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ABSTRACT

We propose a method, based on program analysis and transforma-
tion, for eliminating timing side channels in software code that
implements security-critical applications. Our method takes as in-
put the original program together with a list of secret variables (e.g.,
cryptographic keys, security tokens, or passwords) and returns the
transformed program as output. The transformed program is guar-
anteed to be functionally equivalent to the original program and
free of both instruction- and cache-timing side channels. Specifically,
we ensure that the number of CPU cycles taken to execute any path
is independent of the secret data, and the cache behavior of memory
accesses, in terms of hits and misses, is independent of the secret
data. We have implemented our method in LLVM and validated its
effectiveness on a large set of applications, which are cryptographic
libraries with 19,708 lines of C/C++ code in total. Our experiments
show the method is both scalable for real applications and effective
in eliminating timing side channels.
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1 INTRODUCTION

Side-channel attacks have become increasingly relevant to a wide
range of applications in distributed systems, cloud computing and
the Internet of things (IoT) where timing characteristics may be
exploited by an adversary to deduce information about secret data,
including cryptographic keys, security tokens and passwords [24,
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53, 54, 61, 67, 83]. Generally speaking, timing side channels ex-
ist whenever the time taken to execute a piece of software code
depends on the values of secret variables. In this work, we are con-
cerned with two types of timing side-channels: instruction-related
and cache-related. By instruction-related timing side channels, we
mean the number or type of instructions executed along a path
may differ depending on the values of secret variables, leading to
differences in the number of CPU cycles. By cache-related timing
side channels, we mean the memory subsystem may behave differ-
ently depending on the values of secret variables, e.g., a cache hit
takes few CPU cycles but a miss takes hundreds of cycles.

Manually analyzing the timing characteristics of software code
is difficult because it requires knowledge of not only the application
itself but also the micro-architecture of the computer, including the
cache configuration and how software code is compiled to machine
code. Even if a programmer is able to conduct the aforementioned
analysis manually, it would be too labor-intensive and error-prone
in practice: with every code change, the software has to be re-
analyzed and countermeasure has to be re-applied to ensure a
uniform execution time for all possible values of the secret variables.
It is also worth noting that straightforward countermeasures such
as noise injection (i.e., adding random delay to the execution) do
not work well in practice, because noise can be removed using
well-established statistical analysis techniques [53, 54].

Thus, we propose an fully automated method for mitigating
timing side channels. Our method relies on static analysis to identify,
for a program and a list of secret inputs, the set of variables whose
values depend on the secret inputs. To decide if these sensitive
program variables lead to timing leaks, we check if they affect
unbalanced conditional jumps (instruction-related timing leaks) or
accesses of memory blocks spanning across multiple cache lines
(cache-related timing leaks). Based on results of this analysis, we
perform code transformations to mitigate the leaks, by equalizing
the execution time. Although our framework is general enough for a
broad range of applications, in this work, we focus on implementing
a software tool based on LLVM [6] and evaluating its effectiveness
on real cryptographic software.

Figure 1 shows the overall flow of our tool, SC-Eliminator, whose
input consists of the program and a list of secret variables. First,
we parse the program to construct its intermediate representation
inside the LLVM compiler. Then, we conduct a series of static anal-
yses to identify the sensitive variables and timing leaks associated
with these variables. Next, we conduct two types of code transfor-
mations to remove the leaks. One transformation aims to eliminate
the differences in the execution time caused by unbalanced condi-
tional jumps, while the other transformation aims to eliminate the
differences in the number of cache hits/misses during the accesses
of look-up tables such as S-Boxes.
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Figure 1: SC-Eliminator: a tool for detecting and mitigating
both instruction- and cache-timing side channels.

Conceptually, these transformations are straightforward: If we
equalize the execution time of both sensitive conditional statements
and sensitive memory accesses, there will be no instruction- or
cache-timing leaks. However, since both transformations adversely
affect the runtime performance, they must be applied judiciously
to remain practical. Thus, a main technical challenge is to develop
analysis techniques to decide when these countermeasures are not
needed and thus can be skipped safely.

Toward this end, we propose a static sensitivity analysis to prop-
agate sensitivity tags from user-annotated (secret) inputs to other
parts of the program. The goal is to identify all variables that may
depend transitively on the secret inputs. Since the analysis is static
and thus has to be conservative, it detects potential timing leaks,
e.g., unbalanced branches guarded by sensitive variables. We also
propose a static cache analysis to identify the set of program lo-
cations where memory accesses always lead to cache hits. This
must-hit analysis [40, 41], following the general framework of ab-
stract interpretation [30], is designed to be conservative in that a
reported must-hit is guaranteed to be a hit along all paths. Thus, it
can be used by our tool to skip redundant mitigations.

To demonstrate that timing leaks reported by our tool are real and
to evaluate the accuracy of our static analyses, we also compile the
original and mitigated software to machine code and carefully ana-
lyze their timing characteristics using GEM5 [21], a cycle-accurate
micro-architectural CPU simulator. Specifically, given two values
of a secret variable, denoted k; and kg, we first run the original
program P to show that the number of CPU cycles indeed varies
depending on the secret data; that is, 3kq, k2 : 7(P, k1) # (P, k2),
where 7() denotes the execution time. We then run the mitigated
program P’ to show that, after our mitigation, the execution time
has been equalized along all paths and for all inputs; that is, Vk1, k3 :
(P’ k1) = (P’ k2).

Our method differs from recent techniques [11, 26, 79] for detect-
ing timing leaks or proving their absence: these techniques focus
only on instruction-related timing leaks but ignore the cache. There
are techniques that consider cache side channels [18, 25, 27, 34, 35,
57, 82, 85] but they focus only on leak detection as opposed to
mitigation. Our mitigation method is fundamentally different from
techniques that mitigate timing leaks [22, 50, 68, 75] by hiding them,
e.g., by adding random delays; such countermeasures can be easily
defeated using well-known statistical analysis techniques [53, 54].
Finally, since our method is a software-only solution, it is more
flexible and more widely applicable than techniques that require
hardware support (e.g., [88] and [13]).

We have implemented our method in a software tool and evalu-
ated it on many cryptographic libraries, including Chronos [32], a
real-time Linux kernel; FELICS [33], a lightweight cryptographic
systems for IoT devices; SUPERCOP [5], a toolkit for measuring
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the performance of cryptographic algorithms; Botan [1], a crypto-
graphic library written in C++11; and Libgcrypt [3], the GNU library.
In total, they have 19,708 lines of C/C++ code. Our experiments
show the tool is scalable for these real applications: in all cases,
the static analysis took only a few seconds while the transforma-
tion took less than a minute. Furthermore, the mitigated software
have only moderate increases in code size and runtime overhead.
Finally, with GEM5 simulation, we were able to confirm that both
instruction- and cache-timing leaks were indeed eliminated.
To summarize, this paper makes the following contributions:

e We propose a static analysis and transformation based method
for eliminating instruction- and cache-timing side channels.

o We implement the proposed method in a software tool based
on LLVM, targeting cryptographic software written in C/C++.

e We evaluate our tool on a large number of applications to
demonstrate its scalability and effectiveness.

The remainder of this paper is organized as follows. First, we use
examples to illustrate instruction- and cache-timing side channels in
Section 2, before defining the notations in Section 3. We present our
methods for detecting timing leaks in Section 4 and for mitigating
timing leaks in Sections 5 and 6. We present our experimental
results in Section 7, review the related work in Section 8, and finally,
give our conclusions in Section 9.

2 MOTIVATION

In this section, we use real examples to illustrate various types of
timing leaks in cryptographic software.

2.1 Conditional Jumps Affected by Secret Data

An unbalanced if-else statement whose condition is affected by
secret data may have side-channel leaks, because the then- and
else-branches will have different execution time. Figure 2 shows
the C code of a textbook implementation of a 3-way cipher [76],
where the variable a is marked as secret and it affects the execution
time of the if-statements. By observing the timing variation, an
adversary may be able to gain information about the bits of a.

