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While mixed integer linear programming (MILP) solvers are routinely used to solve a wide range of important

science and engineering problems, it remains a challenging task for end users to write correct and efficient

MILP constraints, especially for problems specified using the inherently non-linear Boolean logic operations.

To overcome this challenge, we propose a syntax guided synthesis (SyGuS) method capable of generating

high-quality MILP constraints from the specifications expressed using arbitrary combinations of Boolean

logic operations. At the center of our method is an extensible domain specification language (DSL) whose

expressiveness may be improved by adding new integer variables as decision variables, together with an

iterative procedure for synthesizing linear constraints from non-linear Boolean logic operations using these

integer variables. To make the synthesis method efficient, we also propose an over-approximation technique for

soundly proving the correctness of the synthesized linear constraints, and an under-approximation technique

for safely pruning away the incorrect constraints. We have implemented and evaluated the method on a

wide range of benchmark specifications from statistics, machine learning, and data science applications. The

experimental results show that the method is efficient in handling these benchmarks, and the quality of the

synthesized MILP constraints is close to, or higher than, that of manually-written constraints in terms of both

compactness and solving time.
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1 INTRODUCTION
Many important science and engineering problems may be formulated as mixed integer linear pro-

gramming (MILP) problems and then solved using off-the-shelf MILP solvers such as Gurobi [Bixby

2007]. Here, the word “mixed” means that the variables appearing in these linear constraints and

the objective function are of either integer or real type, where the integer variables are often used to

model binary decisions. Thus, MILP constraints are capable of expressing a wide range of decision

problems and optimization problems, including binary classification, path planning in dynamical

and partially known systems, and provisioning long-haul network capacity in cloud services. In
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Fig. 1. SynMio – our method for synthesizing the MILP constraint𝜓 from the SMT specification 𝜙 .

addition, with the rapid advance in the runtime performance of modern MILP solvers, they are also

increasingly used in statistics, machine learning, and data science applications.

However, writing correct and efficient MILP constraints remains a challenging task [Aghaei et al.

2019; Bertsimas and Dunn 2017; Chang et al. 2012; Chang 2012; Paulsen and Wang 2022a,b; Wang

et al. 2022], for two reasons. First, many problems cannot be directly expressed using a conjunction

of linear integer and real arithmetic constraints. Instead, they require the use of Boolean variables,

together with Boolean logic operations such as AND (∧), OR (∨), and Implication (→) between

the constraints. In the context of MILP, these Boolean logic operations are non-linear operations.

Since the decision variant of MILP is NP-complete, which has the same complexity as Boolean

satisfiability (SAT), it is possible to model Boolean variables using integer variables (with 0 and

1 values) and model Boolean logic operations using linear arithmetic constraints. However, in

practice, the modeling process is labor intensive and error prone. Second, when domain experts

write MILP constraints, they often do not use the objective function as is; instead, they use heuristic

simplifications or convex proxies to replace the exact objective function with an alternative, easier-

to-solve objective function. However, this kind of manual optimization is challenging for end

users.

To overcome the aforementioned limitations, we propose a solver-independent and generally-
applicable method to automate the process of transforming specifications with Boolean logic

operations to correct, efficient and robust MILP constraints that can be solved using any MILP solver.

By generally-applicable, we mean the method works for arbitrary combinations of Boolean logic

operations. Fig. 1 shows the overall flow. The input of our method is a specification 𝜙 expressed in

the LIA/LRA fragments of the SMT-LIB format. Here, LIA stands for linear integer arithmetic while

LRA stands for linear real arithmetic; thus, 𝜙 consists of both linear arithmetic constraints and

Boolean logic operations. The output is a constraint𝜓 in the MILP format; that is,𝜓 is a conjunction

of linear integer/real arithmetic constraints.

Internally, our method uses syntax guided synthesis (SyGuS) [Alur et al. 2013], which relies on a

domain specification language (DSL) to define the search space for𝜓 , and enumerative search to

explore the candidates for𝜓 that are equivalent to 𝜙 . While we can fix the set of grammar rules of

the DSL, denoted D, the set of variables cannot be fixed a priori. Thus, we propose to iteratively
strengthen the DSL. This is accomplished by starting from an initial DSL under which𝜓 may be

unrealizable, and strengthening it until𝜓 becomes realizable. Strengthening is accomplished by

adding new decision variables, which effectively decompose the input specification 𝜙 and improve

the expressiveness of D. We leverage the counterexamples (CEX) generated by both the realizability

checking step and the verification subroutine as feedback, to decide which new variables to add, to

maximize the improvement in each refinement step.

Given a sufficiently expressive DSL, there are still two challenges in synthesizing the MILP

constraint𝜓 . First, due to the large search space, there may be too many candidates, each of which

must be checked to see if it is equivalent to 𝜙 . Second, verifying the equivalence of 𝜙 and𝜓 may be

time-consuming. To overcome these challenges, we propose an under-approximation technique to
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quickly falsify the equivalence of𝜓 and 𝜙 , and then use the result to prune the search space. The

under-approximation is to reduce integer variables to small bit-vectors. This drastically speeds up

the falsification subroutine of SyGuS. We also propose an over-approximation technique to soundly

verify the equivalence of𝜓 and 𝜙 . Since the goal of verification is to prove the equivalence of 𝜙 and

𝜓 for any data element, rather than solving the optimization problem encoded by𝜓 over concrete

data elements, we over-approximate the equivalence verification by rewriting complex operations

in𝜓 and 𝜙 as uninterpreted functions (UF) and then connecting them using high-level relations.

Sometimes, there may be multiple candidates for𝜓 , all of which are equivalent to the specification

𝜙 , and yet some are significantly easier to solve than others. In such a case, it is important for

our method to choose the most efficient candidate. Consider the specification (𝑥8 = 0 → 𝑥11 =

0) ∧ (𝑥8 = 0 → 𝑥17 = 0) as an example of 𝜙 , where 0 ≤ 𝑥7, 𝑥8, 𝑥11 ≤ 1, and 𝑥7, 𝑥8, 𝑥11 ∈ Z. The
two candidates may be 𝜓 : 𝑥11 + 𝑥17 ≤ 2𝑥8 and 𝜓

′
: 𝑥11 ≤ 𝑥8 ∧ 𝑥17 ≤ 𝑥8. While both of them are

equivalent to 𝜙 , our experience with modern MILP solvers shows that𝜓 is significantly easier to

solve. This is due to the fact that, while both correspond to the same discrete set F of feasible

points, the polyhedra formed by linear relaxations (i.e., relaxing variables of𝜓 and𝜓 ′ from integer

to continuous value) are different. The polyhedra for𝜓 is significantly closer to the convex hull

of F . To choose the high-quality candidate, we combine our heuristic decomposition of the input

specification 𝜙 (used to add new variables to the DSL) with a convex-hull based optimization to

allow the relaxation space to get closer to the convex hull. Details of this optimization are presented

in Section 4.

Our method differs significantly from existing techniques. Broadly speaking, there are two

lines of related work. One line of work, which is adopted by some MILP solvers, is to provide

limited support for Boolean logic expressions internally. For example, both Gurobi [Bixby 2007] and

CPLEX [CPLEX 2015] can linearize simple Boolean logic expressions by adding indicator variables

and then explicitly branching on these variables. However, this may lead to exponential blowup;

furthermore, since the linearization is solver-dependent, it cannot benefit other solvers. Another

line of work is on linearizing Boolean logic expressions externally, but only for a restricted syntax.

For example, the Big-𝑀 method [Cococcioni and Fiaschi 2021; Glover 1975] adds a large number

for an artificial𝑀 variable, to ensure that a Boolean logic expression holds whenever a Boolean

indicator variable evaluates to False. However, the𝑀 value has a significant and yet unpredictable

impact on performance. Bertsimas et al. [Bertsimas et al. 2021] propose another way to reformulate

simple Boolean logic expressions as convex binary optimization problems; however, it works only

for a restricted syntax. To the best of our knowledge, our method is the first solver-independent

and generally-applicable solution.

It is worth pointing out that the decision variant of an MILP problem can be solved using an

SMT solver. However, its performance is not as competitive as MILP solvers. To demonstrate this,

we have conducted an experiment using the Protein Folding example (also explained in Section 2.2).

The state-of-the-art MILP solver, Gurobi [Bixby 2007], solved it in 0.23 seconds, while the state-of-

the-art SMT solver, Z3 [Moura and Bjørner 2008], solved it in 18.27s. Although there have been

efforts on extending SMT solvers to make them more efficient in solving both the decision and the

optimization variants of the MILP problem, for example, in [Devriendt et al. 2021] and [King et al.

2014], the performance is still far from being competitive.

We have implemented our method in a tool and evaluated the tool on a diverse set of bench-

marks. They include 38 specifications from statistics, machine learning, and data science applica-

tions [CPLEX 2015; Forrester and Greenberg 2008; Williams 2013]. To evaluate the quality of the

synthesized MILP constraints, we have compared them with the MILP constraints manually written

by domain experts. The results show that, in terms of compactness, the synthesized constraints

are similar to the manually-written constraints; and in terms of MILP-solving performance, the
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𝜙

{
𝜙1 : 𝑎 ≥ 0→ 𝑏 = 𝐾1

𝜙2 : 𝑎 < 0→ 𝑏 = 𝐾2
𝜓 1


𝑎 ≥ 𝑚𝑖𝑛𝐴 ∗ 𝑥
𝑎 ≤ 𝑚𝑎𝑥𝐴 − (𝑚𝑎𝑥𝐴 + 1) ∗ 𝑥
𝑏 = 𝐾1 + (𝐾2 − 𝐾1) ∗ 𝑥
0 ≤ 𝑥 ≤ 1, 𝑥 ∈ Z

𝜓 2


𝜓1 : 𝑎 ≥ 𝑎 ∗ 𝑥
𝜓2 : 𝑎 ≤ 𝑎 − 𝑥 ∗ (𝑎 + 1 + 𝑎)
𝜓3 : 𝑏 = 𝐾1 + (𝐾2 − 𝐾1) ∗ 𝑥
𝜓4 : 0 ≤ 𝑥 ≤ 1, 𝑥 ∈ Z

(1)

Fig. 2. An example SMT specification 𝜙 (left), the equivalent MILP constraint𝜓1
written by a domain expert

(middle), and the equivalent MILP constraint𝜓2
synthesized by our method (right). Here, 𝑥 is a new integer

variable (whose value is either 0 or 1), while𝑚𝑖𝑛𝐴 and𝑚𝑎𝑥𝐴 are constant values.

synthesized constraints are either similar to, or better than, the manually-written constraints.

Specifically, our synthesized constraints are able to reduce the MILP-solving time by more than

41%. To evaluate the efficiency of the synthesis tool, we have also analyzed its execution time, and

quantified the impact of individual optimization techniques. Our experimental results show that

the tool is able to synthesize all of the MILP constraints quickly, and our optimization techniques

are effective in speeding up the synthesis process.

To summarize, this paper makes the following contributions:

• We propose a solver-independent and generally-applicable method for synthesizing correct,
efficient and robust MILP constraints from specifications with Boolean logic operations.

• We propose an under-approximation technique to prune the search space, and propose an

over-approximation technique to speed up equivalence verification.

• We propose a method for generating high-quality candidates by leveraging a convex-hull
based optimization to decompose the input specification and strengthen the DSL.

• We implement our method and demonstrate its effectiveness on 38 statistical modeling

benchmarks with a wide range of Boolean logic operations.

