
20
21

 I
E

E
E

/A
C

M
 4

3r
d

In
te

rn
at

io
n
al

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

E
n
g
in

ee
ri

n
g
 (

IC
S

E
)

| 9
7
8
-1

-6
6
5
4
-0

2
9
6
-5

/2
0
/$

3
1
.0

0
 ©

20
21

 I
E

E
E

 |
D

O
I:

 1
0.

11
09

/I
C

S
E

43
90

2.
20

21
.0

00
79

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

Data-Driven Synthesis of Provably Sound

Side Channel Analyses
Jingbo Wang, Chungha Sung, M ukund Raghothaman and Chao Wang

University of Southern California

Abstract—We propose a data-driven method for synthesiz-
ing static analyses to detect side-channel information leaks in
cryptographic software. Compared to the conventional way of
manually crafting such static analyzers, which can be tedious,
error prone and suboptimal, our learning-based technique is not
only automated but also provably sound. Our analyzer consists
of a set of type-inference rules learned from the training data,
i.e., example code snippets annotated with the ground truth.
Internally, we use syntax-guided synthesis (SyGuS) to generate
new recursive features and decision tree learning (DTL) to
generate analysis rules based on these features. We guarantee
soundness by proving each learned analysis rule via a technique
called query containment checking. We have implemented our
technique in the LLVM compiler and used it to detect power side
channels in C programs that implement cryptographic protocols.
Our results show that, in addition to being automated and
provably sound during synthesis, our analyzer can achieve the
same empirical accuracy as two state-of-the-art, manually-crafted
analyzers while being 300X and 900X faster, respectively.

I. In t r o d u c t i o n

Static analyses are being increasingly used to detect secu-

rity vulnerabilities such as side channels [1]-[4]. However,

manually crafting static analyzers to balance between accuracy

and efficiency is not an easy task: even for domain experts, it

can be labor intensive, error prone, and result in suboptimal

implementations. For example, we may be tempted to add

expensive analysis rules for specific sanitized patterns without

realizing they are rare in target programs. Even if the analysis

rules are carefully tuned to a corpus of code initially, they are

unresponsive to changing characteristics of the target programs

and thus may become suboptimal over time; manually updating

them to keep up with new programs would be difficult.

One way to make better accuracy-efficiency trade-offs and

to dynamically respond to the distribution of target programs

is to use data-driven approaches [5], [6] that automatically

synthesize analyses from labeled examples provided by the

user. However, checking soundness or compliance with user

intent (generalization) has always formed a significant challenge

for example-based synthesis techniques [7]-[11]. The lack of

soundness guarantees, in particular, hinders the application of

such learned analyzers in security-critical applications. While

several existing works [12]-[15] try to address this problem,

rigorous soundness guarantees have remained elusive.

To overcome this problem, we propose a learning-based

method for synthesizing a provably-sound static analyzer that

detects side channels in cryptographic software, by inferring a

distribution type for each program variable that indicates if its

value is statistically dependent on the secret. The overall flow

Fig. 1. The overall flow of GPS, our data-driven synthesis method.

of our method, named G P S, is shown in Fig. 1. The input is

a set of training data and the output is a learned analyzer. The

training data are small programs annotated with the ground

truth, e.g., which program variables have leaks.

Internally, G P S consists of a learner and a prover. The

learner uses syntax guided synthesis (SyGuS) to generate

recursive features and decision tree learning (DTL) to generate

type-inference rules based on these features; it returns a set R of

Datalog formulas that codify these rules. The prover checks the

soundness of each learned rule, i.e., it is not only consistent with

the training examples but also valid for any unseen programs.

This is formulated by solving a query containment checking

problem, i.e., each rule must be justified by existing proof rules

called the knowledge base (K B). Since only proved rules are

added to the analyzer, the analyzer is guaranteed to be sound. If

a rule cannot be proved, we add a counter-example to prevent

the learner from generating it again.

We have implemented G P S in LLVM and evaluated it on

568 C programs that implement cryptographic protocols and

algorithms [16]-[18]. Together, they have 2,691K lines of C

code. We compared our learned analyzer with two state-of-

the-art, hand-crafted side-channel analysis tools [1], [2]. Our

experiments show that the learned analyzer achieves the same

empirical accuracy as the two state-of-the-art tools, while being

several orders-of-magnitude faster. Specifically, G P S is, on

average, 300 x faster than the analyzer from [1] and 900 x

faster than the analyzer from [2].

To summarize, this paper makes the following contributions:

• We propose the first data-driven method for learning

a provably sound static analyzer using syntax guided

synthesis (SyGuS) and decision tree learning (DTL).

• We guarantee soundness by formulating and solving a

Datalog query containment checking problem.

• We demonstrate the effectiveness of our method for

detecting side channels in cryptographic software.

In the remainder of this paper, we begin by presenting the

technical background in Section II and our motivating example

978-1-6654-0296-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00079

810

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

in Section III. We then describe the learner in Section IV

and the prover in Section V, followed by the experimental

results in Section VI. Finally, we survey the related work in

Section VII and conclude in Section VIII.

II. Pr e l im in a r ie s

A. Power Side-Channels

Prior works in side-channel security [19]-[21] show that

variance in the power consumption of a computing device may

leak secret information; for example, when a secret value is

stored in a physical register, its number of logical-1 bits may

affect the power consumption of the CPU. Such side-channel

leaks are typically mitigated by masking, e.g., using d random

bits (r i , . . . , r d) to split a key bit into d + 1 secret shares:

keyi = r i , .. ., keyd = r d, and keyd+i = r i ©r2 . . .©r d©key,

where © denotes the logical operation exclusive or (XOR).

Since all d + 1 shares are uniformly distributed in the {0, 1},

in theory, this order-d masking scheme is secure in that any

combination of less than d shares cannot reveal the secret, but

combining all d + 1 shares, keyi © key2 © ...keyd+i = key,

recovers the secret.

In practice, masking countermeasures must also be imple-

mented properly to avoid de-randomizing any of the secret

shares accidentally. Consider t = tL © tR = (r i © key) © (r i © b)

= key ©b. While syntactically dependent on the two randomized

values tL and tR, t is in fact leaky because, semantically, it

does not depend on the random input r i . In this work, we

aim to learn a static analyzer that can soundly prove that all
intermediate variables o f a program that implements masking

countermeasures are free of such leaks.

B. Type Systems

Type systems prove to be effective in analyzing power

side channels [1], [2], e.g., by certifying that all intermediate

variables of a program are statistically independent of the secret.

Typically, the program inputs are marked as public (INPUB),

secret (INKEY) or random (INRAND), and then the types of

all other program variables are inferred automatically.

The type of a variable v, denoted TYPE(v), may be

RUD, SID, or UKD. Here, RUD stands for random uniform

distribution, meaning v is either a random bit or being masked

by a random bit. SID stands for secret independent distribution,

meaning v does not depend on the secret. W hile an RUD

variable is, by definition, also SID, an SID variable does

not have to be RUD (e.g., variables that are syntactically

independent of the secret). Finally, UKD stands for unknown

distribution, or potentially leaky; if the analyzer cannot prove

v to be RUD or SID, then it is assumed to be UKD.

Type systems are generally designed to be sound but not

necessarily complete. They are sound in that they never miss

real leaks. For example, by default, they may safely assume

that all variables are UKD, unless a variable is specifically

elevated to SID or RUD by an analysis rule. Similarly, they

may conservatively classify SID variables as UKD, or classify

RUD variables as SID, without missing real leaks. In general,

the sets of variables that can be marked as the three types form

a hierarchy: SRUD ^ SSID ^ SUKD.

C. Relations
A program in static single assignment (SSA) format can be

represented as an abstract syntax tree (AST). Static analyzers

infer the type of each node x of the program’s AST based on

various features o f x . In this work, pre-defined features are

represented as relations.

• Unary relations INPUB(x), INKEY(x), and INRAND(x)

denote the given security level of a program input x ,

which may be public, secret, or random.

• Unary relations RUD(x), SID (x), and INRAND(x) denote

the inferred type of a program variable x , which may be

uniformly random, secret independent, or unknown.

• Unary relation OP (x) denotes the operator type of the

AST node x , e.g., OP(x) := ANDOR(x) | XOR(x), where

ANDOR(x) means that x ’s operator type is either logical
and or logical or, and XOR(x) means that x ’s operator

type is exclusive or;
• Binary relations LC(x, L) and RC(x, R) indicate that the

AST nodes L and R are the left and right operands of x ,

respectively.

• Binary relation supp(x, y) indicates that the AST node

y is used in the computation of x syntactically, while

dom (x, y) indicates that random program input y is used

in the computation of x semantically.

III. M o t iv a t io n

Consider the program in Fig. 2a, which computes the x

function from Keccak, a family of cryptographic primitives

for the SHA-3 standard [22], [23]. It ultimately computes

the function n 1 = i 1 ® (- i 2 a i 3) , where © means XOR.

Unfortunately, a straightforward implementation could poten-

tially leak knowledge of the secret inputs i 1 , i 2 and i 3 if

the attacker were able to guess the intermediate results - i 2
and - i 2 a i 3 via the power side-channels [24], [25]. The

masking countermeasures in the implementation therefore use

three additional random bits r 1 , r 2 and r 3 to prevent exposure

of the private inputs while still computing the desired function.

A. Problem Setting
Given such a masked program, users want to determine if

they succeed in eliminating side-channel vulnerabilities: in

particular, if each intermediate result is uniformly distributed

(RUD) or at least independent of the sensitive inputs (SID).

The desired static analysis thus associates each variable x (e.g.,

n i) with the elements of a three-level abstract domain, RUD,

SID or UKD, indicating that x is uniformly distributed (RUD),

secret independent (SID), or unknown (UKD) and therefore

potentially vulnerable.

