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Abstract—We propose a data-driven method for synthesiz-
ing static analyses to detect side-channel information leaks in 
cryptographic software. Compared to the conventional way of 
manually crafting such static analyzers, which can be tedious, 
error prone and suboptimal, our learning-based technique is not 
only automated but also provably sound. Our analyzer consists 
of a set of type-inference rules learned from the training data, 
i.e., example code snippets annotated with the ground truth. 
Internally, we use syntax-guided synthesis (SyGuS) to generate 
new recursive features and decision tree learning (DTL) to 
generate analysis rules based on these features. We guarantee 
soundness by proving each learned analysis rule via a technique 
called query containment checking. We have implemented our 
technique in the LLVM compiler and used it to detect power side 
channels in C programs that implement cryptographic protocols. 
Our results show that, in addition to being automated and 
provably sound during synthesis, our analyzer can achieve the 
same empirical accuracy as two state-of-the-art, manually-crafted 
analyzers while being 300X and 900X faster, respectively.

I. In t r o d u c t i o n

Static analyses are being increasingly used to detect secu-

rity vulnerabilities such as side channels [1]-[4]. However, 

manually crafting static analyzers to balance between accuracy 

and efficiency is not an easy task: even for domain experts, it 

can be labor intensive, error prone, and result in suboptimal 

implementations. For example, we may be tempted to add 

expensive analysis rules for specific sanitized patterns without 

realizing they are rare in target programs. Even if the analysis 

rules are carefully tuned to a corpus of code initially, they are 

unresponsive to changing characteristics of the target programs 

and thus may become suboptimal over time; manually updating 

them to keep up with new programs would be difficult.

One way to make better accuracy-efficiency trade-offs and 

to dynamically respond to the distribution of target programs 

is to use data-driven approaches [5], [6] that automatically 

synthesize analyses from labeled examples provided by the 

user. However, checking soundness or compliance with user 

intent (generalization) has always formed a significant challenge 

for example-based synthesis techniques [7]-[11]. The lack of 

soundness guarantees, in particular, hinders the application of 

such learned analyzers in security-critical applications. While 

several existing works [12]-[15] try to address this problem, 

rigorous soundness guarantees have remained elusive.

To overcome this problem, we propose a learning-based 

method for synthesizing a provably-sound static analyzer that 

detects side channels in cryptographic software, by inferring a 

distribution type for each program variable that indicates if its 

value is statistically dependent on the secret. The overall flow

Fig. 1. The overall flow of GPS, our data-driven synthesis method.

of our method, named G P S, is shown in Fig. 1. The input is 

a set of training data and the output is a learned analyzer. The 

training data are small programs annotated with the ground 

truth, e.g., which program variables have leaks.

Internally, G P S  consists of a learner and a prover. The 

learner uses syntax guided synthesis (SyGuS) to generate 

recursive features and decision tree learning (DTL) to generate 

type-inference rules based on these features; it returns a set R  of 

Datalog formulas that codify these rules. The prover checks the 

soundness of each learned rule, i.e., it is not only consistent with 

the training examples but also valid for any unseen programs. 

This is formulated by solving a query containment checking 

problem, i.e., each rule must be justified by existing proof rules 

called the knowledge base (K B ). Since only proved rules are 

added to the analyzer, the analyzer is guaranteed to be sound. If 

a rule cannot be proved, we add a counter-example to prevent 

the learner from generating it again.

We have implemented G P S  in LLVM and evaluated it on 

568 C programs that implement cryptographic protocols and 

algorithms [16]-[18]. Together, they have 2,691K lines of C 

code. We compared our learned analyzer with two state-of- 

the-art, hand-crafted side-channel analysis tools [1], [2]. Our 

experiments show that the learned analyzer achieves the same 

empirical accuracy as the two state-of-the-art tools, while being 

several orders-of-magnitude faster. Specifically, G P S  is, on 

average, 300 x faster than the analyzer from [1] and 900 x 

faster than the analyzer from [2].

To summarize, this paper makes the following contributions:

• We propose the first data-driven method for learning 

a provably sound static analyzer using syntax guided 

synthesis (SyGuS) and decision tree learning (DTL).

• We guarantee soundness by formulating and solving a 

Datalog query containment checking problem.

• We demonstrate the effectiveness of our method for 

detecting side channels in cryptographic software.

In the remainder of this paper, we begin by presenting the 

technical background in Section II and our motivating example

978-1-6654-0296-5/21/$31.00 ©2021 IEEE 
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in Section III. We then describe the learner in Section IV 

and the prover in Section V, followed by the experimental 

results in Section VI. Finally, we survey the related work in 

Section VII and conclude in Section VIII.

II. Pr e l im in a r ie s

A. Power Side-Channels

Prior works in side-channel security [19]-[21] show that 

variance in the power consumption of a computing device may 

leak secret information; for example, when a secret value is 

stored in a physical register, its number of logical-1 bits may 

affect the power consumption of the CPU. Such side-channel 

leaks are typically mitigated by masking, e.g., using d random 

bits (r i , . . . ,  r d) to split a key bit into d + 1  secret shares: 

keyi =  r i , .. ., keyd =  r d, and keyd+i =  r i ©r2 . . .©r d©key, 

where © denotes the logical operation exclusive or (XOR). 

Since all d + 1  shares are uniformly distributed in the {0, 1}, 

in theory, this order-d masking scheme is secure in that any 

combination of less than d shares cannot reveal the secret, but 

combining all d + 1  shares, keyi © key2 © ...keyd+i = key, 

recovers the secret.

In practice, masking countermeasures must also be imple-

mented properly to avoid de-randomizing any of the secret 

shares accidentally. Consider t = tL © tR = (r i © key) © (r i © b) 

= key ©b. While syntactically dependent on the two randomized 

values tL and tR, t is in fact leaky because, semantically, it 

does not depend on the random input r i . In this work, we 

aim to learn a static analyzer that can soundly prove that all 
intermediate variables o f a program that implements masking 

countermeasures are free of such leaks.

B. Type Systems

Type systems prove to be effective in analyzing power 

side channels [1], [2], e.g., by certifying that all intermediate 

variables of a program are statistically independent of the secret. 

Typically, the program inputs are marked as public ( INPUB), 

secret ( INKEY) or random ( INRAND), and then the types of 

all other program variables are inferred automatically.

The type of a variable v, denoted TYPE(v), may be 

RUD, SID, or UKD. Here, RUD stands for random uniform 

distribution, meaning v is either a random bit or being masked 

by a random bit. SID stands for secret independent distribution, 

meaning v does not depend on the secret. W hile an RUD 

variable is, by definition, also SID, an SID variable does 

not have to be RUD (e.g., variables that are syntactically 

independent of the secret). Finally, UKD stands for unknown 

distribution, or potentially leaky; if the analyzer cannot prove 

v to be RUD or SID, then it is assumed to be UKD.

Type systems are generally designed to be sound but not 

necessarily complete. They are sound in that they never miss 

real leaks. For example, by default, they may safely assume 

that all variables are UKD, unless a variable is specifically 

elevated to SID or RUD by an analysis rule. Similarly, they 

may conservatively classify SID variables as UKD, or classify 

RUD variables as SID, without missing real leaks. In general,

the sets of variables that can be marked as the three types form

a hierarchy: SRUD ^  SSID ^  SUKD.

C. Relations
A program in static single assignment (SSA) format can be 

represented as an abstract syntax tree (AST). Static analyzers 

infer the type of each node x of the program’s AST based on 

various features o f x . In this work, pre-defined features are 

represented as relations.

• Unary relations INPUB(x ), INKEY(x), and INRAND(x ) 

denote the given security level of a program input x , 

which may be public, secret, or random.

• Unary relations RUD(x ), SID (x), and INRAND(x ) denote 

the inferred type of a program variable x , which may be 

uniformly random, secret independent, or unknown.

• Unary relation OP (x ) denotes the operator type of the 

AST node x , e.g., OP(x ) := ANDOR(x) | XOR(x ), where 

ANDOR(x) means that x ’s operator type is either logical 
and or logical or, and XOR(x ) means that x ’s operator 

type is exclusive or;
• Binary relations LC(x, L) and RC(x, R ) indicate that the 

AST nodes L and R are the left and right operands of x , 

respectively.

• Binary relation supp(x, y) indicates that the AST node 

y is used in the computation of x syntactically, while 

dom (x, y) indicates that random program input y is used 

in the computation of x semantically.