The remainder of this paper is organized as follows. First, we use examples to motivate our work

in Section 2. Then, we present an overview of our method in Section 3. This is followed by the

detailed algorithms for strengthening the DSL in Section 4, generating candidates in Section 5,

verifying equivalence in Section 6, and domain-specific optimizations in Section 7. We present the

experimental results in Section 8, the related work in Section 9, and the conclusions in Section 10.

2 MOTIVATION
In this section, we give an overview of our approach using two motivating examples.

2.1 Example 1: From Online Q&A
This example comes from the StackExchange website. The input specification can be expressed

as If 𝑎 ≥ 0 then 𝑏 = 𝐾1; else 𝑏 = 𝐾2; where 𝑎 and 𝑏 are real-valued variables and 𝐾1 and 𝐾2

are constants. Given the input specification, it is easy to write down the formula expressed in the

SMT-LIB format, 𝜙 := 𝜙1 ∧ 𝜙2, where 𝜙1 and 𝜙2 are defined in Fig. 2 (left).

The four predicates 𝑎 ≥ 0, 𝑎 < 0, 𝑏 = 𝐾1 and 𝑏 = 𝐾2 in 𝜙 are linear constraints that can be

normalized to ax ≤ b. The Boolean logic operator→, which stands for “implies”, can be transformed

to elementary Boolean operations; that is, 𝐴→ 𝐵 is equivalent to ¬𝐴 ∨ 𝐵.
While it is easy for end users to write the SMT specification 𝜙 , it is a challenging task to

transform 𝜙 into a correct and efficient MILP constraint, since MILP does not allow disjunction (∨)
or implication (→), or any combination of Boolean logic operators. Instead, an MILP constraint

must be a conjunction of linear arithmetic constraints.
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Boolean 𝜙 := 𝑝 | 𝜙 ∧ 𝜙 Arith Expr 𝑎 := 𝑎0 | 𝑎 + 𝑎 | 𝑎 ∗ 𝑎 | 𝑎%𝑎
Atomic Pred 𝑝 := 𝑎 ⊙ 𝑎 Input Expr 𝑎0 := 𝑐 | 𝑣𝑎𝑟 |

#»
𝐴 | ITE(𝑟 ,1,0)

Comparator ⊙ := = | ≤ Array Expr
#»
𝐴 := A[𝑎] | A[𝑎] [𝑎]

Bool Relation 𝑟 := 𝑅(𝑣𝑎𝑟, 𝑣𝑎𝑟 ) | 𝑅(𝑣𝑎𝑟,A) | 𝑅(A,A)
Fig. 3. Basic DSL for expressing the MILP constraint, where 𝑐 denotes constant, 𝑣𝑎𝑟 denotes variable and A
denotes array. Both 𝑣𝑎𝑟 and A are sets of elements extracted from the input SMT specification 𝜙 .

2.1.1 The MILP constraints𝜓 1 and𝜓 2. Fig. 2 shows two equivalent MILP constraints. The one in

the middle, denoted𝜓 1
, is written by a domain expert, while the one on the right, denoted𝜓 2

, is

synthesized by our method.

Domain experts often adopt the Big-𝑀 method from the literature [Cococcioni and Fiaschi 2021;

Glover 1975]. In this running example, 𝑥 is a newly-added decision variable whose value is restricted

to either 0 or 1, while𝑚𝑖𝑛𝐴 and𝑚𝑎𝑥𝐴 are two constant values satisfying (𝑚𝑖𝑛𝐴 ≤ 𝑎 ∧𝑚𝑖𝑛𝐴 <

0 ∧𝑚𝑎𝑥𝐴 ≥ 𝑎 ∧𝑚𝑎𝑥𝐴 > 0). In other words,𝑚𝑖𝑛𝐴 (𝑚𝑎𝑥𝐴) must be a negative (positive) value

smaller (bigger) than all possible values of the variable 𝑎. As such, the approach has two limitations.

First, it requires a priori estimation of the minimal and maximal values of the variable 𝑎, which

may not be easy to do. Second, the quality of the MILP constraint depends on the quality of these

two bounds; loose bounds of𝑚𝑖𝑛𝐴 and𝑚𝑎𝑥𝐴 will make the MILP constraint difficult to solve, or

make the solving time unpredictable.

In contrast, our method is able to synthesize a correct, efficient and robust MILP constraint𝜓 2
, as

shown in Fig. 2 (right). Unlike the manually-written constraint, it does not rely on the two constant

values (𝑚𝑖𝑛𝐴 and𝑚𝑎𝑥𝐴); thus, there is no need to estimate the minimal and maximal values of the

variable 𝑎. Furthermore, our experience with modern MILP solvers shows that𝜓 2
is significantly

easier to solve than𝜓 1
. In the remainder of this subsection, we will explain, at a high level, how

our method synthesizes the MILP constraint𝜓 2
from the input specification 𝜙 .

2.1.2 Our Method for Synthesizing𝜓 2. Our method starts by defining a domain specific language

(DSL), and then strengthens the DSL until it is expressive enough to capture the MILP constraint

𝜓 2
equivalent to the input specification 𝜙 . During this strengthening process, the set of grammar

rules of the DSL is fixed, while the set of variables of the DSL is expanded.

Fig. 3 shows the grammar rules of the DSL. Each rule maps a type (left-hand side of ":=") to a

set of compatible values (right-hand side of ":="). For instance, the compatible values for atomic

predicate are D[𝑝] = {𝑎 ⊙ 𝑎}, i.e., the linear arithmetic constraints. With the grammar rules fixed,

the expressiveness of the DSL depends on 𝑐 , 𝑣𝑎𝑟 , 𝑟 , and
#»
𝐴 ; they are the sets of constants, variables,

relations, and arrays, respectively.

In this running example, the set of variables is 𝑣𝑎𝑟 = {𝑎, 𝑏, 𝐾1, 𝐾2} initially. With these four

variables, however, the equivalent MILP constraint𝜓 2
is unrealizable. We must add new variables

to the DSL to improve its expressiveness, until𝜓 2
becomes realizable.

This is accomplished by first adding a Boolean indicator variable 𝑥 , whose value is either True
or False, to replace the predicates (𝑎 ≥ 0) and (𝑎 < 0) in 𝜙 . We capture the relationship between

𝑎 and 𝑥 using 𝜙3: (𝑎 < 0→ 𝑥 = True) ∧ (𝑎 ≥ 0→ 𝑥 = False).
With the addition of this new variable 𝑥 , we have 𝑣𝑎𝑟 = {𝑎, 𝑏, 𝐾1, 𝐾2, 𝑥}, which improves the

expressiveness of the DSL. Furthermore, the updated input specification is 𝜙 = 𝜙 ′
1
∧ 𝜙 ′

2
∧ 𝜙3, where

𝜙 ′
1
and 𝜙 ′

2
are new versions of 𝜙1 and 𝜙2 by replacing predicates 𝑎 ≥ 0 and 𝑎 < 0 with 𝑥 =False

and 𝑥 =True, respectively.
With the updated DSL D and input specification 𝜙 , our method checks the realizability of an

equivalent MILP constraint again. This time, the answer becomes yes, and the resulting𝜓 2
is shown
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Fig. 4. The protein folding example.

For each pair of hydrophobic acids 𝑖 and 𝑗 ,

we can match them if:

1 they have an even number of acids between 𝑖 and 𝑗

2 there is exactly one fold between 𝑖 and 𝑗

3 𝑖 and 𝑗 are not contiguous (i.e., 𝑗 > 𝑖 + 1)

Fig. 5. Requirements for protein folding.

in Fig. 2 (right). While𝜓 2
contains the product of program variables, it can still be modeled as linear

constraints, since at least one of the two variables in a product is binary (e.g., 𝑥 ).

To understand why the synthesized MILP constraint𝜓 2
is equivalent to the SMT specification 𝜙 ,

consider the following two cases:

• When 𝑥 = 0, we can reduce𝜓 2
to𝜓1 : 𝑎 ≥ 0,𝜓2 : 𝑎 ≤ 𝑎, and𝜓3 : 𝑏 = 𝐾1.

• When 𝑥 = 1, we can reduce𝜓 2
to𝜓1 : 𝑎 ≥ 𝑎,𝜓2 : 2𝑎 ≤ −1, and𝜓3 : 𝑏 = 𝐾2.

In both cases, the result is consistent with 𝜙1 : 𝑎 ≥ 0→ 𝑏 = 𝐾1 and 𝜙2 : 𝑎 < 0→ 𝑏 = 𝐾2.

The equivalence of 𝜙 and𝜓 2
holds as long as a precondition Φ≤ (𝑎) holds. That is,

∀𝑎, 𝑏, 𝐾1, 𝐾2 ∈ R, 𝑥 ∈ {0, 1}. Φ≤ (𝑎) → 𝜙 (𝑎, 𝑏, 𝐾1, 𝐾2, 𝑥) = 𝜓 2 (𝑎, 𝑏, 𝐾1, 𝐾2, 𝑥) (2)

The precondition Φ≤ (𝑎) is defined as 𝑎 < 0 → 𝑎 ≤ −0.5 to remove strict inequality (<) in 𝜙2.

Since strict inequality is not supported by the MILP solver, a tolerance value (−0.5) is introduced to

convert 𝑎 < 0 into 𝑎 ≤ −0.5.
One advantage of our method is that the correctness of𝜓 2

is guaranteed by construction, since

our method returns𝜓 2
only after it formally proves the equivalence of𝜓 2

and 𝜙 . This is in contrast

to the manually-written𝜓 1
, for which domain experts must manually verify the correctness.

2.2 Example 2: Protein Folding
This is a molecular biology problem [Forrester and Greenberg 2008] where a chain of amino acids

must be folded. Some of the amino acids are hydrophobic (water-hating) while others are hydrophilic
(water-loving). The goal is to maximize the pairing of hydrophobic acids. Fig. 4 shows the folding

in two dimensions, with hydrophobic amino acids marked by blue circles, and the matches marked

by blue dashed lines.

Given a chain of 50 amino acids 𝐴 = {1, 2, . . . , 50} and the subset of hydrophobic amino acids

𝐻 = {2, 4, 5 . . . } ⊂ 𝐴, for example, the goal here is to compute the best folding, to maximize the

number of matchings of hydrophobic amino acids. Fig. 5 shows the matching constraints, where

𝑖 ∈ [1, 50] and 𝑗 ∈ [1, 50] are integer variables. Since the third constraint is straightforward, let us

focus on the first two constraints 1 2 .

Based on the requirements in Fig. 5, end users will be able write the input specification 𝜙 =

𝜙1 ∧𝜙2 ∧𝜙3 ∧ . . . shown in Fig. 6 (left). Here, 𝜙1 and 𝜙2 encode the first requirement of Fig. 5, while

𝜙3 encodes the second requirement, meaning that there is only one fold between hydrophobic acids

𝑖 and 𝑗 , if the two hydrophobic acids 𝑖 and 𝑗 match.