The decision tree in Fig. 2b represents the desired static ana-

lyzer, which accurately classifies most variables of the training

corpus, and is also sound when applied to new programs. Given

variable x , the decision tree leverages the features of x— such

as the operator type of x (OP(x) := ANDOR(x)| XOR(x)) and the

811

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

User Label b o o l m C h i (b o o l i 1 , b o o l

b o o l r 1 , b o o l

R U D (b 1) b o o l b 1 = i 1 © r 1 ;

R U D (b 2) b o o l b 2 = i 2 © r 2 ;

R U D (b 3) b o o l b 3 = i 3 © r 3 ;

R U D (b 4) b o o l b 4 = b 2 © b 3 ;

S I D (n 9) b o o l n 9 = b 3 A r 2 ;

S I D (n 8) b o o l n 8 = r 3 A r 2 ;

S I D (n 7) b o o l n 7 = b 2 V r 3 ;

R U D (n 6) b o o l n 6 = r 1 © n 9 ;

S I D (n 5) b o o l n 5 = n 7 © n 8 ;

S I D (n 4) b o o l n 4 = b 2 V b 3 ;

R U D (n 3) b o o l n 3 = n 5 © n 6 ;

R U D (n 2) b o o l n 2 = n 4 © b 1 ;

U K D (n 1) b o o l n 1 = n 2 © n 3 ;

r e t u r n n 1 ;

}

(a)

b o o l r 3)
t rue fal se

- -| U K p f OP(x)

XOR(x)

* ,

TYPE(R)

ANDOR(x)

^ ___

TYPE(L)

S I D (R) RUD(R)

__ ±__
TYPE(L) RUD |

RUD(L) RUD(L)

____it_____
| UKD TYPE(R)

RUD(L) RUD(L) RUD(R) RUD(R)

V

{ n 1 , n 5 }

Y

{ n 6 }

Y

{ b 1 , b 2 , b 3 , b 4 , n 2 , n 3 }

Y

{ n 4 , n 7 , n 8 , n 9 }

(b)

Fig. 2. The program on the left is a perfectly masked x function from MAC-Keccak. The decision tree on the right represents the static analyzer that the user

would like to synthesize. Here, x is a program variable, whose type is being computed; L and R are its left and right operands, respectively, and f (x) is a

synthesized feature shown in Fig. 3 a (represented by recursive Datalog program).

Rl : RUD(x) M XOR(x) A RC(x, R) A RUD(R) A - f (x)
R2 : f (x) M LC(x, L) A RC(x, R) A gi (L, x l)A

g2(R, rR) A XL = rR
R3 : g i(r , r) M INRAND (r)
R4 : g i(x ,r) M LC(x,y) A gi (y ,r)
R5 : g i(x ,r) M RC(x,y) A gi (y ,r)
Re : <0 to jT t INRAND(r)
R7 : g2 (x ,r) M LC(x, y) A g2 (y, r) A XOR(x)
Rs : g2(x ,r) M Rc (x , y) A g2 (y, r) A XOr (x)

(a) Excerpt o f rules learned by the GPS tool.

Mi : RUD(x) M XOR(x) A dom(x, res) A res = 0
M2 : supp(x,x) M INRAND(x) V INKEY(x) V INPUB(x)
M3 : supp(x, res) M LC(x,L) A RC(x, R) A s u pp(L , S l)A

supp(R, S r) A res = S l U S r

M4 : dom(x, x) M INRAND(x)
M 5 : dom(x , 0) M INKEY(x) V INPUB(x)
M e : dom(x , res) M XOR(x) A LC(x , L) A RC(x , R)A

dom(L, S d l) A dom(R , S d r)A
supp(L, S l) A supp(R , S r) A
res = (S d l u S d r) \ (S L u S r)

(b) Corresponding expert written rules from SCInfer [2].

Fig. 3. Comparing the rules learned by G P S (Fig. 3a) to manually crafted

rules from SCInfer (Fig. 3b). Observe that the learned rules are sound, i.e., every

variable which potentially leaks information is assigned the distribution type

UKD, while still managing to draw non-trivial conclusions such as RUD(b4).
The learned rules (R2— Rs) in Fig. 3a are used to define the new feature

f (x) in Fig. 2b.

types of x ’s operands (e.g. T Y P E (L), T Y P E (R))—and maps

x to its corresponding distribution type. The white nodes of

Fig. 2b represent pre-defined features, while the grey nodes

represent output classes (associated types). Each path from the

root to leaf node corresponds to one analysis rule. The set of

pre-defined features used in this work is shown in Fig. 4a.

Designing side-channel analyses has been the focus of

intense research, see for example [1]-[3], [16], [25]-[28].

Unfortunately, it requires expert knowledge in both computer

security and program analysis, and invariably involves delicate

trade-offs between accuracy and scalability. Our goal in this

work is to assist the analysis designer in automating the

development. This problem has also been the subject of exciting

research [5], [29]; however, these approaches typically either

require computationally intensive deductive synthesis or cannot

guarantee soundness and thus produce errors in both directions,

including false alarms and missed bugs.

In contrast, G P S combines inductive synthesis from user

annotations with logical entailment checking against a more

comprehensive, known-to-be-correct set of proof rules that form

the knowledge base (KB). It takes as input training programs

like the one in Fig. 2a, where the labels correspond to the types

of program variables (RU D /S I D /UKD for intermediate results

and IN R A N D / I N P U B / IN K E Y for inputs). The users are free to

annotate as many or as few of these types as they wish: this

affects only the precision of the learned analyzer and not its

soundness. Second, G P S also takes as input the knowledge

base K B , consisting of proof rules that describe axioms of

propositional logic (Fig. 8) and properties of the distribution

types (Fig. 10). In return, G P S produces as output a set of

Datalog rules which simultaneously achieves high accuracy on

the training data and provably sound with respect to K B .

The proof rules for K B were collected from published pa-

pers on masking countermeasures [1], [2], [16]. We emphasize

that K B is not necessarily an executable static analyzer since

repeated application of these proof rules need not necessarily

reach a fixpoint and terminate in finite time; Furthermore, even

in cases where it does terminate, K B may be computationally

expensive and infeasible for application to large programs.

As a concrete example, we compare excerpts of the rules

learned by G P S in Fig. 3a to the corresponding rules from

SCInfer [2]—a human-written analysis—in Fig. 3b. L C (x, L)

and R C (x, R) arises in both versions, indicating that L and R

are the left and right operands of x respectively. Specifically, in

Fig. 3b, supp(x, y) indicates that y is used in the computation

of x syntactically while dom(x, y) denotes that random variable

y is used in the computation of x semantically. Observe the

computationally expensive set operations in the human-written

version to the simpler rules learned by G P S without loss of

soundness or perceptible loss in accuracy. These points are

also borne out in our experiments in Table II, where SCInfer

takes >45 minutes on some Keccak benchmarks, while our

812

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

v ::= x | L | R I OP(x)

o p (v) ANDOR(x) XOR(x)

AND OR NOT XOR MUL LEAF

A o p (R)

::= L | R

TYPE(v)

RUDI S ID UKD| INRAND IlNPUBllNKEY

RUD(x) S ID (x) UKD(x)

(a)

{n 4, n 7 , n8 , n9}

{b 1, b 2 , b3 }

LEAF(R) ANDOR(R) XOR(R)

/ ,_____*_____, \

TYPE(L) TYPE(L)

SID (L) RUD(L)

I SID I I RUD I

SID (L)

I r Ud I

RUD(L)

__i__

| {n 5} | {n6} {n 2, n3} {b 4, n1 }

(b)

OP(x)

lSIDl

XOR(x)

op(R) I

I RUD I

LEAF(R) ANDOR(R) XOR(R)

___ * _____, , \

TYPE(L) TYPE(L)

S ID (L) RUD(L)

I SID | I RUD I [RUDI

S ID (L) RUD(L)

RUD
0(X0

(c)

V ------- 1 RUD

RUD?UKD

true false

Fig. 4. The classifier of Fig. 4b is learned only using the features in Fig. 4a. Because o f the limited expressive power of these features, the learned analysis

necessarily misclassifies either b4 or n1. Fig. 4c denotes the candidate analyzer produced after one round of feature synthesis. The blue paths corresponds

to the rule RUD(x) ^ XOR(x) A XOR(R) A RUD(L) A—/ (x) A LC(x,L) A RC (x, R). Unfortunately, even though this analysis (Fig. 4c) achieves 100%

training accuracy, the leaf nodes highlighted in red correspond to unsound predictions.

learned analysis takes <5 seconds.

G P S consists of two phases: First, it learns a set of type-

inference rules—alternatively represented either as Datalog

programs or as decision trees—that are consistent with the

training data. Second, it proves these rules against the knowl-

edge base. In the next two subsections, we will explain the

learning and soundness proving processes respectively.

B. Feature Synthesis and Rule Learning
The learned analyzer associates each node x of a program’s

abstract syntax tree (AST) with an element of the distribution

type {U K D (x), S I D (x), R U D (x)} . We may therefore interpret

the analyzer as a decision tree that, by considering various

features of an AST node, maps it to a type. With a pre-defined

set of features, such as those shown in Fig. 4a, analyzers of

this form can be learned with classical decision tree learning

(DTL) algorithms. Fig. 4b shows such an analyzer, learned

from the labeled program of Fig. 2a.

Unfortunately, the pre-defined features may not be strong

enough to distinguish between nodes with different training

labels, e.g., b4 and ni from the training program, which have

distinct labels R U D (b4) and U K D (n i), but after being sifted

into the node highlighted in red in Fig. 4b, cannot be separated

by any of the features from Fig. 4a. To ensure soundness,

the learner would be forced to conservatively assign the label

U K D (x), which sacrifices the accuracy.

G P S thus includes a feature synthesis engine, triggered

whenever the learner fails to distinguish between two dif-

ferently labeled variables. In tandem with recursive feature

synthesis, G P S overcomes the limited expressiveness of DTL

by enriching syntax space to capture more desired patterns.

Observe that paths of a decision tree can be represented as

Datalog rules, e.g., the red path in Fig. 4b is equivalent to

U K D (x) ^ X O R (x)A X O R (P) A R U D (L)A L C (x ,L) A R C (x,P).

