

abstract machine while ignoring architectural details of the processor (such as out-
of-order execution) and storage (such as register allocation and cache), thus making
side-channel leakage a concept that is hard to grasp for them.

Current implementation of side-channel resistant software in embedded computing
applications relies on manual efforts of experts, but even for them, this process is com-
plex and error-prone. Furthermore, there are no techniques available to verify these
handcrafted implementations, let alone generating them automatically. Although au-
tomation is desirable, existing verification and synthesis techniques are not sufficient.
The reason is because, first, side-channel resistance is a non-functional property, which
cannot be handled by techniques developed for proving functional correctness [Clarke
et al. 1999; McMillan 1994]. Furthermore, unlike the non-interference property in
information-flow security [Sabelfeld and Myers 2003], side-channel resistance is a sta-
tistical property, which requires fundamentally new analysis techniques.

Step.1 Step.4

Step.3

Quantifying

Actual Leakage

Step.2

SC Leakage and Transformation

Automated Code Analysis

Embedded Software

CountermeasureSC Resistance

Verification Synthesis

Measuring

Security−critical

Fig. 1. Automated approach to side-channel resistance.

We outline the development of a
new type of verification and program
synthesis techniques to aid in the
construction of side-channel resistant
software for embedded computing ap-
plications, e.g., cryptographic software
used in various cyber-physical systems
(CPS) and the Internet of things (IoT)
where physical security of the com-
puting devices is a major concern. As
shown in Fig. 1, the automated anal-
ysis and code transformation frame-
work consists of techniques being developed along the following directions:

— Quantifying side-channel leaks. First, we need to formally define what it means for
a piece of software to be side-channel resistant on a given platform, and in case it is
not side-channel resistant, how to quantify the amount of leakage.

— Verifying side-channel resistance. For existing and manually-secured software code,
we need new verification techniques to formally prove that the implementation is
indeed side-channel resistant.

— Synthesizing countermeasures. We also need program synthesis techniques for au-
tomatically generating functionally-equivalent, but side-channel resistant, software
code to replace the original code. They must go beyond simple compiler transforma-
tions, to handle unknown vulnerabilities and generate new implementations.

— Validation on real devices. Finally, the resulting software code must be validated on
real devices to ensure our modeling and synthesis accurately reflect side-channel
leaks observed in the physical world.

In the remainder of this article, we use power side-channel leaks in cryptographic
software as examples to illustrate our recent work on formally verifying side-channel
resistance [Eldib et al. 2014b; Eldib et al. 2014c] as well as synthesizing countermea-
sures [Eldib and Wang 2014b]. Then, we discuss how to extend these techniques to
handle other types of side channels and software systems.

2. PRELIMINARIES

We assume the software code implements a cryptographic function c ← f(x, k), where
x is the plaintext, c is the ciphertext, and k is the secret key. The goal of the adversary
is to compute k based on knowledge of x and c as well as the information of internal
computations leaked through side channels.

ACM SIGLOG News 77 April 2017, Vol. 4, No. 2

It is possible to implement c ← f(x, k) in a manner such that the side-channel leak-
age remains harmless, e.g., using the idea of secret sharing [Chari et al. 1999]. In this
approach, every internal variable v of the software program is split into n + 1 shares
v0, v2, . . ., vn such that v = v0 ⊕ v1 ⊕ . . . ⊕ vn, where ⊕ is a suitable masking operator,
e.g., the XOR operator in Boolean domain. Among these n + 1 shares, n are randomly
chosen masks and the remaining one is computed as a matching share. Since every
masked share vi is statistically independent of the original v, leakage of individual
shares or any combination of ≤ n shares will not reveal v.

Splitting variables into shares affects the internal operations of the program. Thus,
we call the new program a masked program. Furthermore, the number of shares corre-
sponds to the order of masking, e.g., in an order-d masking, every variable is split into
d+ 1 shares. If f(x, k) were a linear function of k with respect to XOR, masking would
be straightforward, because f(x, k ⊕ r) ⊕ f(x, r) = f(x, k) ⊕ f(x, r) ⊕ f(x, r) = f(x, k).
That is, we can mask the sensitive k by the XOR with a random variable r before the
computation, and de-masking afterward by the XOR with f(x, r). However, in prac-
tice, f(x, k) is always a non-linear function, which means masking requires a complete
rewriting of the software code, and the process is labor-intensive and error-prone.

Threat Model. We assume an adversary knows the value of the plaintext x, the ci-
phertext c, and side-channel information of at most d intermediate computation re-
sults; they correspond to variables in the program. Let I1, I2, . . ., Id be the set of inter-
mediate results. Furthermore, each Ii(x, k, r) is a function in terms of x, k, and random
variable r introduced to mask the sensitive k. Thus, the adversary does not have ac-
cess to the value of r. However, if the side-channel leakage associated with Ii or any
combination of ≤ d intermediate results is dependent of k, we say the implementation
of c ← f(x, k) is vulnerable to SCA based attacks.

A necessary condition for f(x, k) to be side-channel resistant is that all intermediate
computation results are either logically independent of k or logically dependent of (and
thus masked by) some random variable r. The condition seems reasonable and can be
easily checked [Bayrak et al. 2013]. However, it is a logical property (as opposed to
statistical property)—we will show that the condition is not sufficient for ensuring
side-channel resistance.