2.2.1 Using Boolean Relations. Inside 𝜙 , Boolean relations such as 𝑀 (𝑖, 𝑗) and 𝑓 (𝑘) are used to

write the input specification symbolically. This is in contrast to the use of individual Boolean

variables such as 𝑀_𝑖_ 𝑗 for all 𝑖 ∈ [0, 50] and 𝑗 ∈ [0, 50]. For example, 𝑀 (𝑖, 𝑗) = True indicates

that a hydrophobic acid 𝑖 is matched with another hydrophobic acid 𝑗 , for all hydrophobic acids
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𝜙1: 𝑀 (𝑖, 𝑗) = 1→ (𝑖 + 𝑗 − 1)%2 = 0 𝜓1: (𝑖 + 𝑗 − 1)%2 ≤ 1 −𝑀 (𝑖, 𝑗)
𝜙2: 𝑀 (𝑖, 𝑗) = 1 ∧ 𝑘 = (𝑖 + 𝑗 − 1)/2→ 𝑓 (𝑘) = 1 𝜓2: 𝑥 + (𝑖 + 𝑗 − 1)%2 ≤ 1, 𝑥 + 𝑦 ≤ 1

𝜙3: 𝑀 (𝑖, 𝑗) = 1→ ∑
𝑖≤𝑘 ′< 𝑗 𝑓 (𝑘 ′) = 1 𝜓3: 1 ≤ (𝑖 + 𝑗 − 1)%2 + 𝑥 + 𝑦, 𝑀 (𝑖, 𝑗) + 𝑥 ≤ 𝑓 (𝑘) + 1

𝜙4: 𝑥 ↔ 𝑘 = (𝑖 + 𝑗 − 1)/2 𝜓4: (𝑖 + 𝑗 − 1)/2 ≤ 𝑘 + 𝑦 ∗ (𝑖 + 𝑗 − 1)/2
𝜙5: 𝑦 ↔ 𝑥 ∧ (𝑖 + 𝑗 − 1)%2 = 0 𝜓5: 𝑘 ≤ (𝑖 + 𝑗 − 1)/2 + (𝑘 + 1) ∗ 𝑦

𝜓6: 𝑓 (𝑘) +𝑀 (𝑖, 𝑗) + 𝑦 ≤ 2

Fig. 6. Input specifications are in {𝜙1, 𝜙2, 𝜙3}, specifications generated by our decomposition procedure are

in {𝜙4, 𝜙5}, and the synthesized MILP constraints are in {𝜓1 −𝜓6}.

𝑖 + 1 < 𝑗 ∈ 𝐻 , while 𝑓 (𝑘) = True holds if and only if a fold occurs between the 𝑘-th and (𝑘 + 1)-th
amino acids in the chain, where 𝑘 ∈ 𝐴.
One advantage of using Boolean relations in 𝜙 , as shown in Fig. 6, is that the specification 𝜙 is

applicable to a chain of amino acids of any length, not just a chain of amino acids of length 50.

2.2.2 Rewriting the Accumulative Operations. Given this input specification 𝜙 , our method first

simplifies𝜙 , and then strengthens the DSL to ensure that the equivalent MILP constraint is realizable,

before synthesizing𝜓 . Our simplification focuses on rewriting the accumulative operations such as∑
𝑖∈𝐼 and

∧
𝑖∈𝐼 using pre-defined rewriting rules.

These rewriting rules are derived from the semantics of the accumulative operators. For the

∑
𝑖∈𝐼

operator, there are two rules applicable to this example: 𝑅1 :
∑

𝑖∈𝐼 𝑔(𝑖) ↔ 𝑔(𝑖′) +∑𝑖∈𝐼∧𝑖≠𝑖′ 𝑔(𝑖) and
𝑅2 :

∑
𝑖∈𝐼 𝑔(𝑖) = 0→ 𝑔(𝑖) = 0.

With rule 𝑅1, subformula 𝜙3 is rewritten as 𝑓 (𝑘) +∑𝑖≤𝑘 ′< 𝑗∧𝑘 ′≠𝑘 𝑓 (𝑘 ′) = 1. Specifically, assuming

the LHS of 𝜙2 holds (e.g.,𝑀 (𝑖, 𝑗) = True, 𝑘 = (𝑖 + 𝑗 − 1)/2), we obtain 𝑓 (𝑘) = 1 from the RHS of 𝜙2.

Thus, 𝜙3 is rewritten as

∑
𝑖≤𝑘 ′< 𝑗∧𝑘 ′≠𝑘 𝑓 (𝑘 ′) = 0, implying

∑
𝑖≤𝑘 ′< 𝑗∧𝑘 ′≠(𝑖+𝑗−1)/2 𝑓 (𝑘 ′) = 0. With rule

𝑅2, 𝜙3 is finally simplified as follows:𝑀 (𝑖, 𝑗) ∧ 𝑘 ′ ≠ (𝑖 + 𝑗 − 1)/2→ 𝑓 (𝑘 ′) = 0.

2.2.3 Checking Unrealizability. Next, our method checks if the equivalent MILP constraint 𝜓 is

realizable using the initial DSL (D). This check is formulated as

Find𝜓 ∈ 𝐿(D), ∀𝑖, 𝑗, 𝑘, 𝑀 (𝑖, 𝑗), 𝐹 (𝑘). 𝜙 (𝑖, 𝑗, 𝑘, 𝑀, 𝐹 ) = 𝜓 (𝑖, 𝑗, 𝑘, 𝑀, 𝐹 ) (3)

Here, 𝐿(D) represents the set of all possible formulas that can be expressed using the DSL D. For
this example, the result is unrealizable. To make it realizable, we must add new decision variables

to the 𝑣𝑎𝑟 set of the DSL. This is accomplished by replacing some of the predicates in 𝜙 with the

new decision variables, until Eq. 3 says realizable. The detailed algorithm for checking realizability

will be presented in Section 4.2.

There may be multiple ways of decomposing 𝜙 to add new variables. Below is an example.

𝑥 ↔ (𝑖 + 𝑗 − 1)%2 = 0 ∧ 𝑦 ↔ 𝑘 = (𝑖 + 𝑗 − 1)/2 ∧ 𝑧 ↔ 𝑀 (𝑖, 𝑗) ∧ ¬𝑦 ∧ 𝑧1↔ 𝑀 (𝑖, 𝑗) ∧ 𝑦 (4)

However, this may introduce too many new variables.

A better way is to introduce only two new variables 𝑥 and 𝑦, as defined in the subformulas 𝜙4
and 𝜙5. Fig. 6 (right) shows the equivalent MILP constraint synthesized by our method.

3 OUR METHOD
The top-level procedure of our method, SynMio, is presented in Algorithm 1. It takes the SMT

specification 𝜙 as input and returns the equivalent MILP constraint𝜓 as output.

Internally, it first identifies from the input specification𝜙 the sets of constants, relations, variables,

and arrays that appear in 𝜙 . Then, it uses these sets to initialize the DSL D, whose grammar rules

have been defined in Fig. 3. It also initializes 𝑆𝐸 , which will be used to store the set of negative
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Algorithm 1 Our synthesis method𝜓 ← SynMio(𝜙).
1: Let 𝑐, 𝑟, 𝑣𝑎𝑟 and A be the sets of constants, relations, variables, and arrays appeared in specification 𝜙

2: D ← InitDsl(𝑐, 𝑟, 𝑣𝑎𝑟,A)

3: 𝑆𝐸 ← ∅ ⊲ 𝑆𝐸 is the set of negative examples

4: do

5: ⟨D, 𝜙 ⟩ ← EnrichDsl(D, 𝑆𝐸 , 𝜙) ⊲ Strengthen DSL if 𝑆𝐸 contains evidence that𝜓 is unrealizable
6: do

7: 𝜓 ← GenCandi(D, 𝑆𝐸 , 𝜙) ⊲ using under-approximation to prune the SyGuS search

8: 𝐸 ← VerifyEq(𝜙,𝜓 ) ⊲ using over-approximation to speed up verification

9: 𝑆𝐸 ← 𝑆𝐸 ∪ {𝐸}
10: while 𝐸 ≠ ∅ ∧ runtime < threshold
11: while 𝐸 ≠ ∅
12: return𝜓

examples. Here, a negative example is a set of concrete values for variables in the DSL, to show

𝜓 ≠ 𝜙 . Initially, 𝑆𝐸 is an empty set.

Inside the first loop (Line 4), our method first checks if the equivalent MILP constraint 𝜓 is

realizable. If there is evidence in 𝑆𝐸 that𝜓 may be unrealizable, the DSL is strengthened until such

negative examples no longer exist. This is done inside the subroutine EnrichDsl, which returns

the strengthened D and the updated 𝜙 .

While the detailed algorithm of EnrichDSL will be presented in Section 4, here, it suffices to say

that the realizability-checking procedure is designed to be sound but not necessarily complete, for

efficiency reasons. That is, when it reports unrealizable, it means the equivalent MILP constraint is

definitely unrealizable; however, when it reports unknown, the result is inconclusive. In the latter

case, EnrichDsl returns the current D and 𝜙 without modification.

With the strengthened DSL, our method goes into the second loop, to generate𝜓 using the syntax

guided synthesis (SyGuS) framework. Specifically, it uses the subroutine GenCandi to generate a

candidate𝜓 , and then uses the subroutine VerifyEq to prove the equivalence of𝜓 and 𝜙 .

To improve performance, it uses under-approximation inside GenCandi to quickly prune the bad

candidates, and uses over-approximation inside VerifyEq to speed up verification. Any negative

examples generated by these two subroutines will be added to the set 𝑆𝐸 .

Whenever 𝜙 and𝜓 are proved equivalent, VerifyEq returns an empty set (𝐸), which allows our

method to jump out of the loops and return the synthesized MILP constraint𝜓 (Line 12).

If the running time of the inner loop exceeds a predefined threshold, then the subroutine

EnrichDsl is used to strengthen the DSL again, using the accumulated negative examples in 𝑆𝐸 .

In the next three sections, we will present the detailed algorithms inside the three subroutines

EnrichDsl (Sec 4), GenCandi (Sec 5), and VerifyEq (Sec 6).

4 STRENGTHENING THE DSL
In this section, we present the algorithm inside the subroutine EnrichDsl. The pseudo code is

shown in Algorithm 2. The input of this subroutine consists of the DSL D, the negative example set

𝑆𝐸 , and the specification 𝜙 . The output consists of the updated versions of D and 𝜙 .

Internally, there are three steps. The first step, Unrealizable, checks whether the example set

𝑆𝐸 contains any evidence to show that an MILP constraint equivalent to 𝜙 is unrealizable. The

second step, Decomp, strengthens the DSL by decomposing 𝜙 to replace some of its predicates

with new decision variables; adding these new variables to the 𝑣𝑎𝑟 set of the DSL will improve its

expressiveness. The third step, ConvexHullSplit, further decomposes 𝜙 to add more variables.

However, unlike Decomp, the goal here is to increase the chance of generating a high-quality MILP

constraint. In the remainder of this section, we explain these three steps in detail.
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Algorithm 2 ⟨D, 𝜙⟩ ← EnrichDsl(D, 𝑆𝐸, 𝜙)
1: while Unrealizable(D, 𝑆𝐸 , 𝜙) do

2: ⟨D, 𝜙 ⟩ ← Decomp(D, 𝑆𝐸 , 𝜙 )
3: end while

4: ⟨D, 𝜙 ⟩ ← ConvexHullSplit(D, 𝜙 )
5: return ⟨D, 𝜙 ⟩

𝜙


𝜙1 : 𝑥 ≥ 0 ∧ 𝑥 < 1→ 𝑦 ≤ 10

𝜙2 : 𝑥 ≥ 1 ∧ 𝑥 < 2→ 𝑦 ≤ 5

𝜙𝑖 : . . . (up to 10 implications)
𝜙𝑛 : 𝑥 ≥ 10→ 𝑦 ≤ 10

Fig. 7. Specification 𝜙 for StackExchange 2873.

4.1 Decomposing the Specification
We start with the subroutine Decomp. Instead of showing the pseudo code, which is straightforward,

we illustrate the process using an example. The specification of this example, named StackExchange
2873, is shown in Fig. 7. That is, 𝜙 = 𝜙1 ∧ 𝜙2 ∧ ...𝜙𝑖 ∧ ...𝜙𝑛 contains a conjunction of subformulas,

each of which may have both linear constraints and Boolean logic operations such as Implication

(→). In our method, each subformula, 𝜙𝑖 , is treated as an input, for which an equivalent MILP

constraint is synthesized.