Viewing this in Datalog also allows us to conveniently describe

recursive features, and reduce feature synthesis to an instance

1 OP (x) 1 O P(L) | o p (R)1 1TY PE(L) I 1TY PE(R) 1
f (x)

C E i ANDOR -1 -1 -1 -1 -1
C E 2 XOR -1 LEAF -1 -1 -1
C E 3 XOR -1 XOR SID -1 -1
C E 4 XOR -1 ANDOR RUD -1 -1
C E 5 XOR -1 ANDOR SID -1 -1

Fig. 5. Abstract counter-examples produced during the soundness verification

of the candidate analyzer shown in Fig. 4c.

t y p e (L)

OP(x)

RUD(L) UKD(L) S ID (L)
y * X-

| r u d | OP(R)

XOR(x) ANDOR(x)

«
true false

E i a

ANDOR(R) XOR(R)

I RUD I

Fig. 6. Candidate analysis learned after one round o f feedback from the

soundness verifier. The leaves shown in green and red correspond to sound

and unsound analysis rules respectively.

of syntax-guided synthesis (SyGuS). Syntactically, the analysis

rules corresponding to new features are instances of a pre-

defined set of meta-rules, and the target specification is to

produce a Datalog program for a relation f (x) that has strictly

positive information gain for the variables under consideration

(see Section IV for details).

In our running example, the synthesizer produces the feature

f (x) shown in Fig. 3a, which intuitively indicates that some

random input r is used to compute both operands of x. With

this new feature, the learner can distinguish between b4 and n1,

and produce the rule shown in Fig. 4c, which correctly classifies

all variables of the training program. Observe that the rules

defining f (x) in Fig. 3a involve a newly introduced predicate

g(x, r) and recursive structure that can classify variables based

on arbitrarily deep properties of the abstract syntax tree.

813

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

C. Proving Soundness of Learned Analysis Rules
While the learned analysis rules are correct by construction

for the training examples, they may still be unsound when

applied to unseen programs. We observe this, for example, in

the leaves highlighted in red in Fig. 4c. Thus, G P S tries to

confirm their soundness against the domain-specific knowledge

base K B . In the context of our running example—confirming

soundness means proving that every variable x that is assigned

type R U D (x) (resp. S I D (x)) by the learned analysis rule a is

also certified R U D (x) (resp. S I D (x)) by K B .

We formalize the soundness proof as a Datalog query

containment problem, and propose an algorithm based on

bounded unrolling and k-induction to check it.

When applied to the candidate analysis of Fig. 4c, the

check results in the five counter-examples C E i , . . . , C E 5 with

distribution type U K D (CE^) shown in Fig. 5. Each counter-

example indicates the unsoundness of one path from the root

of the decision tree to a classification node. These are abstract
counter-examples in that they contain missing features and

consequently do not define concrete ASTs. Thus, each of

these abstract counter-examples is a set of feature valuations

n = {fi n- v i,/2 n- v2, . . . , / fc ^ vfc} that the current

candidate analysis misclassifies, and feeding them back to

the learner can prohibit subsequent candidate analyses from

classifying variables that satisfy n.

With these new constraints from abstract counter-examples,

the learner learns the new candidate analysis shown in Fig. 6.

This new candidate analysis still has four unsound candidate

rules, which results in additional abstract counter-examples

when it is subjected to the soundness check. We repeat this

back-and-forth between the rule learner and the soundness

prover: after 11 iterations and after processing 27 counter-

examples in all, G P S learns the rules initially presented in

Fig. 2b, all of which have been certified to be sound.

D. Overall Architecture o f the G P S System
We summarize the architecture of G P S in Fig. 1. The learner

repeatedly applies DTL and SyGuS to learn candidate analyses

that correctly classify training samples and are consistent

with newly-added abstract counter-examples. Next, the prover

checks the soundness of the learned analysis. Each subsequent

counter-example is fed back to the learner which restarts the

rule learning process on augmented dataset, until either all

synthesized rules are sound or a time bound is exhausted.

IV. Le a r n i n g t h e In f e r e n c e Ru l e s

We formally describe the analysis rule learner in Algorithm 1.

The input consists of a set of labeled examples, E, and a set of

pre-defined features, F . The output T is a set of type-inference

rules consistent with training examples. Each training example

(x, T Y P E (x)) e E consists of an AST node x in a program

and its distribution type T Y P E (x).

At the top level, the learner uses the standard decision

tree learning (DTL) algorithm [30] as the baseline. However,

if it finds that the current set F of classification features

is insufficient, it invokes a syntax-guided synthesis (SyGuS)

Algorithm 1 DTL(E, F) — Decision Tree Learning.

Input: Examples, E = {(xi, T Y P E (x i)), . . . , (xn , T Y P E (xn))}
Input: Pre-defined features, F = {/i , / 2 , . . . , / }
Output: Classifier T which is consistent with provided examples
1: if all examples (x, T Y P E (x)) G E have the same label T Y P E (x) = t

then
2: return T = LeafNode(t)
3: end if
4: if ^ / g F such that H (E | /) < H (E) then
5: F := F u Fe a t u r e Sy n (e)
6: end if
7: T = DecisionNode(/ *), where /* = argminj ^F H (E | /)
8: for valuation i of feature / * do
9: T = DTL(E|j , w = i , F \ { / *})

10: Add edge from T to T with label / *(x) = i
11: end for
12: return T

algorithm to synthesize a new feature / with strictly positive

information gain to augment F . This allows the learner to

combine the efficiency of techniques that learn decision trees

with the expressiveness of syntax guided synthesis; similar

ideas have been fruitfully used in other applications of program

synthesis, see for example [31].

While the top-level classifier (e.g., Fig. 2b, 4b, 4c and 6)

has a bounded number of decision points, the synthesized

features (e.g., Fig. 3a) may be recursive. Furthermore, the

newly synthesized features / are inducted as first-class citizens

of F , and can subsequently be used at any level of the decision

tree (see, for example Fig. 2b and 6). Next, we present the

DTL and SyGuS subroutines respectively.

A. The Decision Tree Learning Algorithm

Recall that our pre-defined features (Fig. 4a) include proper-

ties of the AST node, such as O P (x), and properties referring

its left and right children, such as O P (L) A L C (x, L). The choice

requires some care: having very few features will cause the

learning algorithm to fail, while having too many features will

increase the risk of overfitting. Our synergistic combination of

DTL with SyGuS-based on-demand feature synthesis can be

seen as a compromise between these extremes.

DTL(E , F) is an entropy-guided greedy learner [30], where

the entropy and conditional entropy of a set (defined below)

are used to measure the diversity of its labels:

H(E) = - E teTYPE Pr(T Y P E (x) = t) log(Pr(T Y P E (x) = t))

H(E | f) = E ie R a n g e f) H(E | f (x) = i)

Algorithm 1 thus divides the set of training examples E using

the feature / = / * that minimizes the conditional entropy

H (E | /) (Lines 7-12), and recursively invokes the learning

algorithm on each subset, DTL(E |f » (x)= i , F \ { / * }).

Observe that H (E) = 0 if P r(T Y P E (x) = t) = 100%,

meaning purity or all examples x e E share the same type

T Y P E (x) = t. The difference between H (E) and H (E | /) is

also referred to as the information gain. If the learner cannot

find a feature with strictly positive information gain (Line 4),

it will invoke the feature synthesis algorithm on Line 5.

814

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Fe a t u r e Sy n (E).

Input: Examples, E = {(xi , T Y P E (xi)), . .., (i n , T Y P E (xn))}
Output: Feature / with positive information gain, or _L to indicate failure

1: Let S be the meta-rules defined in Figure 7, i.e. the hypothesis space
2: for each relation schema r defined in S do
3: for each subset S of meta-rules corresponding to the schema do
4: for each choice pin, qin , and nested relational predicates do
5: Let / be the corresponding instantiation of the meta-rules in S
6: if h(E | /) < h(E) then
7: return /
8: end if
9: end for

10: end for
11: end for
12: return L

/ (x) ^ Pi n (x),
/ (x) ^ qi n (x,y),

Rf = •
/ (x) ^ Pi n (x,y) A qi n (x,y),
/ (x) ^ qi n (x,y) A / (y),
/ (x) ^ qi n (x,y) A pin (x) A / (y) ,

l g(x,y) ^ qi n (x,y),

? = l g(x,y) ^ Pi n (x) A qin (x, y),
g(x,y) ^ qi n (x ,z) A g(z, y),

{ g(x,y) ^ qi n (x, z) A Pi n (x) A g(z, y)

(h(x) ^ / (x) A Pi n (x) A qi n (x,y),
= l h(x) ^ g(x, y) A Pi n (x) A qi n (x,y),

1 h(x) ^ / (x) A g(x, y) APi n (x) A qi n (x,

used in our work. For example, instantiating the meta-rule

f (x) ^ qi n (x,y) A Pi n (x) A f (y) with qi n (x,y) = R C (x,y)

andp i n (x) = X O R (x) yields f (x) ^ R C (x, y)A X O R (x)A f (y).

There are three variations of the final target relation schema,

f (x), y(x, y) and h(x), where x and y denote AST nodes.

We formalize the synthesis problem as that of choosing a

relation R e { f (x), y(x, y), h(x) } and finding a subset P D of

its instantiated meta-rules from Fig. 7 such that the resulting

Datalog program P D has strictly positive information gain on

the provided training examples E .

Algorithm 2 shows the procedure, which repeatedly instanti-

ates the meta-rules from Fig. 7 and computes their information

gain. It successfully terminates when it discovers a feature that

can improve classification. Otherwise, it returns failure (upon

timeout) and invokes DTL(E , F) to conservatively classify the

decision tree node as being of type U K D .

Example IV.1. Given E = { (b 4 , R U D), (n i , U K D) } shown in

Fig. 2a, the synthesizer may alternatively learn the rules in

Equations 3, 4 and 5.

/ (x) ^ IN R A N D (x) , (3)

/ (y) ^ L C (y ,x) A / (x) ,

/ (y) ^ R c (y ,x) a / (x) ,

RU D (x) ^ X O R (x) A L C (x , L) A R C (x , R) A RU D (L) A / (R).

pi n (x) ::= A N D(x) | O R(x) | N O T(x) | X O R(x) | M UL(x) | L E A F (x)
| IN R A N D (x) | IN K E Y (x) | IN P U B (x)
1 pin A pin 1 pin V pin \ —pin

3i n (x,y) ::= L C (x,y) \ R C (x,y) \ x = y
\ qi n (x, y) A 9i n (x, y) \ qi n (x,y) V qi n (x,y)
\ —3i n (x, y)

Fig. 7. Syntax of the DSL for synthesizing new features.

