
Mitigating Power Side Channels during Compilation
Jingbo Wang

University of Southern California

Los Angeles, CA, USA

Chungha Sung

University of Southern California

Los Angeles, CA, USA

Chao Wang

University of Southern California

Los Angeles, CA, USA

ABSTRACT
The code generation modules inside modern compilers, which use

a limited number of CPU registers to store a large number of pro-

gram variables, may introduce side-channel leaks even in software

equipped with state-of-the-art countermeasures. We propose a pro-

gram analysis and transformation based method to eliminate such

leaks. Our method has a type-based technique for detecting leaks,

which leverages Datalog-based declarative analysis and domain-

specific optimizations to achieve high efficiency and accuracy. It

also has a mitigation technique for the compiler’s backend, more

specifically the register allocation modules, to ensure that leaky

intermediate computation results are stored in different CPU reg-

isters or memory locations. We have implemented and evaluated

our method in LLVM for the x86 instruction set architecture. Our

experiments on cryptographic software show that the method is

effective in removing the side channel while being efficient, i.e., our

mitigated code is more compact and runs faster than code mitigated

using state-of-the-art techniques.

CCS CONCEPTS
• Security and privacy → Cryptanalysis and other attacks; •
Software and its engineering→Compilers; Formal software
verification.

KEYWORDS
Side channel, information leak, countermeasure, power, register

allocation, type inference, verification, code generation

ACM Reference Format:
Jingbo Wang, Chungha Sung, and Chao Wang. 2019. Mitigating Power Side

Channels during Compilation. In Proceedings of the 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3338906.3338913

1 INTRODUCTION
Cryptography is an integral part of many security protocols, which

in turn are used by numerous applications. However, despite the

strong theoretical guarantee, cryptosystems in practice are vulnera-

ble to side-channel attacks when non-functional properties such as

timing, power and electromagnetic radiation are exploited to gain

information about sensitive data [22, 25, 27, 44, 47, 56, 57, 67, 73, 85].

For example, if the power consumption of an encryption device

depends on the secret key, techniques such as differential power

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00

https://doi.org/10.1145/3338906.3338913

User-specified

Input Annotation

Variable to

Register Map

LLVM

BitCode

Program P Info.

Datalog

Type Checking

Domain-Specific

Optimization

Detection

LLVM Backend

Modification

Register

Allocation

Mitigation

Leakage-free

Assembly

Figure 1: Overview of our secure compilation method

analysis (DPA) may be used to perform attacks reliably [22, 27, 46,

55, 58]. Although there are methods for mitigating power side chan-

nels [2, 3, 14, 15, 34, 35, 83], they focus exclusively on the Boolean
level, e.g., by targeting circuits or software code converted to a

bit-level representation. This limits their usage; as a result, none

of them was able to fit into modern compilers such as GCC and

LLVM to directly handle the word-level intermediate representa-

tion (IR). In addition, code transformations in compilers may add

new side channels, even if the input program is equipped with

state-of-the-art countermeasures.

Specifically, compilers use a limited number of the CPU’s reg-

isters to store a potentially-large number of intermediate com-

putation results of a program. When two masked and hence de-

sensitized values are put into the same register, the masking coun-

termeasure may be removed accidentally. We will show, as part of

this work, that even provably-secure techniques such as high-order

masking [6, 8, 9] are vulnerable to such leaks. Indeed, we have

found leaks in the compiled code produced by LLVM for both x86

and MIPS/ARM platforms, regardless of whether the input program

is equipped with high-order masking.

To solve the problem, we propose a secure compilation method

with two main contributions. First, we introduce a type-inference

system to soundly and quickly detect power side-channel leaks.

Second, we propose a mitigation technique for the compiler’s back-

end to ensure that, for each pair of intermediate variables that

may cause side-channel leaks, they are always stored in different

registers or memory locations.

Figure 1 illustrates our method, which takes a program P as input

and returns the mitigated code as output. It has two steps. First,

type inference is used to detect leaks by assigning each variable a

distribution type. Based on the inferred types, we check each pair

(v1,v2) of variables to see if they may cause leaks when stored in

the same register. If the answer is yes, we constrain the compiler’s

register allocation modules to ensure that v1 and v2 are assigned
to different registers or memory locations.

Our method differs from existing approaches in several aspects.

First, it specifically targets power side-channel leaks caused by reuse

of CPU registers in compilers, which have been largely overlooked

by prior work. Second, it leverages Datalog, together with a number

of domain-specific optimizations, to achieve high efficiency and

https://doi.org/10.1145/3338906.3338913
https://doi.org/10.1145/3338906.3338913

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jingbo Wang, Chungha Sung, and Chao Wang

accuracy during leak detection. Third, mitigation leverages the

existing production-quality modules in LLVM to ensure that the

compiled code is secure by construction.

Unlike existing techniques that translate the input program to a

Boolean representation, our method works directly on the word-

level IR and thus fits naturally into modern compilers. For each

program variable, the leak is quantified using the well-known Ham-

ming Weight (HW) and Hamming Distance (HD) leakage mod-

els [52, 53]. Correlation between these models and leaks on real

devices has been confirmed in prior work (see Section 2). We also

show, via experiments, that leaks targeted by our method exist even

in program equipped with high-order masking [6, 8, 9].

To detect leaks quickly, we rely on type inference, which models

the input program using a set of Datalog facts and codifies the type

inference algorithm in a set of Datalog rules. Then, an off-the-shelf

Datalog solver is used to deduce new facts. Here, a domain-specific

optimization, for example, is to leverage the compiler’s backend

modules to extract a map from variables to registers and utilize the

map to reduce the computational overhead, e.g., by checking pairs

of some (instead of all) variables for leaks.

Our mitigation in the compiler’s backend is systematic: it ensures

that all leaks detected by type inference are eliminated. This is

accomplished by constraining register allocation modules and then

propagating the effect to subsequent modules, without having to

implement any new backend module from scratch. Our mitigation

is also efficient in that we add a number of optimizations to ensure

that the mitigated code is compact and has low runtime overhead.

While our implementation focuses on x86, the technique itself is

general enough that it may be applied to other instruction set

architectures (ISAs) such as ARM and MIPS as well.

We have evaluated our method on a number of cryptographic

programs [8, 14], including well-known ciphers such as AES and

MAC-Keccak. These programs are protected by masking counter-

measures but, still, we have detected leaks in the LLVM compiled

code. In contrast, the compiled code produced by our mitigation

technique, also based on LLVM, is always leak free. In terms of

runtime overhead, our method outperformed existing approaches

such as high-order masking: our mitigated code not only is more

secure and compact but also runs faster than code mitigated by

high-order masking techniques [8, 9].

To summarize, this paper makes the following contributions:

• We show that register reuse implemented in modern com-

pilers introduces new side-channel leaks even in software

code already protected by masking.

• Wepropose aDatalog based type inference system to soundly

and quickly detect these side-channel leaks.

• We propose a mitigation technique for the compiler’s back-

end modules to systematically remove the leaks.

• We implement the method in LLVM and show its effective-

ness on a set of cryptographic software programs.

The remainder of this paper is organized as follows. First, we

illustrate the problem and the technical challenges for solving it

in Section 2. Then, we review the background including the threat

model and leakage model in Section 3. Next, we present our method

for leak detection in Section 4 and leak mitigation in Section 5,

followed by domain-specific optimizations in Section 6. We present

our experimental results in Section 7, review the related work in

Section 8, and give our conclusions in Section 9.

//'txt': PUBLIC, 'key': SECRET and 't' is HW-sensitive
uint32 Xor(uint32 txt, uint32 key) {uint32 t = txt ^ key; return t;}
//random variable 'mask1' splits 'key' to secure shares {mask1,mk}
uint64 SecXor(uint32 txt, uint32 key, uint32 mask1) {

uint32 mk = mask1 ^ key; // mask1^key
uint32 t = txt ^ mk; // txt^(mask1^key)
return (mask1,t);

}
//'mask1' splits 'key' to shares {mask1,mk} a priori
//'mask2' splits the result to shares {mask2,t3} before return
uint64 SecXor2(uint32 txt, uint32 mk, unit32 mask1, unit32 mask2) {

uint32 t1 = txt ^ mk; // txt^(mask1^key)
uint32 t2 = t1 ^ mask2; // (txt^mask1^key)^mask2
unit32 t3 = t2 ^ mask1; // (txt^mask1^key^mask2)^mask1
return {mask2,t3};

}

Name Approach HW-Sensitive HD-Sensitive

Xor No Masking ✓ ✓

SecXor First Order Masking ✗ ✓

SecXor2 Specialized Hardware & Masking ✗ ✓

Figure 2: Implementations of an XOR computation in the
presence of HW and HD power side-channel leaks.

2 MOTIVATION
We use examples to illustrate why register reuse may lead to side-

channel leaks and the challenges for removing them.

2.1 The HW and HD Leaks
Consider the program Xor() in Figure 2, which takes the public txt
and the secret key as input and returns the Exclusive-OR of them

as output. Since logical 1 and 0 bits in a CMOS circuit correspond

to different leakage currents, they affect the power consumption of

the device [52]; such leaks were confirmed by prior works [22, 58]

and summarized in the Hamming Weight (HW) model. In program

Xor(), variable t has a power side-channel leak because its register

value depends on the secret key.
The leak may be mitigated by masking [2, 39] as shown in pro-

gram SecXor(). The idea is to split a secret to n randomized shares

before using them; unless the attacker has all n shares, it is theoret-

ically impossible to deduce the secret. In first-order masking, the

secret key may be split to {mask1,mk} where mask1 is a random
variable,mk=mask1⊕key is the bit-wise Exclusive-OR ofmask1 and
key, and thus mask1⊕mk=key. We say that mk is masked and thus

leak free because it is statistically independent of the value of key: if
mask1 is a uniform random number then so is mk. Therefore, when
mk is aggregated over time, as in side-channel attacks, the result

reveals no information of key.
Unfortunately, there can be leaks in SecXor() when the variables

share a register and thus create second-order correlation. For exam-

ple, the x86 assembly code of mk=mask1⊕key is MOV mask1 %edx;
XOR key %edx, meaning the values stored in %edx are mask1
and mask1⊕key, respectively. Since bit-flips in the register also

affect the leakage current, they lead to side-channel leaks. This

is captured by the Hamming Distance (HD) power model [22]:

HD(mask1,mask1⊕key) = HW(mask1 ⊕ (mask1 ⊕ key)) = HW(key),
which reveals key. Consider, for example, where key is 0001b and

mask1 is 1111b in binary. If a register stores mask1 (=1111b) first
and updates its value as mask1⊕key (=1110b), the transition of the

register (bit-flip) is 0001b , which is same as the key value.