𝑥 ≥ 0 ∧ 𝑥 < 1→ 𝑦 ≤ 10 | 𝜙1𝑎 : 𝑥 ≥ 0⇔ 𝑤1

𝑤1 ∧ 𝑥 < 1→ 𝑦 ≤ 10 | 𝜙1𝑏 : 𝑥 < 1⇔ 𝑤2

𝑤1 ∧𝑤2 → 𝑦 ≤ 10 | 𝜙1𝑐 : 𝑤1 ∧𝑤2 ⇔ 𝑧

| 𝜙1𝑑 : 𝑧 → 𝑦 ≤ 10

Fig. 8. The decomposed specifications from 𝜙1.

𝜙1 : 𝑥 ≥ 0 ∧ 𝑥 < 1 → 𝑦 ≤ 10

𝑤1 𝑤2

𝑧

𝜙1

Fig. 9. Decomposing 𝜙1.

Consider 𝜙1 as our running example, Fig. 9 shows several ways of decomposing the antecedent,

to replace predicates in the set {𝑥 ≥ 0 ∧ 𝑥 < 1, 𝑥 ≥ 0, 𝑥 < 1} with new decision variables. For

example, Decomp may introduce a new variable 𝑧 to replace 𝜙1.left() = 𝑥 ≥ 0 ∧ 𝑥 < 1. Decomp

may also introduce two more variables 𝑤1 and 𝑤2 to replace the children of 𝜙1 .left() such that

𝑤1 = 𝑥 ≥ 0 and𝑤2 = 𝑥 < 1.

After introducing these three new variables, the specification 𝜙1 becomes 𝜙1𝑎 ∧ 𝜙1𝑏 ∧ 𝜙1𝑐 ∧ 𝜙1𝑑 ,
where the subformulas are defined in Fig. 8.

Our method will synthesize an equivalent MILP constraint for each of these subformulas. Thus,

the final MILP constraint for 𝜙1 will be 𝜓1 = 𝜓1𝑎 ∧ 𝜓1𝑏 ∧ 𝜓1𝑐 ∧ 𝜓1𝑑 , where 𝜓1𝑑 is defined as

𝑦 ≤ 10 +𝑊 ∗ (1 − 𝑧) and the other subformulas are defined as follows:

𝜓1𝑎

{
𝑊 ∗𝑤1 ≥ 𝑥 + 𝑒𝑝𝑠
𝑊 ∗ (1 −𝑤1) ≥ 0 − 𝑥

𝜓1𝑏

{
𝑊 ∗𝑤2 ≥ 1 − 𝑥
𝑊 ∗ (1 −𝑤2) ≥ 𝑥 − 1 + 𝑒𝑝𝑠

𝜓1𝑐

{
𝑧 ≤ 𝑤1 ∧ 𝑧 ≤ 𝑤2

𝑤1 +𝑤2 − 1 ≤ 𝑧
(5)

Here, 𝑊 and 𝑒𝑝𝑠 are symbolic variables such that 𝑊 is the largest possible value among all

expressions in𝜓 , and 𝑒𝑝𝑠 is a small constant used to make the inequality non-strict, similar to the

tolerance value used in in Equation 2. For 𝑒𝑝𝑠 , we always add the bound constraint 0 < 𝑒𝑝𝑠 < 1.

For𝑊 , we first extract all the subexpressions (i.e., 𝑥 + 𝑒𝑝𝑠 and 0 − 𝑥 from𝜓1𝑎) and then impose

the constraint𝑊 ≥ 𝑥 + 𝑒𝑝𝑠 ∧𝑊 ≥ 0 − 𝑥 .

4.2 Checking for Unrealizability
Now, we explain the subroutine Unrealizable, which decides whether 𝑆𝐸 contains any evidence

showing that a 𝜙-equivalent MILP constraint is unrealizable. The verification problem is defined as
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follows:

Find𝜓 ∈ 𝐿(D), ∀𝑣𝑎𝑟, 𝑟, #»
𝐴. 𝜙 (𝑣𝑎𝑟, 𝑟, #»

𝐴 ) = 𝜓 (𝑣𝑎𝑟, 𝑟, #»
𝐴 ) (6)

However, this problem is difficult to solve.

Instead, we leverage the unrealizability verification technique proposed by Hu et al. [Hu et al.

2019, 2020]. The core idea is to reduce the unrealizability proof over all inputs (Eq. 6) to a proof

over the finite number of examples in 𝑆𝐸 :

Find𝜓 ∈ 𝐿(D),
∧

𝑣𝑎𝑟,𝑟,
#»
𝐴 ∈𝑆𝐸

𝜙 (𝑣𝑎𝑟, 𝑟, #»
𝐴 ) = 𝜓 (𝑣𝑎𝑟, 𝑟, #»

𝐴 ) (7)

This is a sound (and not necessarily complete) procedure in that, if it is unrealizable according to

Eq. 7, it is unrealizable according to Eq. 6; however, the reverse is not always true.

This procedure is practically fast, because the set 𝑆𝐸 of negative examples is finite, which means

the unrealizability proof of Eq. 7 can be encoded as a reachability problem in a non-deterministic

program 𝑃𝑛 , as shown by Hu et al. [Hu et al. 2019, 2020]. Each program path in 𝑃𝑛 models a possible

candidate expression that the DSL D can represent. Furthermore, 𝑃𝑛 has an assertion (Eq. 8) such

that, if the assertion cannot be falsified, it means the synthesis instance Eq. 7 is unrealizable.

¬
∧

𝑣𝑎𝑟,𝑟,
#»
𝐴 ∈𝑆𝐸

𝜙 (𝑣𝑎𝑟, 𝑟, #»
𝐴 ) = 𝜓 (𝑣𝑎𝑟, 𝑟, #»

𝐴 ) (8)

4.3 Convex-hull Based Splitting
Finally, we explain the subroutine ConvexHullSplit. At this moment, the DSL has been strength-

ened such that there is no longer evidence in 𝑆𝐸 showing that the 𝜙-equivalent MILP constraint is

unrealizable. Thus, the goal of adding new variables is not improving the expressiveness; instead,

the goal is improving the quality of the synthesized MILP constraint.

Our method for adding new variables in ConvexHullSplit is inspired by the fact that, within

MILP solvers, the original problem is often reformulated into a more relaxed problem before it is

solved. There are many such reformulations, all of which keep the original part of the solution

space, but may add more solutions to make the solution space convex. In this context, a convex hull
is defined as the smallest convex solution space for the relaxed problems [Belotti et al. 2011].

Consider an example whose input specification 𝜙 is given as follows:

𝜙

{
𝜙1 : 𝑘 → 5 ≤ 𝑥1 ≤ 9 ∧ 0 ≤ 𝑥2 ≤ 4

𝜙2 : ¬𝑘 → 0 ≤ 𝑥1 ≤ 5 ∧ 4 ≤ 𝑥2 ≤ 6

𝜓 1


𝜓1 : 5 − 7 ∗ (1 − 𝑘) ≤ 𝑥1 ≤ 9 + 7 ∗ (1 − 𝑘)
𝜓2 : −7 ∗ (1 − 𝑘) ≤ 𝑥2 ≤ 4 + 7 ∗ (1 − 𝑘)
𝜓3 : −7 ∗ 𝑘 ≤ 𝑥1 ≤ 5 + 7 ∗ 𝑘
𝜓4 : 4 − 7 ∗ 𝑘 ≤ 𝑥2 ≤ 6 + 7 ∗ 𝑘

(9)

The solution space of 𝜙 is shown as the blue shaded areas in Figure 10a, where 𝑥1 is the horizontal

axis and 𝑥2 is the vertical axis.

Without adding any new variable, our method will synthesize𝜓 1
as shown in the above Eq. 9.

The solution space of 𝜓 1
is shown as the orange region in Figure 10b, which contains the blue

region (actual solution space).

However, this is not a tight relaxation since the orange region over-approximates the blue region

too much. This may lead to a long solving time, because MILP solvers routinely search for a solution

in the relaxation space and then check if it also belongs to the actual solution space. Thus, a smaller

relaxation space (orange) is more likely to reduce the solving time. However, without adding new

variables, it is not possible for our synthesis method to get a tighter relaxation.

The reason is because𝜓 1
is synthesized from 𝜙 by treating each of the subformulas (𝜙1 and 𝜙2)

in isolation. In other words, the synthesizer fails to capture and then utilize the correlation between
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(a) 𝜙 (b)𝜓1
(c)𝜓2

Fig. 10. The solution spaces for 𝜙 , and two possible equivalent MILP constraints𝜓1
and𝜓2

.

them. To see why 𝜙1 and 𝜙2 are correlated, consider the fact that they are defined over the same set

of variables {𝑥1, 𝑥2}.
One way to capture the correlation is to split variable 𝑥1 into 𝑥1𝑘 and 𝑥1¬𝑘 such that 𝑥1 =

𝑥1𝑘 +𝑥1¬𝑘 . If 𝑥1𝑘 is activated, 𝑥1¬𝑘 is equivalent to 0 (deactived); and vice versa. ConvexHullSplit
is designed to handle this kind of scenarios, to split each (non-decision) variable to two new

variables such that only one of them can be activated.

For the running example, the 𝑣𝑎𝑟 set of theDSLwill be augmented by the set {𝑥1𝑘 , 𝑥1¬𝑘 , 𝑥2𝑘 , 𝑥2¬𝑘 }
of new variables. With the updated DSL, our method will synthesize the MILP constraint𝜓 2

defined

as follows:

𝜓 2


𝜓1 : 𝑥1 = 𝑥1𝑘 + 𝑥1¬𝑘 ∧ 𝑥2 = 𝑥2𝑘 + 𝑥2¬𝑘
𝜓2 : 0 ≤ 𝑥1𝑘 ∧ 0 ≤ 𝑥1¬𝑘
𝜓3 : 5𝑘 ≤ 𝑥1𝑘 ≤ 9𝑘 ∧ 0 ≤ 𝑥1¬𝑘 ≤ 5(1 − 𝑘)
𝜓4 : 0 ≤ 𝑥2𝑘 ≤ 4𝑘 ∧ 4(1 − 𝑘) ≤ 𝑥2¬𝑘 ≤ 6(1 − 𝑘)

(10)

Figure 10c shows the region of 𝜓 2
, where the relaxation space (orange) is reduced to the convex

hull of the blue region.
To summarize, the subroutine ConvexHullSplit is designed to introduce new variables by

splitting the existing variables with the goal of capturing the relation between two subformulas 𝜙𝑖
and 𝜙 𝑗 , where the antecedent of 𝜙𝑖 is the negation of the antecedent of 𝜙 𝑗 . Our observation is that,

by extracting the correlation between them and make the information available during synthesis,

our method will be able to synthesize high-quality candidates.

5 GENERATING THE MILP CANDIDATES
In this section, we present the algorithm implemented in the subroutine GenCandi, which takes

the DSL (D), the example set (𝑆𝐸 ) and the specification (𝜙) as input, and returns a candidate 𝜓

as output. The pseudo code is shown in Algorithm 3. The baseline is a counterexample guided

inductive synthesis (CEGIS) procedure [Alur et al. 2013], which enumerates candidates in a search

space defined by D and, for each candidate 𝜓 , checks whether it is equivalent to 𝜙 . To improve

performance, however, we use under-approximation during the equivalence checking.