Leakage Model. A widely used power model is the Hamming Weight (HW) model,
which relates variations in the power dissipation of the processor to values of its reg-
isters, which in turn hold variables used in the software program. More specifically,
the power dissipation correlates to the number of logical-1 bits of intermediate com-
putation results. We have shown in our work [Eldib et al. 2014c] that the HW model
is sufficiently accurate for conducting DPA attacks on embedded systems. Sometimes,
however, the Hamming Distance (HD) model needs to be used instead, to relate vari-
ations in power dissipation to differences between the register values and their initial
states [Brier et al. 2004].

The example in Fig. 2 shows that, under the HW model, logically dependent of some
random variable is not the same as statistically-independent of the secret. Here, k is
the secret bit, r1 and r2 are the random bits, and o1, o2, o3, and o4 are the masked
intermediate results. According to the truth table on the right-hand side or functions
on the left-hand side, all four intermediate results are logically dependent of r1,r2

and thus are masked. However, the first three still leak secret information because
they are not perfectly masked. Specifically, o1 leaks information of k because, if it were
logical 1, k would also be logical 1 regardless of the values of the random variables. o2
leaks information of k because, if it were logical 0, k would also be logical 0. o3 leaks
information of k because, if it were logical 1 (or 0), there would be a 75% chance that k

ACM SIGLOG News 78 April 2017, Vol. 4, No. 2

o1 = x ∧ k ∧ (r1 ∧ r2)

o2 = x ∧ k ∨ (r1 ∧ r2)

o3 = x ∧ k ⊕ (r1 ∧ r2)

o4 = x ∧ k ⊕ (r1 ⊕ r2)

x k r1 r2 o1 o2 o3 o4

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 0
0 1 1 1 1 1 0 1

Fig. 2. Four masking schemes with different side-channel leakages and the corresponding truth table when
x = 0. Although o1,o2,o3 are masked by random bits r1 and r2, they still leak secret information about k.
In contrast, o4 does not have side-channel leakage.

is also logical 1 (or 0). In contrast, o4 does not leak information of k because, regardless
of whether k is logical 1 (or 0), there is a 50% chance that o4 is logical 1 (or 0).

Perfect Masking. Following [Blömer et al. 2004], we define perfect masking for the
implementation of c ← f(x, k) as follows. Given a pair (x, k) of plaintext and secret
key, together with d intermediate results I1(x, k, r), . . . , Id(x, k, r), where r is a random
variable in the domain R, we say f is order-d perfectly masked if the joint distribution
of I1, . . . , Id is independent of k. Otherwise, we say the implementation is vulnerable
to order-d SCA-based attacks. The intermediate result o4 in Fig. 2, for example, is
perfectly masked and thus is immune to first-order attacks.

3. VERIFYING THE SIDE-CHANNEL RESISTANCE

A verification procedure for deciding if f(x, k) is perfectly masked works as follows. Ini-
tially, the input variables are annotated such that all plaintext bits in x are marked
as public, all key bits in k are marked as secret, and all bits in r are marked as ran-
dom. Then, for each intermediate result, denoted I(x, k, r), the procedure checks if I is
perfectly masked by r.

For ease of presentation, we assume d = 1. Thus, verifying if I is perfectly masked
is the same as checking the validity of the following formula:

∀x.∀k.∀k′.

(

∑

r∈R

I(x, k, r) =
∑

r∈R

I(x, k′, r)

)

Here, x denotes the plaintext value, k and k′ denote two values of the key, and r denotes
the random variable. Thus, for each combination (x, k, k′),

—
∑

r∈R I(x, k, r) denotes the number of values of r making I logical 1; and

—
∑

r∈R I(x, k′, r) denotes the number of values of r making I logical 1.

Assume that r is uniformly distributed in R, the above summations are probabilities
of I being logical 1 under the plaintext value x and the two key values k and k′.

Given a cryptographic software program, we first obtain a branch-free representa-
tion by merging all if-else branches. Since there are typically no input-dependent loop
bounds (otherwise, they may be timing side channels), we apply loop unrolling to ob-
tain a loop-free program. Since all variables are bounded integers, we can model them
as finite-length bit-vectors or even construct a purely Boolean program. Fig. 3 shows a
masked version of c ← (k1∧k2), where r1 and r2 are two random bits. The correspond-
ing de-masking function, which is not shown in the figure, would be c⊕ (r1 ∧ r2). Due
to the property of XOR, de-masking would produce the desired value (k1 ∧ k2).

Thus, we can traverse the abstract syntax tree (AST) of the given program, and for
each intermediate result I, check if I is perfectly masked. For ease of implementation,
instead of checking the validity of the above universally-quantified formula, we use a

ACM SIGLOG News 79 April 2017, Vol. 4, No. 2

1 : compute(bool k1, bool k2, bool r1, bool r2){
2 : bool n1, n2, n3, n4, n5, n6, n7, n8, c;
3 : n1 = k1 ⊕ r1;
4 : n2 = k2 ⊕ r2;
5 : n3 = n1 ∧ n2;
6 : n4 = k2 ⊕ r2;
7 : n5 = r1 ∧ n4;
8 : n6 = k1 ⊕ r1;
9 : n7 = r2 ∧ n6;
10 : n8 = n5 ⊕ n7;
11 : c = n3 ⊕ n8;
12 : return c;
13 : }

c

⊕
⊕

∧ ∧

⊕⊕

⊕

∧

n7

n6

r1r2k2
r1k1

n4

n5
n2

n3

n1

n8

r2

k2 r2 k1 r1

⊕

Fig. 3. Example Boolean program and its graphic representation (⊕ denotes XOR; ∧ denotes AND).

constraint solver to check the satisfiability of its negation, shown as follows:

∃x.∃k.∃k′ .