B. The On-Demand Feature Synthesis Algorithm

We represent newly synthesized features as Datalog pro-

grams. Datalog is an increasingly popular medium to express

static analyses [32]-[35], and its recursive nature enables the

newly learned features to represent arbitrarily deep properties

of AST nodes. A Datalog rule is a constraint of the form

h(x) ^ bi(y i) A b2(y 2) A • • • A b„ (y „), (1)

where h, bi ... bn are relations with pre-specified arities and

schemas, and where x , y i . .. y n are vectors of typed variables.

Each rule can be interpreted as a logical implication: if bi ... bn

are true, then so is h. The semantics of a Datalog program

is defined as the least fixed-point of rule application [36]: the

solver starts with empty output relations, and repeatedly derives

new output tuples until no new tuples can be derived.

Program synthesis commonly restricts the space of target

concepts and biases the search to speed up computation and

improve generalization. One form of bias has been to constrain

the syntax: this has been formalized as the SyGuS problem [37]

and as meta-rules in inductive logic programming [38], [39].

A meta-rule is construct of this form

X h(x) ^ X i(y i) A X2(y2) A • • • A X n (y n) (2)

Here, X h , X i , X 2, . . . , X n are relation variables whose

instantiation yields a concrete rule. Fig. 7 shows the meta-rules

g (x , x) ^ IN R A N D (x) , (4)

g (y , z) ^ L C (y, x) A g (x , z) ,

g (y , z) ^ R C (y, x) A g (x , z) ,

h (x) ^ L C (x , L) A R C (x , R) A g (L , x r) A g (R , x r) A x r = x r ,

RU D (x) ^ X O R (x) A R U D (L) A RU D (R) A L C (x , L) A R C (x , R) A — h (x) .

g (x ,x) ^ IN K E Y (x) , (5)

g (y , z) ^ L C (y, x) A g (x , z) ,

g (y , z) ^ R C (y, x) A g (x , z) .

h (x) ^ L C (x ,L) A R C (x , R) A g (L , x r) A g (R , x r) A x r = x r ,

RU D (x) ^ X O R (x) A R U D (L) A RU D (R) A —h (x).

Since the information gain of Rule 3 applying to { b 4 , n i } is

zero, it gets discarded (Line 6 in Algorithm 2). In contrast, the

information gains of Rules 4 and 5 are both positive. Rule 4

intuitively requires that both the left and right operands of x

are of type R U D , and that they do not share any random inputs

in computing - h(x). Rule 5 requires that the same secret key

be used in the computation of both operands. While Rule 4 is

sound when applied to arbitrary programs, Rule 5 is unsound.

In the next section, we will present an algorithm that can check

the soundness of these learned rules.

V. Pr o v i n g t h e In f e r e n c e Ru l e s

We wish to prove that a learned rule, denoted a , never

reaches unsound conclusions when applied to any program, by

showing that it can be deduced from a known-to-be-correct
knowledge base (KB). More specifically, we wish to confirm

that every AST node x marked as RUD (or S I D) by a can

be certified to be RUD (or S I D) by K B . When both a and

K B are expressed in Datalog, the problem reduces to one of

determining query containment, e.g., for every valuation of

the input relations, R U D a C R U D KB (or S I D a C S I D KB).

815

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

ò V -ib = true (B i)

- ia A —>b = —'(a V b) (BA)

b A b = b (Bg)

a V (a A b) = a (B d)

b A -16 = f a l s e (£>2) -i-£ = b (-S3) ->aV ->b = —> (a A fe) (£>4)

ò V f a l s e = ò (Se) & V i r i t e = i r i t e (S7) 6 A i r i t e = ò (S s)

ò A f a l s e = f a l s e (S a) bV b = b (Bb) a A (a V 6) = a (S c)

a $ l) E (a A -£) V (->a A ò) (S e) (a V !)) V c E a V c V ò (S /)

(a Ab) A c = a / k b (S 10) a V (ò V e) = a V ò V e (££ 1) v (Ò Ac) = a A b A c (S i 2)

Fig. 8. Proof rules for propositional logic, to simplify the logic formula and deduce Boolean constants (true and false).

(V) SID(cc)

\ gi(L, kt) (y) \ a gi{RA A |

; (* l) t l) A i

Fig. 9 . Example A S T from which a is learned.

We will now describe a semi-decision procedure to verify the

soundness of the learned rules a , which forms the second

phase of the synthesis loop in G PS.

A. Representation o f the Learned Rule (a)

Let a be a set of Datalog rules, each of which has a head

relation and a body of the following form:

<t>a{x) <r- 4>l(xi) A f 2(x 2) A • • • A <t>n {xn) (6)

It means f a holds only when all of f i , . . . , <f>n hold. Here, f a

may be a distribution type, e.g., SID(x), or a recursive feature

g (x ,y), e.g., representing that x depends on y.

B. Representation o f the Knowledge Base (K B)

Our K B consists of two sets of proof rules, one for

propositional logic and the other for distribution types.

Proof Rules fo r Propositional Logic. Fig. 8 shows the proof

rules that represent axioms of propositional logic [40]; they can

be used to reduce any valid (resp. invalid) Boolean formula to

constant true (resp. fa lse). Thus, they are useful in showing

results such as true V P and fa lse A Q are secret-independent

(SID), for arbitrary logical sentences P and Q.
Consider the example rule a below, where g\ and g2 are

synthesized features shown as dashed boxes in Fig. 9:

SID(a’) A- OR(x) A LCU, L) A RCU, R) A OR(L) A IKj T(R) A
gi(L, ki) A g2(R, k2) A EQ(Ai, A2)

g pL, k\) A- IHKEY(A;i) A IHRAHDO’i) A LC(L, *1) A RC(L, JR)
g2(R, k2) A- IHKEYYi® A LC(R, k2)

Since fci = k2, we transform a into an equivalent logic formula:

s i d (y) g— e q (y’> [hi v r i) v (—iAi))

Rules 51 , 5 7 and 5 / in Fig. 8 show that (k\ V ?’i) V (-ifci)

is always true. Thus, x is always true. Since x is a constant,

we have SID(x), meaning x is secret-independent.

Such SID rules, learned by our method automatically, and

yet overlooked by state-of-the-art, hand-crafted analyzers [1],

[2], can significantly improve the accuracy of side-channel

analysis on many programs.

Proof Rules fo r Distribution Types. Fig. 10 shows the proof

rules that represent properties of the distribution types. They

were collected from published papers [2], [16], [24] that focus

on verifying masking countermeasures, which also provided

the soundness proofs of these rules. For brevity, we omit the

detailed explanation. Instead, we use Rule D 2.i as an example

to illustrate the rationale behind these proof rules.

In Rule 5 2 .i , the dom{x, S) relation means that variable

x is masked by some input from the set S of random inputs.

For example, in y = x \ ® x 2, where x \ = k ® r\ ® r2 and

x 2 = b(&r2, we say that x 2 is masked by r2, and x \ is masked

by both r i and r2. However, since r2(br2 = fa ls e , y is masked

only by r\. Thus, dom fy , {?’i}) holds, but dom (y , {»’2}) does

not hold. In this sense, Rule D 2a defines a masking set. For y,
it is S y = ({ri, r 2} U {r2}) \ ({ri, r 2} n {r2}) = {?’i}, which

contains r\ only. The masking set defined by D 2a is useful in

that, as long as the set is not empty, the corresponding variable

is guaranteed to be of the RUD type.

C. Proving the Soundness o f a Using K B

To prove that for every AST node x marked as RUDa (ai)
(resp. SIDq^ x)) by a, it is also marked as RUDifs(x) (resp.

RUD k b A)) by K B , we show that the following relation

Ind(x) is empty for any valuation of the input relations:

Ind (x) g- <t>a {x) A -i<t>KB{x) , (7)

where the relation f may be instantiated to either RUD or S ID .
In theory, this amounts to proving query containment, which

is undecidable for Datalog in general [41], [42], but there is a

decidable Datalog fragment [41], [43], [44], and our meta-rules

in Fig. 7 produce rules in this fragment.

First, we observe that every tuple t = f (x) produced by a

Datalog program is associated with one or more derivation

trees. The heights of these derivation trees correspond to the

depth of rule inlining at which the program discovers t. In

particular, for each inlining depth k e N, each rule fh A h) <—

f i (x i) A <t>2(x 2) A • • • A <t>n(x n) is transformed into the rule:

A +1){ x h) g- f f i x i) A f 2 \ x 2) A • • • A f S i x , ,) , (8)

Our insight is to prove that at each unrolling depth k, we have

A S 0. Ak b - Thus, we define the relation I n d A as follows:

I n d A (x) g- A S A) A G k b A) , (9)

and prove the emptiness of Ind (x) by fc-induction [45]-[47].

Proposition V.l. I f I n d A (x) is an empty relation fo r each

depth k € N, then Ind(x) is an empty relation.