5.1 Under-approximation for Search Space Pruning
While variables in𝜙 and𝜓 are either integer or real-valued variables, we redefine them as bit-vectors

during the verification step. By reducing the length of the bit-vectors to 2 or 3, for example, the

verification time will be drastically reduced.
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Algorithm 3 Subroutine for generating candidate:𝜓 ← GenCandi(D, 𝑆𝐸, 𝜙).
1: Φ ← True; 𝑏 ← Init( ) ;
2: while runtime < threshold do

3: 𝜓 ← Assemble(D, 𝑆𝐸 , 𝜙,𝑏 ) ⊲
∧

𝐸∈𝑆𝐸 . Φ(𝐸 ) → 𝜙 (𝐸 ) = 𝜓 (𝐸 )
4: 𝐸 ← FalsifyBit(𝜙,𝜓,𝑏 ) ⊲∀𝐸, 0 ≤ 𝐸 ≤ 2

𝑏−1 − 1. Φ(𝐸 ) → 𝜙 (𝐸 ) = 𝜓 (𝐸 )
5: if 𝐸 ≠ ∅ then ⊲ 𝐸 : counterexample

6: if CheckCex(𝐸,𝜙,𝜓 ) then

7: 𝑆𝐸 ← 𝑆𝐸 ∪ {𝐸} ⊲ 𝐸 is a real counterexample – add to 𝑆𝐸

8: else

9: Φ ← UpdatePre(Φ,𝜓,𝑏, 𝐸 ) ⊲ 𝐸 is a bogus counterexample – update precondition Φ
10: end if

11: else

12: return𝜓

13: end if

14: end while

15: return ∅

Our verification step has three phases, each of which is slower and yet more accurate than the

previous one. In the first phase, we check if the equivalence of 𝜙 and𝜓 holds on all examples 𝐸 ∈ 𝑆𝐸 .
Since 𝑆𝐸 is a finite set, this is captured by Ψ1, defined as follows:

Ψ1 (𝜓 ) :=
∧

𝐸∈𝑆𝐸
Φ(𝐸) → 𝜙 (𝐸) = 𝜓 (𝐸) (11)

Here, 𝜙 (𝐸) denotes the value of 𝜙 on the example 𝐸, and 𝜙 (𝐸) = 𝜓 (𝐸) means 𝜙 and𝜓 are equivalent

for this particular example 𝐸.

Φ(𝐸) is the precondition that is necessary to establish the equivalence in this bit-vector domain,

defined as Φ(𝐸) = Φ≤ (𝐸) ∧ Φ↑ (𝐸). The subformula Φ≤ is used to remove strict inequality as

explained using the example Φ≤ (𝑎) in Equation 2. The subformula Φ↑, on the other hand, accounts

for overflow/underflow in the bit-vector domain. Details of Φ↑ will be explained in Section 5.2.

As shown in Line 3 of Algorithm 3, the subroutine Assemble returns the candidate only when𝜓

and 𝜙 satisfy Eq. 11.

In the second phase, we check if the equivalence holds for all values in the bit-vector domain;

this is captured by Ψ2, defined as follows:

Ψ2 (𝜓 ) := ∀𝐸, 0 ≤ 𝐸 ≤ 2
𝑏−1 − 1 . Φ(𝐸) → 𝜙 (𝐸) = 𝜓 (𝐸) (12)

Here, 𝑏 is the length of the bit-vector. Again, the number of 𝐸 is finite. As shown in Line 4 of

Algorithm 3, the subroutine FalsifyBit is used to check Eq. 12.

In the third phase, we check if the equivalence holds in the unbounded integer/real domain Z/R.
Since Φ↑ is no longer needed to account for overflow and underflow in the bit-vector domain, the

precondition Φ = Φ≤ ∧ Φ↑ reduces to Φ≤ . This is captured by Ψ3, defined as follows:

Ψ3 (𝜓 ) := ∀𝐸 ∈ Z, 𝐸′ ∈ R . Φ≤ (𝐸, 𝐸′) → 𝜙 (𝐸, 𝐸′) = 𝜓 (𝐸, 𝐸′) (13)

The reason why we need the third phase is because, even if Ψ2 (𝜓 ) holds, Ψ3 (𝜓 ) may not hold. The

third phase is implemented in VerifyEq (used in Algorithm 1), and it will be discussed again in

Section 6.

The three-phase approach presented above is designed to significantly speed up verification,

by quickly falsifying equivalence in smaller domains (𝑆𝐸 and [0, 2𝑏−1 − 1]) before falsifying in the

unbounded domain. This effectively prunes the redundant search space.

The effectiveness of pruning is affected by the length of bit-vector. In our implementation, we

set the length to 2 initially, and then keep increasing it as long as the equivalence checking is

falsified in the third phase. This can be illustrated using the Decentralized Planning example below.
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E

MILP

Constraint

𝜓

Assemble

FalsifyBit

bit-vector

VerifyEq

integer/real

CheckCex

Candidate𝜓 𝐸 = ∅ 𝐸 = ∅

CEX𝐸

1 Update precondition
2 Increase bit-vector length/CEX

Example 𝑆𝐸

GenCandi

Fig. 11. The overall flow of the subroutine GenCandi presented in Algorithm 3.

In this example, the input specification 𝜙 is given as follows, together with the synthesized MILP

constraint𝜓 2
:

𝜙


𝑚𝑜𝑣 (𝑑, 𝑐, 𝑑2, 𝑐2) → 𝑙𝑜𝑐 (𝑑, 𝑐)
𝑚𝑜𝑣 (𝑑, 𝑐, 𝑑2, 𝑐2) → 𝑙𝑜𝑐 (𝑑2, 𝑐2)
𝑙𝑜𝑐 (𝑑, 𝑐) ∧ 𝑙𝑜𝑐 (𝑑2, 𝑐2) →𝑚𝑜𝑣 (𝑑, 𝑐, 𝑑2, 𝑐2)

𝜓 2


𝑚𝑜𝑣 (𝑑, 𝑐, 𝑑2, 𝑐2) ≤ 𝑙𝑜𝑐 (𝑑, 𝑐)
𝑚𝑜𝑣 (𝑑, 𝑐, 𝑑2, 𝑐2) ≤ 𝑙𝑜𝑐 (𝑑2, 𝑐2)
𝑙𝑜𝑐 (𝑑, 𝑐) + 𝑙𝑜𝑐 (𝑑2, 𝑐2) ≤ 1 +𝑚𝑜𝑣 (𝑑, 𝑐, 𝑑2, 𝑐2)

(14)

Here, both 𝑙𝑜𝑐 and𝑚𝑜𝑣 are Boolean relations, where 𝑙𝑜𝑐 (𝑑, 𝑐) means a factory 𝑑 is located at a city

𝑐 , and𝑚𝑜𝑣 (𝑑, 𝑐, 𝑑2, 𝑐2) means moving 𝑑 from 𝑐 to 𝑐2 and renaming it as 𝑑2.

While𝜓 2
is the equivalent MILP constraint synthesized by our method, it is not synthesized in

one iteration. Initially, we use length-2 bit-vectors, and GenCandi produces a different candidate

𝜓 1
, shown as follows:

𝑚𝑜𝑣 (𝑑, 𝑐, 𝑑2, 𝑐2) + 𝑙𝑜𝑐 (𝑑2, 𝑐2) +𝑚𝑜𝑣 (𝑑, 𝑐, 𝑑2, 𝑐2) + 𝑙𝑜𝑐 (𝑑, 𝑐) ≤ (#𝑏01 + #𝑏01 + #𝑏01 + #𝑏01 + #𝑏01)

Here, #𝑏01 stands for a bit-vector constant of value 1. While this candidate𝜓 1
satisfies Ψ2 defined

in Eq. 12, it does not satisfy Ψ3 defined in Eq. 13.

That is why we increase the bit-vector length to 3, and then to 4, which leads to the correct

candidate𝜓 2
.

5.2 Defining Preconditions
Recall that in Eq. 11 and Eq. 12, the preconditon Φ↑ (𝐸) is used to establish the equivalence in the

bit-vector domain, to account for overflow and underflow. For example, the summation of two

bit-vectors of length 2 may create a positive value that is too big, and the overflow may cause the

value to become negative. Both overflow and underflow may lead to incorrect verification results.

Consider the example below, which illustrates the overflow. The input specification 𝜙 and the

equivalent MILP constraint𝜓 are shown as follows:

𝜙

{
𝜙1 : 𝑥 > 𝐿𝐵 → 𝑤1 = True

𝜙2 : 𝑥 ≤ 𝐿𝐵 → 𝑤1 = False
𝜓

{
𝜓1 :𝑊 ∗𝑤1 + 𝐿𝐵 ≥ 𝑥
𝜓2 :𝑊 ∗ (1 −𝑤1) + 𝑥 ≥ 𝐿𝐵 + 𝑒𝑝𝑠

(15)

While 𝜓 is equivalent to 𝜙 in the integer and real domains, when we check them in bit-vector

domain, the equivalence may no longer hold.

Thus, FalsifyBit produces a counterexample 𝐸 = ⟨𝑊 = 7, 𝑤1 = True, 𝐿𝐵 = 2, 𝑥 = 4⟩. While

both 𝜙 (𝐸) and𝜓 (𝐸) evaluate to True, in the length-4 bit-vector domain (signed),𝜓 (𝐸) evaluates to
False. This is because 7 is the maximum positive value in this bit-vector domain. Thus𝑊 ∗𝑤1+𝐿𝐵,
which is supposed to be 9, becomes −7. As a result, 𝜓 (𝐸) evaluates to False, thus (mistakenly)

failing Ψ2 defined in Eq. 12. The consequence is that the correct candidate is missed.
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To avoid the above scenario, we must add the precondition Φ↑ into Eq. 11 and Eq. 12. Instead of

enforcing constraints on a particular variable, we propose a general constraint to eliminate the

overflow case of the summation over 𝑘-bit domain.

Assuming 𝑘 = 4, we add to Φ↑, for each arithmetic operation of the form (+ 𝑜𝑝1 𝑜𝑝2), the
following constraint: 𝑜𝑝1 ≥ 04 ∧ 𝑜𝑝2 ≥ 04 → 𝑜𝑝1 + 𝑜𝑝2 ≥ 04. Similarly, for each (+ 𝑣1 𝑣2),
we add the following constraint: 𝑣1 ≥ 04 ∧ 𝑣2 ≥ 04 → 𝑣1 + 𝑣2 ≥ 04.

If FalsifyBit generates a counterexample 𝐸, it is evident that 𝜙 (𝐸) = 𝜓 (𝐸) fails in the bit-vector

domain. However, it remains unclear if 𝐸 is a valid counterexample in the integer and real domains.

To make sure that 𝐸 is a real counterexample, inside CheckCex (Line 6 of Algorithm 3), we check

whether 𝜙 (𝐸) = 𝜓 (𝐸) fails in the integer and real domains.

Figure 11 shows the details of generating and then validating the counterexample 𝐸, before

adding it to the set 𝑆𝐸 . In addition to FalsifyBit, the counterexample may also be generated by

VerifyEq. In both cases, 𝐸 is added to 𝑆𝐸 only when it is confirmed to be a valid counterexample.

If, on the other hand, 𝐸 is found to be a spurious counterexample, we identify the arithmetic

operations causing the discrepancy (𝐸 being valid in the bit-vector domain but spurious in the

integer/real domain). These arithmetic operations, e.g., (+ 𝑜𝑝1 𝑜𝑝2) and (+ 𝑣1 𝑣2), will be used
to update the precondition Φ↑, as explained in the paragraphs above.