(

∑

r∈R

I(x, k, r) '=
∑

r∈R

I(x, k′, r)

)

If the formula is satisfiable, the solver will return a plaintext value x and two different
key values (k, k′) such that the probabilities of I(x, k, r) and I(x, k′, r) being logical 1
differ. Therefore, some information of k is leaked. In contrast, if this formula is unsat-
isfiable, it means no such leak is possible.

Model Counting. Thus, the verification of side-channel resistance can be viewed as
comparing the number of satisfying assignments of two closely-related formulas. This
is the case not only for power side channels, but also for other types of side channels
because, fundamentally, the attacks all rely on correlation-based statistic analysis.
Consequently, unlike standard verification techniques, which rely on SAT and SMT
solvers as the decision procedures, the new verification techniques need SAT# and
SMT# solvers to support model-counting. Although model-counting solvers are not yet
as mature as standard SAT and SMT solvers in terms of speed and scalability, they
are catching up rapidly [Chakraborty et al. 2013; Chakraborty et al. 2014; Aydin et al.
2015; Fremont et al. 2017].

SAT?

code checked code checked code checked code checked

code checked code checked code checked code checked

0 0 0 1 1 0 1 1

0 0 0 1 1 0 1 1

Fig. 4. Checking the statistical dependence of secret data (k1, k2).

Without using special-
ized solvers, we can still
solve the verification prob-
lem [Eldib et al. 2014b], al-
beit in a less efficient fash-
ion. Fig. 4 is a pictorial il-
lustration of our encoding
for I(k1, k2, r1, r2), where
k1, k2 are key bits and r1, r2
are random bits. Each box
in the figure denotes a copy
of the input-output relation
of I but with random bits
customized to values 00,
01, 10, and 11, respectively.
Furthermore, the first four
boxes correspond to one set
of key values, denoted k1 and k2, and the remaining four boxes correspond to another
set of key values, denoted k′1 and k′2. The summations add up the number of logical 1’s,

ACM SIGLOG News 80 April 2017, Vol. 4, No. 2

while the comparison on the right-hand side checks if the probabilities of I(k1, k2, . . .)
and I(k′1, k

′
2, . . .) being logical 1 can differ.

Compositional Verification. Whether we use specialized solvers or standard solvers
does not change the fact that, in the worst case, the number of satisfying assignments
is exponential in the number of random bits in r. This may cause scalability problems.
Fortunately, certain properties of masked programs allow us to apply compositional
analysis. That is, instead of verifying the whole program, we partition the AST into
small code regions, and apply the model-counting based analysis only to each individ-
ual code region, one at a time.

This is possible because a common strategy used by cryptographic system engineers
is to create a chain of small modules, where the inputs of each module are masked
before executing its logic and are de-masked afterward. To avoid having unmasked
intermediate values, the inputs to the successor module are masked with fresh random
variables before they are de-masked from the random variables used by the previous
module. Due to the associativity of XOR (⊕), reordering these masking and de-masking
operations would not change the result. We have shown [Eldib et al. 2014b] that such
property may be exploited for performance optimization in real applications.

Quantifying the Leakage. Our verification procedure so far only checks if a given
program is perfectly masked. However, it cannot quantify the amount of leakage in
programs that are not perfectly masked. To differentiate the strengths of masking
schemes, e.g., o1,o2,o3 in Fig. 2, we have extended the definition of perfect masking
to quantify the amount of residual leakage [Eldib et al. 2014c]. That is, we define the
quantitative masking strength (QMS) as the minimal value of (1−∆qms) such that,

|E(Ii | k = κ ∧ x = χ)− E(Ii | k = κ′ ∧ x = χ)| ≤ ∆qms

holds for all intermediate results Ii(x, k, r), all plaintext values χ, and all key values κ
and κ′, where κ '= κ′. Here, E(Ii | k = κ∧x = χ) can be viewed as the number of values
of r under which Ii(κ, χ, r) evaluates to logical 1.

Consider the example in Fig. 2 again. We have

∆qms(o1) = 1/4− 0/4 = 0.25 ∆qms(o1) = 4/4− 3/4 = 0.25
∆qms(o2) = 4/4− 1/4 = 0.75 ∆qms(o2) = 3/4− 0/4 = 0.75
∆qms(o3) = 3/4− 1/4 = 0.50 ∆qms(o3) = 3/4− 1/4 = 0.50
∆qms(o4) = 2/4− 2/4 = 0.00 ∆qms(o4) = 2/4− 2/4 = 0.00

Intuitively, the numbers are consistent with the amount of power leakage. For exam-
ple, the perfectly-masked o4 has ∆qms = 0.0, which corresponds to QMS = 1.0. For
each of the remaining three, the larger ∆qms, the more information it leaks.

To decide whether a given software program meets the QMS requirement, we check
if there exists any intermediate result I(x, k, r) that satisfies the following formula:

∃x, k, k′ .

(

∑

r∈R

I(x, k, r)−
∑

r∈R

I(x, k′, r)

)

> ∆qms .

If this formula is satisfiable, there exist some values for x and (k, k′) such that the
difference between distributions of I(x, k, r) and I(x, k′, r) is larger than the expected
∆qms. On the other hand, if the above formula is unsatisfiable for all intermediate
results of the program, the implementation meets the QMS requirement.