III. M o t iv a t io n

Consider the program in Fig. 2a, which computes the x 

function from Keccak, a family of cryptographic primitives 

for the SHA-3 standard [22], [23]. It ultimately computes 

the function n 1 =  i 1 ® ( -  i 2 a  i 3 ) , where © means XOR. 

Unfortunately, a straightforward implementation could poten-

tially leak knowledge of the secret inputs i 1 , i 2 and i 3  if 

the attacker were able to guess the intermediate results -  i 2 
and -  i 2 a  i 3  via the power side-channels [24], [25]. The 

masking countermeasures in the implementation therefore use 

three additional random bits r 1  , r 2  and r 3  to prevent exposure 

of the private inputs while still computing the desired function.

A. Problem Setting
Given such a masked program, users want to determine if 

they succeed in eliminating side-channel vulnerabilities: in 

particular, if each intermediate result is uniformly distributed 

(RUD) or at least independent of the sensitive inputs (SID). 

The desired static analysis thus associates each variable x (e.g., 

n i ) with the elements of a three-level abstract domain, RUD, 

SID or UKD, indicating that x is uniformly distributed (RUD), 

secret independent (SID), or unknown (UKD) and therefore 

potentially vulnerable.

The decision tree in Fig. 2b represents the desired static ana-

lyzer, which accurately classifies most variables of the training 

corpus, and is also sound when applied to new programs. Given 

variable x , the decision tree leverages the features of x— such 

as the operator type of x (OP(x) := ANDOR(x)| XOR(x)) and the
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User Label b o o l  m C h i ( b o o l  i 1 , b o o l

b o o l  r 1 , b o o l

R U D ( b 1 ) b o o l b 1  =  i 1 © r 1 ;

R U D ( b 2 ) b o o l b 2  =  i 2 © r 2 ;

R U D ( b 3 ) b o o l b 3  =  i 3 © r 3 ;

R U D ( b 4 ) b o o l b 4  =  b 2 © b 3 ;

S I D ( n 9 ) b o o l n 9  =  b 3 A r 2 ;

S I D ( n 8 ) b o o l n 8  =  r 3 A r 2 ;

S I D ( n 7 ) b o o l n 7  =  b 2 V r 3 ;

R U D ( n 6 ) b o o l n 6  =  r 1 © n 9 ;

S I D ( n 5 ) b o o l n 5  =  n 7 © n 8 ;

S I D ( n 4 ) b o o l n 4  =  b 2 V b 3 ;

R U D ( n 3 ) b o o l n 3  =  n 5 © n 6 ;

R U D ( n 2 ) b o o l n 2  =  n 4 © b 1 ;

U K D ( n 1 ) b o o l n 1  =  n 2 © n 3 ;

r e t u r n  n 1 ;

}

(a)

b o o l  r 3 )
t rue  fal se

-  -| U K p f OP(x)

XOR(x)  

*  ,

TYPE(R)

ANDOR(x) 

^ ___

TYPE(L)

S I D ( R )  RUD(R)

__ ±__
TYPE(L) RUD |

RUD(L)  RUD(L)

____it_____
| UKD TYPE(R)

RUD(L) RUD(L) RUD(R)  RUD(R)

V

{ n 1 ,  n 5 }

Y

{ n 6 }

Y

{ b 1 ,  b 2 , b 3 ,  b 4 ,  n 2 ,  n 3 }

Y

{ n 4 ,  n 7 ,  n 8 ,  n 9 }

(b)

Fig. 2. The program on the left is a perfectly masked x  function from MAC-Keccak. The decision tree on the right represents the static analyzer that the user 

would like to synthesize. Here, x is a program variable, whose type is being computed; L and R  are its left and right operands, respectively, and f  (x ) is a 

synthesized feature shown in Fig. 3 a (represented by recursive Datalog program).

Rl : RUD(x) M XOR(x) A RC(x, R) A RUD(R) A - f  (x)
R2 : f (x) M LC(x, L) A RC(x, R) A gi (L, x l )A 

g2(R, rR) A XL  = rR
R3 : g i(r , r ) M INRAND (r )
R4 : g i(x ,r) M LC(x,y) A gi (y ,r)
R5 : g i(x ,r) M RC(x,y) A gi (y ,r)
Re : <0 to jT t INRAND(r )
R7 : g2 (x ,r) M LC(x, y) A g2 (y, r ) A XOR(x)
Rs : g2(x ,r) M Rc (x , y) A g2 (y, r ) A XOr (x )

(a) Excerpt o f rules learned by the GPS tool.

Mi : RUD(x) M XOR(x) A dom(x, res) A res = 0
M2 : supp(x,x) M INRAND(x) V INKEY(x) V INPUB(x)
M3 : supp(x, res) M LC(x,L) A RC(x, R) A s u pp(L , S l )A 

supp(R, S r ) A res = S l  U S r

M4 : dom(x, x) M INRAND(x)
M 5 : dom(x , 0) M INKEY(x) V INPUB(x)
M e : dom(x , res) M XOR(x ) A LC(x , L ) A RC(x , R )A

dom(L, S d l ) A dom(R , S d r )A 
supp(L, S l ) A supp(R , S r ) A
res = (S d l  u  S d r ) \  (S L  u  S r )

(b) Corresponding expert written rules from SCInfer [2].

Fig. 3. Comparing the rules learned by G P S  (Fig. 3a) to manually crafted 

rules from SCInfer (Fig. 3b). Observe that the learned rules are sound, i.e., every 

variable which potentially leaks information is assigned the distribution type 

UKD, while still managing to draw non-trivial conclusions such as RUD(b4). 
The learned rules (R2— Rs) in Fig. 3a are used to define the new feature 

f  (x) in Fig. 2b.

types of x ’s operands (e.g. T Y P E (L), T Y P E (R))—and maps 

x  to its corresponding distribution type. The white nodes of 

Fig. 2b represent pre-defined features, while the grey nodes 

represent output classes (associated types). Each path from the 

root to leaf node corresponds to one analysis rule. The set of 

pre-defined features used in this work is shown in Fig. 4a.

Designing side-channel analyses has been the focus of 

intense research, see for example [1]-[3], [16], [25]-[28]. 

Unfortunately, it requires expert knowledge in both computer 

security and program analysis, and invariably involves delicate 

trade-offs between accuracy and scalability. Our goal in this 

work is to assist the analysis designer in automating the 

development. This problem has also been the subject of exciting 

research [5], [29]; however, these approaches typically either

require computationally intensive deductive synthesis or cannot 

guarantee soundness and thus produce errors in both directions, 

including false alarms and missed bugs.

In contrast, G P S  combines inductive synthesis from user 

annotations with logical entailment checking against a more 

comprehensive, known-to-be-correct set of proof rules that form 

the knowledge base (KB). It takes as input training programs 

like the one in Fig. 2a, where the labels correspond to the types 

of program variables (RU D /S I D /UKD for intermediate results 

and IN R A N D / I N P U B / IN K E Y  for inputs). The users are free to 

annotate as many or as few of these types as they wish: this 

affects only the precision of the learned analyzer and not its 

soundness. Second, G P S  also takes as input the knowledge 

base K B , consisting of proof rules that describe axioms of 

propositional logic (Fig. 8) and properties of the distribution 

types (Fig. 10). In return, G P S  produces as output a set of 

Datalog rules which simultaneously achieves high accuracy on 

the training data and provably sound with respect to K B .

The proof rules for K B  were collected from published pa-

pers on masking countermeasures [1], [2], [16]. We emphasize 

that K B  is not necessarily an executable static analyzer since 

repeated application of these proof rules need not necessarily 

reach a fixpoint and terminate in finite time; Furthermore, even 

in cases where it does terminate, K B  may be computationally 

expensive and infeasible for application to large programs.

