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Abstract. Decision trees are increasingly used to make socially sensitive
decisions, where they are expected to be both accurate and fair, but it
remains a challenging task to optimize the learning algorithm for fairness
in a predictable and explainable fashion. To overcome the challenge, we
propose an iterative framework for choosing decision attributes, or fea-
tures, at each level by formulating feature selection as a series of mixed
integer optimization problems. Both fairness and accuracy requirements
are encoded as numerical constraints and solved by an off-the-shelf con-
straint solver. As a result, the trade-off between fairness and accuracy
is quantifiable. At a high level, our method can be viewed as a general-
ization of the entropy-based greedy search techniques such as CART and
C4.5, and existing fair learning techniques such as IGCS and MIP. Our
experimental evaluation on six datasets, for which demographic parity is
used as the fairness metric, shows that the method is significantly more
effective in reducing bias than other methods while maintaining accuracy.
Furthermore, compared to non-iterative constraint solving, our iterative
approach is at least 10 times faster.

1 Introduction

Decision trees are one of the most widely used machine learning models in statis-
tical analysis, data mining and decision making. Compared to other predictive
models such as deep neural networks, decision trees have the advantage of being
easily understandable by humans, which makes them a favorite building block in
systems that require interpretability [34]. However, when they are used to make
socially sensitive decisions in business, finance and law enforcement, decision
trees may introduce bias against certain groups [16]. In this context, a widely
used group fairness metric is demographic parity [11,38], also known as the 80%
rule [8]. Bias against demographic groups, in general, comes from two sources.
First, historical data used to learn models may be biased. Second, learning algo-
rithms may be biased even if they operate on unbiased data.

State-of-the-art decision tree learning algorithms such as CART and C4.5 [10,
29], which are the ones used by popular machine learning toolkits, rely on a
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Fig. 1. SFTree – our symbolic method for synthesizing a fair decision tree.

greedy search technique that is optimized solely for high learning speed and
classification accuracy. Since they do not consider fairness as an optimization
requirement at all, they often produce decision trees that are severely biased. To
mitigate the bias, modifications have been proposed to make the greedy search
discrimination-aware [24] (e.g., IGCS). Unfortunately, these modifications are
not always effective as shown by our own experimental evaluation in Sect. 5 and,
more importantly, the impact of ad hoc modifications is often unpredictable and
difficult to explain.

Meanwhile, there is a line of work in operational research that formulates
decision tree learning as a mixed-integer optimization (MIO) problem [7,35].
Given a finite set F of decision attributes, or features, and a maximum tree
depth K, the set of all possible decision trees is captured symbolically as a set
of numerical constraints, which is then fed to a solver to compute the globally-
optimal decision tree. While optimality was defined initially to minimize the
tree size and accuracy loss [7,35], later on, fairness was added as a goal of the
optimization [1,5]. However, the approach remains largely theoretical due to its
limited scalability: since the entire decision tree must be encoded as a monolithic
MIO problem, only small training datasets (with sample sizes in the 1000s) and
small decision trees (with depths up to 4 or 5) can be handled [2,7].

To overcome the limitations of the existing approaches, we propose an iter-
ative constraint solving technique for synthesizing decision trees in a practi-
cally efficient fashion while simultaneously optimizing for fairness and accuracy.
Instead of encoding the decision tree as a monolithic MIO formula, we break
it down to a series of small steps to avoid the scalability bottleneck. Specifi-
cally, starting from the root node, we use constraint solving to conduct a depth-
bounded look-ahead search at each level of the decision tree, to compute the best
feature. Within the look-ahead search, we encode both fairness and accuracy
requirements explicitly as numerical constraints, to make the fairness-accuracy
trade-off not only predictable but also easy to explain.

The overall flow of our method, SFTree, is shown in Fig. 1. Given a set of
training examples (E), a set of features (F), and a sensitive feature (fs P F) as
input, SFTree returns the synthesized decision tree (T ) as output. Internally,
SFTree encodes the hierarchical structure of a partial decision tree symbolically
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starting from the current node and its training set E , covering a fixed number
of tree levels. Then, it uses an MIO solver to compute the optimal feature, f∗,
that minimizes the bias against the protected group, the classification error, and
the tree size. Assuming that f∗ P {0, 1} is a Boolean predicate, the training set
is partitioned into subsets Ef∗ and E�f∗ , one for each child node. Our method
iteratively partitions the child nodes until the training subset becomes empty, or
all examples in E belong to the same class, or all features in F have been used.

To demonstrate its effectiveness, we have implemented SFTree and evalu-
ated it on six supervised learning datasets, consisting of three small datasets and
three large ones. Since the small datasets can be handled even by the monolithic
MIO approach (named MIP [1]) to obtain globally-optimal and fair solutions, we
used them to evaluate the quality of decision trees learned by our method. The
large datasets, which are out of the reach of MIP, were used to evaluate scala-
bility. For comparison, we also evaluated CART [27], a mainstream decision tree
learning algorithm, and IGCS [24], a discrimination-aware learning algorithm.

The experimental results show that, among all methods (CART, IGCS, MIP,
and SFTree), SFTree produces the best overall solution in terms of fairness
and accuracy. In contrast, CART produces unfair decision trees in most cases and,
while IGCS does well on the small datasets, it produces mostly unfair decision
trees for the large datasets. Neither CART nor IGCS is effective in satisfying the
well-known 80% Rule [8] for demographic parity [11,38]. In contrast, SFTree
satisfies the 80% Rule in all cases. In terms of scalability, MIP fails to handle any
of the large datasets, while SFTree handles all of them. In fact, among all four
methods, SFTree is the only one that produces fair and accurate decision trees
for datasets with ą40, 000 training samples.

To sum up, this paper makes the following contributions:

– We propose an iterative constraint-solving method for synthesizing fair deci-
sion trees:

• By formulating feature selection as a series of mixed integer optimization
subproblems, we make the constraints efficiently solvable.

• By encoding fairness and accuracy explicitly as symbolic constraints, we
make the trade-off quantifiable and easy to explain.

– We demonstrate the advantages of SFTree over existing approaches (CART,
IGCS, and MIP) using six popular datasets in the fairness literature.

The remainder of this paper is organized as follows. In Sect. 2, we review
the basics of decision tree learning and group fairness. In Sect. 3, we present
our method. In Sect. 4, we present generalization and performance enhancement
techniques. In Sect. 5, we present our experimental results. After reviewing the
related work in Sect. 6, we give our conclusions in Sect. 7.