To remove the dependencies between execution time and secret
data, one widely-used approach is equalizing the branches by cross-
copying [7, 56, 65] as illustrated by the code snippet in the middle of
Figure 2: the auxiliary variable dummy_b[3] and some assignments
are added to make both branches contain the same number and
type of instructions. Unfortunately, this approach does not always
work in practice, due to the presence of hidden states at the micro-
architectural levels and related performance optimizations inside
modern CPUs (e.g., instruction caching and speculative execution)
- we have confirmed this limitation by analyzing the mitigated code
using GEMS5, the details of which are described as follows.

We compiled the mitigated program shown in the middle of
Figure 2 and, by carefully inspecting the machine code, made sure
that all conditional branches indeed had the same number (and
type) of instructions. Then, we ran the top-level program on GEM5
with two different cryptographic keys: k1 has 1’s in all 96 bits
whereas k2 has 0’s in all 96 bits. Our GEMS5 simulation results
showed significant timing differences: 88,014 CPU cycles for kg
versus 87,624 CPU cycles for ky. Such timing variation would allow
attackers to gain information about the secret key.

Therefore, in the remainder of this paper, we avoid the aforemen-
tioned approach while focusing on a safer alternative: replacing
sensitive branches with functionally-equivalent, constant-time, and
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void mu(int32_t *a) {
int i;
int32_t b[3];
bfe] = b[1] = b[2] = o;
for (i=0; i<32; i++) {
b[@] <<= 1; b[1] <<= 1; b[2] <<= 1;

// original version

if(al@l&1) b[2] |= 1; // leak
if(a[1181) b[1] |= 1; // leak
if(a[2]81) ble] |= 1; // leak

al0] >>= 1; a[1] >>= 1; a[2] >»>= 1;

3
afe] = blel; al1] = b[1]; al2] = b[2];

// mitigation #1: equalizing the branches
int32_t dummy_b[3];
dummy_b[@] = dummy_b[1] = dummy_b[2] = @;

&ummy_b[@] <<= 1; dummy_b[1] <<= 1; dummy_b[2] <<= 1;
if(al0]&1) b[2]]=1; else dummy_b[2]]|=1;

if(al11&1) b[1]|=1; else dummy_b[1]|=1;
if(a[2]&1) b[@]|=1; else dummy_b[@]|=1;

// mitigation #2: removing the branches
b[2] = CTSEL(a[@]&1, b[2]|1, b[2]);

b[1] = CTSEL(al1]&1, b[11[1, b[1]);

b[e] = CTSEL(al[2]&1, b[@1|1, blel);

Figure 2: Example code from a real cipher with timing leak-
age, together with two different mitigation approaches.

branch-less assignments shown at the bottom of Figure 2. Specif-
ically, CTSEL(c,t,e) is an LLVM intrinsic we added to ensure the
selection of either ¢ or e, depending on the predicate c, is done in
constant time. For different CPU architectures, this intrinsic func-
tion will be compiled to different machine codes to obtain the best
performance possible (see Section 5 for details). Because of this,
our mitigation adds little runtime overhead: the mitigated program
requires only 90,844 CPU cycles for both kj and k.

Note that we cannot simply rely on C-style conditional assign-
ment r=(c?t:e) or the LLVM select instruction because neither
guarantees constant-time execution. Indeed, LLVM may transform
both to conditional jumps, e.g., when r is of char type, which may
have the same residual timing leaks as before. In contrast, our use
of the new CTSEL intrinsic avoids the problem.

2.2 Table Lookups Affected by Secret Data

When an index used to access a lookup table (LUT) depends on
the secret data, the access time may vary due to the behavior of
cache associated with the memory block. Such cache-timing leaks
have been exploited in block ciphers [44, 67, 80] that, for efficiency
reasons, implement S-Boxes using lookup tables. Figure 3 shows
the subBytes function of the AES cipher in FELICS [33], which sub-
stitutes each byte of the input array (block) with the precomputed
byte stored in sbox. Thus, the content of block, which depends
on secret data, may affect the execution time. For example, when
all sixteen bytes of block are 9x0, meaning sbox[0] is always ac-
cessed, there will be one cache miss followed by fifteen hits; but
when all sixteen bytes of block differ from each other, there may
be 256/64 = 4 cache misses (if we assume 64 bytes per cache line).

Mitigating cache-timing leaks differs from mitigating instruction-
timing leaks. Generally speaking, the level of granularity depends
on the threat model (i.e., what the attacker can and cannot do).
For example, if we add, as camouflage, accesses of all elements of
sbox[256] to each original read of sbox[], as shown in Figure 3,
it would be impossible for attackers to guess which is the desired

const uint8_t sbox[256] = { @x63, @x7c, 0x77, @0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
0x30, 0x01, 0x67, 0x2b, oxfe, 0xd7, Oxab, 0x76, ...};
void subBytes(uint8_t *block) {
uint8_t i;
for (i =0; i <16; ++i) {
block[i] = sbox[block[i]];
}
3}

Figure 3: Example for accessing the lookup table.

//mitigation #3: replacing block[i] = sbox[block[il];
block_i = block[il;
for (§=0; j < 256; j++) {

sbox_j = sbox[jI1;

val = (block_i == j)? sbox_j : block_ij;

}
block[i] = val;

Figure 4: Countermeasure: reading all the elements.

//mitigation #4: replacing block[i] = sbox[block[il];
block_i = block[il;
for (j=block_i % CLS; j < 256; j+=CLS) {

sbox_j = sbox[jI1;

val = (block_i == j)? sbox_j : block_i;

}
block[i] = val;

Figure 5: Countermeasure: reading all cache lines.

//mitigation #5: preloading sbox[256]
for (j =0; j < 256; j+=CLS)

temp = sbox[j];
//access to sbox[...] is always a hit
for (i =0; i <16; ++i) {

block[i] = sbox[block[i]];
3}

Figure 6: Countermeasure: preloading all cache lines.

element. Since each original loop iteration now triggers the same
number of LUT accesses, there is no longer timing variation.

However, the high runtime overhead may be unnecessary, e.g.,
when attackers cannot observe the timing variation of each loop
iteration. If, instead, the attackers can only observe differences in
the cache line associated with each write to block[1i], it suffices to
use the approach in Figure 5. Here, CLS denotes the cache line size
(64 bytes in most modern CPUs). Note there is a subtle difference
between this approach and the naive preloading (Figure 6): the latter
would be vulnerable to Flush+Reload attacks [69, 87]. For example,
the attackers can carefully arrange the Flush after Preload is done,
and then perform Reload at the end of the victim’s computation;
this is possible because Preload triggers frequent memory accesses
that are easily identifiable by an attacker. In contrast, the approach
illustrated in Figure 5 can avoid such attacks.

If the attackers can only measure the total execution time of a
program, our mitigation can be more efficient than Figures 6 and
5: For example, if the cache is large enough to hold all elements,
preloading would incur 256 /CLS=4 cache misses, but all subsequent
accesses would be hits. This approach will be illustrated in Figure 12
(Section 6). However, to safely apply such optimizations, we need to
make sure the table elements never get evicted from the cache. For
simple loops, this would be easy. But in real applications, loops may
be complex, e.g., containing branches, other loops, and function
calls, which means in general, a sound static program analysis
procedure is needed (see Section 6.2) to determine whether a lookup
table access is a MUST-HIT.
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typedef struct {
uint32_t *xk; // the round keys
int nr; // the number of rounds
} rch_ctx;
#define ROTL32(X,C) (((X)<<(C))|((X)>>(32-(C))))
void rc5_encrypt(rc5_ctx *c, uint32_t *data, int blocks) {
uint32_t *d,*sk;
int h,i,rc;
d = data;
sk = (c->xk)+2;
for (h=0; h<blocks; h++) {
d[e] += c->xk[e];
d[1] += c->xk[1];
for (i=0; i<c->nr*2; i+=2) {
dfel = d[11;
rc = d[1] & 31;
d[e] = ROTL32(d[0],rc);
dre] += sk[il;
d[1] *= d[e];
rc = d[e] & 31;
d[1] = ROTL32(d[1],rc);
d[1] += sk[i+1];

d+=2;
3}

Figure 7: Code snippet from RC5.c

2.3 Idiosyncratic Code Affected by Secret Data

For various reasons, certain operations in cryptographic software
are often implemented using a series of simpler but functionally-
equivalent operations. For example, the shift operation (X<<C)
may be implemented using a sensitive data-dependent loop with
additions: for(i=0;i<C;i++) {X += X;} because some targets
(e.g. MSP430) do not support multi-bit shifts.