4. SYNTHESIZING SIDE-CHANNEL RESISTANT SOFTWARE

Given some not-yet-masked software code as input, we use inductive program syn-
thesis to systematically search for an alternative, functionally-equivalent, but side-
channel resistant implementation. Although recent years have seen a renewed interest

ACM SIGLOG News 81 April 2017, Vol. 4, No. 2

n10

Op

Op

Op OpV
V

V V V V

n7

n11

n6
n5

n2

n4

n3

n1

n9n8

Op

Fig. 6. A candidate program skeleton consisting
of 11 parameterized AST nodes.

n10

r2

⊕

i1

r1

⊕

i2

⊕

⊕ ⊕

r1

n7

n11

n6
n5

n2

n4

n3

n1

n9n8
r2

Fig. 7. The synthesized candidate program with
instantiated Boolean masking.

in applying inductive synthesis to a wide variety of applications [Solar-Lezama et al.
2005; Jha et al. 2010; Gulwani 2011; Harris and Gulwani 2011; Harris et al. 2013; Alur
et al. 2013; Eldib and Wang 2014a; Eldib et al. 2016], prior to our work, it has never
been used to mitigate side-channel leaks.

Our synthesis procedure relies on a set of architectural parameters to estimate the
leakage. For each side channel, we leverage a different type of code transformation, or
countermeasure, to eliminate the leakage. Specifically, for instruction timing, the coun-
termeasure would be CFG-balancing, which is to remove all branching conditions that
are dependent on the sensitive data. For cache-memory timing, the countermeasure
would be to remove the dependency between table lookups and the sensitive table con-
tent. For power side channel, the countermeasure would be masking, which removes
the dependency between variations in power dissipation and the sensitive data.

!"#$%&#'

()*

+,-.#'(##$/0.#12

341526'7%2829

(--:/&%#/;,'

);<#=%$1'/,'>

?1,1$%#1

>%,@/@%#1

A1$/<5'B1$<1&#

7%28/,C

D:;&81@

B$;C$%E2

)5,#F12/G1@

)>(HI12/2#%,#

B$;C$%E

!"#$%&'(&)#*+$

,-./&0

($&F/#1&#.$%:'

B%$%E1#1$2

Fig. 5. Counterexample-guided inductive synthesis procedure.

The overall flow of our
synthesis procedure is
shown in Fig. 5. Given
the application software
together with a set of
sensitive variables and
architectural parameters,
it first extracts an abstract
syntax tree (AST) repre-
sentation of the program.
Then, it generates a can-
didate program that is
functionally equivalent to the original program—the two programs produce the same
output for the same input. Next, it verifies that the candidate program is free of
side-channel leaks. If the verification succeeds, we are done. Otherwise, we block this
candidate program and try again.

To generate the candidate program, we create a skeleton of the program’s AST, which
captures any syntactically correct program up to that size. For example, the skeleton
AST of size 5 shown in Fig. 6 can represent any candidate program with up to five AST
nodes: Op represents any of the predefined binary operators, V |C means the node rep-
resents either a variable or a constant, and the root node represents the computation
output, which must be functionally equivalent to the original program.

We use SMT solvers to search among the candidate programs. That is, to determine
the node types, variable names, and constant values of the skeleton AST, we construct
a formula Φ such that Φ is satisfiable if and only if the candidate program is func-
tionally equivalent to the original program. If Φ is unsatisfiable, it means no solution
exists; in this case, we increase the skeleton size and try again.

ACM SIGLOG News 82 April 2017, Vol. 4, No. 2

If Φ is satisfiable, we have found a candidate program, e.g., as in Fig. 7, which is
an instantiation of the skeleton AST. The next step is to verify that it is free of side-
channel leaks. Toward this end, we create another formula Ψ such that Ψ is satisfiable
if and only if the candidate program has side-channel leaks. If Ψ is unsatisfiable, the
candidate program is proved to be a valid solution and we are done. Otherwise, we
block this candidate program and try again.

Fig. 8 shows a masked implementation of the χ-function of a reference implemen-
tation of MAC-Keccak, which is NIST’s new SHA-3 crypto-hashing algorithm [NIST
2013]. The original code is on the left-hand side and the new code is on the right-hand
side. We guarantee that all intermediate results in the new program are perfectly
masked. That is, by assuming r1, r2 and r3 are uniformly distributed random vari-
ables, our method guarantees that the probability of each intermediate result being
logical 1 (or 0) is independent of i1, i2 and i3. As for the compactness of the im-
plementation, we note that a countermeasure handcrafted by cryptographic experts
has 14 operations [Bertoni et al. 2013], whereas our synthesized version only has 12
operations—it is more compact than the one handcrafted by experts.

1 : Chi(bool i1, bool i2, bool i3) {
2 : bool n1, n2, n3;
3 : n3 = ¬i2;
4 : n2 = n3 ∧ i3;
5 : n1 = n2 ⊕ i1;
6 : return n1;
7 : }

i1 i2 i3 n3 n2 n1
0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 1
1 0 1 1 0 1
1 1 0 0 0 1
1 1 1 0 0 1

1 : mChi(bool i1, bool i2, bool i3) {
2 : bool r1, r2, r3; //random bits added
3 : bool b1, b2, b3, n1, n2, n3, n4, n5, n6, n7, n8, n9;
4 : b1 = i1 ⊕ r1;
5 : b2 = i2 ⊕ r2;
6 : b3 = i3 ⊕ r3;
7 : n9 = b3 ∧ r2;
8 : n8 = r3 ∧ r2;
9 : n7 = r3 ∨ b2;
10 : n6 = r1 ⊕ n9;
11 : n5 = n7 ⊕ n8;
12 : n4 = b2 ∨ b3;
13 : n3 = n5 ⊕ n6;
14 : n2 = n4 ⊕ b1;
15 : n1 = n2 ⊕ n3;
16 : return n1;
17 : }

Fig. 8. The χ function in MAC-Keccak, its truth-table, and the synthesized mχ function (¬ denotes NOT, ∧
denotes AND, ∨ denotes OR, and ⊕ denotes XOR).