As a concrete example, we compare excerpts of the rules 

learned by G P S  in Fig. 3a to the corresponding rules from 

SCInfer [2]—a human-written analysis—in Fig. 3b. L C (x, L) 

and R C (x, R) arises in both versions, indicating that L and R 

are the left and right operands of x respectively. Specifically, in 

Fig. 3b, supp(x, y) indicates that y is used in the computation 

of x syntactically while dom(x, y) denotes that random variable 

y is used in the computation of x semantically. Observe the 

computationally expensive set operations in the human-written 

version to the simpler rules learned by G P S  without loss of 

soundness or perceptible loss in accuracy. These points are 

also borne out in our experiments in Table II, where SCInfer 

takes >45 minutes on some Keccak benchmarks, while our
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v ::=  x  | L  | R I OP(x)

o p (v ) ANDOR(x) XOR(x)

AND OR NOT XOR MUL LEAF

A o p (R)

::=  L  | R

TYPE(v)

RUDI S ID  UKD| INRAND IlNPUBllNKEY

RUD(x) S ID  (x) UKD(x)

(a)

{n 4,  n 7 ,  n8 ,  n9}

{b 1,  b 2 ,  b3 }

LEAF(R) ANDOR(R) XOR(R) 

/  ,_____*_____, \

TYPE(L) TYPE(L)

SID (L ) RUD(L)

I SID I I RUD I

SID (L)

I r Ud I

RUD(L)

__i__

| {n 5} | {n6} {n 2,  n3} {b 4,  n1 }

(b)

OP(x)

lSIDl

XOR(x)

op(R) I

I RUD I

LEAF(R) ANDOR(R) XOR(R) 

___ * _____, , \

TYPE(L) TYPE(L)

S ID (L ) RUD(L)

I SID | I RUD I [RUDI

S ID (L ) RUD(L)

RUD
0(X0

(c)

V ------- 1 RUD

RUD?UKD

true false

Fig. 4. The classifier of Fig. 4b is learned only using the features in Fig. 4a. Because o f the limited expressive power of these features, the learned analysis 

necessarily misclassifies either b4 or n1. Fig. 4c denotes the candidate analyzer produced after one round of feature synthesis. The blue paths corresponds 

to the rule RUD(x) ^  XOR(x) A XOR(R) A RUD(L) A—/  (x) A LC(x,L ) A RC (x, R). Unfortunately, even though this analysis (Fig. 4c) achieves 100% 

training accuracy, the leaf nodes highlighted in red correspond to unsound predictions.

learned analysis takes <5 seconds.

G P S  consists of two phases: First, it learns a set of type- 

inference rules—alternatively represented either as Datalog 

programs or as decision trees—that are consistent with the 

training data. Second, it proves these rules against the knowl-

edge base. In the next two subsections, we will explain the 

learning and soundness proving processes respectively.

B. Feature Synthesis and Rule Learning
The learned analyzer associates each node x of a program’s 

abstract syntax tree (AST) with an element of the distribution 

type {U K D (x), S I D (x), R U D (x)} . We may therefore interpret 

the analyzer as a decision tree that, by considering various 

features of an AST node, maps it to a type. With a pre-defined 

set of features, such as those shown in Fig. 4a, analyzers of 

this form can be learned with classical decision tree learning 

(DTL) algorithms. Fig. 4b shows such an analyzer, learned 

from the labeled program of Fig. 2a.

Unfortunately, the pre-defined features may not be strong 

enough to distinguish between nodes with different training 

labels, e.g., b4 and ni from the training program, which have 

distinct labels R U D (b4) and U K D (n i), but after being sifted 

into the node highlighted in red in Fig. 4b, cannot be separated 

by any of the features from Fig. 4a. To ensure soundness, 

the learner would be forced to conservatively assign the label 

U K D (x), which sacrifices the accuracy.

G P S  thus includes a feature synthesis engine, triggered 

whenever the learner fails to distinguish between two dif-

ferently labeled variables. In tandem with recursive feature 

synthesis, G P S  overcomes the limited expressiveness of DTL 

by enriching syntax space to capture more desired patterns. 

Observe that paths of a decision tree can be represented as 

Datalog rules, e.g., the red path in Fig. 4b is equivalent to

U K D (x) ^  X O R (x)A X O R (P ) A R U D (L )A L C (x ,L) A R C (x,P).

Viewing this in Datalog also allows us to conveniently describe 

recursive features, and reduce feature synthesis to an instance

1 OP (x) 1 O P(L) | o p (R )1 1TY PE(L) I 1TY PE(R) 1
f  (x)

C E i ANDOR -1 -1 -1 -1 -1
C E 2 XOR -1 LEAF -1 -1 -1
C E 3 XOR -1 XOR SID -1 -1
C E 4 XOR -1 ANDOR RUD -1 -1
C E 5 XOR -1 ANDOR SID -1 -1

Fig. 5. Abstract counter-examples produced during the soundness verification 

of the candidate analyzer shown in Fig. 4c.

t y p e (L)

OP(x)

RUD(L) UKD(L) S ID (L) 
y * X-

| r u d | OP(R)

XOR(x) ANDOR(x)

«
true false

E i a

ANDOR(R) XOR(R)

I RUD I

Fig. 6. Candidate analysis learned after one round o f feedback from the 

soundness verifier. The leaves shown in green and red correspond to sound 

and unsound analysis rules respectively.

of syntax-guided synthesis (SyGuS). Syntactically, the analysis 

rules corresponding to new features are instances of a pre-

defined set of meta-rules, and the target specification is to 

produce a Datalog program for a relation f  (x) that has strictly 

positive information gain for the variables under consideration 

(see Section IV for details).

In our running example, the synthesizer produces the feature 

f  (x) shown in Fig. 3a, which intuitively indicates that some 

random input r  is used to compute both operands of x. With 

this new feature, the learner can distinguish between b4 and n1, 

and produce the rule shown in Fig. 4c, which correctly classifies 

all variables of the training program. Observe that the rules 

defining f  (x) in Fig. 3a involve a newly introduced predicate 

g(x, r) and recursive structure that can classify variables based 

on arbitrarily deep properties of the abstract syntax tree.
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C. Proving Soundness of Learned Analysis Rules
While the learned analysis rules are correct by construction 

for the training examples, they may still be unsound when 

applied to unseen programs. We observe this, for example, in 

the leaves highlighted in red in Fig. 4c. Thus, G P S  tries to 

confirm their soundness against the domain-specific knowledge 

base K B . In the context of our running example—confirming 

soundness means proving that every variable x that is assigned 

type R U D (x) (resp. S I D (x)) by the learned analysis rule a  is 

also certified R U D (x) (resp. S I D (x)) by K B .

We formalize the soundness proof as a Datalog query 

containment problem, and propose an algorithm based on 

bounded unrolling and k-induction to check it.

When applied to the candidate analysis of Fig. 4c, the 

check results in the five counter-examples C E i , . . . ,  C E 5 with 

distribution type U K D (CE^) shown in Fig. 5. Each counter-

example indicates the unsoundness of one path from the root 

of the decision tree to a classification node. These are abstract 
counter-examples in that they contain missing features and 

consequently do not define concrete ASTs. Thus, each of 

these abstract counter-examples is a set of feature valuations 

n =  {fi n- v i,/2  n- v2, . . . , / fc  ^  vfc} that the current 

candidate analysis misclassifies, and feeding them back to 

the learner can prohibit subsequent candidate analyses from 

classifying variables that satisfy n.

With these new constraints from abstract counter-examples, 

the learner learns the new candidate analysis shown in Fig. 6. 

This new candidate analysis still has four unsound candidate 

rules, which results in additional abstract counter-examples 

when it is subjected to the soundness check. We repeat this 

back-and-forth between the rule learner and the soundness 

prover: after 11 iterations and after processing 27 counter-

examples in all, G P S  learns the rules initially presented in 

Fig. 2b, all of which have been certified to be sound.

D. Overall Architecture o f the G P S  System
We summarize the architecture of G P S  in Fig. 1. The learner 

repeatedly applies DTL and SyGuS to learn candidate analyses 

that correctly classify training samples and are consistent 

with newly-added abstract counter-examples. Next, the prover 

checks the soundness of the learned analysis. Each subsequent 

counter-example is fed back to the learner which restarts the 

rule learning process on augmented dataset, until either all 

synthesized rules are sound or a time bound is exhausted.

IV. Le a r n i n g  t h e  In f e r e n c e  Ru l e s

We formally describe the analysis rule learner in Algorithm 1. 

The input consists of a set of labeled examples, E, and a set of 

pre-defined features, F . The output T  is a set of type-inference 

rules consistent with training examples. Each training example 

(x, T Y P E (x)) e  E consists of an AST node x in a program 

and its distribution type T Y P E (x).