To summarize, in Algorithm 3, the first step, Assemble, produces a candidate𝜓 that is equivalent

to 𝜙 for all the examples 𝐸 ∈ 𝑆𝐸 (Eq. 11). The second step, FalsifyBit, further checks the validity

of 𝜓 in the bit-vector domain (Eq. 12). If 𝜓 is validated by FalsifyBit, it would be returned for

further checking in VerifyEq (Line 12). Otherwise, a counterexample 𝐸 is generated. As 𝐸 is not

guaranteed to be a real counterexample, CheckCex checks the validity of 𝐸. Based on the result of

CheckCex, it would be either added to 𝑆𝐸 (real counterexample) or used to define the precondition

(spurious counterexample).

6 VERIFYING THE EQUIVALENCE
We now present the algorithm implemented in the subroutine VerifyEq, which is used in Algo-

rithm 1 to soundly prove that𝜓 and 𝜙 are equivalent under the precondition Φ≤ as defined in Eq. 13.

This is accomplished by leveraging an off-the-self SMT solver. However, instead of proving the

validity of

(𝜙 ≡ 𝜓 ) := (𝜙 → 𝜓 ) ∧ (𝜓 → 𝜙), (16)

we use the SMT solver to check the satisfiability of the negated formula (𝜙 . 𝜓 ), which is equivalent
to (𝜙 ∧ ¬𝜓 ∨ ¬𝜙 ∧𝜓 ). We say that 𝜓 and 𝜙 are equivalent if and only if the negated formula is

unsatisfiable (UNSAT).

However, directly applying the SMT solver to check the UNSAT of the negated formula may still

be costly. As the sizes of 𝜙 and𝜓 increase, the verification time increases rapidly, which prevents

our method from handling larger synthesis problems. To overcome this limitation, we propose to

verify the equivalence of 𝜙 and𝜓 at a higher level of abstraction, i.e., by treating complex arithmetic

operations as uninterpreted functions (UF). This is motivated by the fact that, during equivalent

verification, our goal is to prove the equivalence of 𝜙 and𝜓 , without having to solve these arithmetic

constraints on the potentially large amount of concrete data.

6.1 An Example
To understand the idea of verifying equivalence at a higher level of abstraction, let us revisit the

protein folding example. Recall that, in this example, both 𝜙 and 𝜓 are constraints over index

variables such as 𝑖, 𝑗 and 𝑘 . Neither 𝜙 nor 𝜓 refers to the concrete data. Here, the concrete data

refers to the chain of 50 amino acids 𝐴 = {1, 2, . . . , 50} and the subset of hydrophobic amino acids

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 184. Publication date: June 2023.



Synthesizing MILP Constraints for Efficient and Robust Optimization 184:15

𝜙1: 𝑀 (𝑖, 𝑗) → 𝐸 (𝑖, 𝑗) 𝜓1: 𝑀 (𝑖, 𝑗) ≤ 𝐸 (𝑖, 𝑗),𝑀 (𝑖, 𝑗) ≤ 𝑆 (𝑖, 𝑗, 𝑘)
𝜙2: 𝑀 (𝑖, 𝑗) ∧ 𝑆 (𝑖, 𝑗, 𝑘) → 𝑓 (𝑘) 𝜓2: 𝑥 ≤ 𝐸 (𝑖, 𝑗), 𝑥 ≤ 𝑆 (𝑖, 𝑗, 𝑘), 𝐸 (𝑖, 𝑗) + 𝑆 (𝑖, 𝑗, 𝑘) ≤ 𝑥 + 1
𝜙3: 𝑀 (𝑖, 𝑗) ∧ ¬𝑆 (𝑖, 𝑗, 𝑘1) → ¬𝑓 (𝑘1) 𝜓3: 𝑀 (𝑖, 𝑗) + 𝑥 ≤ 𝑓 (𝑘) + 1
𝜙4: 𝑥 ↔ 𝐸 (𝑖, 𝑗) ∧ 𝑆 (𝑖, 𝑗, 𝑘) 𝜓4: 𝑓 (𝑘1) +𝑀 (𝑖, 𝑗) ≤ 1 + 𝑆 (𝑖, 𝑗, 𝑘1)

Fig. 12. Abstracted specification𝜙 for protein folding (left) and𝜓 synthesized by ourmethod (right). Arithmetic

operations in 𝜙1 − 𝜙3 are replaced by UFs, and 𝜙4 is created by Decomp to add the new decision variable 𝑥 .

𝐻 = {2, 4, 5, . . .}. As a result, both 𝜙 and𝜓 are valid for arbitrarily long chains of amino acids, not

merely the chain of length 50.

During equivalence verification, we want to keep 𝑖, 𝑗, 𝑘 as unbounded integers in [1, +∞], as
opposed to integers in a concrete range such as [1, 50]. In other words, the relations defined on

these index variables must be kept symbolic.

• 𝐸 (𝑖, 𝑗): True if (𝑖 + 𝑗 − 1)%2 = 0; False otherwise.
• 𝑆 (𝑖, 𝑗, 𝑘): True if (𝑖 + 𝑗 − 1)/2 = 𝑘 ; False otherwise.

During equivalence verification, we replace these symbolic relations as uninterpreted functions

(UFs), to abstract away the correlation between the input (𝑖, 𝑗 ) and the output of 𝐸 (𝑖, 𝑗), except that
(𝑖 = 𝑖′ ∧ 𝑗 = 𝑗 ′) → 𝐸 (𝑖, 𝑗) = 𝐸 (𝑖′, 𝑗 ′). This is a sound over-approximation in that, as long as we

prove the equivalence of 𝜙 and𝜓 using these UFs, the equivalence of 𝜙 and𝜓 in the integer/real

domain is guaranteed.

Another benefit of verifying the equivalence at a higher level of abstraction is that our synthesis

method can produce more compact candidates for 𝜓 , e.g., by replacing the actual arithmetic

computations in 𝜙 with UFs. Consider the input specification 𝜙 on the left-hand side of Figure 12,

where the arithmetic computation has been abstracted away. For this𝜙 , the number of new variables

that needs to be added to the 𝑣𝑎𝑟 set of the DSL will be drastically reduced.

Indeed, after adding one new variable, 𝑥 , which is shown in 𝜙4 on the left-hand side of Figure 12,

our method is able to synthesize the MILP constraint𝜓 shown on the right-hand side of Figure 12.

This is significantly simpler than the one shown on the right-hand side of Figure 6.

6.2 Abstracting with Uninterpreted Functions
In our implementation of the subroutine VerifyEq, given the input specification 𝜙 , we first trans-

form 𝜙 to the conjunctive normal form (CNF), consisting of 𝜙1 ∧ 𝜙2 ∧ . . . ,∧𝜙𝑛 , and then try to

remove the redundant subformulas. For example, if the end user includes another subformula

𝜙5 : ¬𝐸 (𝑖, 𝑗) → ¬𝑀 (𝑖, 𝑗) in the original specification 𝜙 , upon detecting that 𝜙5 is equivalent to

𝜙1 : 𝑀 (𝑖, 𝑗) → 𝐸 (𝑖, 𝑗) and thus is redundant, we will remove it from 𝜙 .

Then, we use syntactic-level rewriting rules to replace accumulative operations (such as

∑
𝑖∈𝐼

and

∧
𝑖∈𝐼 ) with functionally equivalent, non-accumulative operations. This has been explained in

Section 2.2.2, while we introduced the protein folding example.

Next, we start abstracting the arithmetic operations to uninterpreted functions (UF). For example,

in protein folding, the uninterpreted function 𝐸 (𝑖, 𝑗) is introduced to replace the actual predicate

(𝑖 + 𝑗 − 1)%2 = 0 ? True : False. We also use UF(𝑖, 𝑗 ) to replace the array

#»
𝐴 [𝑖] [ 𝑗] for efficient

verification.

This leads to a sound over-approximation. By sound, we mean that the equivalence of 𝜙 and𝜓

using these UFs implies the equivalence of 𝜙 and𝜓 in the concrete domain. However, the reverse

is not necessarily true: it is possible that 𝜙 and𝜓 are equivalent, and yet VerifyEq cannot prove

the equivalence. Nevertheless, our experimental evaluation shows that, in practice, VerifyEq is

effective in proving equivalence of 𝜙 and𝜓 in most cases.
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Boolean 𝜙 := 𝑝 | 𝜙 ∧ 𝜙 | 𝜙𝑛 → 𝜙 Arith Expr ND 𝑎𝑛 := 𝑎𝑛
0
| 𝑎𝑛 + 𝑎𝑛 | 𝑎𝑛 ∗ 𝑎𝑛 | 𝑎𝑛%𝑎𝑛

Boolean ND 𝜙𝑛 := 𝑝𝑛 | 𝜙𝑛 ∧ 𝜙𝑛 Input Expr ND 𝑎𝑛
0

:= 𝑐 | 𝑣𝑎𝑟𝑛
Atomic Pred ND 𝑝𝑛 := 𝑎𝑛 ⊙ 𝑎𝑛

Fig. 13. DSL D𝑡 for non-decision (ND) variables, which may occur as the antecedent of the Implication (→)

operator whereas decision variables cannot.

7 OPTIMIZATIONS
While the method presented so far has all the functionalities, we can make it produce a more

compact MILP constraint using a DSL annotated with the type information.

7.1 Type Annotations for the DSL
While the DSL shown in Figure 3 is general enough, individual MILP solvers may have their

own syntactic restrictions, e.g., over the index variables (ND) and decision variables. To speed up

the synthesis using such information, we introduce a variant of the DSL, denoted D𝑡 , to capture

user-provided syntactic restrictions. Our method combines D𝑡 , which is defined in Figure 13, with

the DSL D defined in Figure 3, to take these type annotations into consideration.

Figure 3 captures the syntactic restrictions for both ND and decision variables while Figure 13

focuses exclusively on ND variables. In Figure 13, 𝑣𝑎𝑟𝑛 represents ND variables, the values of which

are decided by the dataset. In contrast, the values of decision variables are decided after the

optimization is finished. For instance, in the protein folding example, 𝑖, 𝑗 and 𝑘 are ND variables

while𝑀 and 𝐹 are decision variables.

In Figure 13, each rule maps a type (left-hand side of ":=") to a set of compatible values (right-hand

side of ":="). For instance, the compatible values for Boolean formula are D[𝜙] = {𝑝, 𝜙 ∧𝜙, 𝜙𝑛 → 𝜙}.
Here𝜙𝑛 represents the Boolean formula consisting of pure ND variables, whichmay be the antecedent

of→ operator, whereas a formula consisting of decision variable is prohibited.

7.2 Leveraging the Type Information
Next, we explain why the combined DSL allows the synthesis procedure to generate a more compact

candidate𝜓 . The reason is because, by allowing more operations to be associated with ND variables,

it may prevent some unrealizability cases from happening. As D𝑡 relaxes the syntactic restrictions
on ND variables, it enlarges the set of syntactically-valid formulas, which reduces the probability of

being unrealizable. Hence, our synthesizer is able to reduce the newly-created variables and obtain

a more compact solution.

Again, in the protein folding example, type information allows the synthesis method to generate

the following candidate:

¬𝐸 (𝑖, 𝑗) → ¬𝑀 (𝑖, 𝑗) ∧ 𝐸 (𝑖, 𝑗) ∧ 𝑆 (𝑖, 𝑗, 𝑘) → 𝑀 (𝑖, 𝑗) ≤ 𝑓 (𝑘) ∧ ¬𝑆 (𝑖, 𝑗, 𝑘1) → 𝑓 (𝑘1) +𝑀 (𝑖, 𝑗) ≤ 1

(17)

This is compact and does not rely on any new variables.