In embedded systems, specialized hardware [4, 50, 70] such as

physically unclonable function (PUF) and true random number

generator (TRNG) may produce key and mask1 and map them to

the memory address space; thus, these variables are considered leak

Mitigating Power Side Channels during Compilation ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

free. Specialized hardware may also directly produce the masked

shares {mask1,mk} without producing the unmasked key in the first

place. This more secure approach is shown in program SecXor2(),
where masked shares are used to compute the result (txt⊕key),
which is also masked, but by mask2 instead of mask1.

Inside SecXor2(), care should be taken to randomize the interme-

diate results by mask2 first, before de-randomizing them by mask1.
Thus, the CPU’s registers never hold any unmasked result. However,

there can still be HD leaks, for example, when the same register

holds the following pairs at consecutive time steps: (mask1,mk),
(mask1,t1), or (mask2,t3).

2.2 Identifying the HD Leaks
To identify these leaks, we need to develop a scalable method.While

there are techniques for detecting flaws in various masking imple-

mentations [9, 10, 17, 18, 23, 30, 33, 34, 39, 43, 66, 68, 69, 71], none

of them was scalable enough for use in real compilers, or targeted

the HD leaks caused by register reuse.

First, we check if there are sensitive, unmasked values stored in

the CPU registers. Here, mask means a value is made statistically

independent of the secret using randomization. We say a value is

HW-sensitive if, statistically, it depends on the secret. For example,

in Figure 2, key is HW-sensitive whereasmk=mask1⊕key is masked.

If there were nk=mask1∨key, it would be HW-sensitive because the

masking is not perfect.

Second, we check if there is any pair of values (v1,v2) that,
when stored in the same register, may cause an HD leak. That is,

HD(v1,v2) = HW (v1 ⊕ v2) may statistically depend on the secret.

For example, in Figure 2, mk and mask1 form a HD-sensitive pair.

Formal Verification. Deciding if a variable is HW-sensitive, or two

variables are HD-sensitive, is hard in general, since it corresponds

to model counting [35, 83]. This can be illustrated by the truth table

in Table 1 for functions t1, t2 and t3 over secret bit k and random

bits m1, m2 and m3. First, there is no HW leak because, regardless

of whether k=0 or 1, there is a 50% chance of t1 and t2 being 1 and

a 25% chance of t3 being 1. This can be confirmed by counting the

number of 1’s in the top and bottom halves of the table.

When two values (t1, t2) are stored in the same register, however,

the bit-flip may depend on the secret. As shown in the column

HD(t1, t2) of the table, when k = 0, the bit is never flipped; whereas

when k = 1, the bit is always flipped. The existence of HD leak

for (t1, t2) can be decided by model counting over the function

ft1⊕t2(k,m1,m2,m3): the number of solutions is 0/8 for k = 0 but

8/8 for k = 1. In contrast, there is no HD leak for (t2, t3) because
the number of satisfying assignments (solutions) is always 2/8

regardless of whether k = 0 or k = 1.

Type Inference. Since model counting is expensive, we develop

a fast, sound, and static type system to identify the HD-sensitive

pairs in a program. Following Zhang et al. [83], we assign each

variable one of three types: RUD, SID or UKD (details in Section 3).

Briefly, RUD means random uniform distribution, SID means secret

independent distribution, and UKD means unknown distribution.

Therefore, a variable may have a leak only if it is the UKD type.

In Table 1, for example, given t1←m1 ⊕m2, wherem1 andm2

are random (RUD), it is easy to see that t1 is also random (RUD). For
t3← t2∧m3, where t2,m3 are RUD, however, t3 may not always be

random, but we can still prove that t3 is SID; that is, t3 is statistically
independent of k . This type of syntactical inference is fast because it

Table 1: Truth table showing that (1) there is no HW leak in
t1,t2,t3 but (2) there is anHD leakwhen t1,t2 share a register.

k m1 m2 m3 t1= t2= t3= HD(t1,t2) HD(t2,t3)

m1⊕m2 t1⊕k t2∧m3 =t1⊕t2 =t2⊕t3
0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 1 0 1 1 0 0 1

0 0 1 1 1 1 1 0 0

0 1 0 0 1 1 0 0 1

0 1 0 1 1 1 1 0 0

0 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0

1 0 0 0 0 1 0 1 1

1 0 0 1 0 1 1 1 0

1 0 1 0 1 0 0 1 0

1 0 1 1 1 0 0 1 0

1 1 0 0 1 0 0 1 0

1 1 0 1 1 0 0 1 0

1 1 1 0 0 1 0 1 1

1 1 1 1 0 1 1 1 0

UKD RUD RUD RUD RUD RUD SID UKD SID*

* Our Datalog based type inference rules can infer it as SID instead of UKD

does not rely on any semantic information, although in general, it is

not as accurate as the model counting based approach. Nevertheless,

such inaccuracy does not affect the soundness of our mitigation.

Furthermore, we rely on a Datalog based declarative analysis

framework [20, 48, 78, 79, 84] to implement and refine the type

inference rules, which can inferHD(t2, t3) as SID instead of UKD. We

also leverage domain-specific optimizations, such as precomputing

certain Datalog facts and using compiler’s backend information, to

reduce cost and improve accuracy.

2.3 Mitigating the HD Leaks
To remove the leaks, we constrain the register allocation algorithm

using our inferred types.We focus on LLVMand x86, but themethod

is applicable toMIPS andARM aswell. To confirm this, we inspected

the assembly code produced by LLVM for the example (t1,t2,t3) in
Table 1 and found HD leaks on all three architectures. For x86, in

particular, the assembly code is shown in Figure 3a, which uses %eax

to store all intermediate variables and thus has a leak in HD(t1,t2).
Figure 3b shows our mitigated code, where the HD-sensitive

variables t1 and t2 are stored in different registers. Here, t1 resides
in %eax and memory -20(%rbp) whereas t2 resides in %ecx and

memory -16(%rbp). The stack and a value of %eax are shown in

Figure 3c, both before and after mitigation, when the leakmay occur

at lines 8-9. Since the value of k is used only once in the example,

i.e., for computing t2, overwriting its value stored in the original

memory location -16(%rbp) does not affect subsequent execution.

If k were to be used later, our method would have made a copy in

memory and direct uses of k to that memory location.

Register allocation in real compilers is a highly optimized process.

Thus, care should be taken tomaintain correctness and performance.

For example, the naive approach of assigning all HD-sensitive vari-

ables to different registers does not work because the number of

registers is small (x86 has 4 general-purpose registers while MIPS

has 24) while the number of sensitive variables is often large, mean-

ing many variables must be spilled to memory.

The instruction set architecture also add constraints. In x86, for

example, %eax is related to %ah and %al and thus cannot be assigned

independently. Furthermore, binary operations such as Xor may

require that the result and one operand share the same register

or memory location. Therefore, for mk=mask1⊕key, it means that

eithermk andmask1 share a register, which causes a leak in HD(mk,

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jingbo Wang, Chungha Sung, and Chao Wang

1 // assembly for Table1
2 movl %edi, -4(%rbp)
3 movl %esi, -8(%rbp)
4 movl %edx, -12(%rbp)
5 movl %ecx, -16(%rbp)
6 movl -4(%rbp), %eax
7 xorl -8(%rbp), %eax
8 movl %eax, -20(%rbp)
9 xorl -16(%rbp), %eax
10 movl %eax, -24(%rbp)
11 andl -12(%rbp), %eax
12 movl %eax, -28(%rbp)
13

14 popq %rbp

(a) Before Mitigation

1 // assembly for Table1
2 movl %edi, -4(%rbp)
3 movl %esi, -8(%rbp)
4 movl %edx, -12(%rbp)
5 movl %ecx, -16(%rbp)
6 movl -4(%rbp), %eax
7 xorl -8(%rbp), %eax
8 movl %eax, -20(%rbp)
9 xorl %eax, -16(%rbp)
10 movl -16(%rbp), %ecx
11 andl -12(%rbp), %ecx
12 movl %ecx, -28(%rbp)
13 movl -28(%rbp), %eax
14 popq %rbp

(b) After Mitigation

stack

...

m1

m2

m3

key

m1⊕m2

...

-4(%rbp)

-8(%rbp)

-12(%rbp)

-16(%rbp)

-20(%rbp)

%eax

m1⊕m2

After executing line 8

stack

...

key

m1⊕m2

...

-16(%rbp)

-20(%rbp)

%eax

m1⊕m2⊕key

Before Mitigation
(after executing line 9)

stack

...

m1⊕m2⊕key

m1⊕m2

...

-16(%rbp)

-20(%rbp)

%eax

m1⊕m2

After Mitigation
(after executing line 9)

HD
= k

ey
(lea

k)

H
D
=
0

(c) Diagram for stack and register %eax

Figure 3: The assembly code before and after mitigation.

mask1)=HW(key), or mk and key share a register, which causes a

leak in HW(key) itself. Thus, while modifying the backend, multiple

submodules must be constrained together to ensure the desired

register and memory isolations (see Section 5).

2.4 Leaks in High-order Masking
Here, a question is whether the HD leak can be handled by second-

order masking (which involves two variables). The answer is no,

because even with high-order masking techniques such as Barthe

et al. [8–10], the compiled code may still have HD leaks introduced

by register reuse. We confirmed this through experiments, where

the code compiled by LLVM for high-order masked programs from

[8] was found to contain HD leaks.

Figure 4 illustrates this problem on a second-order arithmetic

masking of the multiplication of txt (public) and key (secret) in

a finite field. Here, the symbol ∗ denotes multiplication. While

there are a lot of details, at a high level, the program relies on the

same idea of secret sharing: random variables are used to split the

secret key to three shares, before these shares participate in the

computation. The result is a masked triplet (res0,res1,res2) such that

(res0⊕res1⊕res2)=key∗txt.
The x86 assembly code in Figure 4 has leaks because the same

register %edx stores both mask0 ⊕ mask1 and mask0 ⊕ mask1 ⊕
key. Let the two values be denoted %edx1 and %edx2, we have

HD(%edx1,%edx2) = HW(key). Similar leaks exist in the LLVM-

generated assembly code of this program for ARM and MIPS as

well, but we omit them for brevity.