816

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

r h x : INRAND r h x : INKEY r h x : INPUB r h x : INRAND
(D 1 .1) ----------- , . (D 1 .2) -------- TNV (D 1 .3) — 7 f . (D2 .1)

supp(x, {x}) . supp(x, {x}) . supp(x, {x}) . dom(x, {x})

r h x, y : v , r h S : Set v , RC(y, x1) A LC(y, x2) A supp(x1 ,S 1) A supp(x2 , S2) „
------------------------------------ (D 1.4)

r h x : INKEY

dom(x, 0)

r h x : INPUB

supp(y, S1 U S2) . dom(x, 0)

r h x,y : v , r h S : Set v , RC(y, x1) A LC(y,x2) A XOR(y) A dom(x1 ,S 1) A dom(x2 , S2)

dom(x, (S1 U S2)/(S 1 H S2))

(D2 .2)

(D 2.3)

(D 2 .4)

r h x : v , r h S : Set v , dom(x, Sx) A Sx = 0

r h x : RUD

r h x : v , r h Sk : Set INKEY,
r h Sd : Set RUD, r h Ss : Set v ,

dom(x, Sd) A Sd=0 A supp(x, Ss) A Ss H Sk=0

r h x : SID

r h x1 : SID, r h x2 : RUD, r h S1 ,S 2 : Set v

LC(y, x1) A RC(y, x2)A OR(y)A
supp(x1 ,S1) A supp(x2, S2) A S1 H S2=0

r h y : SID

(D 3)
r h x : INKEY, r h S : Set INKEY

r b x :: S : Set INKEY
(D 4)

(D 5)

(D 7)

r h x1 : SID, r h x2 : RUD, r h S1 , S2 : Set v

LC(y, x1) A RC(y, x2) A AND(y)
Asupp(x1 ,S1) A supp(x2, S2) A S1 H S2=0

r h y : SID

r h x1 : SID, r h x2 : SID, r h S1 ,S 2 : Set v

LC (y, x1) A RC(y,x2)A
supp(x1 ,S 1) A supp(x2 , S2) A S1 H S2=0

r h y : SID

(D6)

(D8)

r h x1 : SID, r h x2 : SID, r h S1 : Set RUD, r h S2 : Set v ,
AND(y) A LC(y, x1) A RC(y, x2) A dom(x1 , S1) A supp(x2 , S2) A S1 H S2 = 0

r h x1 : SID, r h x2 : SID, r h S1 : Set RUD,
r h S2 : Set v , OR(y) A LC (y, x1) A RC(y, x2)A

dom(x1 , S1) A supp(x2 , S2) A S1 /S 2 = 0

r h y : SID

r h y : SID

(D a)

(D 9)

r h x1 : RUD, r h x2 : RUD, r h S1 : Set RUD,
r h S2 : Set v , AND (y) A LC (y, x1) A RC (y, x2)A

dom(x1, S1) A supp(x2, S2) A S2 /S 1 = 0

r h y : SID (Db)

r h x1 : RUD, r h x2 : RUD, r h S1 : Set RUD, r h S2 : Set v ,
OR(y) A LC (y, x1) A RC (y, x2) A dom(x1 , S1) A supp(x2 , S2) A S2 /S 1 = 0

(D d)
r h x : RUD

r h x : NOUKD

r b x : bool, x=false

(D f)

(D C)

r h x : bool , x=true

r h y : SID

r b x : SID „ r b x : v, NOT (y) A LC (y, x)
---------------- (D e) ---------- ’-------—------ 7
r h x : NOUKD r h y : v r h x : SID

r h x : v , r h Sk : Set INKEY, r h S : Set v , supp(x, Ss) A Ss H Sk =0

(D10)

^ x : SID
(D 11)

r b x : NOUKD
(D 12)

r h x1 : RUD, r h x2 : RUD, r h S1, S2 : Set RUD,
LC (y, x1) A RC (y, x2) A MUL(y)A

(y) A dom(x1 , S1) A dom(x2 , S2) A S2 /S 1 = 0

r h y : SID
(D 13)

r h x1 : RUD, r h x2 : SID, r h S1 : Set RUD
r h S2 : Set v , LC (y,x1) A RC (y, x2) MUL (y)A

dom(x1 , S1) A supp(x2 , S2) A S1 /S 2 = 0

r h y : SID
(D 14)

r h x1 : SID, r h x2 : RUD, r h S1 : Set RUD, S2 : Set v ,
LC (y, x1) A RC (y, x2) A MUL (y) A dom(x1 , S1) A supp(x2 , S2) A S2 /S 1 = 0

r h y : SID
(D 15)

Fig. 10. Proof rules for distribution types, gathered from prior works [2], [16], [24]. Here, v denotes the type of variable x,and is of the following types: UKD,
SID and RUD. NOUKD denotes the secure type (either RUD or SID). All the predefined relations in KB are the same as in a .

Observe that unrolling the rules of a Datalog program to

any specific depth yields a formula which can be interpreted

within propositional logic. For example, unrolling f (x) from

Equation 3 at depths 1 and 2 gives us

f (1)(x) = I N R A N D (x) , and

f (2)(y) = (L C (y , x) A f 1(x)) V (R C (y , x) A f 1(x)) .

For any specific value of k , we can therefore use an SMT

solver to verify the emptiness of I n d (k).

For the induction step, in particular, we ask the SMT solver

to check if I n d (k) can be non-empty while the i preceding

relations I n d (k-1), . . . , I n d (k-i) are assumed to be empty.

Here, ^Lk) is expressed recursively using ^ i k-1) , . . . , ^ i k- i)

and induction succeeds if there exists such a value for i e N .

Let V (k) be free variables introduced by unrolling the rules

at depth k. We assert the non-emptiness of I n d (k) below:

$ (k) = y I n d (k) (x) . (10)

x e V (k)

Thus, we formalize the induction step of the proof by con-

structing the following formula:

^ (k) = -,$ (k -i) a • • • A -,$ (k - 1) A $ (k) (11)

Proposition V.2. I f f o r so m e i e N , the rela tions I n d (1), . . . ,

I n d (i) are a ll em p ty (the base case), a n d the fo rm u la ^ (k) as

d efined above is unsatisfiable (the induction step), then I n d (k)
is em p ty f o r a ll k e N .

Starting from i = 1, we use the SMT solver to check

Proposition V.2 for increasingly larger i until a timeout is

817

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

reached. If the SMT solver is ever successful in proving the

proposition, it follows that the learned rule a is sound.

D. Generating Abstract Counter-Examples
When the proof fails, however, we need to prevent the

same rule from being learned again to guarantee progress. Let

n = {f 1 = v1, f 2 = v2, . . . , f k = vk } be the feature valuation

in the failing rule R n . We then construct the counter-example,

C E n = { f ^ v | (f , v) e n } U {f ^ - 1 | f e F \ n }

with label UKD (CEn). Recall that F is the set of all features

currently under consideration. Therefore, the feedback C E n

provided to D T L(E , F) is an abstract counter-example, with

all missing features f e F \ n set to the unknown value - 1 .

Consider the subsequent iteration of the decision tree learner,

D T L (E u { C E n} , F). Observe that whenever it is in a decision

context which is also a prefix npre of the counter-example C E n ,

the information gain of each feature f e n is strictly less than

that encountered in the previous invocation. Therefore, at some

level of the decision tree, it will either choose a different

feature, or invoke the feature synthesis algorithm to grow F .

By formalizing this argument, we say that:

Proposition V.3. Given a counter-example C E n to a learned

rule R n , the subsequent invocation o f the learner DTL(E U

{C E n } , F) is guaranteed to no longer produce R n .

Before ending this section, we stress that the proof rules

in K B should not be confused with analysis rules used in

the learned analyzer, since they are way more computationally

expensive. Consider Rule D 1.4, whose Datalog encoding size

for supp(x, S) would be | V |x 2 1 IN 1. For the benchmark named

B19 in Table I, it owns 1250 input variables and thereby

causing the exponential explosion with 21250. The learned rule

a , in contrast, is much cheaper since it does not rely on these

expensive set (union and intersection) operations.

VI. Ex p e r im e n t s

Our experiments were designed to answer the following

research questions (RQs):

• RQ1: How effective is our learned analyzer in terms of

the analysis speed and accuracy?

• RQ2: How effective is our G P S method for learning

inference rules from training data?

• RQ3: How effective is our G P S method for proving the

learned inference rules?

We implemented G P S in LLVM 3.6. G P S relies on

LLVM to parse the C programs and construct the internal

representation (IR). Then, it learns a static analyzer in two steps.

The first step, which is SyGuS-guided decision tree learning,

is implemented in 4,603 lines of C++ code. The second step,

which proves the learned inference rules, is implemented using

the Z3 [48] SMT solver. Furthermore, the learned analyzer

(for detecting power side channels in cryptographic software)

is implemented in LLVM as an optimization (opt) pass. We

ran all experiments on a computer with 2.9 GHz Intel Core i5

CPU and 8 GB RAM.

TABLE I
St a t is t ic s o f t h e b e n c h ma r k pr o g r a ms in Dtest.

Name LoC Ipub I priv 1 rand Name LoC Ipub I priv I rand

B1 11 0 2 2 B2 12 0 2 2
B3 12 0 2 B4 25 3
B5 25 3 B6 32 3
B7 81 7 B8 84 7
B9 104 7 B10 964 16 32
B11 1,130 16 32 B12 1,256 0 25 75
B13 2,506 0 25 125 B14 3,764 0 25 175
B15 8,810 0 25 349 B16 13,810 0 25 575
B17 18,858 0 25 775 B18 23,912 0 25 975
B19 30,228 0 25 1,225 B20 34,359 16 16 1,232
B21 79 0 16 16 B22 67 0 8 16
B23 21 0 2 2 B24 23 0 2 2
B25 27 0 2 B26 32 0 2 2
B27 40 0 2 3 B28 59 0 3 4
B29 60 0 3 4 B30 66 0 3 4
B31 66 0 3 4 B32 426k 288 288 3205
B33 426k 288 288 3205 B34 426k 288 288 3205
B35 429k 288 288 3205 B36 426k 288 288 3205
B37 442k 288 288 3205

A. Benchmarks
Our benchmarks are 568 programs with 2,691K lines of

C code in total. They implement well-known cryptographic

algorithms such as AES and SHA-3. Some of these programs

are hardened by countermeasures, such as reordered MAC-

Keccak computation [23], masked AES [16], [17], masked

S-box calculation [49] and masked multiplication [50], to

eliminate power side-channel leaks.

We partition the benchmarks into two sets: D tra in for G PS,
and D tes t for the learned analyzer. The training set D tra in

consists of 531 small programs gathered from various public

sources, including byte-masked AES [51], random reduction

of S-box [52], common shares [53], and leak examples [24].

Each benchmark is a pair, consisting of a program AST and its

distribution type, i.e, the ground truth annotated by developers.

The testing set D tes t consists of 37 large programs, whose

statistics (the number of lines of code and inputs labeled public,

private, and random) are shown in Table I. Since these programs

are large, it is no longer practical to manually annotate the

ground truth; instead, we relies on the results of published

tools: a (manually-crafted) static analyzer [1] for B1-B20 and

a formal verification tool [2] for B21-B37.