Compositional Synthesis. Again, the key is to exploit the unique characteristics of
masked programs. Thus, we have developed a compositional synthesis procedure [El-
dib and Wang 2014b], which applies computationally intensive analysis (e.g., model-
counting) only to small code regions, one at a time, as opposed to the entire program.
Compared to the application of standard synthesis techniques to the entire program,
our compositional synthesis procedure is significantly more scalable.

5. VALIDATING SIDE-CHANNEL RESISTANCE ON REAL DEVICES

To confirm that our modeling and analysis of side-channel leaks at the source code
level accurately reflect what is observed in the physical world, we conducted a set of
SCA-based attacks on implementations of MAC-Keccak, AES, and a few other cryp-
tographic algorithms [Eldib et al. 2015]. In these experiments, we ran all software
code on a 32-bit Microblaze processor [Xilinx 2014] built on a Xilinx Spartan-3e FPGA
(Fig. 9). To measure the power dissipation of the processor core, we used a Tektronix
DPO 3034 oscilloscope and a CT-2 current probe to sample the power dissipation. The
side-channel attack shown in Fig. 9 was conducted using the classic differential power

ACM SIGLOG News 83 April 2017, Vol. 4, No. 2

analysis, i.e., difference of means [Kocher et al. 1999]. To limit the effect of measure-
ment noise, we collected each trace after running the same software code 128 times and
using the oscilloscope to calculate the average. Thus, a trace refers to a set of samples
taken during the execution of the software code.

enc(x,k)

Power

Time

RS−232

USB

Embedded Computing HW

PC

Key
(k)

Cryptographic SW

Current
sensor

Plaintext
(x)

(c)
Ciphertext Oscilloscope

Fig. 9. The power side-channel attack system setup.

We used differential power
analysis (DPA) to determine
if a key guess was correct. Re-
call that DPA relies on the
observation that power dis-
sipation variations correlate
to the values of the sensi-
tive bits being manipulated.
Using the same input vec-
tor stream of plaintext as in
the measured traces, we com-
puted the value of the sen-
sitive variable assuming that
the secret key was one of the
key guesses. For an n-bit key,
there would be 2n key guesses. For each key guess, we divided the set of measure-
ment traces into two bins, one for all the sensitive values of logic 0, and one for all the
sensitive values of logic 1. Then, we computed the difference of means between those
two bins for each key guess, and selected the key guess that result in the maximum
difference.

Fig. 10 shows our results on the SHA3 benchmark. The x-axis denotes the QMS
value as defined in Section 3, while the y-axis (in logarithmic scale) denotes the num-
ber of traces needed to determine the secret key. In addition to the measured data,
which are the stars in the figure, we plotted an empirical approximation rule (dotted
curve) generated by hit-and-trial to estimate the measured data. We can see that when
the QMS approaches 1.0, the number of traces needed to determine the secret key ap-
proaches infinity. However, when the QMS deviates from 1.0 slightly, the number of
traces needed to determine the secret key drops quickly. Overall, the side-channel re-
sistance as measured by the number of traces needed to determine the secret key is
dependent on QMS. Fig. 11 shows our results on the AES benchmark.

In both cases, the approximate empirical formula computed to estimate the number
of required DPA traces has the following relation with the QMS value:

Ntrace =
1

(1− QMS)c
,

where c ≈ 2.0. Note that we obtained this equation without prior knowledge of what the
relation should look like. Later, we discovered that it matches the theoretical analysis
result in the literature [Mangard 2004], which says that c should be precisely 2.0 as
opposed to ≈ 2.0, since (1 − QMS) represents the standard deviation of power analysis
measurements.

6. FUTURE DIRECTIONS

The next step is to generalize the verification and program synthesis techniques to
handle other types of side channels and software systems. We envision a comprehen-
sive framework (Fig. 12) whose input is the source code of some security-critical soft-
ware, together with a set of sensitive variables (keys, passwords, etc.) tagged in the
source code. To support modeling of various types of side-channel leakage, it also ac-
cepts a set of architecture parameters and leakage models. The output is a transformed

ACM SIGLOG News 84 April 2017, Vol. 4, No. 2

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

10
4

10
5

QMS

T
ra

c
e
s
 n

e
e
d
e
d
 t

o
 g

e
t

k
e
y

SHA3 Measured

Empirical (c = 2.0)

Fig. 10. DPA attacks on MAC-Keccak: number
of traces needed versus the QMS.

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

10
4

10
5

QMS

T
ra

c
e
s
 n

e
e
d
e
d
 t

o
 g

e
t

k
e
y

AES Measured

Empirical (c = 2.0)

Fig. 11. DPA attacks on AES: the number of
traces needed versus the QMS value.

!""#$%&'$()

*(+',&-.

!-%/$'.%'0-.