3 PRELIMINARIES
We first define the threat model and then review the leakage models

used for quantifying the power side channel.

1 uint8 SecondOrderMaskingMultiply(uint8 txt, uint8 key) {
2 int mask0, mask1, mask2, mask3, mask4, mask5, mask6; //random
3 int t1 = mask0 ^ mask1 ^ key;
4 int t2 = mask2 ^ mask3 ^ txt;
5 int t3 = (mask4 ^ mask0 * mask3) ^ mask1 * mask2;
6 int t4 = (mask5 ^ mask0 * t2) ^ t1 * mask2;
7 int t5 = (mask6 ^ mask1 * t2) ^ t1 * mask3;
8 res0 = (mask0 * mask2 ^ mask4) ^ mask5;
9 res1 = (mask1 * mask3 ^ t3) ^ mask6;
10 res2 = (t1 * t2 ^ t4) ^ t5;
11 return {res0, res1, res2};
12 }

movzbl -41(%rbp), %edx // mask0 is loaded to %edx
movzbl -43(%rbp), %esi // mask1 is loaded to %esi
xorl %esi, %edx // mask0^mask1 is stored to %edx (%edx1)
movzbl -44(%rbp), %esi // key is loaded to %esi
xorl %esi, %edx // mask0^mask1^key is stored to %edx (%edx2)
movb %dl, %al
movb %al, -50(%rbp)

Figure 4: Second-order masking of multiplication in a finite
field, and the LLVM-generated x86 assembly code of Line 3.

3.1 The Threat Model
We assume the attacker has access to the software code, but not

the secret data, and the attacker’s goal is to gain information of

the secret data. The attacker may measure the power consumption

of a device that executes the software, at the granularity of each

machine instruction. A set of measurement traces is aggregated to

perform statistical analysis, e.g., as in DPA attacks. In mitigation,

our goal is to eliminate the statistical dependence between secret

data and the (aggregated) measurement data.

Let P be the program under attack and the triplet (x, k, r) be the
input: sets x, k and r consist of public, secret, and random (mask)
variables, respectively. Let x , k1, k2, and r be valuations of these
input variables. Then, σt (P ,x ,k1, r) denotes, at time step t , the
power consumption of a device executing P under input x , k1 and
r . Similarly, σt (P ,x ,k2, r) denotes the power consumption of the

device executing P under input x , k2 and r . Between steps t and
t + 1, one instruction in P is executed.

We say P has a leak if there are t , x , k1 and k2 such that the

distribution of σt (P ,x ,k1, r) differs from that of σt (P ,x ,k2, r). Let
random variables in r be uniformly distributed in the domain R, and
let the probability of each r ∈ R be Pr (r), we expect ∀t ,x ,k1,k2 .∑

r ∈R
σt (P ,x ,k1, r) Pr (r) =

∑
r ∈R

σt (P ,x ,k2, r) Pr (r) (1)

For efficiency reasons, in this work, we identify sufficient con-
ditions under which Formula 1 is implied. Toward this end, we

focus on the leaks of individual variables, and pairs of variables,

in P instead of the sum σt : if we remove all individual leaks, the

leak-free property over the sum σt (P ,x ,k, r) is implied.

3.2 The Leakage Model
In theHammingWeight (HW)model [52, 53], the leakage associated

with a register value, which corresponds to an intermediate variable

in the program, depends on the number of 1-bits. Let the value be

D =
∑n−1
i=0 di2

i
where d0 is the least significant bit, dn−1 is the most

significant bit, and each bit di , where 0 ≤ i < n, is either 0 or 1. The
Hamming Weight of D is HW (D) = ∑n−1

i=0 di .
In the Hamming Distance (HD) model [52, 53], the leakage de-

pends not only on the current register value D but also a reference

value D ′. Let D ′ =
∑n−1
i=0 d ′i 2

i
. We define the Hamming Distance

between D and D ′ as HD(D,D ′) = ∑n−1
i=0 di ⊕ d ′i , which is equal to

Mitigating Power Side Channels during Compilation ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

HW (D ⊕ D ′), the Hamming Weight of the bit-wise XOR of D and

D ′. Another interpretation is to regard HW (D) as a special case of
HD(D,D ′), where all bits in the reference value D ′ are set to 0.

The HW/HD models have been validated on real devices [22, 27,

46, 55, 58]. The correlation between power variance and number

of 1-bits may be explained using the leakage current of a CMOS

transistor, which is the foundation of modern computing devices.

Broadly speaking, a CMOS transistor has two kinds of leakage

currents: static and dynamic. Static leakage current exists all the
time but the volume depends on whether the transistor is on or

off, i.e., a logical 1. Dynamic leakage current occurs only when a

transistor is switched (0-1 or 1-0 flip). While static leakage current

is captured by the HW model, dynamic leakage current is captured

by the HD model (for details refer to Mangard [52].)

3.3 The Data Dependency
We consider two dependency relations: syntactical and statistical.
Syntactical dependency is defined over the program structure: a

function f (k, . . .) syntactically depends on the variable k , denoted
Dsyn(f ,k), if k appears in the expression of f ; that is, k is in the

support of f , denoted k ∈ supp(f).
Statistical dependency is concerned with scenarios where ran-

dom variables are involved. For example, when f (k, r) = k ⊕ r , the
probability of f being logical 1 (always 50%) is not dependent on k .
However, when f (k, r) = k ∨ r , where r is uniformly distributed

in [0, 1], the probability of f being logical 1 is 100% when k is 1,

but 50% when k is 0. In the latter case, we say that f is statistically

dependent on k , denoted Dsta(f ,k).
The relative strengths of the dependency relations are as follows:

¬Dsyn(f ,k) =⇒ ¬Dsta(f ,k), i.e., if f is syntactically independent
of k , it is statistically independent of k . In this work, we rely on

Dsyn to inferDsta during type inference, since the detection of HD

leaks must be both fast and sound.

4 TYPE-BASED STATIC LEAK DETECTION
Weuse a type system that starts from the input annotation (INPUBLIC ,
INSECRET and INRANDOM) and computes a distribution type for all
variables. The type indicates whether a variable may statistically

depend on the secret input.

4.1 The Type Hierarchy
The distribution type of variable v , denoted TYPE(v), may be one

of the following kinds:

• RUD, which stands for random uniform distribution, means

v is either a random inputm ∈ INRANDOM or perfectly ran-

domized [18] bym, e.g., v = k ⊕m.

• SID, which stands for secret independent distribution, means

that, while not RUD,v is statistically independent of the secret

variable in INSECRET .
• UKD, which stands for unknown distribution, indicates that
we are not able to prove that v is RUD or SID and thus have

to assume that v may have a leak.

The three types form a hierarchy: UKD is the least desired because
it means that a leak may exist. SID is better: although it may not

be RUD, we can still prove that it is statistically independent of the

secret, i.e., no leak. RUD is the most desired because the variable

not only is statistically independent of the secret (same as in SID),
but also can be used like a random input, e.g., to mask other (UKD)

variables. For leak mitigation purposes, it is always sound to treat

an RUD variable as SID, or an SID variable as UKD, although it may

force instructions to be unnecessarily mitigated.

In practice, we want to infer as many SID and RUD variables as
possible. For example, if k ∈ INSECRET ,m ∈ INRANDOM and km =
k ⊕m, then TYPE(k) = UKD and TYPE(km) = RUD. If x ∈ INPUBLIC
and xkm = x ∧ km , then TYPE(xkm) = SID because, although

x may have any distribution, since km is RUD, xkm is statistically

independent of the secret.

We prefer RUD over SID, when both are applicable to a variable

x1, because if x1 is XOR-ed with a UKD variable x2, we can easily

prove that x = x1 ⊕ x2 is RUD using local inference, as long as x1 is
RUD and x2 is not randomized by the same input variable. However,

if x1 is labeled not as RUD but as SID, local inference rules may not

be powerful enough to prove that x is RUD or even SID; as a result,
we have to treat x as UKD (leak), which is less accurate.

4.2 Datalog based Analysis
In the remainder of this section, we present type inference for

individual variables first, and then for HD-sensitive pairs.

We use Datalog to implement the type inference. Here, program

information is captured by a set of relations called the facts, which
include the annotation of input in INPUBLIC (SID), INSECRET (UKD)
and INRANDOM (RUD). The inference algorithm is codified in a set

of relations called the rules, which are steps for deducing types. For

example, when z = x ⊕m andm is RUD, z is also RUD regardless of
the actual expression that defines x , as long asm < supp(x). This
can be expressed as an inference rule.

After generating both the facts and the rules, we combine them

to form a Datalog program, and solve it using an off-the-shelf

Datalog engine. Inside the engine, the rules are applied to the facts

to generate new facts (types); the iterative procedure continues

until the set of facts reaches a fixed point.

Since our type inference is performed on the LLVM IR, there are

only a few instruction types to consider. For ease of presentation,

we assume that a variable v is defined by either a unary operator

or a binary operator (n-ary operator may be handled similarly).

• v ← Uop(v1), where Uop is a unary operator such as the

Boolean (or bit-wise) negation.

• v ← Bop(v1,v2), where Bop is a binary operator such as

Boolean (or bit-wise) ⊕, ∧, ∨ and ∗ (finite-field multiplica-

tion).

For v ← Uop(v1), we have TYPE(v) = TYPE(v1), meaning v and

v1 have the same type. For v ← Bop(v1,v2), the type depends on
(1) if Bop is Xor , (2) if TYPE(v1) and TYPE(v2) are SID or RUD, and
(3) the sets of input variables upon which v1 and v2 depend.

4.3 Basic Type Inference Rules
Prior to defining the rules for Bop, we define two related functions,

unq and dom, in addition to supp(v), which is the set of input

variables upon which v depends syntactically.

Definition 4.1. unq : V → INRANDOM is a function that returns,
for each variable v ∈ V , a subset of mask variables defined as fol-
lows: if v ∈ INRANDOM , unq(v) = {v}; but if v ∈ IN \ INRANDOM ,
unq(v) = { };
• if v ← Uop(v1), unq(v) = unq(v1); and
• ifv ← Bop(v1,v2), unq(v) = (unq(v1) ∪ unq(v2))\(supp(v1)
∩ supp(v2)).