At the top level, the learner uses the standard decision 

tree learning (DTL) algorithm [30] as the baseline. However, 

if it finds that the current set F  of classification features 

is insufficient, it invokes a syntax-guided synthesis (SyGuS)

Algorithm 1 DTL(E, F ) — Decision Tree Learning.

Input: Examples, E = {(xi, T Y P E (x i)), . . . ,  (xn , T Y P E (xn ))}
Input: Pre-defined features, F  = {/i , / 2 , . . . ,  / }
Output: Classifier T  which is consistent with provided examples 
1: if all examples (x, T Y P E (x)) G E have the same label T Y P E (x) = t 

then
2: return T  = LeafNode(t)
3: end if
4: if ^ /  g F  such that H (E | / ) < H (E) then 
5: F  := F u  Fe a t u r e Sy n ( e )
6: end if
7: T  = DecisionNode(/ *), where /* = argminj ^F H (E | / )
8: for valuation i of feature /  * do 
9: T  = DTL(E|j  , w = i , F \ { / *})

10: Add edge from T  to T  with label / *(x) = i
11: end for 
12: return T

algorithm to synthesize a new feature /  with strictly positive 

information gain to augment F . This allows the learner to 

combine the efficiency of techniques that learn decision trees 

with the expressiveness of syntax guided synthesis; similar 

ideas have been fruitfully used in other applications of program 

synthesis, see for example [31].

While the top-level classifier (e.g., Fig. 2b, 4b, 4c and 6) 

has a bounded number of decision points, the synthesized 

features (e.g., Fig. 3a) may be recursive. Furthermore, the 

newly synthesized features /  are inducted as first-class citizens 

of F , and can subsequently be used at any level of the decision 

tree (see, for example Fig. 2b and 6). Next, we present the 

DTL and SyGuS subroutines respectively.

A. The Decision Tree Learning Algorithm

Recall that our pre-defined features (Fig. 4a) include proper-

ties of the AST node, such as O P (x), and properties referring 

its left and right children, such as O P (L) A L C (x, L). The choice 

requires some care: having very few features will cause the 

learning algorithm to fail, while having too many features will 

increase the risk of overfitting. Our synergistic combination of 

DTL with SyGuS-based on-demand feature synthesis can be 

seen as a compromise between these extremes.

DTL(E , F ) is an entropy-guided greedy learner [30], where 

the entropy and conditional entropy of a set (defined below) 

are used to measure the diversity of its labels:

H(E) = -  E teTYPE Pr(T Y P E (x) = t) log(Pr(T Y P E (x) = t))

H(E | f ) = E ie R a n g e f ) H(E | f  (x) = i)

Algorithm 1 thus divides the set of training examples E  using 

the feature /  =  /  * that minimizes the conditional entropy 

H  (E  | / )  (Lines 7-12), and recursively invokes the learning 

algorithm on each subset, DTL(E |f » ( x )= i , F \  { / * } ).

Observe that H (E ) =  0 if P r(T Y P E (x) =  t) =  100%, 

meaning purity or all examples x e  E  share the same type 

T Y P E (x) =  t. The difference between H (E ) and H (E  | / )  is 

also referred to as the information gain. If the learner cannot 

find a feature with strictly positive information gain (Line 4), 

it will invoke the feature synthesis algorithm on Line 5.
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Algorithm 2 Fe a t u r e Sy n (E).

Input: Examples, E = {(xi  , T Y P E (xi )), . .., (i n , T Y P E (xn ))}
Output: Feature /  with positive information gain, or _L to indicate failure 

1: Let S be the meta-rules defined in Figure 7, i.e. the hypothesis space 
2: for each relation schema r defined in S do
3: for each subset S of meta-rules corresponding to the schema do
4: for each choice pin, qin , and nested relational predicates do
5: Let /  be the corresponding instantiation of the meta-rules in S
6: if h(E | / ) < h(E) then
7: return /
8: end if
9: end for

10: end for
11: end for 
12: return L

/ (x) ^  Pi n (x),
/ (x) ^  qi n (x,y),

Rf = •
/ (x) ^  Pi n (x,y) A qi n (x,y),
/ (x) ^  qi n (x,y) A / (y),
/ (x) ^  qi n (x,y) A pin (x) A / (y) ,

l g(x,y) ^  qi n (x,y),

? = l g(x,y) ^  Pi n  (x) A qin (x, y),
g(x,y) ^  qi n (x ,z) A g(z, y),

{ g(x,y) ^  qi n  (x, z) A Pi n  (x) A g(z, y)

( h(x) ^ /  (x) A Pi n  (x) A qi n (x,y),
= l h(x) ^ g(x, y) A Pi n  (x) A qi n (x,y),

1 h(x) ^ / (x) A g(x, y) APi n (x) A qi n (x,

used in our work. For example, instantiating the meta-rule 

f  (x) ^  qi n (x,y) A Pi n (x) A  f  (y) with qi n (x,y) =  R C (x,y) 

andp i n (x) =  X O R (x) yields f  (x) ^  R C (x, y)A X O R (x)A f  (y). 

There are three variations of the final target relation schema, 

f  (x), y(x, y) and h(x), where x and y denote AST nodes.

We formalize the synthesis problem as that of choosing a 

relation R e  { f  (x), y(x, y), h(x) }  and finding a subset P D of 

its instantiated meta-rules from Fig. 7 such that the resulting 

Datalog program P D has strictly positive information gain on 

the provided training examples E .

Algorithm 2 shows the procedure, which repeatedly instanti-

ates the meta-rules from Fig. 7 and computes their information 

gain. It successfully terminates when it discovers a feature that 

can improve classification. Otherwise, it returns failure (upon 

timeout) and invokes DTL(E , F ) to conservatively classify the 

decision tree node as being of type U K D .

Example IV.1. Given E  =  { (b 4 , R U D ), (n i , U K D) }  shown in 

Fig. 2a, the synthesizer may alternatively learn the rules in 

Equations 3, 4 and 5.

/ (x ) ^  IN R A N D (x ) , (3)

/ (y ) ^  L C ( y ,x )  A / (x ) ,

/ (y ) ^  R c ( y ,x )  a  / (x ) ,

RU D (x ) ^  X O R (x ) A L C (x , L ) A R C (x , R ) A RU D (L ) A / (R ).

pi n  (x) ::= A N D(x) | O R(x) | N O T(x) | X O R(x) | M UL(x) | L E A F (x)
| IN R A N D (x) | IN K E Y (x) | IN P U B (x)
1 pin A pin 1 pin V pin \ —pin

3i n (x,y) ::= L C (x,y) \ R C (x,y) \ x = y
\ qi n (x, y) A 9i n (x, y) \ qi n (x,y) V qi n (x,y)
\ —3i n (x, y)

Fig. 7. Syntax of the DSL for synthesizing new features.

B. The On-Demand Feature Synthesis Algorithm

We represent newly synthesized features as Datalog pro-

grams. Datalog is an increasingly popular medium to express 

static analyses [32]-[35], and its recursive nature enables the 

newly learned features to represent arbitrarily deep properties 

of AST nodes. A Datalog rule is a constraint of the form

h(x ) ^  bi(y i) A b2(y 2) A • • • A  b„ (y „ ), (1)

where h, bi ...  bn are relations with pre-specified arities and 

schemas, and where x , y i . .. y n are vectors of typed variables. 

Each rule can be interpreted as a logical implication: if bi ... bn 

are true, then so is h. The semantics of a Datalog program 

is defined as the least fixed-point of rule application [36]: the 

solver starts with empty output relations, and repeatedly derives 

new output tuples until no new tuples can be derived.

Program synthesis commonly restricts the space of target 

concepts and biases the search to speed up computation and 

improve generalization. One form of bias has been to constrain 

the syntax: this has been formalized as the SyGuS problem [37] 

and as meta-rules in inductive logic programming [38], [39]. 

A meta-rule is construct of this form

X h(x ) ^  X i(y i) A  X2(y2) A • • • A  X n (y n ) (2)

Here, X h , X i , X 2, . . . ,  X n are relation variables whose 

instantiation yields a concrete rule. Fig. 7 shows the meta-rules

g (x , x ) ^  IN R A N D (x ) , (4)

g (y , z ) ^  L C (y, x ) A g (x , z ) ,  

g (y , z ) ^  R C (y, x ) A g (x , z ) ,

h (x )  ^  L C (x , L ) A R C (x , R ) A g (L , x r ) A g (R , x r ) A x r  =  x r ,

RU D (x ) ^  X O R (x ) A R U D (L ) A RU D (R ) A L C (x , L) A R C (x , R ) A — h (x ) .

g ( x ,x )  ^  IN K E Y (x ) , (5)

g (y , z ) ^  L C (y, x ) A g (x , z ) ,  

g (y , z ) ^  R C (y, x ) A g (x , z ) .

h (x )  ^  L C (x ,L )  A R C (x , R ) A g (L , x r ) A g (R , x r ) A x r  =  x r ,

RU D (x ) ^  X O R (x ) A R U D (L ) A RU D (R ) A —h (x ).