2 Background

2.1 Training Dataset E
The training dataset is a finite set of examples, E “ {(xi, yi)}, where i P N is
the index, input xi “ 〈f1, . . . , fk〉 is a vector of features, and output yi is a class
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Fig. 2. An example training dataset E (left) and the related decision tree T (right).

label. Let F be the set of all features. For ease of comprehension, let us assume
for now that all input features and the output class label are Boolean. In this
case, every input xi P {0, 1}k is a k-bit vector in the feature space, the output
yi P {0, 1} is a bit, and a decision tree trained using E is a k-input Boolean
function. To make the presentation clear, we may also use yi P {´, `} instead
of yi P {0, 1} as the output, where ´ means “no” and ` means “yes”.

Figure 2 shows a training set E , where each row in the table represents an
example. The input features are a job candidate’s gender (0 = Female, 1 = Male),
college rank (0 = Low, 1 = High), experience (0 = No, 1 = Yes), and interview
score (0 = Not-Good, 1 = Good), while the output shows whether the job is
offered (0 = No, and 1 = Yes). At the root of the decision tree, for instance,
the input goes to the left branch when (f4 “ 0) and to the right branch when
(f4 “ 1). The example illustrates three important notions associated with the
training set: (1) partition of E (2) entropy, and (3) conditional entropy.

Partition. Given a set E and a feature fj , we can partition E into subsets
Efj“0 and Efj“1, or E�fj

and Efj
, respectively, in shorthand notation. Here,

E�fj
“ {(xi, yi) P E | fj(xi) “ 0} consists of examples whose fj is 0, and

Efj
“ {(xi, yi) P E | fj(xi) “ 1} consists of examples whose fj is 1. By definition,

we have E�fj
Ď E and Efj

Ď E , E�fj
X Efj

“ H and E�fj
Y Efj

“ E .
For our example in Fig. 2, partitioning the dataset by gender (f1) results

in subsets Ef1“F “ E�f1 “ {(x1, y1)(x4, y4)(x7, y7)} and Ef1“M “ Ef1 “
{(x2, y2)(x3, y3)(x5, y5)(x6, y6)}.

Entropy. The diversity (or purity) of a set E may be measured by Shannon
entropy. Let |E`| be the number of examples in E with positive output label, and
|E´| be the number of examples with negative output label. The percentage of
positive examples is |E`|{|E |, and the percentage of negative examples is |E´|{|E |.
Thus, the entropy is H(E) “ ´ |E`|

|E | log( |E`|
|E | ) ´ |E´|

|E | log( |E´|
|E | ).

For our example in Fig. 2, since |E´| “ 3 and |E`| “ 4, the entropy is H(E) “
´ 3

7 log( 37 ) ´ 4
7 log( 47 ) « 0.985.

Conditional Entropy. Given a partition of the set E by the feature fj ,
the entropy of each subset, E�fj

or Efj
, is defined similarly. For our exam-

ple, since E�f1 has 2/3 negative examples and 1/3 positive examples, the
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entropy is H(E�f1) “ ´ 2
3 log( 23 ) ´ 1

3 log( 13 ) “ 0.918. Similarly, since Ef1 has
1/4 negative examples and 3/4 positive examples, the entropy is H(Ef1) “
´ 1

4 log( 14 ) ´ 3
4 log( 34 ) “ 0.811.

The conditional entropy of E , with respect to fj , is defined as follows:

H(E | fj) “ |E�fj
|

|E | H(E�fj
) ` |Efj

|
|E | H(Efj

)

For our running example, since there are 3 female and 4 male candidates, we
have |E�f1 |{|E | “ 3{7 and |Ef1 |{|E | “ 4{7. Thus, the conditional entropy is
H(E | f1) “ 3

7H(E�f1) ` 4
7H(Ef1) « 0.857.

The difference between H(E) and H(E | fj) is called the information gain,
a metric for evaluating how effective fi is in separating positive examples from
negative examples in E . For our example, since H(E) « 0.985 and H(E | f1) «
0.857, the information gain (of partitioning E) by gender ( f1) is 0.985´0.857 “
0.128. In contrast, the information gain by interview ( f4) is 0.985 ´ 0.516 “
0.469. Thus, f4 is more effective as a decision attribute.

Real-Valued Features. It is important to note that, while the above examples
use Boolean features, our method is more general in that it allows all features
have real values, i.e., xi P [0, 1]k instead of xi P {0, 1}k. We accomplish this
by applying one-hot encoding to any categorical feature and normalizing any
real-valued feature to the [0, 1] domain. Thus, the branch predicates become
(fj ă bv) and (fj � bv), instead of (fj “ 0) and (fj “ 1), where bv P (0, 1] is a
threshold computed by our method. For example, if fj is the (normalized) salary
and bv “ 0.5, the branch predicates are (fj ă 0.5) and (fj � 0.5).

2.2 Decision Tree Learning

A decision tree T is a binary tree consisting of a set of nodes and a set of
edges. Let the set of nodes be V Y L, where V is the subset of branch nodes
(including the root) and L is the subset of leaf nodes. Let E be the set of edges
between these nodes. A path in T is a sequence of nodes and edges, denoted
v0, e1, v1 . . . vn, en, ln, where v0 is the root, ln is a leaf node, v1 . . . vn are the
internal nodes, and e1, . . . , en are the edges.

Each edge has a branch condition. The edge is activated only if the condition
holds for a given input x. In Fig. 2, for example, the left-most path of the decision
tree has the condition f4(x) “ 0 and output offer “ 0, while the right-most path
has the condition (f4(x) “ 1) ^ (f1(x) “ M) and output offer “ 1.

Given a training set E “ {(xi, yi)}, where xi is an input and yi is the known
output, mainstream algorithms aim to learn a decision tree T that minimizes
the classification error. They also aim to minimize the tree size which, in general,
allows T to generalize well on the test examples.

The Baseline Algorithm. Algorithm 1 shows the top-level procedure of these
mainstream algorithms. It takes the training set E and the feature set F as input,
and returns a decision tree (T ) as output. These mainstream algorithms use a
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Algorithm 1. The baseline decision tree learning procedure T = DTL(E ,F).
1: Input: training set E “ {(x1, y1), . . . , (xn, yn)} and feature set F “ {f1, f2, . . . , fk}
2: Output: decision tree T
3: if all examples in E have the same label l=Label(E)
4: return T “ LeafNode(l)
5: else if F “ H and the most common label of E is l∗ = MostCommonLabel(E)
6: return T “ LeafNode(l∗)
7: else if E “ H and in E .parent, we have l∗ = MostCommonLabel(E .parent)
8: return T “ LeafNode(l∗)
9: else

10: T “ BranchNode(f∗), where f∗ “ FindNextFeature(E ,F)
11: foreach value i P {0, 1} of the chosen feature f∗

12: Ti “ DTL(Ef∗“i,F \ {f∗})
13: Add an edge from T to Ti with label (f∗(x) “ i)
14: return T

Algorithm 2. Subroutine FindNextFeature(E ,F) used in CART.