1&-&2.'.-3

1(,.-

4(5.#

4&36

*7)'/.3$3

8$2$)9:

4(5.#

;<=

>&#&)%$)9

;&%/.:

4(5.#

!##(%&'$()?:

4&36$)9

!"#$%&'%(!()&

)"*("+,&%

-.

/01"'%(2'

.34

5,"#%

1(,.-

8$2$)9

;&%/.

!"#$%&'

()#*+*,%-*".

/#"0#%$'

12.-3)4*4

6%&*$-'17!

@.&6&9.:

A."(-'

*;!B-.3$3'&)'

!""#$%&'$()

;?

<1=!

CD8

5)%46#)

7)4*86%&'9)%:%0)

A.+$).:

@.&6&9.:4(5.#3

Fig. 12. Framework for synthesizing, verifying, and validating side-channel countermeasures. The input
includes the source code of an application, a list of sensitive variables, and the parametric architecture defi-
nition. The compiler-like tool can (a) insert countermeasures through inductive synthesis and (b) statically
detect remaining side-channel leakage in either synthesized or manually programmed countermeasures.

application for which the dependency between side-channel leakage and sensitive vari-
ables is removed.

When a programmer develops an application, for example, he or she will indicate one
or more types of side-channel leakage, including power dissipation, instruction time,
and cache-memory timing behavior. The framework will examine the software code to
check for the presence of side-channel leakage. In the presence of side-channel leak-
age, the framework will leverage inductive synthesis to transform the software code
into an implementation that eliminates the side-channel leakage. The framework also
assesses the quality of the countermeasure. In addition, by measuring and analyzing
the actual leakage of driver applications using a hardware prototype, we will refine the
architecture parameters and leakage models, thus improving verification and counter-
measure synthesis.

Advantages over Alternative Approaches. There are significant efforts on eliminat-
ing physical emissions of sensitive equipments and electronic systems, e.g. in the leg-
endary TEMPEST project [TEMPEST 1972]. There are also techniques for reducing
physical emissions of hardware (microcontrollers, FPGAs, ASICS, and CPUs) – al-
though these techniques are theoretically feasible, they are not economical. In con-
trast, our approach does not aim to eliminate physical emissions of the computing de-
vices; instead, it transforms the software running on these devices to make the compu-

ACM SIGLOG News 85 April 2017, Vol. 4, No. 2

tation leak-resistant. Therefore, our approach is fundamentally more economical and
thus more widely applicable.

Another alternative is the use of side-channel resistant software libraries developed
by experts. While libraries could help for selected cases of reusable functionality on
some widely deployed platforms, it is not scalable in general, for several reasons. First,
since side-channel leakage is platform-specific, side-channel resistant libraries must
also be platform-specific and thus non-portable. Second, side-channel resistant tech-
niques incur performance penalty, which means an expert has to decide which sources
of side-channel leakage to address and what level of residual leakage should be toler-
ated. Therefore, a universal countermeasure library is not meaningful; in practice, the
application context is crucial to decide on what makes sense and what not.

7. RELATED WORK

Formal Verification. We started with the notion of perfect masking introduced
by [Blömer et al. 2004] and developed SC-Sniffer [Eldib et al. 2014a; 2014b], the first
automated tool for formally verifying that a software program is perfectly masked. In
comparison, the Sleuth tool developed by [Bayrak et al. 2013] can only check if sensi-
tive data are masked by some random variables (a logical property), but cannot check
if the masking is perfect (a statistical property). We also extended the notion of perfect
masking to quantify the amount of residual leakage in software that are not perfectly
masked [Eldib et al. 2014c]. The strength of masking may be computed statically on the
source code of the software program, and its accuracy as an indicator for side-channel
resistance has been validated by DPA attacks on real devices [Eldib et al. 2015].

Countermeasure Synthesis. There is a large body of work on masking countermea-
sures for cryptographic algorithms [Messerges 2000; Goubin 2001; Oswald et al. 2005;
Herbst et al. 2006; Canright and Batina 2008; Moradi et al. 2011; Barthe et al.
2016], but they require manual design and implementation. By leveraging our veri-
fication procedure for proving side-channel resistance, we developed SC-Masker [El-
dib and Wang 2014b], a tool for automatically synthesizing perfectly-masked software
code. Although there exist some other compiler-like tools for mitigating side-channel
leaks [Bayrak et al. 2011; Moss et al. 2012; Agosta et al. 2012], they rely on ad hoc
techniques, e.g., matching some code patterns and applying predefined transforma-
tions, as opposed to inductive program synthesis techniques. The main advantage of
using inductive synthesis is that the tool becomes application-agnostic and it no longer
relies on existing patterns or mitigation strategies. Therefore, it can handle unknown
and unexpected vulnerabilities.

Other Side Channels. Besides power side channels, there are other types of side
channels through which sensitive information may be leaked. They include, for exam-
ple, instruction timing side channels [Kocher 1996; Köpf and Dürmuth 2009], cache
timing side channels [Grabher et al. 2007], string-related side channels [Bang et al.
2016], and fault-related side channels [Biham and Shamir 1997]. In addition to CPUs,
side channels have been identified in GPUs [Jiang et al. 2016; Luo et al. 2015]. Tech-
niques for mitigating some of these side-channel leaks are also proposed. For example,
Köpf et al. developed techniques for quantitative information flow analysis [Köpf et al.
2012; Backes et al. 2009]. Doychev et al. [Doychev et al. 2013] developed static analysis
techniques for detecting leaks through cache side channels. Barthe et al. [Barthe et al.
2014] developed techniques for mitigating concurrent cache attacks.