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jingbo Wang, Chungha Sung, and Chao Wang

Given the data-flow graph of all instructions involved in computing

v and an input variablem ∈ unq(v), there must exist a unique path

fromm to v in the graph. If there are more paths (or no path),m
would not have appeared in unq(v).

Definition 4.2. dom : V → INRANDOM is a function that returns,
for each variable v ∈ V , a subset of mask variables defined as follows:
if v ∈ INRANDOM , dom(v) = {v}, but if v ∈ IN \ INRANDOM , then
dom(v) = { };
• if v ← Uop(v1), dom(v) = dom(v1); and
• ifv ← Bop(v1,v2), where operatorBop = Xor, then dom(v) =
(dom(v1) ∪ dom(v2)) ∩ unq(v); else dom(v) = { }.

Given the data-flow graph of all instructions involved in computing

v and an inputm ∈ dom(v), there must exist a unique path from

m to v , along which all binary operators are Xor; if there are more

such paths (or no path),m would not have appeared in dom(v).
Following the definitions of supp, unq and dom, it is straightfor-

ward to arrive at the basic inference rules [9, 61, 83]:

Rule1
dom(v) , ∅

TYPE(v) = RUD

Rule2
supp(v) ∩ INSECRET = ∅ ∧ TYPE(v) , RUD

TYPE(v) = SID

Here, Rule1 says if v =m ⊕ expr , wherem is a random input and

expr is not masked bym, then v has random uniform distribution.

This is due to the property of XOR. Rule2 says if v is syntactically

independent of variables in INSECRET , it has a secret independent
distribution, provided that it is not RUD.

4.4 Inference Rules to Improve Accuracy
With the two basic rules only, any variable not assigned RUD or

SID will be treated as UKD, which is too conservative. For example,

v = (k ⊕ m) ∧ x where k ∈ INSECRET , m ∈ INRANDOM and x ∈
INPUBLIC , is actually SID. This is because k ⊕m is random and the

other component, x , is secret independent. Unfortunately, the two
basic rules cannot infer that v is SID. The following rules are added
to solve this problem.

Rule3a

v ← Bop(v1, v2) ∧ supp(v1) ∩ supp(v2) = ∅
∧Bop < {Xor, GMul } ∧ TYPE(v1) = RUD ∧ TYPE(v2) = SID

TYPE(v) = SID

Rule
3b

v ← Bop(v1, v2) ∧ supp(v1) ∩ supp(v2) = ∅
∧Bop < {Xor, GMul } ∧ TYPE(v1) = SID ∧ TYPE(v2) = RUD

TYPE(v) = SID

These rules mean that, for any Bop = {∧,∨}, if one operand is RUD,
the other operand is SID, and they share no input, then v has a

secret independent distribution (SID). GMul denotes multiplication

in a finite field. Here, supp(v1) ∩ supp(v2) = ∅ is need; otherwise,
the common input may cause problem. For example, if v1 ←m ⊕ k
and v2 ← m ∧ x , then v = (v1 ∧ v2) = (m ∧ ¬k) ∧ x has a leak

because if k = 1, v = 0; but if k = 0, v =m ∧ x .

Rule4

v ← Bop(v1, v2) ∧ supp(v1) ∩ supp(v2) = ∅
∧TYPE(v1) = SID ∧ TYPE(v2) = SID

TYPE(v) = SID

Similarly, Rule4 may elevate a variable v from UKD to SID, e.g., as
in v ← ((k ⊕m) ∧ x1) ∧ (x2) where x1 and x2 are both SID. Again,
the condition supp(v1) ∩ supp(v2) = ∅ in Rule4 is needed because,

otherwise, there may be cases such asv ← ((k ⊕m)∧x1)∧(x2∧m),
which is equivalent to v ← ¬k ∧ (m ∧ x1 ∧ x2) and thus has a leak.

Figure 5 shows the other inference rules used in our system.

Since these rules are self-explanatory, we omit the proofs.

4.5 Detecting HD-sensitive Pairs
Based on the variable types, we compute HD-sensitive pairs. For

each pair (v1,v2), we check if HD(v1,v2) results in a leak when v1
and v2 share a register. There are two scenarios:

• v1 ← expr1;v2 ← expr2 , meaning v1 and v2 are defined in

two instructions.

• v1 ← Bop(v2,v3), where the result v1 and one operand (v2)
are stored in the same register.

In the two-instruction case, we checkHW (expr1 ⊕ expr2) using Xor-
related inference rules. For example, if v1 ← k ⊕m and v2 ← m,

sincem appears in the supports of both expressions, (k ⊕m) ⊕m
is UKD. Such leak will be denoted SEN_HDD (v1,v2), where D stands

for “Double”.

In the single-instruction case, we check HW (Bop(v2,v3) ⊕ v2)
based on the operator type. When Bop = ∧, we have (v2∧v3)⊕v2 =
v2∧¬v3; when Bop = ∨, we have (v2∨v3) ⊕v2 = (¬v2∧v3); when
Bop = ⊕ (Xor), we have (v2 ⊕ v3) ⊕ v2 = v3; and when Bop = ∗
(GMul), the result of (v2 ∗ v3) ⊕ v2 is {v2,v3} if v2 ∗ v3 , 0x01
and is (v2 ⊕ 0x01) otherwise. Since the type inference procedure is
agnostic to the result of (v2 ∗v3), the type of (v2 ∗v3) ⊕v2 depends
on the types of v3 and v2; that is, TYPE(v2) = UKD ∨ TYPE(v3) =
UKD =⇒ TYPE((v2 ∗ v3) ⊕ v2) = UKD. If there is a leak, it will be
denoted SEN_HDS (v1,v2).

The reason why HD leaks are divided to SEN_HDD and SEN_HDS
is because they have to be mitigated differently. When the leak

involves two instructions, it may be mitigated by constraining the

register allocation algorithm such thatv1 andv2 no longer can share
a register. In contrast, when the leak involves a single instruction,

it cannot be mitigated in this manner because in x86, for example,

all binary instructions require the result to share the same register

or memory location with one of the operands. Thus, mitigating the

SEN_HDS requires that we rewrite the instruction itself.

We also define a relation Share(v1,v2), meaningv1 andv2 indeed
may share a register, and use it to filter the HD-sensitive pairs, as

shown in the two rules below.

Share(v1, v2) ∧ TYPE(v1 ⊕ v2) = UKD ∧ v1 ← expr1 ∧ v2 ← expr2
SEN_HDD (v1, v2)

Share(v1, v2) ∧ TYPE(v1 ⊕ v2) = UKD ∧ v1 ← Bop(v2, v3)
SEN_HDS (v1, v2)

Backend information (Section 6.1) is required to define the rela-

tion; for now, we assume ∀v1,v2 : Share(v1,v2) = true.

5 MITIGATION DURING CODE GENERATION
We mitigate leaks by using the two types of HD-sensitive pairs as

constraints during register allocation.

Register Allocation. The classic approach, especially for static

compilation, is based on graph coloring [24, 38], whereas dynamic

compilation may use faster algorithms such as lossy graph color-
ing [28] or linear scan [65]. We apply mitigation on both graph col-

oring and LLVM’s basic register allocation algorithms. For ease of

comprehension, we use graph coloring to illustrate our constraints.

Mitigating Power Side Channels during Compilation ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Rule5a

v ← Bop(v1, v2)∧
dom(v1) \ supp(v2) = ∅ ∧ TYPE(v1) = RUD∧
dom(v1) = dom(v2) ∧ supp(v1) = supp(v2)

TYPE(v) = SID
Rule

5b

v ← Bop(v1, v2)∧
dom(v2) \ supp(v1) = ∅ ∧ TYPE(v2) = RUD∧
dom(v1) = dom(v2) ∧ supp(v1) = supp(v2)

TYPE(v) = SID

Rule6
v ← Bop(v1, v2) ∧ Bop < {Xor, GMul } ∧ (dom(v1) \ supp(v2) , ∅ ∨ dom(v2) \ supp(v1) , ∅) ∧ TYPE(v1) = RUD ∧ TYPE(v2) = RUD

TYPE(v) = SID

Rule7a

v ← Bop(v1, v2) ∧ Bop = GMul ∧ TYPE(v1) = RUD∧
TYPE(v2) = SID ∧ dom(v1) \ supp(v2) , ∅

TYPE(v) = SID
Rule

7b

v ← Bop(v1, v2) ∧ Bop = GMul ∧ TYPE(v1) = SID∧
TYPE(v2) = RUD ∧ dom(v2) \ supp(v1) , ∅

TYPE(v) = SID

Rule8
v ← Bop(v1, v2) ∧ Bop = GMul ∧ (dom(v1) \ dom(v2) , ∅ ∨ dom(v2) \ dom(v1) , ∅) ∧ TYPE(v1) = RUD ∧ TYPE(v2) = RUD

TYPE(v) = SID

Figure 5: The remaining inference rules used in our type system (in addition to Rule1−4).

In graph coloring, each variable corresponds to a node and each

edge corresponds to an interference between two variables, i.e., they

may be in use at the same time and thus cannot occupy the same

register. Assigning variables to k registers is similar to coloring the

graph with k colors. To be efficient, variables may be grouped to

clusters, or virtual registers, before they are assigned to physical

registers (colors). In this case, each virtual register (vreg), as opposed
to each variable, corresponds to a node in the graph, and multiple

virtual registers may be mapped to one physical register.

5.1 Handling SEN_HDD Pairs
For each SEN_HDD (v1,v2), where v1 and v2 are defined in two in-

structions, we add the following constraints. First,v1 andv2 are not
to be mapped to the same virtual register. Second, virtual registers

vreg1 and vreg2 (for v1 and v2) are not to be mapped to the same

physical register. Toward this end, we constrain the behavior of

two backend modules: Register Coalescer and Register Allocator.
Our constraint on Register Coalescer states that vreд1 and vreд2,

which correspond to v1 and v2, must never coalesce, although each

of themmay still coalesce with other virtual registers. As for Register
Allocator, our constraint is on the formulation of the graph. For

each HD-sensitive pair, we add a new interference edge to indicate

that vreд1 and vreд2 must be assigned different colors.

During graph coloring, these new edges are treated the same as

all other edges. Therefore, our constraints are added to the register

allocator and its impact is propagated automatically to all subse-

quent modules, regardless of the architecture (x86, MIPS or ARM).