One real example of such idiosyncratic code is the implemen-
tation of rc5_encrypt [76] shown in Figure 7. Here, the second
parameter of ROTL32() is aliased to the sensitive variable c->xk.
To eliminate the timing leaks caused by an idiosyncratic implemen-
tation of (X<<C), we must conservatively estimate the loop bound.
If we know, for example, the maximum value of C is MAX_C, the data-
dependent loop may be rewritten to one with a fixed loop bound:
for(i=0;i<MAX_C;++i) {if(i<C) X += X;}. After this transfor-
mation, we can leverage the aforementioned mitigation techniques
to eliminate leaks associated with the if (i<C) statement.

3 THREAT MODEL

We now define the threat model, as well as timing side-channel
leaks under our threat model.

We assume a less-capable attacker who can only observe varia-
tion of the total execution time of the victim’s program with respect
to the secret data. Since this capability is easier to obtain than that
of a more-capable attacker, it will be more widely applicable. A
classic example, for instance, is when the victim’s program runs
on a server that can be probed and timed remotely by the attacker
using a malicious client.

We do not consider the more-capable attacker who can directly
access the victim’s computer to observe hidden states of the CPU
at the micro-architectural levels, e.g., by running malicious code
to perform Meltdown/Spectre attacks [52, 59] or similar cache at-
tacks [69, 87] (Evict+Time, Prime+Probe, and Flush+Reload). Miti-
gating such attacks at the software level only will likely be signifi-
cantly more expensive — we leave it for future work.

Let P be a program and in = {X, K} be the input, where X is
public and K is secret. Let x and k be concrete values of X and K,
respectively, and 7(P, x, k) be the time taken to execute P under x
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and k. We say P is free of timing side-channel leaks if
Vx, k1, ko : T(P,x, k1) = ©(P, x, k2) .

That is, the execution time of P is independent of the secret input
K. When P has timing leaks, on the other hand, there must exist
some x, k1 and kj such that 7(P, x, k1) # (P, x, k2).

We assume P is a deterministic program whose execution is fixed
completely by the input. Let = = insty, ..., inst, be an execution
path, and z(inst;) be the time taken to execute each instruction
inst;, where 1 < i < n; then, we have 7(r) = 21 z(inst;).

Furthermore, 7(inst;) consists of two components: 7¢py, (inst;)
and Tmem(inst;), where 7¢p, denotes the time taken to execute
the instruction itself and 7j,¢m(inst;) denotes the time taken to
access the memory. For Load and Store, in particular, tyem(inst;) is
determined by whether the access leads to a cache hit or miss. For
the other instructions, Tmem(inst;) = 0. We want to equalize both
components along all program paths - this will be the foundation
of our leak mitigation technique.

4 DETECTING POTENTIAL LEAKS

Now, we present our method for detecting timing leaks, which
is implemented as a sequence of LLVM passes at the IR level. It
takes a set of input variables marked as secret and returns a set of
instructions whose execution may depend on these secret inputs.

4.1 Static Sensitivity Analysis

To identify the leaks, we need to know which program variables
are dependent of the secret inputs — they are the sensitive variables.
Since manual annotation is tedious and error prone, we develop a
procedure to perform such annotation automatically.

Secret Source: The initial set of sensitive variables consists of the
secret inputs marked by the user. For example, in a block cipher,
the secret input would be the cryptographic key while the plaintext
would be considered as public.

Tag Propagation: The sensitivity tag is an attribute to be propa-
gated from the secret source to other program variables following
either data- or control-dependency transitively. An example of data-
dependency is the def-use relation in {b = a & 0x80;} where b is
marked as sensitive because it depends on the most significant bit
of a, the sensitive variable. An example of control-dependency is
if(a==0x10) {b=1;} else {b=0;} where b is marked as sensitive
because it depends on whether a is 0x10.

Field-sensitive Analysis: To perform the static analysis defined
above, we need to identify aliased expressions, e.g., syntactically-
different variables or fields of structures that point to the same
memory location. Cryptographic software code often has this type
of pointers and structures. For example, the ASE implementation
of Chronos [32] shown in Figure 8 demonstrates the need for
field-sensitivity during static analysis. Here, local pointer key be-
comes sensitive when key[0] is assigned the value of another sen-
sitive variable in_key. Without field sensitivity, one would have
to mark the entire structure as sensitive to avoid missing potential
leaks. In contrast, our method performs a field-sensitive pointer
analysis [15, 71] to propagate the sensitivity tag only to relevant
fields such as key_enc inside ctx, while avoiding fields such as
key_length. This means we can avoid marking (falsely) the unbal-
anced if (ctx->key_length) statement as leaky.
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struct aes_ctx {
uint32_t key_enc[60];
uint32_t key_length;

i

int expand_key(const uint8_t *in_key, struct aes_ctx xctx, unsigned int
key_len)

{

uint32_t *key =ctx->key_enc;
key[@] = *((uint32_t*)in_key);

ctx->key_length = key_len;

if (ctx->key_length)

Figure 8: Example of field-sensitive pointer analysis.

4.2 Leaky Conditional Statements

There are two requirements for a branch statement to have poten-
tial timing leaks. First, the condition depends on secret data. Second,
the branches are unbalanced. Figure 2 shows an example, where
the conditions depend on the secret input a and the branches obvi-
ously are unbalanced. Sometimes, however, even if two conditional
branches have the same number and type of instructions, they still
result in different execution time due to hidden micro-architectural
states, as we have explained in Section 2 and confirmed using GEM5
simulation. Thus, to be conservative, we consider all sensitive con-
ditional statements as potential leaks (regardless of whether they
are balanced) and apply our CTSEL based mitigation.

4.3 Leaky Lookup-table Accesses

The condition for a lookup-table (LUT) access to leak timing infor-
mation is that the index used in the access is sensitive. In practice,
the index affected by secret data may cause memory accesses to
be mapped to different cache lines, some of which may have been
loaded and thus result in hits while others result in misses. There-
fore, we consider LUT accesses indexed by sensitive variables as
potential leaks, e.g., the load from sbox in Figure 3, which is indexed
by a sensitive element of block.

However, not all LUT accesses are leaks. For example, if the
table has already been loaded, the (sensitive) index would no longer
cause differences in the cache. This is an important optimization we
perform during mitigation — the analysis required for deciding if
an LUT access results in a must-hit will be presented in Section 6.2.

5 MITIGATING CONDITIONAL STATEMENTS

In this section, we present our method for mitigating leaks asso-
ciated with conditional jumps. In contrast to existing approaches
that only attempt to balance the branches, e.g., by adding dummy
instructions [7, 56, 65], we eliminate these branches.

Algorithm 1: Mitigating all sensitive conditional statements.