Since the information gain of Rule 3 applying to { b 4 , n i }  is 

zero, it gets discarded (Line 6 in Algorithm 2). In contrast, the 

information gains of Rules 4 and 5 are both positive. Rule 4 

intuitively requires that both the left and right operands of x 

are of type R U D , and that they do not share any random inputs 

in computing - h(x). Rule 5 requires that the same secret key 

be used in the computation of both operands. While Rule 4 is 

sound when applied to arbitrary programs, Rule 5 is unsound. 

In the next section, we will present an algorithm that can check 

the soundness of these learned rules.

V. Pr o v i n g  t h e  In f e r e n c e  Ru l e s

We wish to prove that a learned rule, denoted a , never 

reaches unsound conclusions when applied to any program, by 

showing that it can be deduced from a known-to-be-correct 
knowledge base (KB). More specifically, we wish to confirm 

that every AST node x marked as RUD (or S I D ) by a  can 

be certified to be RUD (or S I D ) by K B . When both a  and 

K B  are expressed in Datalog, the problem reduces to one of 

determining query containment, e.g., for every valuation of 

the input relations, R U D a C  R U D KB (or S I D a C  S I D KB).
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ò V -ib = true  ( B i )

- ia  A —>b =  —'(a  V b) (BA) 

b A b = b (Bg)  

a V ( a  A b) = a (B d )

b A -16 =  f a l s e  (£>2) -i-£  =  b (-S3) ->aV ->b = —> (a A fe) (£>4)

ò V f a l s e  =  ò (Se) & V i r i t e  =  i r i t e  (S7) 6 A i r i t e  =  ò (S s)

ò A f a l s e  = f a l s e  (S a) bV b =  b (Bb) a  A ( a  V 6) =  a  ( S c)

a $ l ) E  (a A -£) V (->a A ò) ( S e) (a V !)) V c E  a V c V ò (S /)

(a Ab) A c = a / k b ( S 10) a V (ò V e ) =  a V ò V e  (££ 1 ) v (Ò Ac) =  a A b  A c ( S i  2)

Fig. 8. Proof rules for propositional logic, to simplify the logic formula and deduce Boolean constants (true  and false).

(V) SID( cc )

\ gi(L, kt) ( y )  \ a  gi{RA A  |

; (* l ) t l ) A  i

Fig. 9 . Example A S T  from which a  is learned.

We will now describe a semi-decision procedure to verify the 

soundness of the learned rules a ,  which forms the second 

phase of the synthesis loop in G PS.

A. Representation o f the Learned Rule (a)

Let a  be a set of Datalog rules, each of which has a head 

relation and a body of the following form:

<t>a{x) <r- 4>l(xi) A f 2( x 2) A • • • A <t>n {xn)  (6)

It means f a holds only when all of f i , . . . ,  <f>n hold. Here, f a 

may be a distribution type, e.g., SID(x), or a recursive feature 

g (x ,y ), e.g., representing that x  depends on y.

B. Representation o f the Knowledge Base (K B )

Our K B  consists of two sets of proof rules, one for 

propositional logic and the other for distribution types.

Proof Rules fo r  Propositional Logic. Fig. 8 shows the proof 

rules that represent axioms of propositional logic [40]; they can 

be used to reduce any valid (resp. invalid) Boolean formula to 

constant true  (resp. fa lse). Thus, they are useful in showing 

results such as true  V P  and fa lse  A Q are secret-independent 

(SID), for arbitrary logical sentences P  and Q.
Consider the example rule a  below, where g\ and g2 are 

synthesized features shown as dashed boxes in Fig. 9:

SID(a’ ) A- OR(x) A LCU, L) A RCU, R)  A OR(L) A IKj T(R) A 
gi(L,  ki)  A g2(R, k2) A EQ(Ai, A2) 

g pL,  k\  ) A- IHKEY(A;i ) A IHRAHDO’i) A LC(L, *1) A RC(L, JR) 
g2(R, k2) A- IHKEYYi® A LC(R, k2)

Since fci =  k2, we transform a  into an equivalent logic formula:

s i d (y ) g—  e q (y’> [hi v r i ) v (—iAi))

Rules 51 , 5 7  and 5 /  in Fig. 8 show that (k\ V ?’i) V (-ifci) 

is always true. Thus, x  is always true. Since x  is a constant, 

we have SID(x), meaning x  is secret-independent.

Such SID rules, learned by our method automatically, and 

yet overlooked by state-of-the-art, hand-crafted analyzers [1], 

[2], can significantly improve the accuracy of side-channel 

analysis on many programs.

Proof Rules fo r  Distribution Types. Fig. 10 shows the proof 

rules that represent properties of the distribution types. They 

were collected from published papers [2], [16], [24] that focus 

on verifying masking countermeasures, which also provided 

the soundness proofs of these rules. For brevity, we omit the 

detailed explanation. Instead, we use Rule D 2.i as an example 

to illustrate the rationale behind these proof rules.

In Rule 5 2 .i , the dom{x, S ) relation means that variable 

x  is masked by some input from the set S  of random inputs. 

For example, in y = x \  ® x 2, where x \ = k ® r\ ® r2 and 

x 2 = b(&r2, we say that x 2 is masked by r2, and x \  is masked 

by both r i  and r2. However, since r2(br2 = fa ls e , y is masked 

only by r\. Thus, dom fy , {?’i}) holds, but dom (y , {»’2} )  does 

not hold. In this sense, Rule D 2a  defines a masking set. For y, 
it is S y = ({ri, r 2} U {r2}) \  ({ri, r 2} n  {r2}) = {?’i}, which 

contains r\ only. The masking set defined by D 2a  is useful in 

that, as long as the set is not empty, the corresponding variable 

is guaranteed to be of the RUD type.

C. Proving the Soundness o f a  Using K B

To prove that for every AST node x  marked as RUDa (ai) 
(resp. SIDq^ x )) by a, it is also marked as RUDifs(x) (resp. 

RUD k b  A ))  by K B ,  we show that the following relation 

Ind(x)  is empty for any valuation of the input relations:

Ind (x) g- <t>a {x) A -i<t>KB{x) , (7)

where the relation f  may be instantiated to either RUD or S ID . 
In theory, this amounts to proving query containment, which 

is undecidable for Datalog in general [41], [42], but there is a 

decidable Datalog fragment [41], [43], [44], and our meta-rules 

in Fig. 7 produce rules in this fragment.

First, we observe that every tuple t = f ( x )  produced by a 

Datalog program is associated with one or more derivation 

trees. The heights of these derivation trees correspond to the 

depth of rule inlining at which the program discovers t. In 

particular, for each inlining depth k e  N, each rule fh  A h )  <— 

f i ( x i )  A <t>2( x 2) A • • • A <t>n(x n) is transformed into the rule:

A +1){ x h) g- f f i x i )  A f 2 \ x 2) A • • • A f S i x , , ) ,  (8) 

Our insight is to prove that at each unrolling depth k, we have 

A S  0. Ak b - Thus, we define the relation I n d A  as follows:

I n d A ( x )  g- A S  A )  A G k b A ) ,  (9)

and prove the emptiness of Ind (x)  by fc-induction [45]-[47].