When variables cannot fit in the registers, some will be spilled to

memory, and all reference to them will be directed to memory. Due

to the constraints we added, there may be more spilled variables,

but spilling is handled transparently by the existing algorithms in

LLVM. This is an advantage of our approach: it identifies a way to

constrain the behavior of existing modules in LLVM, without the

need to reimplement any module from scratch.

5.2 Handling SEN_HDS Pairs
For each SEN_HDS (v1,v2) pair, where v1 and v2 appear in the same

instruction, we additionally constrain the DAG Combiner module to

rewrite the instruction before constraining the register allocation

modules. To see why, considermk = (m ⊕ k), which compiles to

MOVL -4(%rbp), %ecx //-4(%rbp)= m (random)
XORL -8(%rbp), %ecx //-8(%rbp)= k (secret)

Here, -4(%rbp) and -8(%rbp) are memory locations for m and k ,
respectively. Althoughm andmk are RUD (no leak) when stored in

%ecx, the transition fromm tomk , HW (m ⊕mk) = k , has a leak.

1 void remask(uint8_t s[16], uint8_t m1, uint8_t m2, uint8_t m3, uint8_t m4,
uint8_t m5, uint8_t m6, uint8_t m7, uint8_t m8){

2 int i;
3 for(i = 0; i< 4; i++){
4 s[0+i*4] = s[0+i*4] ^ (m1^m5);
5 s[1+i*4] = s[1+i*4] ^ (m2^m6);
6 s[2+i*4] = s[2+i*4] ^ (m3^m7);
7 s[3+i*4] = s[3+i*4] ^ (m4^m8);
8 }
9 }

1 //Before Mitigation
2 movslq -28(%rbp), %rdx
3 movq -16(%rbp), %rcx
4 movzbl (%rcx,%rdx,4), %edi
5 movzbl -17(%rbp), %esi
6 movzbl -21(%rbp), %eax
7 xorl %esi, %eax
8 xorl %edi, %eax
9 movb %al, (%rcx,%rdx,4)

1 //After mitigation
2 movslq -28(%rbp), %rdx
3 movq -16(%rbp), %rcx
4

5 movzbl -17(%rbp), %esi
6 movzbl -21(%rbp), %eax
7 xorl %esi, %eax
8

9 xorb %al, (%rcx,%rdx,4)

Figure 6: Code snippet from the Byte Masked AES [82].

To remove the leak, we must rewrite the instruction:

MOVL -4(%rbp), %ecx //-4(%rbp)= m
XORL %ecx, -8(%rbp)//-8(%rbp)= k, and then mk

Whilem still resides in %ecx, both k andmk reside in the memory

-8(%rbp). There is no leak because %ecx only stores m (RUD) and
HW (m ⊕m) = 0. Furthermore, the solution is efficient in that no

additional memory is needed. If k were to be used subsequently,

we would copy k to another memory location and re-directed uses

of k to that location.

Example. Figure 6 shows a real program [82], where s is an

array storing sensitive data whilem1-m8 are random masks. The

compiled code (left) has leaks, whereas the mitigated code (right)

is leak free. The reason why the original code (left) has leaks is

because, prior to Line 8, %eax storesm1 ⊕m5, whereas after Line 8,

%eax stores s[0+ i ∗ 4] ⊕m1 ⊕m5; thus, bit-flips in %eax is reflected

in HW (%eax1 ⊕ %eax2) = s[0 + i ∗ 4], which is the sensitive data.

During register allocation, a virtual register vreg1 would corre-

spond tom1 ⊕m5 while vreg2 would correspond to s[0 + i ∗ 4] ⊕
m1 ⊕m5. Due to a constraint from this SEN_HDS pair, our method

would prevent vreg1 and vreg2 from coalescing, or sharing a physi-

cal register. After rewriting, vreg2 shares the same memory location

as s[0 + i ∗ 4]) while vreg1 remains unchanged. Thus,m1 ⊕m5 is

stored in %al and s[0+ i ∗ 4] ⊕m1 ⊕m5 is spilled to memory, which

removes the leak.

6 DOMAIN-SPECIFIC OPTIMIZATIONS
While the method presented so far has all the functionality, it can

be made faster by domain-specific optimizations.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jingbo Wang, Chungha Sung, and Chao Wang

6.1 Leveraging the Backend Information
To detect HD leaks that likely occur, we focus on pairs of variables

that may share a register as opposed to arbitrary pairs of variables.

For example, if the live ranges of two variables overlap, they will

never share a register, and we should not check them for HD leaks.

Such information is readily available in the compiler’s backend

modules, e.g., in graph coloring based register allocation, variables

associated with any interference edge cannot share a register.
Thus, we define Share(v1,v2), meaning v1 and v2 may share a

register. After inferring the variable types as RUD, SID, or UKD, we
use Share(v1,v2) to filter the variable pairs subjected to checking

for SEN_HDD and SEN_HDS leaks (see Section 4.5). We will show in

experiments that such backend information allows us to dramati-

cally reduce the number of HD-sensitive pairs.

6.2 Pre-computing Datalog Facts
By default, only input annotation and basic data-flow (def-use) are

encoded as Datalog facts, whereas the rest has to be deduced by

inference rules. However, Datalog is not the most efficient way of

computing sets, such as supp(v), unq(v) and dom(v), or performing

set operations such asm1 ∈ supp(v).
In contrast, it is linear time [61] to compute sets such as supp(v),

unq(v) and dom(v) explicitly. Thus, we choose to precompute them

in advance and encode the results as Datalog facts. In this case,

precomputation results are used to jump start Datalog based type

inference.Wewill show, through experiments, that the optimization

can lead to faster type inference than the default implementation.

6.3 Efficient Encoding of Datalog Relations
There are different encoding schemes for Datalog. For example, if

IN = {i0, . . . , i3} and supp(v1) = {i1, i2} and supp(v2) = {i0, i1, i3}.
One way is to encode the sets is using a relation Supp : V × IN ,

where V are variables and IN are supporting inputs:

Supp(v1, i1) ∧ Supp(v1, i2) = supp(v1)
Supp(v2 , i0) ∧ Supp(v2 , i1) ∧ Supp(v2 , i3) = supp(v2)

While the size of Supp is |V | |IN |, each set needs up to |IN | predi-
cates, and set operation needs |IN |2 predicates.

Another way is to encode the sets is using a relation Supp :

V × 2I N , where 2
IN

is the power-set (set of all subsets of IN):

Supp(v1,b0110) = supp(v1)
Supp(v2,b1011) = supp(v2)

While the size of Supp is |V | 2 |I N | , each set needs one predicate,

and set operation needs 2 predicates (a bit-wise operation). When

|IN | is small, the second approach is more compact; but as |IN |
increases, the table size of Supp increases exponentially.

Therefore, we propose an encoding, called segmented bitset

representation (idx,bitset), where idx=i refers to the i-th segment

and bitseti denotes the bits in the i-th segment.

Supp(v1, 1, b01) ∧ Supp(v1, 0, b10) = supp(v1)
Supp(v2 , 1, b10) ∧ Supp(v2 , 0, b11) = supp(v2)

In practice, when the bitset size is bounded, e.g., to 4, the table size

remains small while the number of predicates increases moderately.

This encoding scheme is actually a generalization of the previous

two. When the size of bitset decreases to 1 and the number of

segments increases to |IN |, it degenerates to the first approach.

Table 2: Statistics of the benchmark programs.

Name Description LoC

Program Variables

INPUBLIC INSECRET INRANDOM Internal

P1 AES Shift Rows [14] 11 0 2 2 22

P2 Messerges Boolean [14] 12 0 2 2 23

P3 Goubin Boolean [14] 12 0 1 2 32

P4 SecMultOpt_wires_1 [69] 25 1 1 3 44

P5 SecMult_wires_1 [69] 25 1 1 3 35

P6 SecMultLinear_wires_1 [69] 32 1 1 3 59

P7 CPRR13-lut_wires_1 [30] 81 1 1 7 169

P8 CPRR13-OptLUT_wires_1 [30] 84 1 1 7 286

P9 CPRR13-1_wires_1 [30] 104 1 1 7 207

P10 KS_transitions_1 [8] 964 1 16 32 2,329

P11 KS_wires [8] 1,130 1 16 32 2,316

P12 keccakf_1turn [8] 1,256 0 25 75 2,314

P13 keccakf_2turn [8] 2,506 0 25 125 4,529

P14 keccakf_3turn [8] 3,764 0 25 175 6,744

P15 keccakf_7turn [8] 8,810 0 25 349 15,636

P16 keccakf_11turn [8] 13,810 0 25 575 24,472

P17 keccakf_15turn [8] 18,858 0 25 775 33,336

P18 keccakf_19turn [8] 23,912 0 25 975 42,196

P19 keccakf_24turn [8] 30,228 0 25 1,225 53,279

P20 AES_wires_1 [30] 34,358 16 16 1,232 63,263

When the size of bitset increases to |IN | and the number of segments

decrease to 1, it degenerates to the second approach.

7 EXPERIMENTS
We have implemented our method in LLVM 3.6 [49]. We used

the µZ [42] Datalog engine in Z3 [31] to infer types. While the

mitigation part targeted x86, it may be extended to other platforms.

We conducted experiments on a number of cryptographic programs.

Table 2 shows the statistics, including the name, a description, the

number of lines of code, and the number of variables, which are

divided further to input and internal variables. All benchmarks are

masked. P1-P3, in particular, are protected by Boolean masking

that was previously verified [14, 35, 83]. The other programs, from

[8], are masked multiplication [69], masked S-box [30], masked

AES [30] and various masked MAC-Keccak functions [8].

Our experiments were designed to answer three questions: (1) Is

our type system effective in detecting HD leaks? (2) Are the domain-

specific optimizations effective in reducing the computational over-

head? (3) Does the mitigated code have good performance after

compilation, in terms of both the code size and the execution speed?

In all the experiments, we used a computer with 2.9 GHz CPU

and 8GB RAM, and set the timeout (T/O) to 120 minutes.

7.1 Leak Detection Results
Table 3 shows the results, where Columns 1-2 show the benchmark

name and detection time and Columns 3-4 show the number of HD

leaks detected. The leaks are further divided into SEN_HDD (two-

instruction) and SEN_HDS (single-instruction). Columns 5-7 show

more details of the type inference, including the number of RUD, SID
and UKD variables, respectively. While the time taken to complete

type inference is not negligible, e.g., minutes for the larger programs,

it is reasonable becausewe perform amuch deeper program analysis

than mere compilation. To put it into perspective, the heavy-weight

formal verification approaches often take hours [35, 83].