8 EXPERIMENTS
We have implemented our method in a software tool (SynMio), which uses Rosette [Torlak and

Bodik 2013] to generate candidates in small bit-vector domain. We choose Rosette over other

synthesis tools, such as cvc4sy [Reynolds et al. 2019] and EUSolver [Alur et al. 2017], since it

directly supports uninterpreted functions as a syntactic construct for syntax-guided synthesis

(SyGuS) [Alur et al. 2013]. Our verification subroutines, FalsifyBit and VerifyEq, are implemented

using the Z3 SMT solver [Moura and Bjørner 2008]. The difference is that, while FalsifyBit uses

the bit-vector (BV) domain, VerifyEq uses the linear integer/real arithmetic (LIA/LRA) domain.
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Name Description of the Problem Name Description of the Problem

O1 Protein Folding O15 Continuous If2 NonStrict

O2 Decentralized Planning O16 Continuous If Combine SN

O3 Protein Comparison O17 Continuous If Combine NS

O4 Task Scheduling O18 Continuous If Combine SS

O5 Food Manufacture O19 Continuous If Combine NN

O6 ILOG CPLEX OR Q1-11 StackOverflow/StackExchange

O7 Cardinality Problem M1 Decision Tree Learning

O8 Minimize Num of Workers M2 Ranking Function-AUC

O9 Traffic Scheduling M3 Ranking Function-RRF

O10 Warehouse locating M4 Sparse PCA

O11 Factory Production Planning M5 Branch Constraints

O12 Continuous If1 Strict M6 Bipartite Ranking

O13 Continuous If1 NonStrict M7 Best Subset Selection

O14 Continuous If2 Strict M8 Associate Classification

Fig. 14. The list of input specifications
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Fig. 15. The MILP-solving time.

We ran all of our experiments on a computer with 2.9 GHz Intel Core i5 CPU and 64 GB RAM.

Our experiments were designed to answer the following questions:

• What is the quality of the MILP constraints synthesized by our method, measured in terms

of both compactness and the MILP-solving time?

• How efficient is our method in synthesizing MILP constraints, measured in terms of both the

size of the input specifications and the synthesis time?

8.1 Benchmarks
As shown in Fig. 14, our benchmarks include 38 mixed-integer optimization problems specified

using a variety of Boolean logic operations. They come from statistics, machine learning, and data

science applications. Broadly speaking, they fall into three categories. The first category (𝑂1 to𝑂19)

are problems from transportation [Fourer 2014], financial services, supply network design [Belotti

et al. 2011], and as well as biomedical research [Forrester and Greenberg 2008]. The second category

(𝑄1 to𝑄11) are problems collected from various online Q&A platforms, including the StackExchange
website. Due to difficulties in manually linearizing Boolean logic operations, novice data analysts

frequently seek assistance from domain experts on these platforms. The third category (𝑀1 to𝑀8)

are problems created by researchers who leverage MILP solvers in a variety of machine learning

applications, including ranking [Chang 2012], decision tree learning [Bertsimas and Dunn 2017],

and sparse PCA [Bertsimas et al. 2022].

All of these problems have the corresponding, manually-written MILP constraints. They come

from three sources: online Q&A forums, textbooks, and specialists. These manually-written MILP

constraints serve as a baseline for evaluating the quality of the solutions produced by our method.

8.2 Results: TheQuality of Synthesized MILP Constraints
To evaluate the quality of the synthesized MILP constraints, we compared them with the MILP

constraints manually written by domain experts. The results are shown in Table 1. The first four

columns show, for each benchmark, the name, the size of the input specification 𝜙 , the number of

variables in 𝜙 , and the size of the concrete dataset.

Since input specifications may be expressed symbolically using index variables, such as 𝑖, 𝑗 , and

𝑘 in the protein folding example, concrete datasets, such as 𝐴 = {1, 2, . . . , 50} and 𝐻 = {2, 4, . . .},
must be used to concretize them before giving the flattened formula to MILP solvers. This is a

common practice in the Liver Disorders [McDermott and Forsyth 2016], MicroMass [Mahe et al.

1
Optimization benchmarks include O1-2, O4-5 [Williams 2013], O3, 8-9 [Fourer 2014], O6-7 [CPLEX 2015], O10-11 [Belotti

et al. 2011]. Machine learning benchmarks include M1,5 [Bertsimas and Dunn 2017], M2-3 [Chang 2012] and M4 [Bertsimas

et al. 2022].
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Table 1. The quality of the synthesized MILP constraints in terms of compactness.

Name #formula #var |C|

Synthesized Manually-Written

Name #formula #var |C|

Synthesized Manually-Written

#formula #var #formula #var #formula #var #formula #var

O1 3 6 197 4 8 3 6 Q1 2 4 1700 3 5 3 7

O2 1 6 69 3 6 3 6 Q2 2 5 1647 2 5 2 5

O3 1 6 99 3 6 3 6 Q3 2 4 1600 3 4 5 5

O4 1 4 96 2 6 4 6 Q4 21 13 3800 96 38 103 38

O5 5 11 90 20 20 50 40 Q5 1 4 160 1 4 1 4

O6 1 2 200 2 3 3 3 Q6 24 15 2500 101 25 101 25

O7 2 4 200 4 6 4 6 Q7 5 5 1100 21 11 7 9

O8 2 2 252 2 4 2 4 Q8 7 9 1300 19 13 14 14

O9 1 6 200 3 6 3 6 Q9 27 12 2600 107 20 125 29

O10 3 7 27 6 8 15 10 Q10 30 16 1880 134 22 144 27

O11 5 13 156 9 15 5 13 Q11 22 19 240 40 21 50 30

O12 1 4 200 2 5 2 5 M1 2 8 2.6M 5 10 5 10

O13 1 4 200 2 5 2 5 M2 1 5 5700 2 6 4 6

O14 1 4 200 2 5 2 5 M3 2 11 3366 4 11 4 11

O15 1 4 200 2 5 2 5 M4 2 6 5586 5 6 5 6

O16 2 5 280 4 7 4 7 M5 2 5 280 4 7 4 7

O17 2 5 280 4 7 4 7 M6 4 10 4200 8 14 10 15

O18 2 5 280 4 7 4 7 M7 5 9 4530 7 11 7 11

O19 2 5 280 4 7 4 7 M8 4 8 3702 6 9 8 11

2014], Adult [Kohavi et al. 1996] and Haberman Surv. datasets. We show |𝐶 | in Column 4, which is

the number of pre-simplified decision variables generated by Gurobi solver; |𝐶 | is a frequently-used
indicator for estimating the size of the search space. Here,M1 is an outlier: it has an unusually-large

value for |𝐶 | because it takes the entire Adult [Kohavi et al. 1996] dataset as input, consisting of
48,842 concrete data elements.

The remainder of Table 1 compares the size of the synthesized MILP constraint with the size of

the manually-written constraint. The size is measured in terms of both the number of subformulas

in𝜓 and the number of variables in𝜓 .

8.2.1 Compactness. The results in Table 1 show that, overall, the synthesized constraints are

as compact as the manually-written constraints. This is a significant achievement on its own,

considering the amount of time and expertise needed to write the equivalent MILP constraints

manually. Except for a few cases such as 𝑄7 and 𝑄8, the synthesized constraints are either as

compact as, or more compact than, the manually-written constraints. In some cases, the synthesized

constraints are significantly more compact. For Q9, the number of subformulas is 14% smaller. For

O5, in particular, the number of subformulas is less than half of the manually-written version.

8.2.2 MILP-solving Time. We also compared the synthesized constraint with the manually-written

constraints in terms of the MILP-solving time. For consistency, we encoded all problems in Ju-

lia [Bezanson et al. 2017] and then solved them using the state-of-the-art Gurobi solver [Gurobi Op-
timization 2018]. The results are shown in Fig. 15, which represents the running time of the

synthesized constraints using "◦", and the running time of the manually-written constraints using

"+". Here, the 𝑥-axis is the benchmark index for O1-O19, Q1-Q11, and M1-M8, while the 𝑦-axis is
the time in seconds.

The results show that, for more than 50% of the benchmarks, the synthesized constraint has

almost the same MILP-solving time as the manually-written constraint. While some manually-

written constraints have shorter MILP-solving time (e.g., O8, M3), the difference is less than 4%. For

the remainder of the benmarks, the synthesized constraints have signficantly shorter MILP-solving

time. ForQ3-4, Q6, Q9-10, the synthesized constraints have much shorter MILP-solving time. Overall,

the average performance improvement is more than 9.8%.

This improvement can be attributed in part to the ConvexHullSplit procedure, which splits

variables to capture the correlation between subformulas in 𝜙 and thus significantly reduces the
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ID D

Synthesis Time

ID D

Synthesis Time

None Decomp Falsify Both None Decomp Falsify Both

O1 6 7689s 7689s 181s 181s Q1 5 T/O 2293s T/O 133s

O2 4 57s 37s 3s 3s Q2 4 2517s 846s 95s 95s

O3 4 133s 53s 6s 6s Q3 5 T/O 615s 112s 112s

O4 6 T/O 2409s T/O 158s Q4 6 T/O T/O T/O 4212s

O5 5 T/O 4785s T/O 552s Q5 3 174s 174s 3s 3s

O6 5 T/O 1836s T/O 217s Q6 6 T/O T/O T/O 5522s

O7 5 T/O 3439s T/O 351s Q7 7 T/O 7131s T/O 651s

O8 3 T/O 2049s T/O 37s Q8 6 T/O 7845s T/O 379s

O9 4 1893s 931s 10s 10s Q9 6 T/O T/O T/O 4503s

O10 7 T/O 7309s T/O 612s Q10 6 T/O T/O T/O 4822s

O11 6 T/O 4968s 3727s 430s Q11 4 T/O T/O T/O 1265s

O12 3 T/O 526s T/O 3s M1 7 T/O 4125s T/O 373s

O13 3 T/O 519s T/O 8s M2 6 T/O 2323s T/O 206s

O14 3 T/O 534s T/O 9s M3 7 T/O 3579s 826s 335s

O15 3 T/O 507s T/O 9s M4 4 T/O 2964s 685s 244s

O16 4 T/O 1207s T/O 138s M5 4 T/O 2554s T/O 167s

O17 4 T/O 1225s T/O 163s M6 6 T/O 3213s T/O 188s

O18 4 T/O 1246s T/O 74s M7 6 T/O 4062s T/O 275s

O19 4 T/O 1288s T/O 94s M8 6 T/O 3491s T/O 210s

Fig. 16. The performance of our synthesis tool. Here, T/O means > 3

hours.

Fig. 17. The impact of each op-

timization technique.

relaxed solution space. Although ConvexHullSplit may add more variables, these variables are

effective in constraining the solution space, allowing the MILP solver to converge faster. This is

the case for O11, in particular: although the splitting has led to more subformulas (9 versus 5), the

synthesized constraint reduces the MILP-solving time by more than 41%, (69.42s versus 118.17s).

8.3 Results: The Efficiency of the Synthesis Tool
To evaluate the efficiency of the synthesis tool, we analyzed its running time for all benchmarks.

We also investigated the impact of two important components of our method, by comparing

the performance with and without them. The results are shown in Fig. 16. Column 1 shows the

benchmark name, and Column 2 shows the maximal depth of the intermediate AST (corresponding

to a decomposed constraint 𝜙𝑖 ). The next four columns show the running time of four variants

of our synthesis tool. None uses neither EnrichDsl nor FalsifyBit subroutines; Decomp uses

EnrichDsl but not FalsifyBit; Falsify uses FalsifyBit but not EnrichDsl; and Both uses both

components.