1 BranchMitigatePass (Function F)
2 begin

3 let DT(F) be the dominator tree in the CFG of F;

4 foreach BasicBlock bb € DT(F) in DFS order do

5 if bb is the entry of a sensitive conditional statement then
6 Standardize (bb);

7 ‘ MitigateBranch (bb);

8 end

9 end
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dot{+: N tr=1;
if (x=1) if(x==1)
break; V4
x >>1; x»1;
o while(x!=0)
} while (x != 0);
return t;
return t;

Figure 9: A not-yet-standardized conditional statement.

no_br2 = 1; no_bri= no_br2= 1;
for(b=0;b<MAX_B;b++){ for (b=0;b<MAX_B;b++){ for(b=0;b<MAX_B;b++){
if (no_br2) {// if (no_bri1&&no_br2){//
t+=1; t+=1; t+=1;
if (x == 1) if (x == 1) if (x == 1)
break; break; no_brl = 0;//
if (no_br1) {
X >>1; X >>1; X >>1;
if (x == @) if (x == @) if (x == @)
break; no_br2 = 0;// no_br2 = 0;
}
3 3
} ) }

Figure 10: Standardized conditional statements (Fig. 9).

Algorithm 1 shows our high-level procedure implemented as
an LLVM optimization (opt) pass: for each function F, we invoke
BranchMitigationPass(F) to compute the dominator tree of the con-
trol flow graph (CFG) associated with F and then traverse the basic
blocks in a depth-first search (DFS) order.

The dominator tree is a standard data structure in compilers
where each basic block has a unique immediate dominator, and an
edge from bb; to bby exists only if bb; is an immediate dominator
of bby. The DFS traversal order is important because it guarantees
to visit the inner-most branches before the outer branches. Thus,
when MitigateBranch(bb) is invoked, we know all branches inside
bb have been mitigated, i.e., they are either removed or insensitive
and hence need no mitigation.

Our mitigation of each conditional statement starting with bb
consists of two steps: (1) transforming its IR to a standardized form,
using Standardize(bb), to make subsequent processing easier; and
(2) eliminating the conditional jumps using MitigateBranch(bb).

5.1 Standardizing Conditional Statements

A conditional statement is standardized if it has unique entry and
exit blocks. In practice, most conditional statements in crypto-
graphic software are already standardized. However, occasionally,
there may be statements that do not conform to this requirement.
For example, in Figure 9, the conditional statement inside the while-
loop is not yet standardized. In such cases, we transform the LLVM
IR to make sure it is standardized, i.e., each conditional statement
has a unique entry block and a unique exit block.

Standardization is a series of transformations as illustrated by
the examples in Figure 10, where auxiliary variables such as no_br1
and no_br2 are added to make the loop bound independent of sen-
sitive variables. MAX_B is the bound computed by our conservative
static analysis; in cryptographic software, it is often 64, 32, 16 or 8,
depending on the number of bits of the variable x.

5.2 Replacing Conditional Statements

Given a standardized conditional statement, we perform a DFS
traversal of its dominator tree to guarantee that we always mitigate
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the branches before their merge point. The pseudo code, shown in
Algorithm 2, takes the entry block bb as input.

Condition and CTSEL: First, we assume the existence of CT-
SEL(c,te), a constant-time intrinsic function that returns t when ¢
equals true, and e when ¢ equals false. Without any target-specific
optimization, it may be implemented using bit-wise operations:
CTSEL(c,t,e) {co=c-1; cl=~cp; val= (co & e)|(cy & t);}
— when the variables are of 'char’ type and c is true, ¢y will be 0x00
and c¢; will be 0xFF; and when c is false, ¢y will be 0xFF and ¢;
will be 0x00. With target-specific optimization, CTSEL(c,t,e) may be
implemented more efficiently. For example, on x86 or ARM CPUs,
we may use CMOVCC instructions as follows: {MOV val t; CMP
c 0x0; CMOVEQ val e;} which requires only three instructions.
We will demonstrate through experiments (Section 7) that target-
specific optimization reduces the runtime overhead significantly.

Algorithm 2: Mitigating the conditional statement from bb.

1 MitigateBranch (BasicBlock bb)

2 begin

3 Let cond be the branch condition associated with bb;

4 foreach Instruction i in THEN branch or ELSE branch do

5 if i is a Store of the value val to the memory address addr then

6 Let val’ = CTSEL(cond, val, Load(addr));

7 ‘ Replace i with the new instruction Store(val’, addr);

8 end

9 foreach Phi Node (%rv «— ¢(%rur, %rvg)) at the merge point do
10 Let val’ = CTSEL(cond, %ruT, %rvg);
11 Replace the Phi Node with the new instruction (%rv « val’);
12 end
13 Change the conditional jump to THEN branch to unconditional jump;
14 Delete the conditional jump to ELSE branch;
15 Redirect the outgoing edge of THEN branch to start of ELSE branch;
16 end

Store Instructions: Next, we transform the branches. If the in-
struction is a Store(val,addr) we replace it with CTSEL. That is, the
Store instructions in THEN branch will only take effect when the
condition is evaluated to true, while the Store instructions in ELSE
branch will only take effect when condition is false.

Local Assignments: The above transformation is only for mem-
ory Store, not assignment to a register variable such as if (cond)
{rv=vall; ...} else {rv=val2; ...} because, inside LLVM,
the latter is represented in the static single assignment (SSA) format.
Since SSA ensures each variable is assigned only once, it is equal to
if(cond) {%rvi=vall; ...} else {%rvp=val2; ...} together
with a Phi Node added to the merge point of these branches.

The Phi Nodes: The Phi nodes are data structures used by compil-
ers to represent all possible values of local (register) variables at the
merge point of CFG paths. For %rv < ¢(%rvr, %rvg), the variables
%ruvr and %rvg in SSA format denote the last definitions of %rv
in the THEN and ELSE branches: depending on the condition, %rv
gets either %rovr or %rvg. Therefore, in our procedure, for each Phi
node at the merge point, we create an assignment from the newly
created val’ to %rv, where val’ is again computed using CTSEL.

Unconditional Jumps: After mitigating both branches and the
merge point, we can eliminate the conditional jumps with uncondi-
tional jumps. For the standardized branches on the left-hand side
of Figure 11, the transformed CFG is shown on the right-hand side.
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Figure 11: Removing the conditional jumps.

5.3 Optimizations

The approach presented so far still has redundancy. For exam-
ple, given if(cond) {*addr=valr;} else {*addr=valg;} the
transformed code would be {*addr = CTSEL(cond,valt,*addr);
*addr = CTSEL(cond,*addr,valg);} which has two CTSEL in-
stances. We can remove one or both CTSEL instances:

e If (valy==valg) holds, we merge the two Store operations
into one Store: xaddr = valr.
e Otherwise, we use *xaddr = CTSEL(cond,valy,valg).

In the first case, all CTSEL instances are avoided. Even in the second
case, the number of CTSEL instances is reduced by half.

6 MITIGATING LOOKUP-TABLE ACCESSES

In this section, we present our method for mitigating lookup-table
accesses that may lead to cache-timing leaks. In cryptographic
software, such leaks are often due to dependencies between indices
used to access S-Boxes and the secret data. However, before delving
into the details of our method, we perform a theoretical analysis of
the runtime overhead of various alternatives, including even those
designed against the more-capable attackers.

6.1 Mitigation Granularity and Overhead

We focus primarily on less-capable attackers who only observe the
total execution time of the victim’s program. Under this threat model,
we develop optimizations to take advantage of the cache structure
and unique characteristics of the software being protected. Our mit-
igation, illustrated by the example in Figure 12, can be significantly
more efficient than the approaches illustrated in Figure 5.

In contrast, the Byte-access-aware threat model allows attackers
to observe timing characteristics of each instruction in the victim’s
program, which means mitigation would have to be applied to every
LUT access to make sure there is no timing difference (Figure 4).

The Line-access-aware threat model allows attackers to see the
difference between memory locations mapped to different cache
lines. Thus, mitigation only needs to touch all cache lines associated
with the table (Figure 5).

Let 7 be a path in P and () be its execution time. Let 7,45 be
the maximum value of 7(r) for all possible x in P. For our Total-
time-aware threat model, the ideal mitigation would be a program
P’ whose execution time along all paths matches 7,4 In this case,
we say mitigation has no additional overhead. We quantify the
overhead of other approaches by comparing to T qx-

Table 1 summarizes the comparison. Let N be the table size,
CLS be the cache line size, and M = [N/CLS] be the number of
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Table 1: Overhead comparison: N is the table size; M =
[N/CLS] is the number of cache lines to store the table; K
is the number of times table elements are accessed.