1: Let H(E) :“ ´ ∑
lP{´,`}

|El |
|E| log( |El |

|E| ) Ź Entropy

2: Let H(E | f) :“ ∑
iP{0,1}

|Ef“i |
|E| H(Ef“i) Ź Conditional Entropy

3: return f∗ “ argmaxfPF H(E) ´ H(E | f)

greedy method to recursively select decision attributes from F and use them to
partition the training set E . At each step, it selects the best feature f∗ using the
subroutine FindNextFeature.

In CART, for example, FindNextFeature is entropy-based, to maximize the
information gain of partitioning E by f as shown in Algorithm 2. While this is
fast and often leads to high classification accuracy, it does not consider fairness
and thus often produces biased decision trees. In this work, we use iterative
constraint solving to overcome the limitation.

After f∗ is computed by FindNextFeature, Algorithm 1 uses it to partition
the training set E , and recursively process the two subsets: DTL(Ef∗“0,F \ {f∗})
and DTL(Ef∗“1,F \ {f∗}). The recursion ends when

– all training examples in the set E have the same class label (Lines 3–4 );
– there are no features left in F to split E further (Lines 5–6 ); or
– the set E is empty (Lines 7–8 ).

2.3 Fairness Metric

Given a training set E and a sensitive feature fs P F , e.g., race or gender, the
goal is to construct a decision tree T that maximizes classification accuracy while
minimizing bias. The metric concerned in this work, demographic parity [11,38],
comes from the legal guideline in the United States for avoiding employment
discrimination. Known as the 80% rule [8], it says the percentage at which
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Algorithm 3. Subroutine FindNextFeature(E ,F) in our method.
1: Let fs be the sensitive feature
2: (O, Φ) = DtlEncoding(E ,F , fs)
3: f∗ = MioSolver(O, Φ)
4: return f∗

candidates from one protected group are offered jobs should be at least 80% of
the percentage at which candidates from another group are offered jobs.

This is formalized using the fairness index, Fs(T , E), defined as follows:

Ffs(T , E) “ Pr[T (x) “ ` | fs(x) “ 0]

Pr[T (x) “ ` | fs(x) “ 1]
(1)

where Pr[T (x) “ ` | fs(x) “ 0], or Pr`
�fs

in short, is the probability of pos-
itive examples under the condition fs(x) “ 0, and Pr[T (x) “ ` | fs(x) “ 1],
or Pr`

fs in short, is the probability of positive examples under the condition

fs(x) “ 1. Thus, we have Pr`
�fs

“ |{x P E | fs(x)“0 ^ T (x)“`}|
|{x P E | fs(x)“0}| and Pr`

fs
“

|{x P E | fs(x)“1 ^ T (x)“`}|
|{x P E | fs(x)“1}| .

Demographic parity means 0.8 � Fs(T , E) � (1{0.8) “ 1.25. For the example
in Fig. 2, since Ff1(T , E) “ 0.44 for gender ( f1), the tree fails to satisfy the 80%
rule due to bias against female. The bias is explicit in that f1 is actually used in
the edge labels of the right most two paths of the decision tree. However, even if
f1 is not used in T explicitly, T may still be biased against female, for example,
if other non-sensitive features (or their combinations) are statistically correlated
to f1 and, as a result, introduce bias against female. This is the reason why
mitigating bias during decision tree learning is a challenging task.

3 Our Method

To minimize the bias and, at the same time, maximize the classification accuracy,
we proposed to follow the top-level procedure in Algorithm1, but formulate
feature selection as a series of mixed-integer optimization (MIO) subproblems.

As shown in Algorithm 3, each of our MIO subproblems consists of an objec-
tive function O and a constraint Φ, and the solution is an assignment of the
numerical variables (shared by O and Φ) that minimizes O while satisfying Φ. In
the remainder of this section, we present our symbolic encoding of the objective
function, O, and the constraint, Φ, respectively.

3.1 The Objective Function O

We define the function as O :“ Oaccu ` αOtree ´ βOfair, consisting of com-
ponents for accuracy loss (Oaccu), tree size (Otree), and fairness score (Ofair),
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respectively. The constants, α and β, are used to make trade-offs. In our imple-
mentation, α is fixed to 1{(2K`1´2) while β is the optimal value in [0, 1] selected
using n-fold cross-validation.

Specifically, we test the values 0.02, 0.04, 0.06, . . . to 1.00 and, for each fold of
the dataset, we compute the objective function and choose β with the minimal
objective value. In general, a bigger β means more fairness. Our experiments
show that, as β gets larger, Ofair remains constant initially and then starts
increasing while Oaccu remains constant, and then Oaccu starts increasing.

Since the decision tree structure is not known a priori, we encode a com-
plete binary tree while allowing all branch and leaf nodes to be activated or
de-activated. Recall that L is the subset of leaf nodes, V is the subset of branch
nodes, l P L denotes a leaf node, and v P V denotes a branch node.

Tree Size (Otree :“ ∑
vPV pv). We assign a variable pv to each branch node

v P V, to indicate if a feature is used to split v. Thus, pv “ 1 means v is split,
while pv “ 0 means v is not split. To get a valid decision tree, pv must be
constrained also by formula Φ (Sect. 3.2) . Assuming the number of pv variables
is |V|, the tree size is the number of pv variables with value 1.

Accuracy Loss (Oaccu :“ 1
|L|

∑
lPL Ll). We assign a variable Ll to each leaf

node l P L to represent the misclassification error at l. Since we start with a
complete tree, each leaf node corresponds to a distinct path. The actual value
of Ll is defined by formula Φ (Sect. 3.3). Assuming the number of Ll variables is
|L|, the accuracy loss is measured by averaging the Ll values.

Fairness Score (Ofair :“ F ). We assign a variable F to represent the over-
all fairness score of the decision tree. The value of F is defined by formula Φ
(Sect. 3.4) according to the definition of demographic parity.