Proposition V.l. I f I n d A  (x) is an empty relation fo r  each 

depth k € N, then Ind(x)  is an empty relation.
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r  h x : INRAND r  h x : INKEY r  h x : INPUB r  h x : INRAND
(D 1 .1 ) ----------- , . (D 1 .2 ) -------- TNV (D 1 .3 ) —  7 f . (D2 .1 )

supp(x, {x}) . supp(x, {x}) . supp(x, {x}) . dom(x, {x})

r  h x, y : v , r  h S : Set v , RC(y, x1 ) A LC(y, x2 ) A supp(x1 ,S 1 ) A supp(x2 , S2 ) „
------------------------------------  ( D 1.4)

r  h x : INKEY 

dom(x, 0) 

r h x : INPUB

supp(y, S1 U S2 ) . dom(x, 0)

r  h x,y : v , r  h S : Set v , RC(y, x1 ) A LC(y,x2 ) A XOR(y) A dom(x1 ,S 1 ) A dom(x2 , S2 ) 

dom(x, (S1 U S2 )/(S 1 H S2 ))

(D2 .2  ) 

(D 2.3 )

(D 2 .4 )

r  h x : v , r  h S : Set v , dom(x, Sx) A Sx = 0

r  h x : RUD

r  h x : v , r  h Sk : Set INKEY, 
r  h Sd : Set RUD, r  h Ss : Set v , 

dom(x, Sd) A Sd=0 A supp(x, Ss) A Ss H Sk=0

r  h x : SID

r  h x1 : SID, r  h x2 : RUD, r  h S1 ,S 2 : Set v 

LC(y, x1 ) A RC(y, x2 )A OR(y)A 
supp(x1 ,S1) A supp(x2, S2 ) A S1 H S2=0 

r  h y : SID

( D 3 )
r  h x : INKEY, r  h S : Set INKEY 

r  b x :: S : Set INKEY
(D 4 )

( D 5)

( D 7 )

r  h x1 : SID, r  h x2 : RUD, r  h S1 , S2 : Set v

LC(y, x1 ) A RC(y, x2 ) A AND(y) 
Asupp(x1 ,S1) A supp(x2, S2 ) A S1 H S2=0

r  h y : SID

r  h x1 : SID, r  h x2 : SID, r  h S1 ,S 2 : Set v 

LC (y, x1 ) A RC(y,x2 )A 
supp(x1 ,S 1 ) A supp(x2 , S2 ) A S1 H S2=0 

r  h y : SID

(D6 )

(D8 )

r  h x1 : SID, r  h x2 : SID, r  h S1 : Set RUD, r  h S2 : Set v , 
AND(y) A LC(y, x1 ) A RC(y, x2 ) A dom(x1 , S1 ) A supp(x2 , S2 ) A S1 H S2 = 0

r  h x1 : SID, r  h x2 : SID, r  h S1 : Set RUD, 
r  h S2 : Set v , OR(y) A LC (y, x1) A RC(y, x2 )A 

dom(x1 , S1 ) A supp(x2 , S2 ) A S1 /S 2 = 0

r  h y : SID

r  h y : SID

(D a )

( D 9 )

r  h x1 : RUD, r  h x2 : RUD, r  h S1 : Set RUD, 
r  h S2 : Set v , AND (y) A LC (y, x1) A RC (y, x2 )A 

dom(x1, S1) A supp(x2, S2) A S2 /S 1 = 0 

r  h y : SID (Db )

r  h x1 : RUD, r  h x2 : RUD, r  h S1 : Set RUD, r  h S2 : Set v ,
OR(y) A LC (y, x1 ) A RC (y, x2) A dom(x1 , S1 ) A supp(x2 , S2) A S2 /S 1 = 0

(D d)
r  h x : RUD 

r  h x : NOUKD

r  b x : bool, x=false

( D f )

( D C )

r  h x : bool , x=true

r  h y : SID

r b  x : SID „  r b  x : v, NOT (y) A LC (y, x)
----------------  (D e) ---------- ’-------—------ 7
r  h x : NOUKD r  h y : v r  h x : SID

r  h x : v , r  h Sk : Set INKEY, r  h S : Set v , supp(x, Ss) A Ss H Sk =0

(D10)

^  x : SID
(D 11)

r  b x : NOUKD
(D 12)

r  h x1 : RUD, r  h x2 : RUD, r  h S1, S2 : Set RUD, 
LC (y, x1) A RC (y, x2) A MUL(y)A 

(y) A dom(x1 , S1) A dom(x2 , S2) A S2 /S 1 = 0

r  h y : SID
(D 13)

r  h x1 : RUD, r  h x2 : SID, r  h S1 : Set RUD 
r  h S2 : Set v , LC (y,x1) A RC (y, x2 ) MUL (y)A 

dom(x1 , S1 ) A supp(x2 , S2 ) A S1 /S 2 = 0

r  h y : SID
( D 14 )

r  h x1 : SID, r  h x2 : RUD, r  h S1 : Set RUD, S2 : Set v ,
LC (y, x1) A RC (y, x2 ) A MUL (y) A dom(x1 , S1 ) A supp(x2 , S2) A S2 /S 1 = 0

r  h y : SID
( D 15 )

Fig. 10. Proof rules for distribution types, gathered from prior works [2], [16], [24]. Here, v denotes the type of variable x,and is of the following types: UKD, 
SID and RUD. NOUKD denotes the secure type (either RUD or SID). All the predefined relations in KB are the same as in a .

Observe that unrolling the rules of a Datalog program to 

any specific depth yields a formula which can be interpreted 

within propositional logic. For example, unrolling f  (x ) from 

Equation 3 at depths 1 and 2 gives us

f (1)(x ) =  I N R A N D (x ) , and

f (2)(y ) =  (L C (y , x ) A f  1(x )) V (R C (y , x ) A f  1(x ) ) .

For any specific value of k , we can therefore use an SMT 

solver to verify the emptiness of I n d (k).

For the induction step, in particular, we ask the SMT solver 

to check if I n d (k) can be non-empty while the i preceding 

relations I n d (k-1), . . . , I n d (k-i) are assumed to be empty. 

Here, ^Lk) is expressed recursively using ^ i k-1 ) , . . . , ^ i k- i ) 

and induction succeeds if there exists such a value for i  e  N .

Let V (k ) be free variables introduced by unrolling the rules 

at depth k. We assert the non-emptiness of I n d (k ) below:

$ (k) =  y  I n d (k ) (x ) . (10)

x e V (k)

Thus, we formalize the induction step of the proof by con-

structing the following formula:

^ (k) =  -,$ (k -i) a  • • • A -,$ (k - 1) A $ (k) (11)

Proposition V.2. I f  f o r  so m e  i e  N , the  rela tions I n d (1), . . . ,  

I n d (i ) are a ll em p ty  (the base case), a n d  the fo rm u la  ^ (k) as 

d efined  above is unsatisfiable (the induction  step), then  I n d (k ) 
is em p ty  f o r  a ll k  e  N .

Starting from i =  1, we use the SMT solver to check 

Proposition V.2 for increasingly larger i until a timeout is
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reached. If the SMT solver is ever successful in proving the 

proposition, it follows that the learned rule a  is sound.

D. Generating Abstract Counter-Examples
When the proof fails, however, we need to prevent the 

same rule from being learned again to guarantee progress. Let 

n = {f 1 =  v1, f 2 = v2, . . . , f k = vk } be the feature valuation 

in the failing rule R n . We then construct the counter-example,

C E n = { f  ^  v  | ( f , v )  e  n } U {f  ^  - 1  | f  e F  \  n }

with label UKD ( CEn ). Recall that F  is the set of all features 

currently under consideration. Therefore, the feedback C E n 

provided to D T L(E , F ) is an abstract counter-example, with 

all missing features f  e  F  \  n  set to the unknown value - 1 .

Consider the subsequent iteration of the decision tree learner, 

D T L (E u { C E n} , F ). Observe that whenever it is in a decision 

context which is also a prefix npre  of the counter-example C E n , 

the information gain of each feature f  e  n  is strictly less than 

that encountered in the previous invocation. Therefore, at some 

level of the decision tree, it will either choose a different 

feature, or invoke the feature synthesis algorithm to grow F . 

By formalizing this argument, we say that:

Proposition V.3. Given a counter-example C E n to a learned 

rule R n , the subsequent invocation o f the learner DTL(E U 

{C E n } , F ) is guaranteed to no longer produce R n .

Before ending this section, we stress that the proof rules 

in K B  should not be confused with analysis rules used in 

the learned analyzer, since they are way more computationally 

expensive. Consider Rule D 1.4, whose Datalog encoding size 

for supp(x, S ) would be | V |x  2 1 IN 1. For the benchmark named 

B19 in Table I, it owns 1250 input variables and thereby 

causing the exponential explosion with 21250. The learned rule 

a , in contrast, is much cheaper since it does not rely on these 

expensive set (union and intersection) operations.