As for the number of leaks detected, although the benchmark

programs are all masked, during normal compilation, new HD leaks

were still introduced as a result of register reuse. For example, in

P20, which is a masked AES [8], we detected 33 SEN_HDS leaks

after analyzing more than 60K intermediate variables. Overall, we

detected HD leaks in 17 out of the 20 programs. Furthermore, 6 of

Mitigating Power Side Channels during Compilation ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 3: Results of type-based HD leak detection.

Name Detection Time

HD Leaks Detected Details of the Inferred Types

UKD[35]
SEN_HDD SEN_HDS RUD SID UKD

P1 0.061s NONE NONE 22 0 4 4

P2 0.105s NONE NONE 20 0 7 6

P3 0.099s NONE 2 31 3 1 1

P4 0.208s NONE 2 31 12 6 5

P5 0.216s NONE 2 29 10 1 1

P6 0.276s 4 2 48 15 1 1

P7 0.213s 10 2 151 25 2 2

P8 0.147s 12 2 249 42 4 4

P9 0.266s 6 2 153 61 2 2

P10 0.550s NONE NONE 2,334 12 31 -*

P11 0.447s 4 16 2,334 0 31 -

P12 0.619s NONE 7 2,062 300 52 -

P13 1.102s NONE 5 4,030 600 49 -

P14 1.998s NONE 5 5,995 900 49 -

P15 16.999s NONE 25 13,861 2,100 49 -

P16 24.801s NONE 5 21,723 3,300 49 -

P17 59.120s NONE 5 29,587 4,500 49 -

P18 2m1.540s NONE 4 37,449 5,700 47 -

P19 3m22.415s NONE 5 47,280 7,200 49 -

P20 16m12.320s 29 33 38,070 26,330 127 -

-*Model counting can not finish on P10-P20 due to the limited scalability

these 17 programs have both SEN_HDD and SEN_HDS leaks, while

the remaining 11 have only SEN_HDS leaks.

Results in Columns 5-7 of Table 3 indicate the inferred types

of program variables. Despite the large number of variables in a

program, our type inference method does a good job in proving

that the vast majority of them are RUD or SID (no leak); even for

the few UKD variables, after the backend information is used, the

number of actual HD leaks detected by our method is small. The

last column of Table 3 shows the UKD variables detected by model

counting [35, 83]. In comparison, our type system reports only 5%

false postives (i.e., our inference rules are conservative).

7.2 Effectiveness of Optimizations
To quantify the impact of our optimizations, we measured the per-

formance of our method with and without them. Table 4 shows the

significant differences in analysis time (Columns 2-3) and detected

HD leaks (Columns 4-7). Overall, the optimized version completed

all benchmarks whereas the unoptimized only completed half. For

P12, in particular, the optimized version was 11,631X faster be-

cause the unoptimized version ran out of memory and started using

virtual memory, which resulted in the slow-down.

Leveraging the backend information also drastically reduced the

number of detected leaks. This is because, otherwise, we have to

be conservative and assume any two variables may share a register,

which results in many false leaks in x86. In P12, for example, using

the backend information resulted in 260X fewer leaks.

7.3 Leak Mitigation Results
We compared the size and execution speed of the LLVM compiled

code, with and without our mitigation. The results are shown in

Table 5, including the number of bytes in the assembly code and

the execution time. Columns 8-9 show more details: the number of

virtual registers marked as sensitive and non-sensitive, respectively.

The results show that our mitigation has little performance over-

head. First, the code sizes are almost the same. For P8, the mitigated

code is even smaller because, while switching the storage from reg-

ister to memory during our handling of the SEN_HDS pairs, subse-

quent memory stores may be avoided. Second, the execution speeds

are also similar. Overall, the mitigated code is 8%-11% slower, but

Table 4: Results of quantifying impact of optimizations.

Name

Detection Time Without Backend-Info With Backend-Info

w/o optimization w/ optimization SEN_HDD SEN_HDS SEN_HDD SEN_HDS

P1 0.865s 0.061s 0 18 0 0

P2 0.782s 0.105s 0 9 0 0

P3 0.721s 0.099s 0 15 0 2

P4 1.102s 0.208s 0 32 0 2

P5 1.206s 0.216s 0 32 0 2

P6 1.113s 0.276s 8 40 4 2

P7 5.832s 0.213s 44 144 10 2

P8 4.306s 0.147s 68 323 12 2

P9 5.053s 0.266s 43 160 6 2

P10 10m1.513s 0.550s 12 180 0 0

P11 15m51.969s 0.447s 12 180 4 16

P12 T/O 0.619s 473 1,820 0 7

P13 T/O 1.102s 492 1,884 0 5

P14 T/O 1.998s 492 1,884 0 5

P15 T/O 16.999s 492 1,884 0 25

P16 T/O 24.801s 492 1,884 0 5

P17 T/O 59.120s 492 1,884 0 5

P18 T/O 2m1s 468 1,800 0 4

P19 T/O 3m22s 492 1,884 0 5

P20 T/O 16m13s 620 1,944 29 33

Table 5: Results of our HD leak mitigation.

Name

Code-size Overhead (byte) Runtime Overhead (us) Virtual Register

original mitigated % original mitigated % sensitive non-sensitive

P3 858 855 0.3 - - - 2 4

P4 1,198 1,174 2 0.23 0.20 -13 2 13

P5 1,132 1,108 2.12 0.30 0.37 2.3 2 9

P6 1,346 1,339 0.52 0.30 0.27 -10 5 8

P7 3,277 3,223 1.64 0.29 0.30 3.4 10 27

P8 3,295 3,267 0.85 0.20 0.22 10 11 83

P9 3,725 3,699 0.69 0.7 0.78 11 10 29

P11 44,829 44,735 0.21 5.60 6.00 7.1 18 680

P12 46,805 46,787 0.03 6.20 6.50 4.83 7 726

P13 90,417 90,288 0.14 13.60 13.00 -4.41 5 1,384

P14 134,060 133,931 0.09 23.00 21.00 -8.69 5 2,040

P15 313,454 312,930 0.16 52.00 58.00 11.5 25 4,637

P16 496,087 495,943 0.03 91.00 96.00 5.49 5 7,288

P17 677,594 677,450 0.02 129.00 136.00 5.42 5 9,912

P18 859,150 859,070 0.009 178.00 183.00 2.80 4 12,537

P19 1,086,041 1,085,897 0.047 237.000 250.000 5.48 5 15,816

P20 957,372 957,319 0.005 228.600 248.300 8.75 56 9,035

in some cases, e.g., P4 and P6, the mitigated code is faster because

of our memory related rewriting.

The main reason why our mitigation has little performance

overhead is because, as shown in the last two columns of Table 5,

compared to the total number of virtual registers, the number of

sensitive ones is extremely small. P17 (keccakf_15turn), for exam-

ple, has only 5 sensitive virtual registers out of the 9,917 in total.

Thus, our mitigation only has to modify a small percentage of the

instructions, which does not lead to significant overhead.

7.4 Comparison to High-Order Masking
On the surface, HD leaks seem to be a type of second-order leaks,

which involves two values. For people familiar with high-order

masking [8], a natural question is whether the HD leaks can be

mitigated using high-order masking techniques. To answer the

question, we conducted two experiments. First, we checked if HD

leaks exist in programs equipped with high-order masking. Second,

we compared the size and execution speed of the code protected by

either high-order masking or our mitigation.

Table 6 shows the results on P4-P9, which come from [8] and have

versions protected by d-order masking, where d = 2 to 5. While

initially we also expected to see no HD leaks in these versions, the

results surprised us. As shown in the last two columns, HD leaks

were detected in all these high-order masking protected programs.

A closer look shows that these leaks are all of the SEN_HDS type,

meaning they are due to restriction of the x86 ISA: any binary

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jingbo Wang, Chungha Sung, and Chao Wang

Table 6: Comparison with order-d masking techniques [8].
Name Code size (byte) Run time (us) HW-leak HD-leak SEN_HDD SEN_HDS
P4 (ours) 1,171 0.20 No No NONE NONE

P4 (d=2) 2,207 0.75 No Yes NONE 2

P4 (d=3) 4,009 0.28 No Yes NONE 2

P4 (d=4) 5,578 0.75 No Yes NONE 2

P4 (d=5) 7,950 1.00 No Yes NONE 2

P5 (ours) 1,108 0.37 No No NONE NONE

P5 (d=2) 2,074 0.70 No Yes NONE 2

P5 (d=3) 3,733 0.60 No Yes NONE 2

P5 (d=4) 5,120 0.75 No Yes NONE 2

P5 (d=5) 7,197 0.67 No Yes NONE 2

P6 (ours) 1,339 0.27 No No NONE NONE

P6 (d=2) 3,404 0.83 No Yes NONE 2

P6 (d=3) 6,089 0.57 No Yes NONE 2

P6 (d=4) 9,640 0.80 No Yes NONE 2

P6 (d=5) 14,092 1.60 No Yes NONE 2

P7 (ours) 3,223 0.30 No No NONE NONE

P7 (d=2) 8,456 1.41 No Yes NONE 2

P7 (d=3) 15,881 3.20 No Yes NONE 2

P7 (d=4) 25,521 4.20 No Yes NONE 2

P7 (d=5) 37,578 7.80 No Yes NONE 2

P8 (ours) 3,267 0.25 No No NONE NONE

P8 (d=2) 8,782 1.30 No Yes NONE 2

P8 (d=3) 16,420 2.00 No Yes NONE 2

P8 (d=4) 26,431 4.00 No Yes NONE 2

P8 (d=5) 38,996 8.00 No Yes NONE 2

P9 (ours) 3,699 0.45 No No NONE NONE

P9 (d=2) 9,258 1.15 No Yes NONE 2

P9 (d=3) 17,565 3.00 No Yes NONE 2

P9 (d=4) 28,189 5.11 No Yes NONE 2

P9 (d=5) 41,383 8.40 No Yes NONE 2

operation has to store the result and one of the operands in the

same place, and by default, that place is a general-purpose register.

Measured by the code size and speed, our method is more effi-

cient. In P9, for example, our mitigated code has 3K bytes in size

and runs in 0.45us, whereas the high-order masking protected code

has 9K to 41K bytes (for d = 2 to 5) and runs in 1.15us to 8.40us.