Next, we present our encoding of formula Φ :“ Φtree ^ Φaccu ^ Φfair, where
Φtree encodes the hierarchical structure of the tree, Φaccu encodes the accuracy
requirement, and Φfair encodes the fairness requirement. They share variables
with Otree, Oaccu and Ofair in the objective function, such as pv, Ll, and F .
Note that, since the constraint will be solved by an off-the-shelf MIO solver, Φ
must be encoded as a conjunction of equality/inequality constraints. If logical-or
operators are needed, they must be converted to equality/inequality operators.

3.2 Encoding of the Decision Tree (Φtree)

Given a node, which may be the root of the decision tree under construction, or
any of its branch nodes, we consider a depth-K complete binary tree rooted at
that node. Since it is a complete binary tree, there are precisely TK “ 2K`1 ´ 1
nodes with indices 1 . . . TK and, for any node n, the left and right child nodes
have indices 2n and 2n ` 1, respectively. Furthermore, the set of leaf nodes is
L “ {2K , 2K ` 1 . . . 2K`1 ´ 1}, where |L| “ 2K , and the set of branch nodes is
V “ {1, 2 . . . 2K ´ 1}, where |V| “ 2K ´ 1.
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Fig. 3. Example of a complete binary tree, where V “ {1, 2, 3} are branch nodes, L “
{4, 5, 6, 7} are leaf nodes, and the decision thresholds b1, b2 and b3 belong to [0, 1]. (Color
figure online)

– Every leaf node l P L has an output class label, and the path from root to l
represents a classification rule, which assigns any input x that goes through
the path to the output class.

– Every branch node v P V has a vector wv of bits for selecting the feature.
Thus, at most one bit in wv is 1, and wv[i] “ 1 means feature fi is selected.
For input x, the value of the selected feature is fi(x) “ wT

v x.
– When node v is split by a feature, its outgoing edges are labeled (wT

v x ă bv)
and (wT

v x � bv), respectively. Here, bv P (0, 1] is a symbolic threshold. When
fi(x) “ wT

v x is a Boolean feature and bv “ 1, for example (wT
v x ă 1) means

fi(x) “ 0, and (wT
v x � 1) means fi(x) “ 1.

Figure 3 shows a depth-2 binary tree whose branch nodes are colored in teal
and leaf nodes are colored in red. The thresholds b1, b2 and b3 may be either 0
or a value in (0, 1]: only when they are non-zero, the corresponding nodes are
split by features.

For instance, when b2 is set to 1, if edge condition (wT
2 x ă 1) holds, input x

goes to the left child, and if (wT
2 x � 1) holds, x goes to the right child. When b2 is

set to 0, however, since edge condition (wT
2 x ă 0) is always false and (wT

2 x � 0)
is always true, input x always goes to the right child. In other words, b2 “ 0
disallows splitting at node v “ 2.

Symbolic Variables. To model how a feature splits the training set, we define
some symbolic variables first.

– Input (xij): We use xij to model the j-th feature of the i-th input in E .
Thus, i P [1 . . . n], j P [1 . . . k], n “ |E |, and k “ |F |. The value of xi,j may be
any real number from 0 to 1, i.e., xi,j P [0, 1].

– Split (pv): For every branch node v P V, we use pv to model if v is split by
a feature. The value of pv is either 0 (no) or 1 (yes).

– Selection (wvj): We use wvj to model if the j-th feature is selected by node
v P V. The value of wvj is either 0 (no) or 1 (yes). Since both w and x are
k-bit vectors, wT

v x is the value of the selected feature for a given input x.
– Threshold (bv): We use bv to control the activation of branch conditions

at node v P V. When bv “ 0, input x always goes to the right child since
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condition (wT
v x ă 0) is unsatisfiable. Otherwise, x goes to the left child when

(wT
v x ă bv), and to the right child when (wT

v x � bv).
– Input Association (zit): We use zit to model if the i-th input, xi, is asso-

ciated with node t P {L _ V}. The value of zit is either 0 (no) or 1 (yes).
– Empty Association (It): For every leaf node t P L, we use It to model if t

has any associated input. The value of It is either 0 (no) or 1 (some).

Formula Φtree. We define the formula as Φtree :“ Πsplit ^ Πedge ^ Πleaf ^
Πbranch where Πsplit encodes how features are used to split branch nodes, Πedge

encodes the constraints on edges, Πleaf encodes the constraints on leaf nodes,
and Πbranch encodes the constraints on branch nodes.

Subformula Πsplit. We construct Πsplit by constraining pv, wvj , and bv:

1. If pv “ 1, meaning v P V is split, we require (
∑

jP{1,...,k} wvj “ 1) to ensure
exactly one feature is selected. We also require (bv ą 0) to activate the branch
conditions on the outgoing edges, (wT

v x ă bv) and (wT
v x � bv).

2. If pv “ 0, meaning v is not split, we require (
∑

jP{1,...,k} wvj “ 0) to ensure
no feature is selected, and (bv “ 0) to de-activate the left branch. That is,
input x always goes to the right, while the left subtree stops growing.

Thus, we have Πsplit :“ ∧
vPV (

∑
jP{1,....k} wvj “ pv) ^ (0 � bv � pv).

Subformula Πedge. We construct Πedge by constraining the pv variables: If node
v P V stops splitting, its child nodes also stop splitting. That is, when pv “ 0,
both p2v and p2v`1 must also be 0.
Thus, we have Πedge “ ∧

vPV (pv � p2v) ^ (pv � p2v`1).

Subformula Πleaf . We construct Πleaf by constraining variables zit and It:

1. For each input xi, where i P {1, . . . , n} and n “ |E |, we require that xi is
associated with exactly one leaf node l P L, i.e., (

∑
lPL zil “ 1).

2. If Il “ 0, meaning no input is associated with l, we require that (zil “ 0) for
all i P {1, . . . , n}. This is encoded as

∧
lPL(zil � Il).

Thus, we have Πleaf :“ ∧
iP{1,...,n} (

∑
lPL zil “ 1) ^ ∧

lPL(zil � Il).

Subformula Πbranch. We construct Πbranch by constraining wvj , bv, and zit:

1. In a complete binary tree, the depth-d nodes are v P {2d, . . . , 2d`1 ´ 1}. Since
exactly one of them is associated with input xi, we require that condition
Πbr1 :“ (

∑
vP{2d,...,2d`1´1} ziv “ 1) holds.

2. At each node v P V, since input xi is associated with either the left child
L “ 2v or the right child R “ 2v ` 1, but not both, we require that the
following three conditions hold:

– Πbr2 :“ ∧
vP{2d,...,2d`1´1} (ziv “ zi(2v) ` zi(2v`1))

– Πbr3 :“ ∧
vP{2d,...,2d`1´1} (

∑
jP{1,...,k} wvjxij ´ γL(1 ´ ziL) ă bv)

– Πbr4 :“ ∧
vP{2d,...,2d`1´1} (

∑
jP{1,...,k} wvjxij ` (1 ´ ziR) � bv)
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Thus, we have Πbranch :“ ∧
iP{1,...,n}

∧
dP{1,...,K´1}(Πbr1 ^ Πbr2 ^ Πbr3 ^ Πbr4).