8. CONCLUSIONS

We have presented an automated approach to comprehensive side-channel resistance
for embedded computing applications. It relies on formal verification techniques to

ACM SIGLOG News 86 April 2017, Vol. 4, No. 2

detect side-channel leaks or prove that leaks do not exist, and program synthesis tech-
niques to generate secure implementations. It also leverages hardware prototyping to
validate the effectiveness of these verification and synthesis techniques. Although we
have used power side-channel leaks in cryptographic software as examples, the under-
lying techniques may be applied to various side channels in a wide range of embedded
processing systems, e.g., in phones, cars, and home appliances, as well as industrial,
medical, and transportation systems.

ACKNOWLEDGMENTS

This work was primarily supported by NSF under grants CNS-1617203, CNS-1128903 and CNS-1115839.

Partial support was provided by ONR under grant N00014-13-1-0527. Any opinions, findings, and conclu-

sions expressed in this material are those of the authors and do not necessarily reflect the views of the

funding agencies.

REFERENCES

Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. 2012. A code morphing methodology to auto-
mate power analysis countermeasures. In ACM/IEEE Design Automation Conference. 77–82.

Rajeev Alur, Rastislav Bodı́k, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia,
Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided syn-
thesis. In International Conference on Formal Methods in Computer-Aided Design. 1–17.

Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. 2015. Automata-based model counting for string con-
straints. In International Conference on Computer Aided Verification. 255–272.

Michael Backes, Boris Köpf, and Andrey Rybalchenko. 2009. Automatic discovery and quantification of in-
formation leaks. In IEEE Symposium on Security and Privacy. 141–153.

Josep Balasch, Benedikt Gierlichs, Roel Verdult, Lejla Batina, and Ingrid Verbauwhede. 2012. Power analy-
sis of Atmel CryptoMemory - recovering keys from secure EEPROMs. In CT-RSA: The Cryptographers’
Track at the RSA Conference. 19–34.

Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, and Tevfik Bultan. 2016. String anal-
ysis for side channels with segmented oracles. In ACM SIGSOFT Symposium on Foundations of Soft-
ware Engineering. 193–204.

Gilles Barthe, Sonia Belaı̈d, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves
Strub, and Rébecca Zucchini. 2016. Strong non-interference and type-directed higher-order masking.
In ACM SIGSAC Conference on Computer and Communications Security. 116–129.

Gilles Barthe, Boris Köpf, Laurent Mauborgne, and Martı́n Ochoa. 2014. Leakage resilience against concur-
rent cache attacks. In International Conference on Principles of Security and Trust. 140–158.

Ali Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. 2013. Sleuth: Automated Verification of
Software Power Analysis Countermeasures. In Workshop on Cryptographic Hardware and Embedded
Systems. 293–310.

Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, François-Xavier Standaert, and Paolo Ienne. 2011.
A first step towards automatic application of power analysis countermeasures. In Proceedings of the
Design Automation Conference. 230–235.

Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche, and Ronny Van Keer. 2013. Keccak im-
plementation overview. URL: http://keccak.neokeon.org/Keccak-implementation-3.2.pdf. (2013).

Eli Biham and Adi Shamir. 1997. Differential fault analysis of secret key cryptosystems. In International
Cryptology Conference. 513–525.

Johannes Blömer, Jorge Guajardo, and Volker Krummel. 2004. Provably secure masking of AES. In Selected
Areas in Cryptography. 69–83.

Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation power analysis with a leakage model.
In Workshop on Cryptographic Hardware and Embedded Systems. 16–29.

David Canright and Lejla Batina. 2008. A very compact ”perfectly masked” S-Box for AES. In International
Conference on Applied Cryptography and Network Security. 446–459.

Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y. Vardi. 2014.
Distribution-aware sampling and weighted model counting for SAT. In AAAI Conference on Artificial
Intelligence. 1722–1730.

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. 2013. A scalable approximate model counter.
In International Conference on Principles and Practice of Constraint Programming. 200–216.

ACM SIGLOG News 87 April 2017, Vol. 4, No. 2

Suresh Chari, Charanjit Jutla, Josyula Rao, and Pankaj Rohatgi. 1999. Towards sound approaches to coun-
teract power-analysis attacks. In International Cryptology Conference. 398–412.

E. M. Clarke, O. Grumberg, and D. A. Peled. 1999. Model Checking. MIT Press, Cambridge, MA.

Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke. 2013. CacheAudit: A tool
for the static analysis of cache side channels. In USENIX Security. 431–446.

Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud Salmasizadeh, and Mohammad
T. Manzuri Shalmani. 2008. On the power of power analysis in the real world: A complete break of the
KeeLoqCode Hopping scheme. In International Cryptography Conference. 203–220.

Hassan Eldib and Chao Wang. 2014a. An SMT based method for optimizing arithmetic computations in
embedded software code. IEEE Trans. on CAD of Integrated Circuits and Systems 33, 11 (2014), 1611–
1622.

Hassan Eldib and Chao Wang. 2014b. Synthesis of masking countermeasures against side channel attacks.
In International Conference on Computer Aided Verification. 114–130.

Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014a. Formal verification of software countermeasures
against side-channel attacks. ACM Trans. Softw. Eng. Methodol. 24, 2 (2014), 11:1–24.

Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014b. SMT based verification of software countermea-
sures against side-channel attacks. In International Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems. 62–77.

Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. 2014c. QMS: Evaluating the side-channel
resistance of masked software from source code. In ACM/IEEE Design Automation Conference. 209:1–6.

Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. 2015. Quantitative masking strength:
Quantifying the side-channel resistance of masked software code. In IEEE Trans. on CAD of Integrated
Circuits and Systems, Vol. 34. 10:1558–1568.

Hassan Eldib, Meng Wu, and Chao Wang. 2016. Synthesis of Fault-Attack Countermeasures for Crypto-
graphic Circuits. In International Conference on Computer Aided Verification. 343–363.

Daniel J. Fremont, Markus N. Rabe, and Sanjit A. Seshia. 2017. Maximum model counting. In AAAI Confer-
ence on Artificial Intelligence. 3885–3892.

Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA key extraction via low-bandwidth acoustic crypt-
analysis. In International Cryptology Conference. 444–461.

Louis Goubin. 2001. A sound method for switching between boolean and arithmetic masking. In Workshop
on Cryptographic Hardware and Embedded Systems. 3–15.

Philipp Grabher, Johann Großschädl, and Dan Page. 2007. Cryptographic side-channels from low-power
cache memory. In International Conference on Cryptography and Coding. 170–184.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages. 317–330.

William R. Harris and Sumit Gulwani. 2011. Spreadsheet table transformations from examples. In ACM
SIGPLAN Conference on Programming Language Design and Implementation. 317–328.

William R. Harris, Somesh Jha, Thomas W. Reps, Jonathan Anderson, and Robert N. M. Watson. 2013.
Declarative, temporal, and practical programming with capabilities. In IEEE Symposium on Security
and Privacy. 18–32.

Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. 2006. An AES smart card implementation re-
sistant to power analysis attacks. In International Conference on Applied Cryptography and Network
Security. 239–252.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based
program synthesis. In International Conference on Software Engineering. 215–224.

Zhen Hang Jiang, Yunsi Fei, and David R. Kaeli. 2016. A complete key recovery timing attack on a GPU. In
IEEE International Symposium on High Performance Computer Architecture. 394–405.

Timo Kasper, David Oswald, and Christof Paar. 2011. Side-channel analysis of cryptographic RFIDs with
analog demodulation. In RFIDSec. 61–77.

Paul C. Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems.
In International Cryptology Conference. 104–113.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis. In International Cryp-
tology Conference. 388–397.

Boris Köpf and Markus Dürmuth. 2009. A provably secure and efficient countermeasure against timing
attacks. In IEEE Symposium on Computer Security Foundations. 324–335.

Boris Köpf, Laurent Mauborgne, and Martı́n Ochoa. 2012. Automatic quantification of cache side-channels.
In International Conference on Computer Aided Verification. 564–580.

ACM SIGLOG News 88 April 2017, Vol. 4, No. 2

Chao Luo, Yunsi Fei, Pei Luo, Saoni Mukherjee, and David R. Kaeli. 2015. Side-channel power analysis of a
GPU AES implementation. In IEEE International Conference on Computer Design. 281–288.

Stefan Mangard. 2004. Hardware countermeasures against DPA – A statistical analysis of their effective-
ness. In The Cryptographers’ Track at the RSA Conference 2004. 222–235.

K. L. McMillan. 1994. Symbolic Model Checking. Kluwer Academic Publishers, Boston, MA.

Thomas S. Messerges. 2000. Securing the AES finalists against power analysis attacks. In Fast Software
Encryption. 150–164.

Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. 2011. On the vulnerability of FPGA
bitstream encryption against power analysis attacks: Extracting keys from Xilinx Virtex-II FPGAs. In
ACM Conference on Computer and Communications Security. 111–124.

Amir Moradi, David Oswald, Christof Paar, and Pawel Swierczynski. 2013. Side-channel attacks on the
bitstream encryption mechanism of Altera Stratix II: facilitating black-box analysis using software
reverse-engineering. In FPGA. 91–100.

Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. 2011. Pushing the limits: A
very compact and a threshold implementation of AES. In EUROCRYPT. 69–88.

Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. 2012. Compiler assisted masking. In
Workshop on Cryptographic Hardware and Embedded Systems. 58–75.

NIST. 2013. Keccak reference code submission to NIST’s SHA-3 competition (Round 3). URL:
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Keccak FinalRnd.zip. (2013).

Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen. 2005. A side-channel analysis
resistant description of the AES S-Box. In International Workshop on Fast Software Encryption. 413–
423.

Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow security. IEEE Journal on
Selected Areas in Communications 21, 1 (2003), 5–19.

Sergei Skorobogatov and Christopher Woods. 2012. Breakthrough silicon scanning discovers backdoor in
military chip. In Workshop on Cryptographic Hardware and Embedded Systems. 23–40.

Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodı́k, and Kemal Ebcioglu. 2005. Programming by
sketching for bit-streaming programs. In ACM SIGPLAN Conference on Programming Language Design
and Implementation. 281–294.

TEMPEST. 1972. A signal problem – the story of the discovery of various compromising radiations from
communications and Comsec equipment. Cryptologic Spectrum, Vol. 2, No. 3, National Security Agency,
partially FOAI declassified 2007-09-27 (1972).

Xilinx. 2014. MicroBlaze soft processor core. (2014). URL: http://www.xilinx.com/tools/microblaze.htm.

ACM SIGLOG News 89 April 2017, Vol. 4, No. 2