VI. Ex p e r im e n t s

Our experiments were designed to answer the following 

research questions (RQs):

• RQ1: How effective is our learned analyzer in terms of 

the analysis speed and accuracy?

• RQ2: How effective is our G P S  method for learning 

inference rules from training data?

• RQ3: How effective is our G P S  method for proving the 

learned inference rules?

We implemented G P S  in LLVM 3.6. G P S  relies on 

LLVM to parse the C  programs and construct the internal 

representation (IR). Then, it learns a static analyzer in two steps. 

The first step, which is SyGuS-guided decision tree learning, 

is implemented in 4,603 lines of C++ code. The second step, 

which proves the learned inference rules, is implemented using 

the Z3 [48] SMT solver. Furthermore, the learned analyzer 

(for detecting power side channels in cryptographic software) 

is implemented in LLVM as an optimization (opt) pass. We 

ran all experiments on a computer with 2.9 GHz Intel Core i5 

CPU and 8 GB RAM.

TABLE I
St a t is t ic s  o f  t h e  b e n c h ma r k  pr o g r a ms  in  Dtest.

Name LoC Ipub I priv 1 rand Name LoC Ipub I priv I rand

B1 11 0 2 2 B2 12 0 2 2
B3 12 0 2 B4 25 3
B5 25 3 B6 32 3
B7 81 7 B8 84 7
B9 104 7 B10 964 16 32
B11 1,130 16 32 B12 1,256 0 25 75
B13 2,506 0 25 125 B14 3,764 0 25 175
B15 8,810 0 25 349 B16 13,810 0 25 575
B17 18,858 0 25 775 B18 23,912 0 25 975
B19 30,228 0 25 1,225 B20 34,359 16 16 1,232
B21 79 0 16 16 B22 67 0 8 16
B23 21 0 2 2 B24 23 0 2 2
B25 27 0 2 B26 32 0 2 2
B27 40 0 2 3 B28 59 0 3 4
B29 60 0 3 4 B30 66 0 3 4
B31 66 0 3 4 B32 426k 288 288 3205
B33 426k 288 288 3205 B34 426k 288 288 3205
B35 429k 288 288 3205 B36 426k 288 288 3205
B37 442k 288 288 3205

A. Benchmarks
Our benchmarks are 568 programs with 2,691K lines of 

C code in total. They implement well-known cryptographic 

algorithms such as AES and SHA-3. Some of these programs 

are hardened by countermeasures, such as reordered MAC- 

Keccak computation [23], masked AES [16], [17], masked 

S-box calculation [49] and masked multiplication [50], to 

eliminate power side-channel leaks.

We partition the benchmarks into two sets: D tra in  for G PS, 
and D tes t  for the learned analyzer. The training set D tra in  

consists of 531 small programs gathered from various public 

sources, including byte-masked AES [51], random reduction 

of S-box [52], common shares [53], and leak examples [24]. 

Each benchmark is a pair, consisting of a program AST and its 

distribution type, i.e, the ground truth annotated by developers. 

The testing set D tes t  consists of 37 large programs, whose 

statistics (the number of lines of code and inputs labeled public, 

private, and random) are shown in Table I. Since these programs 

are large, it is no longer practical to manually annotate the 

ground truth; instead, we relies on the results of published 

tools: a (manually-crafted) static analyzer [1] for B1-B20 and 

a formal verification tool [2] for B21-B37.

B. Performance and Accuracy o f the Learned Analyzer
To demonstrate the advantage of our learned analyzer (answer 

RQ1), we compared our learned analyzer with the two existing 

tools [1], [2] on the programs in D te s t . Only our analyzer can 

handle all of the 37 programs. Therefore, we compared the 

results of our analyzer with the tool from [1] on B1-B20, and 

with the tool from [2] on B21-B37. The results are shown in 

Table II and Table III, respectively.

In both tables, Columns 1-2 show the benchmark name and 

the number of AST nodes. Columns 3-6 show the existing tool’s 

analysis time and result, including a breakdown in three types. 

Similarly, Columns 7-10 show our learned analyzer’s time and 

result. Note that in [1], the UKD/ S I D /RUD numbers were the 

number of variables of the LLVM IR, and thus larger than the 

number of variables in the original programs. To be consistent, 

we compared with their results in the same manner in Table II.

The results in Table II and Table III show that our learned an-

alyzer is much faster, especially on larger programs such as B20
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TABLE II
Co m p a r i n g  t h e  l e a r n e d  a n a l y z e r  w i t h  t h e  t o o l  f r o m  [1].

Name # AST
Manually Designed Analyzer [1] Our Learned Analyzer

Time (s) UKD SID RUD Time (s) UKD SID RUD

B1 7 0.061 4 0 22 0.001 4 0 22

B2 6 0.105 7 0 20 0.001 6 1 20

B3 8 0.099 1 3 31 0.001 1 3 31

B4 11 0.208 6 12 31 0.001 17 12 20

B5 11 0.216 1 10 29 0.001 11 10 19
B6 14 0.276 1 15 48 0.001 8 15 41

B7 39 0.213 2 25 151 0.002 2 25 151

B8 39 0.147 4 42 249 0.002 4 42 249

B9 47 0.266 2 61 153 0.001 2 61 153

B10 522 0.550 31 12 2334 0.008 31 12 2334

B11 522 0.447 31 0 2334 0.029 31 0 2334

B12 426 0.619 52 300 2062 0.001 52 300 2062

B13 827 1.102 49 600 4030 0.006 49 600 4030

B14 1,228 1.998 49 900 5995 0.065 49 900 5995

B15 2,832 16.999 49 2,100 13861 0.107 49 2,100 13861

B16 4,436 24.801 49 3,300 21,723 2.663 49 3,300 21,723

B17 6,040 59.120 49 4,500 29,587 1.956 49 4,500 29,587

B18 7,644 121.000 47 5,700 37,449 3.258 47 5,700 37,449

B19 9,649 202.000 49 7200 47,280 5.381 49 7200 47,280

B20 13,826 972.000 127 26,330 38,070 3.650 127 26,330 38,070

(3.6 seconds versus 16 minutes). The reason why our analyzer 

is faster is because the manually-crafted analyses [1], [2] rely 

on evaluating set-relations (e.g. difference and intersection of 

sets of random variables), whereas our DSL syntax is designed 

without set operations to infer the same types, thus leading to 

faster analyses. Although in general the set operation-based 

algorithm is more accurate, it has excessive computational 

overhead. Moreover, it does not always improve precision in 

practice. Furthermore, the method in [2] uses an SMT solver- 

based model counting technique to infer leak-free variables, 

which is significantly more expensive than type inference.

As shown in Table II and Table III, by learning inference 

rules from data, we can achieve almost the same accuracy 

as manually-crafted analysis [1], [2] while avoiding the huge 

overhead. Given the same definitions of distribution types (U K D , 

S I D  and R U D ), both our learned rules and manually-crafted 

analysis rules [1], [2] can infer the non-leaky patterns, thus 

recognizing the variable types correctly under most benchmarks 

in Table II and Table III, except for B4-B6 and B30, where 

set operations are required to prove the leak-freedom of some 

variables. Recall that losing accuracy here indicates that our 

learned rules infer the types more conservatively, without losing 

soundness. Nevertheless, our analyzer also increased accuracy 

in some other cases (e.g., B2), due to its deeper constant 

propagation (which led to the proof o f more S I D  variables) 

while the existing tool [1] failed to do so, and conservatively 

marked them as UKD variables.

C. Effectiveness o f Rule Induction and Soundness Verification
To answer RQ2 and RQ3, we collected statistics while 

applying G P S  to the 531 small programs in D test, as shown in 

Table IV. In total, G P S  took 30 iterations to complete the entire 

learning process. Column 1 shows the iteration number and 

Column 2 shows the time taken by the learner and the prover 

together. Columns 3-6 show the number of inference rules 

learned during each iteration, together with their types (U K D , 

S I D , and R U D ). Similarly, Columns 7-10 show the number of 

verified inference rules and their types.

The next two columns show the following statistics: (1) the 

size of the learned decision tree (# Treelearn) in terms of the

TABLE III
Co m p a r i n g  t h e  l e a r n e d  a n a l y z e r  w i t h  SCIn f e r  [2].