Explanation of Πbr3 and Πbr4. What we would like to encode in Πbr3 is the
fact that branch condition (

∑
wvjxij ă bv) may be either TRUE (xi goes to the

left child L when ziL “ 1 and bv P (0, 1]) or FALSE (xi goes to the right child
R when ziL “ 0 and bv P (0, 1], or when bv “ 0). However, since off-the-shelf
MIO solvers do not support logical-or operators, we have to encode these different
scenarios in a single inequality constraint. This is accomplished by adding a slack
value, ´γL(1 ´ ziL), to the branch condition. Similarly, in Πbr4, we add a slack
value, (1 ´ ziR), to the branch condition (

∑
wvjxij � bv).

3.3 Encoding of the Accuracy Requirement (Φaccu)

To minimize the accuracy loss defined in Oaccu :“ 1
|L|

∑
lPL Ll (Sect. 3.1), we need

to constrain the Ll variables in Φaccu such that Ll models the misclassification
error at the leaf node l P L. In the depth-K complete binary tree, there are
|L| “ 2K leaf nodes. For each leaf node l, variable Ll represents the number of
misclassified examples (xi, yi) P E : it is misclassified if the given output yi does
not match the predicted output T (xi).

The formula Φaccu :“ Φp ^ ΦN ^ Φθ ^ Φloss consists of four subformulas.

Subformula ΦP . For each (xi, yi) P E , where i P {1, . . . , n} and n “ |E |, and
for each output value m P {0, 1}, we use pim to model if (yi “ m). The value of
pim, which is either 0 or 1, is constim :“ (yi “ m) ? 0 : 1 .

Thus, we have Φp :“ ∧n
i“1

∧1
m“0(pim “ constim).

Subformula ΦN . We use variable Nl to represent the number of examples asso-
ciated with leaf node l, and Nlm to represent those with output value m.

Thus, we have ΦN :“ ∧
lPL(Nl “ ∑n

i“1 zil) ^ (Nlm “ 1
2

∑n
i“1 zil(1 ` pim)).

Subformula Φθ. According to Lines 5–8 of Algorithm 1, each leaf node has an
output class label θl “ argmaxmP{0,1} Nlm. Since argmax cannot be directly
encoded, we define a matrix of θlm variables in {0, 1}, where θlm “ 1 means the
output label of node l is m. By definition, only one θlm variable can be 1.

Thus, we have Φθ :“ ∧
lPL (

∑
mP{0,1} θlm “ 1).

Subformula Φloss. Assuming that m is the output label predicted by the leaf
node l. The misclassification error, Ll, is equal to the number of examples asso-
ciated with l, denoted Nl, minus the number of examples that have the most
common label m, denoted maxmP{0,1}Nlm.

To avoid max/min in Ll “ Nl ´ maxmP{0,1}Nlm “ minmP{0,1}(Nl ´ Nlm),
we use θlm variables and constant n “ |E | to rewrite the constraint as :

(Ll � 0) ^ ∧
mP{0,1} (Ll � Nl ´ Nlm ´ n(1 ´ θlm)) ^ (Ll � Nl ´ Nlm ` nθlm)

Thus, we have Φloss :“ ∧
lPL((Ll � 0)^∧

mP{0,1}(Ll � Nl´Nlm´n(1´θlm))^
(Ll � Nl ´ Nlm ` nθlm)).
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3.4 Encoding of the Fairness Requirement

Formula Φfair :“ ΦFs
^ΦFM has two subformulas. Here, ΦFs

encodes the fairness
index and ΦFM encodes the constraints on variables used in ΦFs

.
According to Eq. 1 (Sect. 2.3), the fairness index is defined as Fs “

(Pr`
�fs

{Pr`
fs

), where fs is a sensitive feature such that fs(x), for any input
x P E , may be 0 or 1 (e.g., female and male) while T (x) “ ` means the output
generated by T is positive (e.g., a job is offered). According to the “80% rule”,
demographic parity is achieved if Fs is above 80%. In this work, our goal is to
find a solution that (1) satisfies (Fs ą 0.8) and, at the same time (2) maximizes
the value of Fs.

However, the definition of Fs shown in Eq. 1 has division operators, which are
not supported by off-the-shelf MIO solvers. Furthermore, the divisor part of the
equation varies even for a fixed set E of examples, which makes the encoding a
challenging task. To overcome the challenge, we refine the definition of as follows:

Pr`
fs“0

Pr`
fs“1

“ |{x P E | fs(x) “ 0, T (x) “ `}| { |{x P E | fs(x) “ 0}|
|{x P E | fs(x) “ 1, T (x) “ `}| { |{x P E | fs(x) “ 1}| “ S`

0 {S0

S`
1 {S1

(2)
For each of the four components, we create a symbolic variable. Variable S0

represents the number of examples whose sensitive feature has the value 0 (e.g.,
female) for the gender ( f1) feature. Variable S`

0 represents the number of exam-
ples in S0 that have the positive output (e.g., a job is offered). Variable S1 repre-
sents the number of examples whose sensitive feature has the value 1 (e.g., male)
for the gender ( f1) feature. Variable S`

1 represents the number of examples in
S1 that have the positive output.

Subformula ΦFs
. We use ΦFs

to enforce the 80% rule: Fs “ S`
0 {S0

S`
1 {S1

� 0.8.
Assuming S0 ą 0, S`

0 ą 0, S1 ą 0, and S`
1 ą 0, we encode the rule as follows:

ΦFs
:“ (S`

0 ˆ S1 ´ 0.8 ˆ S0 ˆ S`
1 � 0)

There are two advantages of this encoding. First, the resulting constraint can
be solved by off-the-shelf MIO solvers, whereas a direct encoding of Eq. 2 cannot.
Second, the value of (S`

0 ˆS1´0.8ˆS0ˆS`
1 ) increases as Fs increases; therefore,

it can be used as part of the objective function, Ofair, to maximize Fs.

Subformula ΦFM . We use ΦFM to constrain the variables S0, S`
0 , S1, and S`

1 .
Toward this end, we need to define the following variables:

– S0i: We use variable S0i P {0, 1}n to model if the value of fs(xi) is 0. Thus,
we require S0i “ 1 when fs(xi) “ 0, and S0i “ 0 otherwise.

