5 71 24 0 23 ( 8/15 ) 19 1 0 0 0.043 0.059 0.005

cp7 277 5 7 0 6 80 30 0 25 ( 6/19 ) 20 1 1 0 0.073 0.080 0.008

cp8 119 3 3 0 2 33 12 0 8 ( 2/6 ) 7 1 1 1 0.030 0.035 0.004

vt1 53 2 1 0 1 13 4 0 2 ( 1/1 ) 1 1 1 1 0.007 0.009 0.002

vt2 59 2 1 0 2 15 4 0 4 ( 2/2 ) 1 1 0 0 0.015 0.021 0.004

vt2b 60 2 1 0 2 15 4 0 4 ( 2/2 ) 1 1 1 0 0.008 0.012 0.003

vt2c 56 2 1 0 1 14 4 0 3 ( 1/2 ) 1 1 1 0 0.015 0.020 0.005

vt2d 56 2 1 0 1 14 4 0 3 ( 1/2 ) 1 1 1 0 0.017 0.023 0.005

vtex4 72 2 1 1 2 19 4 1 6 ( 2/4 ) 3 1 0 0 0.016 0.020 0.003

vtex5 73 2 1 1 2 19 4 1 6 ( 2/4 ) 3 1 1 0 0.032 0.011 0.005

vtex6 92 3 1 1 2 26 6 2 6 ( 2/4 ) 5 0 0 0 0.027 0.008 0.007

Total 20 11 5

UpdateTimer 266 2 1 0 4 50 32 0 11 ( 6/5 ) 6 1 1 1 0.026 0.034 0.006

SeekToItem 246 3 1 0 3 49 28 0 10 ( 6/4 ) 7 1 1 1 0.021 0.031 0.004

TimerThread 240 2 2 1 4 51 30 2 10 ( 5/5 ) 0 0 0 0 0.020 0.024 0.004

NodeState 176 2 1 0 3 32 20 0 5 ( 2/3 ) 1 1 1 1 0.047 0.052 0.004

MysqlLog 181 2 1 0 2 32 20 0 5 ( 2/3 ) 2 2 2 2 0.033 0.039 0.004

Loadscript 227 3 2 0 3 50 30 0 8 ( 4/4 ) 1 0 0 0 0.048 0.055 0.006

FileTransport 184 2 1 0 2 33 20 0 6 ( 3/3 ) 2 2 2 2 0.039 0.048 0.009

CreateThread 178 2 1 0 4 32 16 0 9 ( 5/4 ) 3 2 1 1 0.041 0.046 0.003

thrift-1606 44 2 0 0 1 9 0 0 3 ( 1/2 ) 2 1 1 1 0.002 0.003 0.000

apache-21285 484 3 1 0 8 69 8 0 50 ( 35/15 ) 35 8 2 2 0.019 0.043 0.012

apache-25520 82 3 0 0 2 16 0 0 6 ( 3/3 ) 5 3 1 1 0.019 0.033 0.001

maple-cir-list 1393 3 2 0 38 208 56 0 140 ( 60/80 ) 43 2 1 1 0.137 0.243 0.047

mysql2011 231 3 2 0 10 53 4 0 37 ( 18/19 ) 33 3 3 3 0.011 0.021 0.004

pfscan-1.0-r3 4431 4 4 3 324 791 66 29 678 ( 288/390 ) 117 6 3 0 0.007 0.158 0.064

aget-0.4.comb 9277 3 1 0 785 1294 40 0 1243(1089/154 ) 513 405 11 10 0.132 0.357 0.042

Total 430 30 26

Table 1 shows the results. In this table, the first six columns show the statistics of the

test programs, including the name, the number of lines of code, the number of threads,

lock variables, condition variables, and shared variables. The next four columns show

the statistics of the input trace, including the number of events (evs), the number of

lock events (lkevs), the number of condition variable events (coevs), and the number of

read/write events (rwevs). We also provide a break-down of the read and write events.

The next four columns show the statistics of the data-race prediction algorithm.

Column rp shows the number of potential data-races. These are the data-races found

by our implementation of a standard lockset based analysis. Column r-ucg shows the

number of data-races reported by the UCG algorithm. Both lockset and UCG may re-
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port spurious data-races but miss no real data-races that are predictable from the given

traces. Column r-poly shows the number of real data-races found by our new algorithm.

Column r-cp shows the number of data-races found by CP. The last three columns show

the runtime performance, which is the average time (seconds) per feasibility check.

In the first set of examples, our new method found more real data-races than CP (11

versus 5), while avoiding all false alarms generated by UCG (a total of 9). In the second

set of examples, our new method also found more real data-races than CP (30 versus

26), while avoiding all false alarms generated by UCG (a total of 406).

In terms of runtime performance, our method on average takes longer time than both

UCG and CP. This is as expected due to its more involved causality analysis. The benefit

of the extra effort is that our method always returns the precise result, without false

alarms and missed bugs. Furthermore, the runtime numbers of all three methods are very

small – practically negligible – for the targeted application. Therefore, we conclude that

our for offline applications, our new method is competitive in that it provides a much

more in-depth analysis of the concurrent execution traces.

8 Related Work

We have reviewed existing trace-based predictive analysis methods including the lock-

set analysis and the lock causality based methods for deciding control state reachability

(LAH [9, 11], LCG [8], UCG [10], and CP [24]). Our new procedure is more generally

applicable and accurate than these existing methods.

Beyond offline bug prediction, there is a large body of work on online bug detection,

e.g. for detecting data-races [6, 1, 14] and atomicity violations [3, 30]. The distinction

between these two types of methods is fairly large. Typically, online methods focus pri-

marily on reducing the runtime overhead, often at the expense of losing precision (false

alarms) or decreasing coverage (missed bugs). Whereas offline analysis methods focus

primarily on improving the precision and coverage. If spending a few extra seconds

or even minutes on analyzing a trace log can lead to the discovery of a few more real

bugs, it would considered worthwhile. Our polygraph based method is by far the most

accurate method for offline analysis of execution traces with limited observability.

A closely related work is PENELOPE [25, 5], which can predict and subsequently

confirm atomicity violations and null pointer violations. A core predictive analysis in

PENELOPE is the LAH [9] analysis. Since our method improves over LAH, in prin-

ciple, it may also be used to enhance the analysis in PENELOPE. In addition, PENE-

LOPE confirms the predicted buggy interleavings by trying to re-execute them. This

approach works well when it is possible to re-execute in the original environment. Our

new method, in contrast, is better suited for applications where re-running the program

is impossible, e.g. when the traces are generated on the client site.

Another related work is jPredictor [2], which requires the analysis of a complete

execution trace consisting of all global and local instructions involved in the execution.

A similar limitation exists in the SAT/SMT based predictive methods [27, 29, 12, 21, 23,

17, 22, 28], which require the program source code in conjunction to a trace to construct

the prediction model. Although in general, these methods are more powerful, the de-

tailed program code information may not be available in in many application settings.
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Our new method, in contrast, relies on only a simple trace, which is better suited for

applications where detailed information about the program is not available.

9 Conclusions

We have presented a new polygraph based procedure for deciding control state reach-

ability properties in simple execution traces generated by multithreaded programs. We

have customized our core analysis procedure for an offline data-race detection tool. In

this context, our method is provably more accurate than the existing ones, including the

more recent causally-precedes method and the universal causality graph method. We

have implemented and evaluated our method through experiments. The results confirm

that our procedure is indeed more accurate than the existing ones.
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