7.5 Threat to Validity
We rely on the HW/HD models [52, 53] and thus our results are

valid only when these models are valid. We assume the attacker can

only measure the power consumption but not other information

such as data-bus or timing. If such information becomes available,

our mitigation may no longer be secure. Since we focus on crypto-

graphic software, which has simple program structure and language

constructs, there is no need for more sophisticated analysis than

what is already available in LLVM. Our analysis is intra-procedural:

for cryptographic benchmarks, we can actually inline all functions

before conducting the analysis. Nevertheless, some of these issues

need to be addressed to broaden the scope of our tool.

8 RELATEDWORK
Existing methods for detecting power side channels fall into three

categories: static analysis, formal verification, and hybrid approach.

Static analysis relies on compile-time information to check if mask-

ing is implemented correctly [8, 9, 14, 16, 61]. They are faster than

formal verification, which often relies on model counting [35–37].

However, formal verification is more accurate than static analy-

sis. The hybrid approach [83] aims to combine the two types of

techniques to obtain the best of both worlds. However, none of

these methods focused on the leaks caused by register reuse inside

a compiler, which is our main contribution.

Specifically, although our type based method for detecting side-

channel leaks is inspired by several prior works [8, 16, 61, 83], it

is significantly different from theirs. For example, the most recent

method, proposed by Zhang et al. [83], interleaves type inference

with a model-counting procedure, with the goal of detecting HW

leaks caused by errors in masking implementations; however, it

does not detect HD leaks caused by register reuse nor remove

these leaks, and does not use Datalog or any of the domain-specific

optimizations we have proposed.

Barthe et al. [8] proposed a relational analysis technique to check

the correctness of high-order masking. When applied to a pair of

variables, however, it has to consider all possible ways in which

second-order leaks may occur, as opposed to the specific type in-

volved in register reuse. Thus, mitigation has to be more expensive

in terms of the code size and the execution speed. Furthermore,

as we have shown in experiments, it is not effective in preventing

leaks caused by register reuse.

Another difference between our method and existing methods is

our focus on analyzing the word-level representation of a program,

as opposed to a bit-level representation. While turning a program

into a purely Boolean, circuit-like, representation is feasible [3, 15,

35, 83], it does not fit into the standard flow of compilers. As such,

implementing the approach in compilers is not straightforward.

The practical security against side-channel leakages via masking

can be evaluated using the ISW model [45] and subsequent exten-

sions [6, 29] with transitions. However, they do not consider leaks

that are specific to register use in modern compilers. They do not

consider constraints imposed by the instruction set architecture

either. Furthermore, they need to double the masking order [6]

to deal with leaks with transitions, but still do not prevent leaks

introduced by compilation.

It is known that security guarantees of software countermea-

sures may become invalid after compilation [11, 40, 54, 62]. In this

context, Barthe et al. [11] showed that the compilation process could

maintain the constant-time property for timing side-channel leaks,

while our work addresses potential leaks through power side chan-

nels. Marc [40] also investigated potential vulnerabilities in power

side-channel countermeasures during compiler optimizations, but

did not provide a systematic method for mitigating them.

Beyond power side channels, there are techniques for analyzing

other side channels using logical reasoning [5, 26, 72, 74], abstract

interpretation [12, 32, 76, 80, 81], symbolic execution [7, 21, 41, 51,

63, 64] and dynamic analysis [60, 77]. As for mitigation, there are

techniques based on compilers [1, 13, 59, 80] or program synthesis

tools [19, 34, 75]. However, these techniques focus on side-channel

leaks in the input program. None of them focuses on leaks intro-

duced by register reuse during the compilation.

9 CONCLUSIONS
We have presented a method for mitigating power side-channel

leaks caused by register reuse. The method relies on type inference

to detect leaks, and leverages the type information to constrain the

compiler’s backend to guarantee that register allocation is secure.

We have implemented the method in LLVM for x86 and evaluated it

on cryptographic software. Our experiments demonstrate that the

method is effective in mitigating leaks and the mitigated program

has low runtime overhead. Specifically, it outperforms state-of-the-

art high-order masking techniques in terms of both the code size

and the execution speed.

ACKNOWLEDGMENTS
This work was partially funded by the U.S. National Science Founda-

tion (NSF) under grants CNS-1617203 and CNS-1702824 and Office

of Naval Research (ONR) under the grant N00014-17-1-2896.

Mitigating Power Side Channels during Compilation ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. 2012. A code morph-

ing methodology to automate power analysis countermeasures. In Proceedings of
the The 49th Annual Design Automation Conference 2012 (DAC). 77–82.

[2] Mehdi-Laurent Akkar and Louis Goubin. 2003. A generic protection against

high-order differential power analysis. In International Workshop on Fast Software
Encryption. 192–205.

[3] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and Bárbara Vieira.

2013. Formal verification of side-channel countermeasures using self-composition.

(2013).

[4] Nikolaos Athanasios Anagnostopoulos, Stefan Katzenbeisser, John A. Chandy,

and Fatemeh Tehranipoor. 2018. An overview of DRAM-based security primitives.

Cryptography 2, 2 (2018), 7.

[5] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-

auchi, and ShiyiWei. 2017. Decomposition instead of self-composition for proving

the absence of timing channels. In ACM SIGPLAN Conference on Programming
Language Design and Implementation. 362–375.

[6] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-

Xavier Standaert. 2014. On the cost of lazy engineering for masked software

implementations. In International Conference on Smart Card Research and Ad-
vanced Applications. Springer, 64–81.

[7] Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, and Tevfik

Bultan. 2016. String analysis for side channels with segmented oracles. In ACM
SIGSOFT Symposium on Foundations of Software Engineering. 193–204.

[8] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin

Grégoire, and Pierre-Yves Strub. 2015. Verified proofs of higher-order masking. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques. 457–485.

[9] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin

Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. 2016. Strong non-interference

and type-directed higher-order masking. In ACM SIGSAC Conference on Computer
and Communications Security. 116–129.

[10] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-

Xavier Standaert, and Pierre-Yves Strub. 2017. Parallel implementations of mask-

ing schemes and the bounded moment leakage model. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. 535–566.

[11] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure compilation

of side-channel countermeasures: the case of cryptographic âĂIJconstant-timeâĂİ.

In 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 328–343.
[12] Gilles Barthe, Boris Köpf, Laurent Mauborgne, and Martín Ochoa. 2014. Leakage

Resilience against Concurrent Cache Attacks. In International Conference on
Principles of Security and Trust. 140–158.

[13] Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, François-Xavier Standaert,

and Paolo Ienne. 2011. A first step towards automatic application of power

analysis countermeasures. In ACM/IEEE Design Automation Conference. 230–235.
[14] Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. 2013.

Sleuth: Automated verification of software power analysis countermeasures.

In International Workshop on Cryptographic Hardware and Embedded Systems.
293–310.

[15] Swarup Bhunia, Michael S Hsiao, Mainak Banga, and Seetharam Narasimhan.

2014. Hardware Trojan attacks: threat analysis and countermeasures. Proc. IEEE
102, 8 (2014), 1229–1247.

[16] Elia Bisi, Filippo Melzani, and Vittorio Zaccaria. 2017. Symbolic analysis of

higher-order side channel countermeasures. IEEE Trans. Computers 66, 6 (2017),
1099–1105.

[17] Roderick Bloem, Hannes Gross, Rinat Iusupov, Bettina Könighofer, Stefan Man-

gard, and Johannes Winter. 2018. Formal verification of masked hardware imple-

mentations in the presence of glitches. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 321–353.

[18] Johannes Blömer, Jorge Guajardo, and Volker Krummel. 2004. Provably secure

masking of AES. In International workshop on selected areas in cryptography.
Springer, 69–83.

[19] Arthur Blot, Masaki Yamamoto, and Tachio Terauchi. 2017. Compositional

Synthesis of Leakage Resilient Programs. In International Conference on Principles
of Security and Trust. 277–297.

[20] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specifi-

cation of sophisticated points-to analyses. ACM SIGPLAN Notices 44, 10 (2009),
243–262.

[21] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2018. Symbolic path cost

analysis for side-channel detection. In International Conference on Software Engi-
neering. 424–425.

[22] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation power anal-

ysis with a leakage model. In International workshop on cryptographic hardware
and embedded systems. 16–29.

[23] David Canright and Lejla Batina. 2008. A very compact “perfectly masked” S-

box for AES. In International Conference on Applied Cryptography and Network
Security. Springer, 446–459.

[24] Gregory Chaitin. 2004. Register allocation and spilling via graph coloring. ACM
SIGPLAN notices 39, 4 (2004), 66–74.

[25] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. 1999. Towards

sound approaches to counteract power-analysis attacks. In Annual International
Cryptology Conference. 398–412.

[26] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise detection of side-channel vulner-

abilities using quantitative cartesian hoare logic. In ACM SIGSAC Conference on
Computer and Communications Security. 875–890.

[27] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. 2000. Differential

power analysis in the presence of hardware countermeasures. In International
Workshop on Cryptographic Hardware and Embedded Systems. 252–263.

[28] Keith D. Cooper and AnshumanDasgupta. 2006. Tailoring graph-coloring register

allocation for runtime compilation. In Fourth IEEE/ACM International Symposium
on Code Generation and Optimization (CGO 2006), 26-29 March 2006, New York,
New York, USA. 39–49.

[29] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,

Matthieu Rivain, and Praveen Kumar Vadnala. 2012. Conversion of security

proofs from one leakage model to another: A new issue. In International Work-
shop on Constructive Side-Channel Analysis and Secure Design. Springer, 69–81.

[30] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.

2013. Higher-order side channel security and mask refreshing. In International
Workshop on Fast Software Encryption. 410–424.

[31] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In

Proceedings of the Theory and Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer-Verlag,
Berlin, Heidelberg, 337–340.

[32] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke.

2013. CacheAudit: A tool for the static analysis of cache side channels. In Pro-
ceedings of the 22th USENIX Security Symposium. 431–446.

[33] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. 2015. Making

masking security proofs concrete. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. 401–429.

[34] Hassan Eldib and Chao Wang. 2014. Synthesis of masking countermeasures

against side channel attacks. In International Conference on Computer Aided
Verification. 114–130.

[35] Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014. Formal verification of

software countermeasures against side-channel attacks. ACM Transactions on
Software Engineering and Methodology 24, 2 (2014), 11.