– S0
`
il: We use variable S0

`
il P {0, 1}nˆ|L| to model, at each leaf node l P L,

if xi P E is given the positive output. Thus, we require S0
`
il “ 1 when the

following condition holds, and S0
`
il “ 0 otherwise:

(θlm “ 1 ^ m “ 1 ^ zil “ 1 ^ S0i “ 1)

In the condition above, (θlm “ 1) means the output label produced by the
leaf node l is m, and (m “ 1) means m is the positive output (“`”).
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– S1i and S1
`
il: We define variables S1i and S1

`
il similar to S0i and S0

`
il.

Thus, we have ΦFM :“ (S0 “ ∑
iP{1,...,n} S0i) ^ (S`

0 “ ∑
iP{1,...,n}

∑
lPL S0

`
il) ^

(S1 “ ∑
iP{1,...,n} S1i) ^ (S`

1 “ ∑
iP{1,...,n} S1

`
il).

Putting It All Together. Recall that, in Sect. 3.3, we have constrained the
accuracy loss, Ll, in the objective function Oaccu, and defined the objective
function Otree in Sect. 3.1, which is used to minimize the tree size and thus
reduce over-fitting. As for the objective function Ofair (Sect. 3.1), we define the
fairness score as follows: F “ (S`

0 ˆ S1 ´ 0.8 ˆ S0 ˆ S`
1 ).

Thus, we have the entire MIO problem as follows:

minimize
1

|L|
∑

lPL
Ll ` α

∑

vPV
pv ´ βF

subject to Φaccu(Ll) ^ Φtree(pv) ^ Φfair(F )

(3)

4 Generalization and Performance Enhancement

In this section, we first explain how our method relates to various existing algo-
rithms (Sect. 4.1). Next, we present techniques for speeding up constraint solving
while maintaining the quality of the solution (Sect. 4.2). Finally, we show that,
beyond demographic parity, our method can encode other group fairness metrics,
such as equal opportunity and equal odds (Sect. 4.3).

4.1 Relating to Existing Algorithms

Recall that our method performs feature selection by symbolically encoding a
depth-K binary tree, to perform a bounded look-ahead search of the optimal
feature using the MIO solver. For ease of presentation, let us call the selected
feature depth-K optimal, where K P {1, . . . , `8}.

Depth-1 Optimal. When K “ 1, the tree consists of the root node only and,
as a result, look-ahead search is disabled. In this case, our method is the same
as a purely greedy search method. Depending on whether fairness is encoded,
there are two cases.

– Without the fairness component, our method would compute the depth-1
optimal feature that minimizes only the tree size and the accuracy loss. This
is similar to mainstream decision tree learning algorithms such as CART.

– With the fairness component, our method would compute the depth-1 optimal
feature that minimizes the tree size and the accuracy loss, and maximizes the
fairness score. This is similar to IGCS [24], an discrimination-aware technique
for learning decision trees.

Our experimental evaluation (in Sect. 5) shows that neither CART nor IGCS is
effective in improving fairness, especially for larger datasets, primarily due to
their inability to look beyond the current node.
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Depth-8 Optimal. When K is set to a sufficiently-large number, our method
is able to find the globally optimal feature for not only the root node, but also
other nodes in the decision tree. Thus, it would compute the entire decision tree
in one shot.

– Without the fairness component, our method would act like the technique
introduced by Bertsimas and Dunn [7], which laid the ground work for encod-
ing an optimal classification tree as a monolithic MIO problem.

– With the fairness component, our method would act like MIP, a fair learning
technique introduced by Aghaei et al. [1].

Our experimental evaluation (in Sect. 5) shows that the computational overhead
of the monolithic MIO approach or MIP is too high to be practically useful. We
discuss how to set the value of K in our method in the next subsection.

4.2 Performance Enhancement

We propose two techniques for speeding up our method by (1) choosing the K
value adaptively and (2) sampling the training examples in E .

Choosing the K Value Adaptively. There is a trade-off between looking
further ahead and reducing the constraint solving time. Given n “ |E | training
examples, and 2K leaf nodes in a depth-K binary tree, the number of decision
variables (such as S0il) would be (n ˆ 2K). Since mixed-integer optimization is
NP-hard, the complexity of constraint solving is O(2nˆ2K ). Empirically, we have
found that Gurobi, a state-of-the-art solver, may take 1–2 h to solve a problem for
n “ 1000 training examples and tree depth K “ 7—this is consistent with prior
experimental results, e.g., Bertsimas and Dunn [7]. Unfortunately, supervised
learning datasets in practice often bring as many as 50,000 training examples to
the root node of a decision tree, although the number decreases gradually and
may reach 0 for some leaf nodes. Therefore, setting K to 7, or any predetermined
value, would not work well in practice.

Instead, we propose to set the K value adaptively. Given a time-out limit
(T/O) for learning a decision tree, we start with a relatively small K value, say
K “ 2, to synthesize a decision tree. Then, we increase the K value to synthesize
a better decision tree. We keep increasing the K value as long as the time limit
is not yet reached, and the quality of the decision tree is improved. We measure
the quality of the tree using the value of the objective function, O, which consists
of the tree size, the accuracy loss, and the fairness score.

Sampling the Training Examples. We propose to reduce the size of the
constraints in Φ by sampling the training examples in E , before using them to
construct the formula Φ. Our experience shows that sampling can reduce the
value of n significantly and, at the same time, maintaining the quality of the MIO
solution. For the adult dataset, which has 48, 842 training examples, even with
a small K value, the symbolic constraints would take more than 1 h to solve.
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Algorithm 4. Subroutine FindNextFeature(E ,F) with our enhancement.
1: Let fs be the sensitive feature
2: if |E | � 8000 then (O, Φ) = DtlEncoding(E ,F , fs)
3: else (O, Φ) = DtlEncoding(E |sampled,F , fs)
4: return f∗ = MioSolver(O, Φ)

Empirically, we have observed that the feature computed by depth-K look-
ahead using 8,000 randomly-chosen examples is almost as good as the feature
computed using all examples. Based on this observation, we set the thresh-
old (n � 8000), i.e., at most 8,000 examples from E are used in the sym-
bolic constraints in Algorithm 4, where Φ = DtlEncoding(E ,F , fs) is invoked if
|E | � 8000. Otherwise, E is replaced by the randomly-sampled subset E |sampled.