[ Program Version | #Accesses | #Cache Miss | # Cache Hit |
Original program K fromMto1l | from K-MtoK-1
Granularity: Byte-access KN M K'N-M
Granularity: Line-access K'M M K*'M-M
Granularity: Total-time (Tpqax) K M K-M
Our Method: opt. w/ cache analysis K+M-1 M K-1

//mitigation #6: preloading sbox[256] during the first loop iteration
block_0 = block[@];
for (j=block_@ % CLS; j < 256; j+=CLS) {

shox_j = sbox[jI1;

val = (block_@ == j)? sbox_j : block_0;

}
block[@] = val;
//access to shox[...] is always a hit
for (i =1; i <16; ++i) {
block[i] = sbox[block[i]];
b

Figure 12: Reduction: preloading only in the first iteration.

cache lines needed. Let K be the number of times table elements
are accessed. Without loss of generality, we assume each element
occupies one byte. In the best case where all K accesses are mapped
to the same cache line, there will be 1 miss followed by K — 1 hits.
In the worst case (4 ) Where the K accesses are scattered in M
cache lines, there will be M misses followed by K — M hits.

When mitigating at the granularity of a byte (e.g., Figure 4), the
total number of accesses in P’ is increased from K to K = N. Since
all elements of the table are touched when any element is read,
all M cache lines will be accessed. Thus, there are M cache misses
followed by K * N — M hits.

When mitigating at the granularity of a line (e.g., Figure 5), the
total number of accesses becomes K * M. Since all cache lines are
touched, there are M cache misses followed by K * M — M hits.

Our method, when equipped with static cache analysis based op-
timization (Section 6.2), further reduces the overhead: by checking
whether the table, once loaded to the cache, will stay there until
all accesses complete. If we can prove the table never gets evicted,
we only need to load each line once. Consequently, there will be
M misses in the first loop iteration, followed by K — 1 hits in the
remaining K — 1 loop iterations.

In all cases, however, the number of cache misses (M) matches
that of the ideal mitigation; the differences is only in the number of
cache hits, which increases from K —Mto K * N — M, K * M — M,
or K — 1. Although these numbers (of hits) may differ significantly,
the actual time difference may not, because a cache hit often takes
an order of magnitude shorter time than a cache miss.

6.2 Static Cache Analysis-based Reduction

We develop a static cache analysis to compute, at any location,
whether a memory element is definitely in the cache. This MUST-
HIT analysis [40, 41] allows us to decide if an LUT access needs
mitigation. For example, in subCell() of LED_encrypt.c that ac-
cesses sbox[16] using for(i=0; i<4; i++) for(j=0;j<4;j++)
{state[i][jl=sbox[state[i][j]1]; 3}, since the size of sbox is 16
bytes while a cache line has 64 bytes, all the elements can be stored
in the same cache line. Therefore, the first loop iteration would
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Figure 13: Update of the cache: two examples for a fully as-
sociative cache, with the LRU update policy.

have a cache miss while all subsequent fifteen iterations would be
hits—there is no cache-timing leak that needs mitigation.

There are many other applications where lookup-table accesses
result in MUST-HITs, e.g., block ciphers with multiple encryption
or decryption rounds, each of which accesses the same lookup table.
Instead of mitigating every round, we use our cache analysis to
check if, starting from the second round, mitigation can be skipped.

Abstract Domain. We design our static analysis procedure based
on the unified framework of abstract interpretation [30, 40, 41],
which defines a suitable abstraction of the program’s state as well
as transfer functions of all program statements. There are two
reasons for using abstract interpretation. The first one is to ensure
the analysis can be performed in finite time even if precise analysis
of the program may be undecidable. The second one is to summarize
the analysis results along all paths and for all inputs.

Without loss of generality, we assume the cache has full asso-
ciativity and a set L = {l1, ..., IN} of cache lines. The subscript of
I;, where 1 < i < N, denotes the age: 1 is the youngest, N is the
oldest, and > N means the line is outside of the cache. For ease
of presentation, let I, be the imaginary line outside of the cache.
Thus, L* = LU {l, } is the extended set of cache lines.

Let V = {v1,...,un} be the set of program variables, each of
which is mapped to a subset L, € L* of cache lines. The age of v €
V, denoted Age(v), is a set of integers corresponding to ages (sub-
scripts) of the lines it may reside (along all paths and for all inputs).
The program’s cache state, denoted S = (Age(vy), .. .,Age(vy)),
provides the ages of all variables.

Consider an example program with three variables x, y and z,
where x is mapped to the first cache line, y may be mapped to the
first two lines (e.g., along two paths) and z may be mapped to Lines
3-5. Thus, Ly = {li}, Ly = {l1,l2}, and L; = {I3,14,15}, and the
cache state is ({1},{1,2},{3,4,5}).

Transfer Functions. The transfer function of each program state-
ment defines how it transforms the cache state to a new state.
Without loss of generality, we assume the cache uses the popular
least recent used (LRU) update policy. Recall that in a fully associa-
tive cache, a memory block may be mapped to any cache line; and
under LRU, the cache keeps the most recently used memory blocks
while evicting the least recently used blocks.

Figure 13 shows two examples. On the left-hand side, the ini-
tial state, for variables a, b, c, d and e, is ({1}, {2}, {3}, {4}, {L}).
After accessing e, the new state is ({2}, {3}, {4}, {L}, {1}). On the
right-hand side, the initial state is ({1}, {3}, {4}, {L}, {2}). After
accessing e, the new state is ({2}, {3}, {4}, {L}, {1}). In both cases,
the newly accessed e gets the youngest age, while the ages of other
blocks either decrement or remain the same. Since d is the oldest
block (age 5), it stays outside of the cache.

The transfer function TFunc(S, inst) models the impact of in-
struction inst on the cache state S: it returns a new cache state
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Figure 14: Update of the abstract cache state: (1) on the left-
hand side, join at the merge point of two paths; and (2) on the
right-hand side, a non-deterministic key for memory access.

S’ = (Age’(v1), . . ., Age’(vy)). If inst does not access memory, then
S’ = S.1f inst accesses v € P in memory, we construct S as follows:
o for v, set Age’(v) = {1} in §’;
e for u € V such that Ja,, € Age(u), a, € Age(v) : ay < ay, in
S, replace a,, with (a, + 1) in Age’(u);
e for any other variable w € V, Age’(w) = Age(w).
Thus, the function TFunc models what is illustrated in Figure 13.

MUST-HIT Analysis. Since our goal is to decide whether a mem-
ory block is definitely in the cache, we compute in Age(v) the upper
bound of all possible ages of v, e.g., along all paths and for all inputs.
If this upper bound is < N, we know v must be in the cache.

We also define the join (LI) operator accordingly; it is needed
to merge states S and S’ from different paths. It is similar to set
intersection—in the resulting S” = S U S/, each Age”’(v) gets the
maximum of Age(v) in state S and Age’(v) in state S’. This is be-
cause v € V is definitely in the cache only if it is in the cache
according to both states, i.e., Age(v) < N and Age’(v) < N.

Consider the left example in Figure 14, where the ages of a are 1
and 3 before reaching the merge point, and the ages of c are 3 and
2. After joining the two cache states, the ages of a and ¢ become 3,
and the age of d remains 4. The ages of b and e become L because,
in at least one of the two states, they are outside of the cache.

Now, consider the right-hand-side example in Figure 14, where
sbox has four elements in total. In the original state, the first three
elements are in the cache whereas sbox[3] is outside. After accessing
sbox[key], where the value of key cannot be statically determined,
we have to assume the worst case. In our MUST-HIT analysis, the
worst case means key may be any index ranging from 0 to 3. To be
safe, we assume sbox[key] is mapped to the oldest element sbox[3].
Thus, the new state has sbox[3] in the first line while the ages of
all other elements are decremented.