[36] Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. 2014. QMS:

Evaluating the side-channel resistance of masked software from source code. In

ACM/IEEE Design Automation Conference. 1–6.
[37] Pengfei Gao, Hongyi Xie, Jun Zhang, Fu Song, and Taolue Chen. 2019. Quantita-

tive Verification of Masked Arithmetic Programs Against Side-Channel Attacks.

In International Conference on Tools and Algorithms for Construction and Analysis
of Systems. 155–173.

[38] Lal George and AndrewW. Appel. 1996. Iterated register coalescing. In Conference
Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Papers Presented at the Symposium, St. Petersburg Beach,
Florida, USA, January 21-24, 1996. 208–218.

[39] Louis Goubin. 2001. A sound method for switching between boolean and arith-

metic masking. In International Workshop on Cryptographic Hardware and Em-
bedded Systems. Springer, 3–15.

[40] Marc Gourjon. 2019. Towards Secure Compilation of Power Side-Channel Coun-

termeasures.

[41] Shengjian Guo, MengWu, and ChaoWang. 2018. Adversarial symbolic execution

for detecting concurrency-related cache timing leaks. In ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 377–388.

[42] Krystof Hoder, Nikolaj Bjørner, and Leonardo de Moura. 2011. muZ - An effi-

cient engine for fixed points with constraints. In Computer Aided Verification
- 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings (Lecture Notes in Computer Science), Vol. 6806. 457–462.

[43] Shourong Hou, Yujie Zhou, Hongming Liu, and Nianhao Zhu. 2017. Improved

DPA attack on rotating S-boxes masking scheme. In Communication Software
and Networks (ICCSN), 2017 IEEE 9th International Conference on. 1111–1116.

[44] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side

channel attacks against kernel space ASLR. In IEEE Symposium on Security and
Privacy. 191–205.

[45] Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private Circuits: Securing

Hardware against Probing Attacks. In Advances in Cryptology - CRYPTO 2003,
23rd Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings. 463–481.

[46] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis.

In Annual International Cryptology Conference. 388–397.
[47] Paul C Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA,

DSS, and other systems. In Annual International Cryptology Conference. 104–113.
[48] Monica S Lam, John Whaley, V Benjamin Livshits, Michael C Martin, Dzintars

Avots, Michael Carbin, and Christopher Unkel. 2005. Context-sensitive program

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jingbo Wang, Chungha Sung, and Chao Wang

analysis as database queries. In Proceedings of the twenty-fourth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. ACM, 1–12.

[49] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for

lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization. 75.

[50] Abhranil Maiti and Patrick Schaumont. 2011. Improved Ring Oscillator PUF: An

FPGA-friendly Secure Primitive. J. Cryptology 24, 2 (2011), 375–397.

[51] Pasquale Malacaria, MHR Khouzani, Corina S Pasareanu, Quoc-Sang Phan, and

Kasper Luckow. 2018. Symbolic side-channel analysis for probabilistic programs.

In 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 313–327.
[52] Stefan Mangard. 2002. A simple power-analysis (SPA) attack on implementations

of the AES key expansion. In International Conference on Information Security
and Cryptology. Springer, 343–358.

[53] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power analysis
attacks - revealing the secrets of smart cards.

[54] David McCann, CarolynWhitnall, and Elisabeth Oswald. 2016. ELMO: Emulating

Leaks for the ARM Cortex-M0 without Access to a Side Channel Lab. IACR
Cryptology ePrint Archive 2016 (2016), 517.

[55] Thomas S Messerges. 2000. Using second-order power analysis to attack DPA

resistant software. In International Workshop on Cryptographic Hardware and
Embedded Systems. 238–251.

[56] Thomas S Messerges, Ezzy A Dabbish, and Robert H Sloan. 1999. Investigations

of power analysis attacks on smartcards. Smartcard 99 (1999), 151–161.

[57] Thomas S Messerges, Ezzat A Dabbish, and Robert H Sloan. 2002. Examining

smart-card security under the threat of power analysis attacks. IEEE transactions
on computers 51, 5 (2002), 541–552.

[58] Amir Moradi. 2014. Side-channel leakage through static power. In International
Workshop on Cryptographic Hardware and Embedded Systems. 562–579.

[59] AndrewMoss, Elisabeth Oswald, Dan Page, and Michael Tunstall. 2012. Compiler

assisted masking. In International Conference on Cryptographic Hardware and
Embedded Systems. 58–75.

[60] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. 2019. DifFuzz: differ-

ential fuzzing for side-channel analysis. In International Conference on Software
Engineering. 176–187.

[61] Inès Ben El Ouahma, Quentin Meunier, Karine Heydemann, and Emmanuelle

Encrenaz. 2017. Symbolic approach for Side-Channel resistance analysis of

masked assembly codes. In Security Proofs for Embedded Systems.
[62] Kostas Papagiannopoulos and Nikita Veshchikov. 2017. Mind the gap: towards

secure 1st-order masking in software. In International Workshop on Constructive
Side-Channel Analysis and Secure Design. Springer, 282–297.

[63] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run

Side-Channel analysis using symbolic execution and Max-SMT. In IEEE Computer
Security Foundations Symposium. 387–400.

[64] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, PasqualeMalacaria, and Tevfik

Bultan. 2017. Synthesis of Adaptive Side-Channel Attacks. In IEEE Computer
Security Foundations Symposium. 328–342.

[65] Massimiliano Poletto and Vivek Sarkar. 1999. Linear scan register allocation.

ACM Trans. Program. Lang. Syst. 21, 5 (1999), 895–913.
[66] Emmanuel Prouff and Matthieu Rivain. 2013. Masking against side-channel

attacks: A formal security proof. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. 142–159.

[67] Jean-Jacques Quisquater andDavid Samyde. 2001. Electromagnetic analysis (ema):

Measures and counter-measures for smart cards. In Smart Card Programming
and Security. 200–210.

[68] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-

bauwhede. 2015. Consolidating masking schemes. In Annual Cryptology Confer-
ence. Springer, 764–783.

[69] Matthieu Rivain and Emmanuel Prouff. 2010. Provably secure higher-order mask-

ing of AES. In International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 413–427.

[70] Ulrich Rührmair, Heike Busch, and Stefan Katzenbeisser. 2010. Strong PUFs:

models, constructions, and security proofs. In Towards Hardware-Intrinsic Security
- Foundations and Practice. 79–96.

[71] Kai Schramm and Christof Paar. 2006. Higher order masking of the AES. In

Cryptographers’ track at the RSA conference. Springer, 208–225.
[72] Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety

properties. In ACM SIGPLAN Conference on Programming Language Design and
Implementation. 57–69.

[73] François-Xavier Standaert, Tal G Malkin, and Moti Yung. 2009. A unified frame-

work for the analysis of side-channel key recovery attacks. InAnnual International
Conference on the Theory and Applications of Cryptographic Techniques. 443–461.

[74] Chungha Sung, Brandon Paulsen, and Chao Wang. 2018. CANAL: A cache

timing analysis framework via LLVM transformation. In IEEE/ACM International
Conference On Automated Software Engineering.

[75] ChaoWang and Patrick Schaumont. 2017. Security by compilation: an automated

approach to comprehensive side-channel resistance. ACM SIGLOG News 4, 2
(2017), 76–89.

[76] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, and Dinghao

Wu. 2019. Identifying Cache-Based Side Channels through Secret-Augmented

Abstract Interpretation. CoRR abs/1905.13332 (2019).

[77] ShuaiWang, PeiWang, Xiao Liu, Danfeng Zhang, and DinghaoWu. 2017. CacheD:

Identifying cache-based timing channels in production software. In USENIX
Security Symposium. 235–252.

[78] John Whaley, Dzintars Avots, Michael Carbin, and Monica S Lam. 2005. Using

datalog with binary decision diagrams for program analysis. In Asian Symposium
on Programming Languages and Systems. Springer, 97–118.

[79] John Whaley and Monica S Lam. 2004. Cloning-based context-sensitive pointer

alias analysis using binary decision diagrams. In ACM SIGPLAN Notices, Vol. 39.
ACM, 131–144.

[80] MengWu, Shengjian Guo, Patrick Schaumont, and ChaoWang. 2018. Eliminating

timing side-channel leaks using program repair. In International Symposium on
Software Testing and Analysis.

[81] Meng Wu and Chao Wang. 2019. Abstract Interpretation under Speculative

Execution. In ACM SIGPLAN Conference on Programming Language Design and
Implementation.

[82] Yuan Yao, Mo Yang, Conor Patrick, Bilgiday Yuce, and Patrick Schaumont. 2018.

Fault-assisted side-channel analysis of masked implementations. In 2018 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
57–64.

[83] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. 2018. SCInfer: Refinement-

based verification of software countermeasures against Side-Channel attacks. In

International Conference on Computer Aided Verification.
[84] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014.

On abstraction refinement for program analyses in Datalog. ACM SIGPLAN
Notices 49, 6 (2014), 239–248.

[85] Yongbin Zhou and Dengguo Feng. 2005. Side-Channel Attacks: Ten years after

its publication and the impacts on cryptographic module security testing. IACR
Cryptology ePrint Archive (2005), 388.

	Abstract
	1 Introduction
	2 Motivation
	2.1 The HW and HD Leaks
	2.2 Identifying the HD Leaks
	2.3 Mitigating the HD Leaks
	2.4 Leaks in High-order Masking

	3 Preliminaries
	3.1 The Threat Model
	3.2 The Leakage Model
	3.3 The Data Dependency

	4 Type-based Static Leak Detection
	4.1 The Type Hierarchy
	4.2 Datalog based Analysis
	4.3 Basic Type Inference Rules
	4.4 Inference Rules to Improve Accuracy
	4.5 Detecting HD-sensitive Pairs

	5 Mitigation during Code Generation
	5.1 Handling SEN_HDD Pairs
	5.2 Handling SEN_HDS Pairs

	6 Domain-specific Optimizations
	6.1 Leveraging the Backend Information
	6.2 Pre-computing Datalog Facts
	6.3 Efficient Encoding of Datalog Relations

	7 Experiments
	7.1 Leak Detection Results
	7.2 Effectiveness of Optimizations
	7.3 Leak Mitigation Results
	7.4 Comparison to High-Order Masking
	7.5 Threat to Validity

	8 Related Work
	9 Conclusions
	References