Name # AST
The SCInfer Verification Tool [2] Our Learned Analyzer

Time (s) UKD SID RUD Time (s) UKD SID RUD

B21 32 0.390 16 0 16 0.005 16 0 16

B22 24 0.570 8 0 16 0.002 8 0 16

B23 6 0.010 0 0 6 0.001 0 0 6

B24 6 0.060 0 0 6 0.001 0 0 6

B25 8 0.250 0 2 6 0.001 0 2 6

B26 9 0.160 2 3 4 0.002 2 3 4

B27 11 0.260 1 5 5 0.001 1 5 5

B28 18 0.290 3 4 11 0.003 3 4 11

B29 18 0.230 2 4 11 0.002 2 4 12

B30 28 0.340 2 6 20 0.001 8 0 20

B31 28 0.500 2 7 19 0.001 2 7 19

B32 197k 3.800 0 6.4k 190.4k 3.180 0 6.4k 190.4k

B33 197k 2,828.000 4.8k 6.4k 185.6k 3.260 4.8k 6.4k 185.6k

B34 197k 2,828.000 3.2k 6.4k 187.2k 3.170 3.2k 6.4k 187.2k

B35 198k 2,828.000 1.6k 8k 188.8k 3.140 3.2k 8k 187.2k

B36 197k 2,828.000 4.8k 6.4k 185.6k 3.150 4.8k 6.4k 185.6k

B37 205k 2,828.000 17.6k 1.6k 185.6k 3.820 17.6k 1.6k 185.6k

number of decision nodes; (2) the number of counter-examples 

(CEX) added by the prover (# ASTCEX), which are added 

to the 531 original training programs before the next iteration 

starts. The last column shows the number of features generated 

by SyGuS; these features are also added to the original feature 

set and then used by the learner during the next iteration.

Results in Table IV demonstrate the efficiency of both 

the learner and the prover. Within the learner, the number 

of rules produced in each iteration remains modest (8 on 

average), indicating it has successfully avoided overfitting. This 

is because the SyGuS solver is biased toward producing small 

features which, by Occam’s razor, are likely to generalize 

well. Furthermore, any learned analysis rules have to pass the 

soundness check, and this provides additional assurance against 

overfitting to the training data. The prover either quickly verifies 

a rule, or quickly drops it after adding a counter-example to 

prevent it from being learned again. In early iterations, about 

half of all learned rules can be proved, but as more counter-

examples are added, the quality of the learned rules improves, 

and thus the percentage of proved rules also increases.

D. Threats to Validity

Our experimental evaluation focused on cryptographic soft-

ware, which is structurally simple and, unlike general-purpose 

software, does not exercise complicated language constructs. 

It is an interesting direction of future work to extend our 

techniques to these more general classes of software code.

A notable limitation in our work is the assumption of the 

knowledge base (KB). W hile KB is readily available for our 

application (side-channel analysis), for other applications, it 

might be non-trivial to construct. Furthermore, an incorrect KB 

might compromise the soundness of the learned rules, although 

in this work, we have carefully mitigated this threat by curating 

the proof rules from previous papers [2], [16], [24] that have 

themselves formally verified the validity of these proof rules.

VII. Re l a t e d  W o r k

Generating Analyzers from Examples. W hile there are prior 

works on learning static analyzers [5], [54], they do not 

guarantee soundness. For example, the analyzer learned by 

Bielik et al. [5] is sound with respect to programs in the
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TABLE IV
De c i s i o n  Tr e e  Le a r n i n g  w i t h  Fe a t u r e  Sy n t h e s i s  (Di f f e r e n t  It e r a t i o n s  w i t h  #AST = 531).

Iteration
# Rules Learned # Rules Verified

# Tree;earn # ASTc e x
# Faatnra

Total UKD SID RUD Total UKD SID RUD Syn
1 1.316 9 2 2 2 2 23 4 5

2 0.775 2 2 4 4 2 17 9 7

3 1.115 2 2 4 2 2 24 13 9
4 0.511 2 2 4 2 2 18 18 10

5 0.513 2 2 4 7 2 2 27 21 11

6 0.537 2 2 4 6 2 2 2 24 25 12

7 0.510 2 2 4 6 2 2 2 26 29 13

8 0.512 2 2 4 6 2 2 2 28 33 14

9 0.511 2 2 4 6 2 2 2 30 37 15

10 0.524 2 2 4 2 2 32 41 16

11 0.546 2 2 4 4 2 2 0 34 45 17

12 0.556 2 2 4 4 2 2 0 36 49 18

13 0.550 2 2 4 2 2 38 53 19
14 0.540 2 2 4 6 2 2 2 40 57 20

15 0.542 2 2 4 4 2 2 0 42 61 21

16 0.552 2 2 4 6 2 2 2 44 65 22

17 0.577 2 2 4 2 2 46 69 23

18 0.598 2 2 4 6 2 2 2 48 73 24

19 0.571 2 2 4 6 2 2 2 50 77 25

20 0.673 2 2 4 2 2 52 82 26

21 0.526 2 2 4 2 0 54 87 27

22 0.525 2 6 2 35 91 27

23 0.697 9 2 4 7 2 2 37 93 27

24 0.700 9 2 4 2 2 4 38 95 28

25 0.691 7 2 2 6 2 36 97 29
26 0.707 7 2 2 6 2 37 99 30

27 0.716 7 2 2 6 2 38 101 31

28 0.540 7 2 2 6 2 39 102 32

29 0.534 7 2 2 6 2 39 103 32

30 0.528 7 2 2 7 2 2 39 104 32

TOTAL 18.693 237 63 60 114 167 54 57 56 1071 1833 622

training set, not all programs written in the same programming 

language (JavaScript). They also need to manually modify 

the training programs to generate counter-examples, while our 

method generates counter-examples automatically.

Formal Specifications. There are also works on synthesizing 

static analyzers from formal specifications, e.g., proof rules 

or second-order logic formulas [29], [55], [56] as opposed to 

training data. However, they restrict the logic used to write the 

specification, and as a result, may not be expressive enough to 

synthesize practical analyzers. users are also expected to write 

correct specifications, which is a non-trivial task. In addition, 

they cannot exploit the information provided by data. 

Learning-based Techniques. There are several prior techniques 

using machine learning to conduct static program analyses [57]- 

[60]. Such techniques focus on finding a suitable program-to- 

feature embedding. However, they require the user to perform 

feature engineering, which is known to be laborious. Some 

of these techniques [58], [61]-[63] do not take advantage of 

new features that may be learned from data; instead, they build 

classifiers based solely on existing features. In contrast, our 

method not only learn new analysis rules from data, but also 

use SyGuS to synthesize new features automatically. 

Optimizing an Analyzer. It is possible to optimize an existing 

static analyzer [57], [64]-[68], which can be achieved by 

adjusting the level of abstraction [64], [65], [69], learn heuristics 

and parameters [66], make soundness-accuracy trade-offs [67], 

or select sound transformers [68]. However, such techniques 

fundamentally differ from our method because they assume 

the analyzer is already given, and focus on optimizing its 

performance, whereas we focus on synthesizing a new analyzer. 

Syntax-Guided Synthesis. Since we automatically generate new 

features, our method is related to the large and growing body 

of work on SyGuS. W hile SyGuS has been used in various

applications [70]-[80], none of them aims to synthesize a 

provably sound static analyzer from data. While some of these 

existing techniques can synthesize Datalog rules [39], [81], 

[82], the focus has been on efficiency, e.g., pruning the search 

space based on syntactic structures, instead of guaranteeing 

the soundness of the analyzer.

Power Side-Channel Analysis. In this work, we use power side- 

channel analysis as the application to evaluate our method. In 

this sense, it is related to the body of work on side-channel leak 

detection [2]-[4], [83]-[85] as well as mitigation [1], [24], [28], 

[86]-[88]. While static analysis engines used in these existing 

works are all hand-crafted by domain experts, our method aims 

to synthesize the static analysis from data automatically.

V III. C o n c l u s io n s

We have presented a data-driven method for learning a 

provably sound static analyzer to detect power side channels in 

cryptographic software. It relies on SyGuS to generate features 

and DTL to generate analysis rules based on the synthesized 

features. It verifies the soundness of these learned analysis rules 

by solving a query containment checking problem using an 

SMT solver. We have evaluated our method on C programs that 

implement well-known cryptographic protocols and algorithms. 

Our experimental results show that the learning algorithm 

is efficient and the learned analyzer can achieve the same 

empirical accuracy as state-of-the-art analysis tools while being 

several orders-of-magnitudes faster.
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