B. Performance and Accuracy o f the Learned Analyzer
To demonstrate the advantage of our learned analyzer (answer

RQ1), we compared our learned analyzer with the two existing

tools [1], [2] on the programs in D te s t . Only our analyzer can

handle all of the 37 programs. Therefore, we compared the

results of our analyzer with the tool from [1] on B1-B20, and

with the tool from [2] on B21-B37. The results are shown in

Table II and Table III, respectively.

In both tables, Columns 1-2 show the benchmark name and

the number of AST nodes. Columns 3-6 show the existing tool’s

analysis time and result, including a breakdown in three types.

Similarly, Columns 7-10 show our learned analyzer’s time and

result. Note that in [1], the UKD/ S I D /RUD numbers were the

number of variables of the LLVM IR, and thus larger than the

number of variables in the original programs. To be consistent,

we compared with their results in the same manner in Table II.

The results in Table II and Table III show that our learned an-

alyzer is much faster, especially on larger programs such as B20

818

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

TABLE II
Co m p a r i n g t h e l e a r n e d a n a l y z e r w i t h t h e t o o l f r o m [1].

Name # AST
Manually Designed Analyzer [1] Our Learned Analyzer

Time (s) UKD SID RUD Time (s) UKD SID RUD

B1 7 0.061 4 0 22 0.001 4 0 22

B2 6 0.105 7 0 20 0.001 6 1 20

B3 8 0.099 1 3 31 0.001 1 3 31

B4 11 0.208 6 12 31 0.001 17 12 20

B5 11 0.216 1 10 29 0.001 11 10 19
B6 14 0.276 1 15 48 0.001 8 15 41

B7 39 0.213 2 25 151 0.002 2 25 151

B8 39 0.147 4 42 249 0.002 4 42 249

B9 47 0.266 2 61 153 0.001 2 61 153

B10 522 0.550 31 12 2334 0.008 31 12 2334

B11 522 0.447 31 0 2334 0.029 31 0 2334

B12 426 0.619 52 300 2062 0.001 52 300 2062

B13 827 1.102 49 600 4030 0.006 49 600 4030

B14 1,228 1.998 49 900 5995 0.065 49 900 5995

B15 2,832 16.999 49 2,100 13861 0.107 49 2,100 13861

B16 4,436 24.801 49 3,300 21,723 2.663 49 3,300 21,723

B17 6,040 59.120 49 4,500 29,587 1.956 49 4,500 29,587

B18 7,644 121.000 47 5,700 37,449 3.258 47 5,700 37,449

B19 9,649 202.000 49 7200 47,280 5.381 49 7200 47,280

B20 13,826 972.000 127 26,330 38,070 3.650 127 26,330 38,070

(3.6 seconds versus 16 minutes). The reason why our analyzer

is faster is because the manually-crafted analyses [1], [2] rely

on evaluating set-relations (e.g. difference and intersection of

sets of random variables), whereas our DSL syntax is designed

without set operations to infer the same types, thus leading to

faster analyses. Although in general the set operation-based

algorithm is more accurate, it has excessive computational

overhead. Moreover, it does not always improve precision in

practice. Furthermore, the method in [2] uses an SMT solver-

based model counting technique to infer leak-free variables,

which is significantly more expensive than type inference.

As shown in Table II and Table III, by learning inference

rules from data, we can achieve almost the same accuracy

as manually-crafted analysis [1], [2] while avoiding the huge

overhead. Given the same definitions of distribution types (U K D ,

S I D and R U D), both our learned rules and manually-crafted

analysis rules [1], [2] can infer the non-leaky patterns, thus

recognizing the variable types correctly under most benchmarks

in Table II and Table III, except for B4-B6 and B30, where

set operations are required to prove the leak-freedom of some

variables. Recall that losing accuracy here indicates that our

learned rules infer the types more conservatively, without losing

soundness. Nevertheless, our analyzer also increased accuracy

in some other cases (e.g., B2), due to its deeper constant

propagation (which led to the proof o f more S I D variables)

while the existing tool [1] failed to do so, and conservatively

marked them as UKD variables.

C. Effectiveness o f Rule Induction and Soundness Verification
To answer RQ2 and RQ3, we collected statistics while

applying G P S to the 531 small programs in D test, as shown in

Table IV. In total, G P S took 30 iterations to complete the entire

learning process. Column 1 shows the iteration number and

Column 2 shows the time taken by the learner and the prover

together. Columns 3-6 show the number of inference rules

learned during each iteration, together with their types (U K D ,

S I D , and R U D). Similarly, Columns 7-10 show the number of

verified inference rules and their types.

The next two columns show the following statistics: (1) the

size of the learned decision tree (# Treelearn) in terms of the

TABLE III
Co m p a r i n g t h e l e a r n e d a n a l y z e r w i t h SCIn f e r [2].

Name # AST
The SCInfer Verification Tool [2] Our Learned Analyzer

Time (s) UKD SID RUD Time (s) UKD SID RUD

B21 32 0.390 16 0 16 0.005 16 0 16

B22 24 0.570 8 0 16 0.002 8 0 16

B23 6 0.010 0 0 6 0.001 0 0 6

B24 6 0.060 0 0 6 0.001 0 0 6

B25 8 0.250 0 2 6 0.001 0 2 6

B26 9 0.160 2 3 4 0.002 2 3 4

B27 11 0.260 1 5 5 0.001 1 5 5

B28 18 0.290 3 4 11 0.003 3 4 11

B29 18 0.230 2 4 11 0.002 2 4 12

B30 28 0.340 2 6 20 0.001 8 0 20

B31 28 0.500 2 7 19 0.001 2 7 19

B32 197k 3.800 0 6.4k 190.4k 3.180 0 6.4k 190.4k

B33 197k 2,828.000 4.8k 6.4k 185.6k 3.260 4.8k 6.4k 185.6k

B34 197k 2,828.000 3.2k 6.4k 187.2k 3.170 3.2k 6.4k 187.2k

B35 198k 2,828.000 1.6k 8k 188.8k 3.140 3.2k 8k 187.2k

B36 197k 2,828.000 4.8k 6.4k 185.6k 3.150 4.8k 6.4k 185.6k

B37 205k 2,828.000 17.6k 1.6k 185.6k 3.820 17.6k 1.6k 185.6k

number of decision nodes; (2) the number of counter-examples

(CEX) added by the prover (# ASTCEX), which are added

to the 531 original training programs before the next iteration

starts. The last column shows the number of features generated

by SyGuS; these features are also added to the original feature

set and then used by the learner during the next iteration.

Results in Table IV demonstrate the efficiency of both

the learner and the prover. Within the learner, the number

of rules produced in each iteration remains modest (8 on

average), indicating it has successfully avoided overfitting. This

is because the SyGuS solver is biased toward producing small

features which, by Occam’s razor, are likely to generalize

well. Furthermore, any learned analysis rules have to pass the

soundness check, and this provides additional assurance against

overfitting to the training data. The prover either quickly verifies

a rule, or quickly drops it after adding a counter-example to

prevent it from being learned again. In early iterations, about

half of all learned rules can be proved, but as more counter-

examples are added, the quality of the learned rules improves,

and thus the percentage of proved rules also increases.

D. Threats to Validity

Our experimental evaluation focused on cryptographic soft-

ware, which is structurally simple and, unlike general-purpose

software, does not exercise complicated language constructs.

It is an interesting direction of future work to extend our

techniques to these more general classes of software code.

A notable limitation in our work is the assumption of the

knowledge base (KB). W hile KB is readily available for our

application (side-channel analysis), for other applications, it

might be non-trivial to construct. Furthermore, an incorrect KB

might compromise the soundness of the learned rules, although

in this work, we have carefully mitigated this threat by curating

the proof rules from previous papers [2], [16], [24] that have

themselves formally verified the validity of these proof rules.

VII. Re l a t e d W o r k

Generating Analyzers from Examples. W hile there are prior

works on learning static analyzers [5], [54], they do not

guarantee soundness. For example, the analyzer learned by

Bielik et al. [5] is sound with respect to programs in the

819

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
De c i s i o n Tr e e Le a r n i n g w i t h Fe a t u r e Sy n t h e s i s (Di f f e r e n t It e r a t i o n s w i t h #AST = 531).

Iteration
Rules Learned # Rules Verified

Tree;earn # ASTc e x
Faatnra

Total UKD SID RUD Total UKD SID RUD Syn
1 1.316 9 2 2 2 2 23 4 5

2 0.775 2 2 4 4 2 17 9 7

3 1.115 2 2 4 2 2 24 13 9
4 0.511 2 2 4 2 2 18 18 10

5 0.513 2 2 4 7 2 2 27 21 11

6 0.537 2 2 4 6 2 2 2 24 25 12

7 0.510 2 2 4 6 2 2 2 26 29 13

8 0.512 2 2 4 6 2 2 2 28 33 14

9 0.511 2 2 4 6 2 2 2 30 37 15

10 0.524 2 2 4 2 2 32 41 16

11 0.546 2 2 4 4 2 2 0 34 45 17

12 0.556 2 2 4 4 2 2 0 36 49 18

13 0.550 2 2 4 2 2 38 53 19
14 0.540 2 2 4 6 2 2 2 40 57 20

15 0.542 2 2 4 4 2 2 0 42 61 21

16 0.552 2 2 4 6 2 2 2 44 65 22

17 0.577 2 2 4 2 2 46 69 23

18 0.598 2 2 4 6 2 2 2 48 73 24

19 0.571 2 2 4 6 2 2 2 50 77 25

20 0.673 2 2 4 2 2 52 82 26

21 0.526 2 2 4 2 0 54 87 27

22 0.525 2 6 2 35 91 27

23 0.697 9 2 4 7 2 2 37 93 27

24 0.700 9 2 4 2 2 4 38 95 28

25 0.691 7 2 2 6 2 36 97 29
26 0.707 7 2 2 6 2 37 99 30

27 0.716 7 2 2 6 2 38 101 31

28 0.540 7 2 2 6 2 39 102 32

29 0.534 7 2 2 6 2 39 103 32

30 0.528 7 2 2 7 2 2 39 104 32

TOTAL 18.693 237 63 60 114 167 54 57 56 1071 1833 622

training set, not all programs written in the same programming

language (JavaScript). They also need to manually modify

the training programs to generate counter-examples, while our

method generates counter-examples automatically.