Our sampling method is not directly applicable to the original MIP approach
because, if sampled data are used as input, the MIP solving procedure would
permanently discard the rest of the data, which would significantly degrade its
accuracy. In contrast, sampling in our method only causes the rest of the data
to be ignored temporarily (for this particular node) but, for the child nodes in
the subtree, the entire data will still be used in the subsequent computation.

4.3 Encoding Other Group Fairness Metrics

Beyond demographic parity, there are two popular metrics for group fairness, of
which one is equal opportunity and the other is equalized odds.

Equal Opportunity. In addition to the sensitive feature fs, there is a decision-
critical feature fc. Let P `

fs“0,fc“1 “ |x P E | fs(x)“0, fc(x)“1, T (x)“`|
|x P E | fs(x)“0, fc(x)“1| “ S`

0
S0

and

P `
fs“1,fc“1 “ |x P E | fs(x)“1, fc(x)“1, T (x)“`|

|x P E | fs(x)“1, fc(x)“1| “ S`
1

S1
. A decision tree T satisfies

equal opportunity if the following condition holds (for a small ε).

P `
fs“1,fc“1 ´ P `

fs“0,fc“1 � ε (4)

In our method, Eq. 4 may be encoded as Φeq :“ S`
1 S0 ´ S`

0 S1 ´ εS0S1 � 0, to
replace ΦFs

in the fairness requirement Φfair :“ ΦFs
^ ΦFM . The definitions of

variables S0, S`
0 , S1 and S`

1 are analogous to that in Sect. 3.4. Similarly, we can
define fairness decision variables S0i, S0il, S1i, and S1il. For example, the value
of S0i is set to 1 if fs(xi) “ 0 ^ fc(xi) “ 1 and is set to 0 otherwise.

Equalized Odds. To satisfy equalized odds, we must satisfy Eq. 4, as well as
the condition below:

P `
fs“1,fc“0 ´ P `

fs“0,fc“0 � ε. (5)

Since Eq. 5 can be encoded similarly to Eq. 4, the details are omitted for brevity.
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Table 1. Comparing our method with existing methods on small benchmarks.

Benchmark SFTree (ours) CART [27] IGCS [24] MIP [1]

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

German Fold1 77.5% 0.82 83.0% 0.65 74.0% 0.84 80.5% 0.82

German Fold2 80.5% 0.81 85.0% 0.67 78.5% 0.78 83.5% 0.82

German Fold3 76.0% 0.84 79.0% 0.71 73.5% 0.80 78.5% 0.84

German Fold4 81.0% 0.80 83.5% 0.65 76.0% 0.84 81.0% 0.89

German Fold5 80.5% 0.81 85.0% 0.66 77.0% 0.81 83.0% 0.81

Salary Fold1 81.8% 0.82 90.9% 0.59 81.8% 0.82 81.8% 0.82

Salary Fold2 72.7% 0.83 90.9% 0.57 81.8% 0.77 81.8% 0.84

Salary Fold3 72.7% 0.83 81.8% 0.62 72.7% 0.83 81.8% 0.83

Salary Fold4 81.8% 0.82 90.9% 0.61 81.8% 0.82 81.8% 0.82

Salary Fold5 81.8% 0.81 81.8% 0.57 72.7% 0.73 72.7% 0.83

Student Fold1 71.2% 0.84 75.9% 0.58 72.1% 0.78 72.8% 0.87

Student Fold2 70.3% 0.81 75.1% 0.63 69.3% 0.82 72.8% 0.85

Student Fold3 70.9% 0.81 73.6% 0.57 71.4% 0.81 73.6% 0.85

Student Fold4 69.1% 0.82 75.1% 0.61 69.3% 0.77 71.3% 0.84

Student Fold5 71.5% 0.84 77.5% 0.53 72.0% 0.81 75.1% 0.84

5 Experiments

We have implemented our method, SFTree, using Python, Julia 1.5.1 [15], and
Gurobi 9.03 [21], where Julia is used to encode the MIO constraints and Gurobi is
used to solve the constraints. We compared SFTree with three state-of-the-art
techniques: CART, which is a mainstream algorithm for decision tree learning,
IGCS, which is a discrimination-aware learning algorithm, and MIP, which is a
monolithic MIO approach to learning fair tress. We conducted all experiments
with Catalina running on a macOS with 2.4 GHz 8-Core CPU and 64G RAM.

Benchmarks. Our evaluation uses six popular benchmarks from the fairness
literature. They are divided to three small datasets and three large datasets.
Since the small datasets can be handled by the less-scalable but more-accurate
MIP to obtain globally optimal solutions, they are useful in evaluating the quality
of our method. The large datasets, in contrast, are out of the reach of MIP and
thus useful in evaluating the scalability of our method.

– Among the small datasets, German [23] (predicting credit risks) has 1000 train-
ing examples and 20 features; Student [12] (predicting student performance)
has 649 training examples and 33 features; and Salary [36] (predicting the
salary level) has 52 training examples and 16 features. In these datasets, the
sensitive feature is gender.

– Among the large datasets, Adult [14] (predicting the earning power) has
48,842 training examples and 14 features (with race as the sensitive feature);
Default [37] (predicting loan default risk) has 30,000 training examples and
23 features (with gender as the sensitive feature); and Compas [13] (predicting
the recidivism risk) has 10,500 training examples and 16 features (with race
as the sensitive feature).
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Table 2. Comparing our method with existing methods on large benchmarks.

Benchmark SFTree (ours) CART [27] IGCS [24] MIP [1]

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

Adult Fold1 80.3% 0.81 83.0% 0.54 82.8% 0.51 - -

Adult Fold2 77.4% 0.86 80.0% 0.57 81.9% 0.68 - -

Adult Fold3 75.7% 0.84 79.8% 0.57 81.3% 0.72 - -

Adult Fold4 78.1% 0.83 82.1% 0.55 83.0% 0.62 - -

Adult Fold5 77.1% 0.86 82.6% 0.55 75.7% 0.68 - -

Default Fold1 80.5% 0.81 84.7% 0.64 81.3% 0.77 - -

Default Fold2 84.7% 0.81 86.3% 0.61 84.0% 0.73 - -

Default Fold3 80.5% 0.83 83.2% 0.66 82.7% 0.75 - -

Default Fold4 78.8% 0.85 84.1% 0.64 81.5% 0.73 - -

Default Fold5 81.4% 0.82 83.9% 0.64 81.7% 0.71 - -

Compas Fold1 86.4% 0.89 92.8% 0.63 86.7% 0.81 - -

Compas Fold2 89.8% 0.96 92.5% 0.61 87.5% 0.83 - -

Compas Fold3 85.3% 0.94 90.4% 0.67 88.9% 0.74 - -

Compas Fold4 87.2% 0.96 92.6% 0.63 92.0% 0.61 - -

During learning, we apply the standard 5-fold cross validation expect for Compas,
to which we apply 4-fold cross validation to be consistent with prior work.