The results in Fig. 16 show that our complete method (Both) is efficient in synthesizing MILP

constraints and scalable for handling real-world specifications. For most of the benchmarks, it

finishes quickly. For more than half of the benchmarks, it finishes within 5 minutes. For a few

benchmarks, e.g.,𝑄4 and𝑄6, it takes more than an hour; however, considering how labor-intensive

and time-consuming it is for end users to write the MILP constraints manually, the time taken by

the synthesis tool is acceptable. In terms of scalability, since the benchmark set consists of a diverse

set of specifications collected from various sources, the fact that all of them can be handled by our

tool means the tool is scalable enough in practice.

The results also demonstrate the impact of the two main algorithmic innovations in our method.

Without Decomp and Falsify, the synthesis tool cannot finish most of the benchmarks within the

time limit. Here, T/O stands for timed out after 3 hours. With either of them, while the performance

improves significantly, there are still many benchmarks that cannot be finished within the time

limit. However, it is clear that they have complementary strengths in speeding up the synthesis

process. With both of them enabled, our tool is able to finish all benchmarks.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 184. Publication date: June 2023.



184:20 Jingbo Wang, Aarti Gupta, and Chao Wang

Table 2. Results for benchmarks that have no manually-written solutions.

Name Description of the Problem #formula #var |C|

Synthesized

MILP-solving Time D

Synthesis Time

#formula #var None Decomp Falsify Both

Q12 Implication Constraints (SO) 3 4 216 12 7 195s 5 T/O 3209s T/O 212s

Q13 Implication of Int/Bool/Real (MathSE) 1 7 459 11 12 421s 6 T/O 4261s T/O 359s

Q14 Chain of Implications (OR SE) 3 7 392 5 11 136s 5 T/O 4350s T/O 297s

Q15 Disjunctive Expression (OR SE) 3 5 180 6 7 72s 5 T/O 2062s T/O 183s

Q16 Disjunctive Expression in DAG (OR SE) 5 11 1940 21 17 1618s 7 T/O 6598s T/O 589s

Q17 Chain of Disjunctions (OR SE) 1 6 270 3 6 186s 5 T/O 2795s 678.4s 241s

Q18 Exclusive Conditions (OR SE) 3 6 954 7 9 487s 6 T/O 2928s T/O 263s

Q19 Robust Implication (OR SE) 3 2 1650 3 3 711s 4 T/O 1448s T/O 125s

Q20 Union-closed Sets Conjecture (OR SE) 1 4 1800 3 4 846s 4 T/O 814s 132s 132s

Q21 Max in Constraints (OR SE) 1 4 2395 12 7 2024s 6 T/O 3850s T/O 324s

Q22 Absolute in Constraints (OR SE) 1 3 476 2 5 315s 4 T/O 1266s T/O 107s

Q23 Compact Continuous If (SO) 2 2 150 1 3 69s 4 T/O 1741s T/O 143s

The two optimizations are also synergistic in that, when using both of them, the performance

improvement is significantly more than the addition of what can be achieved by each in isolation. To

illustrate this observation, we plot in Fig. 17 the running time of the four variants of our synthesis

tool for a subset of the benchmarks, namely O2-O19. We omit O1 since the numbers are too big

to fit in the same scale as those of the other benchmarks. For T/O case, we plot zero as its value.

First, let us focus on the blue (Decomp) and pink (Falsify) bars in Fig. 17: they show that Decomp

is more effective than Falsify when each of them is used in isolation (the latter of which still

corresponds to many T/O cases). Next, let us focus on the blue (Decomp) and orange (Both) bars:

they show that, when Falsify is used together with Decomp, the reduction (from the blue bars to

the orange bars) is drastic.

8.4 Results: Benchmarks without Manually-Written Solutions
In addition to the 38 benchmarks shown in Fig. 14, we also evaluated SynMio on 12 benchmarks

for which manually-written solutions do not exist. In other words, answers to these 12 problems

collected from various online forums are either empty, incomplete, incorrect or only applicable to a

certain optimizer.

Table 2 shows the benchmark name and the type of logical constraints in Columns 1-2, where

SO, MathSE, and ORSE stands for the online forums StackOverflow, MathStackExchange and

OperationsResearchStackExchange, respectively.

Columns 3-7 are similar to Columns 2-6 of Table 1. They indicate that, for most benchmarks,

new variables are needed in the synthesized constraints to linearize the input logical constraints.

Furthermore, the synthesized constraint may have many more formulas than the input constraint

(e.g., Q13 and Q21). The reason is that the input constraint has to be decomposed to many subcon-

straints, or the input constraint contains operations such as max(x1,x2,x3). In order to remove the

max() function, our method needs to introduce multiple variables v1,v2,v3 and the corresponding
predicates v1↔(x1>x2), v2↔max(x1,x2) and v3↔(max(x1,x2)>x3).

Columns 9-13 shows that our method is efficient and scalable in synthesizing MILP constraints for

these benchmarks. They also demonstrate the effectiveness of our twomain algorithmic innovations.

Specifically, our complete method (Both) is the most efficient and, for more than 70% of the

benchmarks, it is able to finish synthesis within 5 minutes.

9 RELATEDWORK
There are two lines of prior work on converting Boolean logic operations to MILP constraints,

which are the most closely related to ours. However, as we have already mentioned briefly, they both

have severe limitations in the kinds of Boolean logic constraints that they can handle. In particular,

Bertsimas et al. [Bertsimas et al. 2021; Bertsimas and Van Parys 2020] impose a regularization
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term to their objective functions, with the goal of allowing Boolean logic relations; however, the

method works only for a restricted subclass of problems and thus cannot linearize arbitrary Boolean

expressions. The Big-𝑀 methods [Cococcioni and Fiaschi 2021; Fourer et al. 1987; Glover 1975]

introduce a large number associated with each artificial variable, called 𝑀 , to ensure that the

Boolean logic constraint holds when the Boolean indicator variable is False. However, the𝑀 value

has a significant and often unpredictable impact on the MILP-solving performance, which may lead

to numerical instability. In contrast, our method does not have such problems since it linearizes the

Boolean logic operations without using the𝑀 value at all.

Traditionally, MILP solvers and SMT solvers focus on problems in different niche applications.

However, in recent years, there are efforts on bridging the gap. On the MILP solver side, there

are efforts on extending the core MILP-solving algorithms to handle a limited number of Boolean

logic operations natively. For example, IBM ILOG CPLEX [CPLEX 2015] automatically transforms

logical constraints into equivalent linear formulations via automatic creation of new indicator

variables. However, it explicitly branches on the indicator variable inside its solving procedure,

without inferring the linearized formulation. As a result, this linearization only works for CPLEX

and cannot be applied to other solvers that do not have such an inner solving algorithm to support

the logical constraints. Gurobi [Bixby 2007] restricts the antecedent of implication operator to be a

singular Boolean variable, as opposed to equality or inequality constraints. In contrast, our method

can handle arbitrary combinations of Boolean logic operators. It is also a solver-independent way of

transforming logical constraints to equivalent MILP constraints, before solving the MILP constraints

using any MILP optimization tool.

On the SMT solver side, there are efforts on extending the SMT/Pseudo-Boolean solving paradigm

to more efficiently solve subclassess of MILP problems [Devriendt et al. 2021; King et al. 2014;

Nuzzo et al. 2010; Shoukry et al. 2018]. For example, Pseudo-Boolean solvers [Chai and Kuehlmann

2003; Devriendt et al. 2021] optimize 0-1 integer linear programs (ILP) by interleaving LP solving

with conflict-driven pseudo-Boolean search. King et al. [King et al. 2014] integrate MIP solvers with

SMT, to improve its optimization performance. However, these techniques focus exclusively on

enhancing SMT solvers with optimization modules. None of them paid attention to the linearized

formulas translated from Boolean constraints. Other works [Nuzzo et al. 2010; Shoukry et al. 2018]

use a lazy combination of SMT solving and convex programming to determine the satisfiability

of logic formulas over Boolean variables and convex constraints; however, they do not focus on

optimizing the MILP problems.

While Mixed Boolean-Arithmetic (MBA) expressions [Feng et al. 2020; Liem et al. 2008; Liu et al.

2021; Shen and Ming 2021; Zhou et al. 2007] appear to be similar to MILP constraints, there are

signficant differences. MBA expressions can directly combine arithmetic operations (in the integer

modular ring Z/2𝑛) with Boolean operations, but they focus on the discrete domain. In contrast,

MILP contains arithmetic operations for both discrete and continuous values, but does not allow

arbitrary bitwise Boolean operations. In practice, MBA-based techniques have been used primarily

for obfuscation as well as deobfuscation [Blazytko et al. 2017; Shen and Ming 2021; Zhou et al.

2007], where the focus is on converting computations into MBA expressions, and vice versa, instead

of supporting the optimization goals such as maximization/minimization in MILP.

Since our method relies on the popular SyGuS [Alur et al. 2013] framework for synthesizing

MILP constraints, it is related to a large body of work on partitioning or pruning the search space

and improving the efficiency of SyGuS [Alur et al. 2017; Eldib and Wang 2014; Eldib et al. 2016;

Feng et al. 2018; Feser et al. 2015; Guo et al. 2019; Polikarpova et al. 2016; Reynolds et al. 2019; Wang

et al. 2017]. Some of them rely on partitioning [Eldib and Wang 2014; Eldib et al. 2016] or utilize

type-directed pruning techniques to avoid infeasible programs [Feser et al. 2015; Frankle et al. 2016;

Guo et al. 2019; Osera and Zdancewic 2015; Polikarpova et al. 2016], while others leverage semantic
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information of the DSL to check the feasibility of partial programs [Feng et al. 2018, 2017]. There

is also work on using abstract interpretation to build the space of feasible programs [Wang et al.

2017]. However, the difference is that, while these prior works start from an infinitely large search

space and gradually shrink it until the desired solution is obtained, our method starts from an

under-approximated search space and we gradually enlarge it, which significantly speeds up the

enumeration.

In the context of improving SyGuS, there are bottom-up enumeration techniques [Alur et al. 2017;

Lee 2021] that recursively decompose a given large synthesis problem into smaller subproblems,

and produce small program subexpressions via enumerative search. However, unlike our method

that decomposes the input specification to make the synthesis problem realizable, they are not

concerned with realizability; instead, they work on a sub-problem satisfying a subset of examples.

We have used existing program synthesis tools as part of our tool. In this context, EUsolver [Alur

et al. 2017] and cvc4Syn [Reynolds et al. 2019] are the most closely related synthesis tools, as they

both target SMT expressions. However, our approach goes far beyond, by supporting the unin-

terpreted function (UF) symbols as syntactic constructs during syntax-guided synthesis, whereas

EUsolver and cvc4Syn are unable to manipulate UF during syntax-guided synthesis.

10 CONCLUSIONS
We have proposed a solver-independent and generally-applicable method for synthesizing correct,
efficient and robust MILP constraints from a specification expressed using linear integer/real

arithmetic constraints together with arbitrary combinations of Boolean logic operations. Starting

from the input specification, our method first creates a domain specific language that is expressive

enough, then uses syntax-guided synthesis (SyGuS) to assemble a candidate, and finally proves

that the candidate is equivalent to the input specification. To improve performance, our method

uses an under-approximation technique to quickly prune the search space, and uses an over-

approximation technique to speed up equivalence verification. Our experiments on a diverse set of

benchmarks show that the quality of the synthesized constraints are comparable to constraints

written manually by domain experts. Furthermore, the synthesis tool is fast and scalable enough

for handling real-world applications.
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