Formal Specifications. There are also works on synthesizing

static analyzers from formal specifications, e.g., proof rules

or second-order logic formulas [29], [55], [56] as opposed to

training data. However, they restrict the logic used to write the

specification, and as a result, may not be expressive enough to

synthesize practical analyzers. users are also expected to write

correct specifications, which is a non-trivial task. In addition,

they cannot exploit the information provided by data.

Learning-based Techniques. There are several prior techniques

using machine learning to conduct static program analyses [57]-

[60]. Such techniques focus on finding a suitable program-to-

feature embedding. However, they require the user to perform

feature engineering, which is known to be laborious. Some

of these techniques [58], [61]-[63] do not take advantage of

new features that may be learned from data; instead, they build

classifiers based solely on existing features. In contrast, our

method not only learn new analysis rules from data, but also

use SyGuS to synthesize new features automatically.

Optimizing an Analyzer. It is possible to optimize an existing

static analyzer [57], [64]-[68], which can be achieved by

adjusting the level of abstraction [64], [65], [69], learn heuristics

and parameters [66], make soundness-accuracy trade-offs [67],

or select sound transformers [68]. However, such techniques

fundamentally differ from our method because they assume

the analyzer is already given, and focus on optimizing its

performance, whereas we focus on synthesizing a new analyzer.

Syntax-Guided Synthesis. Since we automatically generate new

features, our method is related to the large and growing body

of work on SyGuS. W hile SyGuS has been used in various

applications [70]-[80], none of them aims to synthesize a

provably sound static analyzer from data. While some of these

existing techniques can synthesize Datalog rules [39], [81],

[82], the focus has been on efficiency, e.g., pruning the search

space based on syntactic structures, instead of guaranteeing

the soundness of the analyzer.

Power Side-Channel Analysis. In this work, we use power side-

channel analysis as the application to evaluate our method. In

this sense, it is related to the body of work on side-channel leak

detection [2]-[4], [83]-[85] as well as mitigation [1], [24], [28],

[86]-[88]. While static analysis engines used in these existing

works are all hand-crafted by domain experts, our method aims

to synthesize the static analysis from data automatically.

V III. C o n c l u s io n s

We have presented a data-driven method for learning a

provably sound static analyzer to detect power side channels in

cryptographic software. It relies on SyGuS to generate features

and DTL to generate analysis rules based on the synthesized

features. It verifies the soundness of these learned analysis rules

by solving a query containment checking problem using an

SMT solver. We have evaluated our method on C programs that

implement well-known cryptographic protocols and algorithms.

Our experimental results show that the learning algorithm

is efficient and the learned analyzer can achieve the same

empirical accuracy as state-of-the-art analysis tools while being

several orders-of-magnitudes faster.

Ac k n o w l e d g m e n t s

This research was supported in part by the U.S. National

Science Foundation (NSF) under grant CNS-1617203 and Of-

fice of Naval Research (ONR) under grant N00014-17-1-2896.

We thank the anonymous reviewers for their helpful feedback.

820

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

Re f e r e n c e s

[1] J. Wang, C. Sung, and C. Wang, “Mitigating power side channels during

compilation,” in ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations o f Software Engineering,
2019, pp. 590-601.

[2] J. Zhang, P. Gao, F. Song, and C. Wang, “SC Infer: refinement-based

verification o f software countermeasures against side-channel attacks,”
in International Conference on Computer Aided Verification, 2018, pp.
157-177.

[3] J. Chen, Y. Feng, and I. D illig, “Precise detection o f side-channel
vulnerabilities using quantitative cartesian hoare logic,” in ACM SIGSAC

Conference on Computer and Communications Security, 2017, pp. 875-
890.

[4] T. Brennan, S. Saha, T. Bultan, and C. S. Pasareanu, “Sym bolic path

cost analysis for side-channel detection,” in ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018, pp. 27-37.

[5] P. Bielik, V. Raychev, and M. Vechev, “Learning a static analyzer from

data,” in International Conference on Computer Aided Verification, 2017,
pp. 233-253.

[6] C. Mendis, C. Yang, Y. Pu, S. Amarasinghe, and M. Carbin, “Compiler

auto-vectorization with imitation learning,” in Advances in Neural
Information Processing Systems, 2019, pp. 14598-14609 .

[7] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation

using examples,” Communications o f the ACM, vol. 55, no. 8, pp. 97-105,
2012.

[8] A. Leung, J. Sarracino, and S. Lerner, “Interactive parser synthesis by
example,” ACM SIGPLAN Notices, vol. 50, no. 6, pp. 565-574, 2015.

[9] R. Singh and S. Gulwani, “Synthesizing number transformations from

input-output examples,” in International Conference on Computer Aided

Verification, 2012, pp. 634-651.
[10] C. Smith and A . Albarghouthi, “Mapreduce program synthesis,” Acm

Sigplan Notices, vol. 51, no. 6, pp. 326-340, 2016.
[11] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,

“Combinatorial sketching for finite programs,” in International Conference

on Architectural Support fo r Programming Languages and Operating

Systems, 2006, pp. 4 0 4 ^ 1 5 .
[12] S. An, R. Singh, S. Misailovic, and R. Samanta, “Augmented example-

based synthesis using relational perturbation properties,” Proceedings

o f the ACM on Programming Languages, vol. 4, no. POPL, pp. 1-24,
2019.

[13] M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polozov,
R. Singh, B. Zorn, and S. Gulwani, “User interaction models for

disambiguation in programming by example,” in ACM Symposium on
User Interface Software & Technology, 2015, pp. 291-301.

[14] R. Singh and S. Gulwani, “Predicting a correct program in programming

by example,” in International Conference on Computer Aided Verification,
2015, pp. 398-414.

[15] J. Devlin, J. uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed, and

P. Kohli, “Robustfill: Neural program learning under noisy i/o,” in

International Conference on Machine Learning, 2017, pp. 990-998.
[16] G. Barthe, S. Belaid, F. Dupressoir, P.-A. Fouque, B. Gregoire, and

P.-Y. Strub, “Verified proofs o f higher-order masking,” in International
Conference on the Theory and Applications o f Cryptographic Techniques,
2015, pp. 457-485.

[17] J. Blomer, J. Guajardo, and V. Krummel, “Provably secure masking
of AES,” in International workshop on selected areas in cryptography,
2004, pp. 69-83.

[18] A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne, “Sleuth: Automated

verification of software power analysis countermeasures,” in International
Workshop on Cryptographic Hardware and Embedded Systems, 2013,
pp. 293-310.

[19] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hardware

against probing attacks,” in Annual International Cryptology Conference,
2003, pp. 4 6 3 ^ 8 1 .

[20] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F.-X. Standaert,
“On the cost o f lazy engineering for masked software implementations,”
in International Conference on Smart Card Research and Advanced

Applications, 2014, pp. 64-81.
[21] J.-S. Coron, C. Giraud, E. Prouff, S. Renner, M. Rivain, and P. K. Vadnala,

“Conversion o f security proofs from one leakage model to another: A

new issue,” in International Workshop on Constructive Side-Channel
Analysis and Secure Design, 2012, pp. 69-81.

[22] NIST, “NIST selects winner o f the Secure Hash Algorithm (SH A-3)

competition,” https://www.nist.gov/news-events/news/20I2/I0/nist-selects-
winner-secure-hash-algorithm-sha-3-competition, 2012.

[23] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, “Kec-
cak implementation overview,” URL: http://keccak. noekeon. org/Keccak-
implementation-3.2. pdf, 2012.

[24] H. Eldib and C. Wang, “Synthesis of masking countermeasures against
side channel attacks,” in International Conference on Computer Aided

Verification, 2014, pp. 114-130.
[25] G. Barthe, S. Belaid, P.-A. Fouque, and B. Gregoire, “maskverif: a formal

tool for analyzing software and hardware masked implementations.” IACR

Cryptology ePrint Archive, vol. 2018, p. 562, 2018.
[26] C. Wang and P. Schaumont, “Security by compilation: an automated

approach to comprehensive side-channel resistance,” ACM SIGLOG News,
vol. 4, no. 2, pp. 76-89 , 2017.

[27] G. Barthe, S. Belaid, F. Dupressoir, P.-A. Fouque, B. Gregoire, P.-
Y. Strub, and R. Zucchini, “Strong non-interference and type-directed

higher-order masking,” in ACM SIGSAC Conference on Computer and

Communications Security, 2016, pp. 116-129.
[28] S. Tizpaz-Niari, P. Cerny, and A . Trivedi, “Quantitative mitigation o f

timing side channels,” in International Conference on Computer Aided

Verification, 2019, pp. 140-160.
[29] C. David, D. Kroening, and M. Lewis, “u sin g program synthesis for

program analysis,” in Logic fo r programming, artificial intelligence, and

reasoning, 2015, pp. 483-498.
[30] L. Rokach and O. Maimon, “Top-down induction o f decision trees

classifiers-a survey,” Transactions on Systems, Man, and Cybernetics,
vol. 35, no. 4, pp. 476-487, 2005.

[31] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative program

synthesis via divide and conquer,” in International Conference on Tools
and Algorithms fo r the Construction and Analysis o f Systems, 2017, pp.
319-336.

[32] T. W. Reps, Demand Interprocedural Program Analysis Using Logic

Databases, 1995, pp. 163-196.
[33] J. Whaley and M. Lam, “Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams,” in ACM SIGPLAN Conference

on Programming Language Design and Implementation, 2004, pp. 131-
144.

[34] H. Jordan, B. Scholz, and P. Subotic, “Souffle: On synthesis of program

analyzers,” in International Conference on Computer Aided Verification,
2016, pp. 422-430.

[35] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification

of sophisticated points-to analyses,” in ACM SIGPLAN Conference on

Object Oriented Programming Systems Languages and Applications,
2009, p. 243-262.

[36] S. Abiteboul, R. Hull, and V. Vianu, Foundations o f Databases: The

Logical Level. Pearson, 1994.
[37] R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A.

Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-
guided synthesis,” in Formal Methods in Computer-Aided Design, 2013,
pp. 1-8.

[38] S. Muggleton, D . Lin, and A . Tamaddoni-Nezhad, “Meta-interpretive

learning o f higher-order dyadic Datalog: Predicate invention revisited,”
Machine Learning, vol. 100, no. 1, pp. 49-73, 2015.