Correctness and Termination. Our analysis is a conservative
approximation of the actual cache behavior. For example, when it
says a variable has age 2, its actual age must not be older than 2.
Therefore, when it says the variable is in the cache, it is guaranteed
to be in the cache, i.e., our analysis is sound; however, it is not
(meant to be) complete in finding all MUST-HIT cases — insisting
on being both sound and complete could make the problem unde-
cidable. In contrast, by ensuring the abstract domain is finite (with
finitely many lines in L and variables in V) and both TFunc and U
are monotonic, we guarantee that our analysis terminates.

Handling Loops. One advantage of abstract interpretation [30, 40,
40] is the capability of handling loops: for each back edge in the
CFG, cache states from all incoming edges are merged using the
join (L) operator. Nevertheless, loops in cryptographic software
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Table 2: Benchmark statistics.

Name Description #LoC | #IF | # LUT LUT size in Bytes
total  (min, max)
aes AES in Chronos [32] 1379 | 3 5 16,424 (40, 4096)
des DES in Chronos [32] 874 | 2 11 6,656 (256, 4096)
des3 DES-EDE3 in Chronos [32] 904 2 11 6,656 (256, 4096)
anubis Anubis in Chronos [32] 723 | 1 7 6,220 (76, 1024)
cast5 Cast5 cipher (rfc2144) in Chronos [32] 799 | 0 8 8,192 (1024, 1024)
cast6 Cast6 cipher (rfc2612) in Chronos [32] 518 | 0 6 4,896  (32,1024)
ferypt FCrypt encryption in Chronos [32] 401 | 0 4 4,096 (1024, 1024)
khazad Khazad algorithm in Chronos [32] 841 0 9 16,456 (72, 2048)
LBlock LBlock cipher from Felics [2] 1,005 | 0 10 160 (16,16)
Piccolo Piccolo cipher from Felics [2] 243 | 2 4 148 (16,100)
PRESENT | PRESENT cipher from Felics [2] 183 | 0 33 2,064 (15,64)
TWINE TWINE cipher from Felics [2] 249 | 0 3 67 (16,35)
aes AES in SuperCop [5] 1099 | 4 10 8,488 (40, 1024)
cast CAST in SuperCop [5] 942 | 5 8 16,384 (2048, 2048)
aes_key AES key_schedule in Botan [1] 502 3 4 8,704  (256,4096)
cast128 cast 128-bit in Botan [1] 617 | 2 8 8,192 (1024,1024)
des des cipher in Botan [1] 835 | 1 12 10,240 (1024,2048)
kasumi kasumi cipher in Botan [1] 275 | 2 2 1,152 (128,1024)
seed seed cipher in Botan [1] 352 0 5 4,160 (64,1024)
twofish twofish cipher in Botan [1] 770 | 18 9 5,150 (32,1024)
3way 3way cipher reference [76] 177 | 10 0 0 (0,0)
des des cipher reference [76] 463 | 16 14 2,302 (16,512)
loki91 loki cipher reference [76] 231 | 10 1 32 (32,32)
camellia | camellia cipher in Libgerypt [4] 1453 | 0 4 4,096 (1024,1024)
des des cipher in Libgerypt [4] 1486 | 2 13 2,724 (16,2048)
seed seed cipher in Libgerypt [4] 488 | 3 5 4,160  (64,1024)
twofish twofish cipher in Libgerypt [4] 1899 | 1 6 6,380  (256,4096)

have unique characteristics. For example, most of them have fixed
loop bounds, and many are in functions that are invoked in multiple
encryption/decryption rounds. Thus, memory accesses often cause
cache misses in the first loop iteration of the first function invoca-
tion, but hits subsequently. Such first-miss followed by always hit,
however, cannot be directly classified as a MUST-HIT.

To exploit the aforementioned characteristics, we perform a code
transformation prior to our analysis: unrolling the first iteration out
of the loop while keeping the remaining iterations. For example,
for(i=0;i<16;++i) {block[il=...} become {block[0]=...}
for(i=1;i<16;++i) {block[i]=...}. As soon as accesses in the
first iteration are mitigated, e.g., as in Figure 12, all subsequent
loop iterations will result in MUST-HITs, meaning we can skip the
mitigation and avoid the runtime overhead. Our experiments on a
large number of real applications show that the cache behaviors of
many loops can be exploited in this manner.

7 EXPERIMENTS

We have implemented our method in a tool named SC-Eliminator,
which takes LLVM bit-code as input and returns leak-free bit-code
as output. The new bit-code may be compiled to machine code to
run on any platform (e.g., x86 and ARM) using standard tools or
simulated by GEMS5 to obtain timing statistics.

We conducted experiments on C/C++ programs that implement
well-known cryptographic algorithms by compiling them to bit-
code using Clang/LLVM. Table 2 shows the benchmark statistics.
In total, there are 19,708 lines of code from libraries including a
real-time Linux kernel (Chronos [32]), a lightweight cryptographic
library (FELICS [2]), a system for performance evaluation of cryp-
tographic primitives (SuperCop [5]), the Botan cryptographic li-
brary [1], three textbook implementations of cryptographic algo-
rithms [76], and the GNU Libgcrypt library [4]. Columns 1 and 2
show the benchmark name and source. Column 3 shows the num-
ber of lines of code (LoC). Columns 4 and 5 show the number of
conditional jumps (# IF) and the number of lookup tables (# LUT).
The last two columns show more details of these lookup tables,
including the total, minimum, and maximum table sizes.
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Table 3: Results of conducting static leak detection.
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const uint8_t SE[256] = {@x63, @x7C, 0x77, Ox7B,...};
void aes_key_schedule(const uint8_t key[], size_t length,
std::vector<uint32_t>& EK, std::vector<uint32_t>& DK,