Results on the Small Benchmarks. We compare the quality of the decision
trees learned by our method and three existing methods on the small bench-
marks. The results are shown in Table 1, where Column 1 shows name of the
dataset, Columns 2–3 shows the result of our method in terms of accuracy and
fairness, computed by cross-validation, Columns 4–5 show the result of CART,
Columns 6–7 show the result of IGCS, and Columns 8–9 show the result of MIP.
Since the datasets are small, MIP is able to compute the best solutions: without
violating the 80% Rule, it maximizes accuracy.

The result shows that, overall, CART has the best accuracy but the worst
fairness score. IGCS improves over CART, but still violates the 80% Rule in 5 out
of the 15 cases. In contrast, SFTree satisfies the fairness requirement in all 15
cases and, at the same time, achieves high accuracy. Furthermore, it runs more
than 10 times faster than MIP.

Results on the Large Benchmarks. We use these benchmarks to evaluate
both the quality and the scalability of our method. Table 2 shows the result of the
quality comparison, which has the same format as Table 1. CART has the highest
accuracy but fails to satisfy the fairness requirement in all 14 cases. Although
IGCS is somewhat effective for the small benchmarks in Table 1, here, it fails to
satisfy the fairness requirement in 12 of the 14 cases. In contrast, our method is
the only one that satisfies the fairness requirement in all cases and, at the same
time, has accuracy comparable to CART and IGCS.

Table 3 shows the execution time comparison. MIP times out in all 14 cases
(T/O = 3h), while our method finishes each within 1 h. Thus, our method runs
more than 10 times faster than MIP. Although CART and IGCS are faster, they are
equivalent to depth-1 look-ahead search in our method and, due to the limited
ability to look ahead, they almost never satisfy the fairness requirement.
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Table 3. Comparing the run time of methods on large benchmarks (T/O = 3h).

Benchmark SFTree CART [27] IGCS [24] MIP [1] Benchmark SFTree CART [27] IGCS [24] MIP [1]

Adult Fold1 2064s 39s 40s T/O Default Fold1 2499s 28s 28s T/O

Adult Fold2 2119s 39s 39s T/O Default Fold2 2478s 29s 29s T/O

Adult Fold3 2075s 39s 40s T/O Default Fold3 2526s 29s 29s T/O

Adult Fold4 2090s 39s 40s T/O Default Fold4 2536s 28s 29s T/O

Adult Fold5 2091s 39s 39s T/O Default Fold5 2531s 28s 29s T/O

Compas Fold1 2115s 15s 16s T/O Compas Fold2 2137s 15s 15s T/O

Compas Fold3 2129s 15s 15s T/O Compas Fold4 2166s 15s 15s T/O

Fig. 4. How accuracy and fairness of the learned decision tree change with the K value
for the Student dataset. For each K “ 1, . . . , 7, we plot the fairness and accuracy scores.

Evaluating the Impact of the K-value. We have also evaluated how the K
value affects the quality of the learned decision tree using the Student Fold1
benchmark. Since the benchmark is small enough, we set K to fixed values
1, . . . , 7 instead of letting it adapt, so we can assess the impact. Figure 4 shows
the result, where the x-axis is accuracy and the y-axis is the fairness score. Thus,
the closer a dot is to the right-top corner, the higher the overall quality is. The
result shows that the quality of our solution increases dramatically as the K
value increases from 1 to 7, due to the increasingly deeper look-ahead search.

Summary of Additional Results. While we have also evaluated the scalabil-
ity of our method with respect to the dataset size, we omit the results for brevity
and instead provide a summary. What we have found is that, as the dataset gets
larger, the execution time of our method increases modestly at first, and then
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stops increasing after a threshold is reached. This is due to the use of perfor-
mance enhancement techniques presented in Sect. 4. Thus, our method does not
have scalability issues. In fact, among all four methods, SFTree is the only
one that consistently produces fair and accurate decision trees for datasets with
ą40,000 training samples.

6 Related Work

At a high level, our method can be viewed as an in-processing approach to
mitigating bias in machine learning models. Broadly speaking, there are three
approaches: pre-processing [17,25,31], in-processing [11,19,24,30,33] and post-
processing [18,22], depending on whether the focus is on de-biasing the training
data, the learning algorithm, or the classification output.

Since the pre-processing approach focuses on de-biasing the training data [17,
25,31], it is applicable to any machine learning model; however, it cannot remove
bias introduced by the learning algorithms, which is problematic because, even
if the training data is not biased, learning algorithms may introduce new bias.
While the post-processing approach can remove such bias by modifying the pre-
dicted output [18,22], the result is often hard to predict and difficult to explain.
In contrast, our method does not have these limitations.

Compared to other in-processing techniques for fair learning decision trees,
including IGCS [24] and similar greedy search methods [11,19,30,33], our method
has the advantage of being more systematic and quantifiable. This is because
we encode both accuracy and fairness requirements explicitly as numerical con-
straints. Thus, it would be easy to explain, at every step, why a feature is chosen
over another feature, and quantify how much more effective it is in minimizing
bias and accuracy loss at the same time. Compared to the monolithic constraint
solving approach, including MIP [1] and similar methods [5,35], our method has
the advantage of being significantly more scalable.

Our method differs from the recent work of Torfah et al. [32] in that their
method uses a small training set sampled from a known distribution and thus
does not need techniques such as incremental solving. Furthermore, their method
assumes the decision predicates are given, but in our method, the predicates
are synthesized from real-valued features. Finally, our fairness constraint is also
different from the explainability constraint.

Besides synthesis, there are techniques for improving fairness by repairing an
existing machine learning model [4,9,20,26], and techniques for verifying that
an existing machine learning model is indeed fair, e.g., by using probabilistic
analysis methods [3,6,28]. While these techniques are related, they differ from
our method in that they cannot synthesize new decision trees from training data
while ensuring the decision trees are fair by construction.
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7 Conclusion

We have presented a method for synthesizing a fair and accurate decision tree,
by formulating feature section as a series of mixed-integer optimization problems
and solve them using an off-the-shelf constraint solver. The method is flexible in
expressing group fairness metrics including demographic parity, equal opportu-
nity, and equal odds. On popular datasets, it is able to learn decision trees that
satisfy the fairness requirement and, at the same time, achieve a high classifica-
tion accuracy.
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