[39] X. Si, W. Lee, R. Zhang, A . Albarghouthi, P. Koutris, and M. Naik,
“Syntax-guided synthesis o f datalog programs,” in ACM Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations o f Software Engineering, 2018, pp. 515-527.
[40] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,”

2002.
[41] D. Calvanese, G. De Giacomo, and M. Y. Vardi, “Decidable containment

of recursive queries,” Theoretical Computer Science, vol. 336, no. 1, pp.
33-56, 2005.

[42] D. Calvanese, G. De Giacomo, and M. Lenzerini, “On the decidability

of query containment under constraints,” in PODS, vol. 98, 1998, pp.
149-158.

[43] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi, “Reasoning

on regular path queries,” ACM SIGMOD Record, vol. 32, no. 4, pp. 83-92,
2003.

[44] P. Barcelo, M. Romero, and M. Y. Vardi, “Does query evaluation

tractability help query containment?” in ACM SIGMOD-SIGACT-SIGART

symposium on Principles o f database systems, 2014, pp. 188-199.

821

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

[45] M. Sheeran, S. Singh, and G. Stalmarck, “Checking safety properties

using induction and a sat-solver,” in International conference on formal
methods in computer-aided design, 2000, pp. 127-144.

[46] A. F. Donaldson, L. Haller, D. Kroening, and P. Rui mmer, “Software ver-
ification using k-induction,” in International Static Analysis Symposium,
2011, pp. 351-368.

[47] M. Y. Gadelha, H. I. Ismail, and L. C. Cordeiro, “Handling loops in

bounded model checking o f c programs via k-induction,” International
Journal on Software Tools fo r Technology Transfer, vol. 19, no. 1, pp.
97-114, 2017.

[48] L. D e Moura and N. Bj0rner, “Z3: An efficient SMT solver,” in
International conference on Tools and Algorithms fo r the Construction

and Analysis o f Systems, 2008, pp. 337-340.
[49] J.-S. Coron, E. Prouff, M. Rivain, and T. Roche, “Higher-order side

channel security and mask refreshing,” in International Workshop on

Fast Software Encryption, 2013, pp. 410-424.
[50] M. Rivain and E. Prouff, “Provably secure higher-order masking of AES,”

in International Workshop on Cryptographic Hardware and Embedded

Systems, 2010, pp. 413-427.
[51] Y. Yao, M. Yang, C. Patrick, B. Yuce, and P. Schaumont, “Fault-assisted

side-channel analysis o f masked implementations,” in International
Symposium on Hardware Oriented Security and Trust, 2018, pp. 57-64.

[52] R. Zhang, S. Qiu, and Y. Zhou, “Further improving efficiency of higher

order masking schemes by decreasing randomness complexity,” IEEE

Transactions on Information Forensics and Security, vol. 12, no. 11, pp.
2590-2598, 2017.

[53] J.-S. Coron, A. Greuet, E. Prouff, and R. Zeitoun, “Faster evaluation

of sboxes via common shares,” in International Conference on Crypto-
graphic Hardware and Embedded Systems, 2016, pp. 498-514.

[54] M. Zaheer, J.-B. Tristan, M. L. Wick, and G. L. Steele Jr, “Learning a

static analyzer: A case study on a toy language,” 2016.
[55] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,

“Synthesizing software verifiers from proof rules,” in ACM SIGPLAN

Notices, vol. 47, no. 6, 2012, pp. 4 0 5 ^ 1 6 .
[56] G. Chen, Y. Wang, M. Zhou, and J. Sun, “VFQL: combinational static

analysis as query language,” in ACM SIGSOFT International Symposium

on Software Testing and Analysis, 2019, pp. 378-381.
[57] O. Katz, R. El-Yaniv, and E. Yahav, “Estimating types in binaries using

predictive modeling,” in ACM SIGPLAN Notices, vol. 51, no. 1, 2016,
pp. 313-326.

[58] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties

from big code,” in ACM SIGPLAN Notices, vol. 50, no. 1, 2015, pp.
111-124.

[59] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin, “Aletheia: Improving

the usability of static security analysis,” in ACM SIGSAC Conference on

Computer and Communications Security, 2014, pp. 762-774.
[60] T. Gvero and V. Kuncak, “Synthesizing java expressions from free-form

queries,” in Acm Sigplan Notices, vol. 50, no. 10, 2015, pp. 416-432.
[61] R. Mangal, X. Zhang, A. V. Nori, and M. Naik, “A user-guided approach

to program analysis,” in Joint Meeting on Foundations o f Software

Engineering, 2015, pp. 462-473.
[62] K. Heo, H. Oh, H. Yang, and K. Yi, “Adaptive static analysis via

learning with bayesian optimization,” ACM Transactions on Programming

Languages and Systems (TOPLAS), vol. 40, no. 4, p. 14, 2018.
[63] K. Heo, H. Oh, and H. Yang, “Learning a variable-clustering strategy for

octagon from labeled data generated by a static analysis,” in International
Static Analysis Symposium, 2016, pp. 237-256.

[64] R. Grigore and H. Yang, “Abstraction refinement guided by a learnt
probabilistic model,” in ACM SIGPLAN Notices, vol. 51, no. 1, 2016,
pp. 485-498.

[65] K. Heo, H. Oh, and H. Yang, “Resource-aware program analysis via

online abstraction coarsening,” in International Conference on Software

Engineering, 2019, pp. 94-104.
[66] H. Oh, H. Yang, and K. Yi, “Learning a strategy for adapting a program

analysis via bayesian optimisation,” in ACM SIGPLAN Notices, vol. 50,
no. 10, 2015, pp. 572-588.

[67] K. Heo, H. Oh, and K. Yi, “Machine-learning-guided selectively unsound

static analysis,” in International Conference on Software Engineering,
2017, pp. 519-529.

[68] G. Singh, M. Puschel, and M. Vechev, “Fast numerical program analysis

with reinforcement learning,” in International Conference on Computer

Aided Verification, 2018, pp. 211-229.
[69] C. Wang, Z. Yang, A. Gupta, and F. Ivancic, “Using counterexamples

for improving the precision o f reachability computation with polyhedra,”

in International Conference on Computer Aided Verification, 2007, pp.
352-265.

[70] R. Rolim, G. Soares, L. D ’Antoni, O. Polozov, S. Gulwani, R. Gheyi,
R. Suzuki, and B. Hartmann, “Learning syntactic program transformations

from examples,” in International Conference on Software Engineering,
2017, pp. 4 0 4 ^ 1 5 .

[71] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multi-
line program patch synthesis via symbolic analysis,” in International
Conference on Software Engineering, 2016, pp. 691-701.

[72] Y. Feng, R. Martins, J. Van Geffen, I. D illig, and S. Chaudhuri,
“Component-based synthesis o f table consolidation and transformation

tasks from examples,” in ACM SIGPLAN Notices, vol. 52, no. 6, 2017,
pp. 422-436.

[73] N. Polikarpova, I. Kuraj, and A. Solar-Lezama, “Program synthesis from

polymorphic refinement types,” in ACM SIGPLAN Notices, vol. 51, no. 6,
2016, pp. 522-538.

[74] A. Abate, I. Bessa, D. Cattaruzza, L. Cordeiro, C. David, P. Kesseli,
D. Kroening, and E. Polgreen, “Automated formal synthesis o f digital
controllers for state-space physical plants,” in International Conference

on Computer Aided Verification, 2017, pp. 462-482.
[75] R. Bavishi, H. Yoshida, and M. R. Prasad, “Phoenix: automated data-

driven synthesis o f repairs for static analysis violations,” in Proceedings

of the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations o f Software Engineering,
2019, pp. 613-624.

[76] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in International Confer-
ence on Software Engineering, 2017, pp. 416-426.

[77] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,”

in Joint Meeting on Foundations o f Software Engineering, 2017, pp.
593-604.

[78] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical program

repair with on-demand candidate generation,” in International Conference

on Software Engineering, 2018, pp. 12-23.
[79] T. Knoth, D. Wang, N. Polikarpova, and J. Hoffmann, “Resource-guided

program synthesis,” in ACM SIGPLAN Conference on Programming

Language Design and Implementation, 2019, pp. 253-268.
[80] P. Li, P. Zhang, L.-N. Pouchet, and J. Cong, “Resource-aware throughput

optimization for high-level synthesis,” in ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2015, pp. 200-209.

[81] X. Zhang, R. Mangal, R. Grigore, M. Naik, and H. Yang, “On abstraction

refinement for program analyses in datalog,” in ACM SIGPLAN Notices,
vol. 49, no. 6, 2014, pp. 239-248.

[82] X. Si, M. Raghothaman, K. Heo, and M. Naik, “Synthesizing datalog

programs using numerical relaxation,” arXiv preprint arXiv:I906.00I63,
2019.

[83] L. Bang, A. Aydin, Q.-S. Phan, C. S. Pasareanu, and T. Bultan, “String

analysis for side channels with segmented oracles,” in ACM SIGSOFT
International Symposium on Foundations o f Software Engineering, 2016,
pp. 193-204.

[84] S. Guo, M. Wu, and C. Wang, “Adversarial symbolic execution for

detecting concurrency-related cache timing leaks,” in ACM Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations o f Software Engineering, 2018, pp. 377-388.
[85] C. Sung, B. Paulsen, and C. Wang, “CANAL: a cache timing analysis

framework via LLVM transformation,” in IEEE/ACM International
Conference On Automated Software Engineering, 2018, pp. 904-907.

[86] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Gregoire, G. Barthe, R. Jhala, and D. Stefan, “FaCT: a

dsl for timing-sensitive computation,” in ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2019, pp. 174-189.
[87] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-

channel leaks using program repair,” in ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018, pp. 15-26.

[88] B. Paulsen, C. Sung, P. A. H. Peterson, and C. Wang, “Debreach:
Mitigating compression side channels via static analysis and transforma-
tion,” in IEEE/ACM International Conference On Automated Software

Engineering, 2019, pp. 899-911.

822

Authorized licensed use limited to: University of Southern California. Downloaded on February 09,2023 at 22:38:32 UTC from IEEE Xplore. Restrictions apply.