Name ‘ Total ‘ Sensitive (leaky) ‘ std::vector<uint8_t>& ME, std::vector<uint8_t>& MD) {
| #IF #LUT _ #LUT-access | #1IF #LUT __ # LUT-access | static const uint32_t RC[10] = {0x01000000, ©x02000000,...};
aes 3 5 424 0 4 416 std: :vector<uint32_t> XEK(48), XDK(48);
des 2 11 640 0 11 640 const std::vector<uint32_t>& TD = AES_TD();
des3 2 11 1,152 0 11 1,152 for(size_t i = @; i != 4; ++i)
anubis 1 7 871 0 6 868 XEK[i] = load_be<uint32_t>(key, 1i);
cast5 0 8 448 0 8 448 for(size_t i = 4; i < 44; i +=4) {
cast6 0 6 448 0 4 384 XEK[i] = XEK[i-4] ~ RC[(i-4)/4] *
ferypt 0 4 128 0 4 128 make_uint32(SE[get_byte(1, XEK[i-11)],
khazad 0 9 240 0 8 248 SE[get_byte(2, XEK[i-1D)1,
*LBlock 0 10 320 0 0 0 SE[get_byte(3, XEK[i-11)1,
*Piccolo 2 4 121 0 0 0 SE[get_byte(@, XEK[i-11)1);
*PRESENT 0 33 1,056 0 0 0 .
*TWINE 0 3 156 0 0 0 }
aes 4 10 706 0 9 696 e
cast 5 8 448 0 8 448 3
aes_key 3 4 784 0 2 184
Gz : M el . b Figure 15: Reduction: preloading only in the first iteration.
kasumi 2 2 192 0 2 192
seed 0 5 576 0 4 512 Table 4: Results of leak mitigation. Runtime overhead is
;WOHS“ ig 3 2’578 136 (3] 2513 based on average of 1000 simulations with random keys.
way
des 16 14 456 2 8 128
lokig1 10 1 512 4 0 0 I Mitigation w/o opt Mitigation w/ opt |
camellia 0 4 32 0 4 32 ‘ Name | #LUT-a_ Time(s) Prog-size Ex-time | #LUT-a_ Time(s) Prog-size Ex-time |
des 2 13 231 0 8 128
seed 3 5 518 0 4 200 aes 416 0.61 5.40x 2.70x 20 0.28 1.22x 1.11x
twofish 1 6 8751 0 5 2576 des 640 1.17 19.50x 5.68x 22 0.13 1.23x 1.07x
= - des3 1,152 1.80 12.90x 12.40x 22 0.46 1.13x 1.07x
anubis 868 3.12 9.08x 6.90x 10 0.75 1.10x 1.07x
cast5 448 0.79 7.24x 3.84x 12 0.22 1.18x 1.07x
Our experiments aimed to answer three research questions: (1) cast 84 072 TS 3ddx 12025 Llex 108
R N X o ferypt 128 0.07 570x  1.59x 8 0.03 134x  1.05x
Is our method effective in mitigating instruction- and cache-timing khazad 248 045 860x  4.94x 16 007 149 135x
leaks? (2) Is our method efficient in handling real applications? (3) acs 696 096 52 239x 18022 L2tx 1.06x
- . ; cast 448 142 1340x 650 12 030 135x 120
Is the overhead of the mitigated code, in terms of code size and run aes_key 184 027 135x  L19% 1 023 100x  1.00x
3 3 cast128 448 0.42 3.62x 2.48x 12 0.10 1.09x 1.06x
tlme’ lOW enough for praCtlcal uSe? des 256 0.21 3.69x 1.86x 16 0.06 1.17x 1.08x
kasumi 192 0.18 2.27x 1.37x 4 0.11 1.03x 1.01x
. . seed 512 0.57 6.18x 1.94x 12 0.15 1.12x 1.03x
7'1 Results' Leak DetCCtlon twofish 2,512 29.70 5.69x 4.77x 8 10.6 1.02x 1.03x
. . : : 3wa 0 0.01 1.01x 1.03x 0 0.01 1.01x 1.03x
Table 3 shows the results of applying our leak detection technique, ey 25 005 o 199k s 003 Lo 11
where Columns 1-4 show the name of the benchmark together with loki91 0o 001 L0lx  2.83x 0 001 L0Ix  2.83x
iee . camellia 32 0.04 2.21x 1.35x 4 0.03 1.20x 1.09x
the number of conditional jumps (# IF), lookup tables (# LUT), and o o5 006 aoe 120w : 003 Lo Lom
accesses to table elements (# LUT-access), respectively. Columns 5-7 seed 200 001 138x  1.36x 8 001 120x  118x
twofish 2,576 32.40 6.85x 6.59x 136 11.90 1.41x 1.46x

show the number of sensitive conditional jumps, lookup tables, and
accesses, respectively. Thus, non-zero in the sensitive #IF column
means there is instruction-timing leakage, and non-zero in the
sensitive #LUT-access means there is cache-timing leakage. We
omit the time taken by our static analysis since it is negligible: in
all cases the analysis completed in a few seconds.

Although conditional statements (#IF) exist, few are sensitive.
Indeed, only twofish from Botan[1] and three old textbook im-
plementations (3way, des, and 1oki91) have leaks of this type. In
contrast, many lookup tables are sensitive due to cache. This result
was obtained using fully associative LRU cache with 512 cache lines,
64 bytes per line, and thus 32 Kilobytes in total.

Some benchmarks, e.g., aes_key from Botan [1], already preload
lookup tables; however, our analysis still reports timing leakage, as
shown in Figure 15, where XEK is key-related and used to access
an array in the second for-loop. Although the table named TD is
computed at the run time (thus capable of avoiding flush+reload
attack) and all other tables are preloaded before accesses, it forgot
to preload SE[256], which caused the cache-timing leak.

7.2 Results: Leak Mitigation

To evaluate whether our method can robustly handle real applica-
tions, we collected results of applying our mitigation procedure to
each benchmark. Table 4 shows the results. Specifically, Columns 2-
5 show the result of our mitigation without cache analysis-based

optimization, while Columns 6-9 show the result with the optimiza-
tion. In each case, we report the number of LUT accesses actually
mitigated, the time taken to complete the mitigation, the increase
in program size, and the increase in runtime overhead. For anubis,
in particular, our cache analysis showed that only 10 out of the
868 sensitive LUT accesses needed mitigation; as a result, optimiza-
tion reduced both the program’s size (from 9.08x to 1.10x) and its
execution time (from 6.90x to 1.07x).

We also compared the execution time with generic (bitwise) ver-
sus optimized (CMOV) implementations of CTSEL(c,t,e). Figure 16
shows the result in a scatter plot, where points below the diagonal
line are cases where the optimized implementation is faster.

7.3 Results: GEM5 Simulation

Although our analysis is conservative in that the mitigated code
is guaranteed to be leak-free, it is still useful to conduct GEM5
simulations, for two reasons. First, it confirms our analysis reflects
the reality: the reported leaks are real. Second, it demonstrates that,
after mitigation, leaks are indeed eliminated.

Table 5 shows our results. For each benchmark, we ran the ma-
chine code compiled for x86 on GEM5 using two manually crafted
inputs (e.g., cryptographic keys) capable of showing the timing
variation. Columns 2-5 show the results of the original program,
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Table 5: Results of GEM5 simulation with 2 random inputs.

Before Mitigation ‘ Mitigation w/o opt ‘ Mitigation w/ opt ‘

Name } # CPU cycle (iny,inz) [ # Miss (iny,inz) [ # CPUcycle # Miss | # CPU cycle # Miss |
aes 100,554 101,496 | 261 269 204,260 303 112,004 303
des 95,630 90,394 | 254 211 346,170 280 100,694 280
des3 118,362 111,610 | 271 211 865,656 280 124,176 280
anubis 128,602 127,514 | 276 275 512,452 276 134,606 276
cast5 102,426 102,070 | 282 279 266,156 304 108,068 304
cast6 96,992 97,492 | 238 245 233,774 245 100,914 245
ferypt 84,616 83,198 | 224 218 114,576 240 88,236 240
khazad 101,844 100,724 | 332 322 366,756 432 130,682 432
aes 89,968 90,160 | 234 235 174,904 240 94,364 240
cast 117,936 117,544 | 345 342 520,336 436 136,052 435
aes_key™ | 243,256 243,256 | 329 329 254,262 329 245,584 328
cast128 161,954 161,694 | 298 296 305,514 321 167,626 321
des 118,848 119,038 | 269 270 182,830 317 127,374 316
kasumi 113,362 113,654 | 204 206 137,914 206 115,060 206
seed 106,518 106,364 | 239 238 165,546 249 110,486 249
twofish 309,160 299,956 | 336 334 1,060,832 340 315,018 339
3way 87,834 87,444 | 181 181 90,844 182 90,844 182
des 152,808 147,344 | 224 222 181,074 225 168,938 225
loki91 768,064 768,296 | 181 181 2,170,626 181 2,170,626 181
camellia 84,208 84,020 | 205 203 102,100 244 91,180 244
des 100,396 100,100 | 212 211 112,992 213 100,500 213
seed 83,256 83,372 | 228 230 107,318 240 96,266 239
twofish 230,838 229,948 | 334 327 982,258 338 295,268 338

including the number of CPU cycles taken to execute it under the
two inputs, as well as the number of cache misses. Columns 6-9
show the results on the mitigated program versions.

The results show the execu-
tion time of the original program
indeed varies, indicating there
are leaks. But it becomes con-
stant after mitigation, indicating
leaks are removed. The one ex-
ception is aes_keys: we were not
able to manually craft the inputs 1 s 2 25 3
under which leak is demonstra-
ble on GEMS5. Since the input
space is large, manually crafting
such inputs is not always easy:
symbolic execution tools [45-48] may help generate such leak-
manifesting input pairs — we will consider it for future work.

3 T T T

Ex-time (with Bitwise)
N
|

Ex-time (with CMOV)

Figure 16: Comparing
CTSEL implementations.

7.4 Threats to Validity

First, our mitigation is software based; as such, we do not address
leaks exploitable only by probing the hardware such as instruction
pipelines and data buses. We focus on the total-time-aware threat
model: although extensions to handle other threat models are pos-
sible (e.g., multi-core and multi-level cache), we consider them as
future work. It is possible that timing characteristics of the machine
code may differ from those of the LLVM bit-code, but we have taken
efforts in making sure machine code produced by our tool does
not deviate from the mitigated bit-code. For example, we always
align sensitive lookup tables to cache line boundaries, and we im-
plement CTSEL as an intrinsic function to ensure constant-time
execution. We also use GEM5 simulation to confirm that machine
code produced by our tool is indeed free of timing leaks.

8 RELATED WORK

Kocher [53] is perhaps the first to publicly demonstrate the feasibil-
ity of timing side-channel attacks in embedded systems. Since then,
timing attacks have been demonstrated on many platforms [9, 16,
24, 28, 43, 51, 69, 72, 85]. For example, Brumley et al. [24] showed
timing attacks could be carried out remotely through a computer

Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang

network. Cock et al. [28] found timing side channels in the seL4
microkernel and then performed a quantitative evaluation.

Noninterference properties [9, 17, 49, 56, 73] have also been
formulated to characterize side-channel leaks. To quantify these
leaks, Millen [64] used Shannon’s channel capacity [77] to model the
correlation between sensitive data and timing observations. Other
approaches, including min-entropy [78] and g-leakage [10], were
also developed. Backes and Kopf [14] developed an information-
theoretic model for quantifying the leaked information. Képf and
Smith [58] also proposed a technique for bounding the leakage in
blinded cryptographic algorithms.

Prior countermeasures for timing leaks focused primarily on
conditional branches, e.g., type-driven cross-copying [7]. Molnar et
al. [65] introduced, along the program counter model, a method for
merging branches. Kopf and Mantel [56] proposed a unification-
based technique encompassing the previous two methods. Indepen-
dently, Barthe et al. [17] proposed a transactional branching tech-
nique that leverages commit/abort operations. Coppens et al. [29]
developed a compiler backend for removing such leaks on x86 pro-
cessors. However, Mantel and Starostin [63] recently compared
four of these existing techniques on Java byte-code, and showed
that none was able to eliminate the leaks completely. Furthermore,
these methods did not consider cache-timing leaks.

There are techniques that do not eliminate but hide timing leaks
via randomization or blinding [12, 23, 31, 50, 53, 55, 88]. There are
also hardware-based mitigation techniques, which fall into two
categories: resource isolation and timing obfuscation. Resource iso-
lation [61, 70, 86] may be realized by partitioning hardware to two
parts (public and private) and then restrict sensitive data/operations
to the private partition. However, it requires modifications of the
CPU which is not always possible. Timing obfuscation [50, 74, 83]
may be achieved by inserting fixed or random delays, or interfering
the measurement of the system clock. In addition to being expen-
sive, such techniques do not eliminate timing channels. Oblivious
RAM [42, 60, 81] is another technique for removing leakage through
the data flows, but requires a substantial amount of on-chip memory
and incurs significant overhead in the execution time.

Beyond timing side channels, there are countermeasure tech-
niques for mitigating leaks through other side channels including
power [54, 62] and faults [20]. Some of these techniques have been
automated in compiler-like tools [8, 19, 66] whereas others have
leveraged the more sophisticated, SMT solver-based, formal verifi-
cation [37, 38, 89] and inductive synthesis techniques [36, 39, 84].
However, none of these compiler or formal methods based tech-
niques was applied to cache-timing side channels.

9 CONCLUSIONS

We have presented a method for mitigating side-channel leaks via
program repair. The method was implemented in SC-Eliminator, a
tool for handling cryptographic libraries written in C/C++. We eval-
uated it on real applications and showed the method was scalable
and efficient, while being effective in removing both instruction-
and cache-related timing side channels. Furthermore, the mitigated
software code had only moderate increases in program size and
run-time overhead.

ACKNOWLEDGMENTS

This work was supported in part by the NSF under grants CNS-
1617203 and CNS-1702824 and ONR under grant N00014-17-1-2896.



Eliminating Timing Side-Channel Leaks using Program Repair

REFERENCES

(1]
(2]

(1]

[12]

=
&

[14

[15]

[16]

[17]

(18]

[19]

[20

[21]

oo
0

[23]

[24

[25]

[26]

[27]

[28

[29

Botan: Crypto and TLS for C++11. https://github.com/randombit/botan/.

Fair Evaluation of Lightweight Cryptographic Systems. https://www.cryptolux.
org/index.php/FELICS.

Libgerypt. https://gnupg.org/software/libgcrypt/index.html.

Libgerypt. https://www.gnupg.org/software/libgcrypt/index.html.

System for Unified Performance Evaluation Related to Cryptographic Operations
and Primitives. https://bench.cr.yp.to/supercop.html.

] The LLVM Compiler Infrastructure. http://llvm.org/.

Johan Agat. Transforming out timing leaks. In ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pages 40-53, 2000.

Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. A code morphing
methodology to automate power analysis countermeasures. In ACM/IEEE Design
Automation Conference, pages 77-82, 2012.

Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS
and DTLS record protocols. In IEEE Symposium on Security and Privacy, pages
526-540, 2013.

Mario S. Alvim, Konstantinos Chatzikokolakis, Annabelle McIver, Carroll Morgan,
Catuscia Palamidessi, and Geoffrey Smith. Additive and multiplicative notions of
leakage, and their capacities. In IEEE Computer Security Foundations Symposium,
pages 308-322, 2014.

Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-
auchi, and Shiyi Wei. Decomposition instead of self-composition for proving
the absence of timing channels. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 362-375, 2017.

Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive black-box mit-
igation of timing channels. In ACM Conference on Computer and Communications
Security, pages 297-307, 2010.

Zelalem Birhanu Aweke and Todd M. Austin. @zone: Efficient execution with zero
timing leakage for modern microarchitectures. In IEEE International Symposium
on Hardware Oriented Security and Trust, page 153, 2017.

Michael Backes and Boris Képf. Formally bounding the side-channel leakage
in unknown-message attacks. In European Symposium on Research in Computer
Security, pages 517-532, 2008.

George Balatsouras and Yannis Smaragdakis. Structure-sensitive points-to anal-
ysis for C and C++. In International Symposium on Static Analysis, pages 84-104,
2016.

Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, and Tevfik
Bultan. String analysis for side channels with segmented oracles. In ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 193-204, 2016.

Gilles Barthe, Tamara Rezk, and Martijn Warnier. Preventing timing leaks through
transactional branching instructions. Electr. Notes Theor. Comput. Sci., 153(2):33—
55, 2006.

Tiyash Basu and Sudipta Chattopadhyay. Testing cache side-channel leakage.
In IEEE International Conference on Software Testing, Verification and Validation
Workshops, pages 51-60, 2017.

Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, Francois-Xavier Standaert,
and Paolo Ienne. A first step towards automatic application of power analysis
countermeasures. In ACM/IEEE Design Automation Conference, pages 230-235,
2011.

Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In International Cryptology Conference, pages 513-525, 1997.

Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali G. Saidi, Arkaprava Basu, Joel Hestness, Derek Hower, Tushar Krishna, So-
mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib Bin Altaf, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SSIGARCH Computer
Architecture News, 39(2):1-7, 2011.

Andrew Bortz and Dan Boneh. Exposing private information by timing web
applications. In International Conference on World Wide Web, pages 621-628,
2007.

Benjamin A. Braun, Suman Jana, and Dan Boneh. Robust and efficient elimination
of cache and timing side channels. CoRR, abs/1506.00189, 2015.

David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701-716, 2005.

Sudipta Chattopadhyay. Directed automated memory performance testing. In
International Conference on Tools and Algorithms for Construction and Analysis of
Systems, pages 38-55, 2017.

Jia Chen, Yu Feng, and Isil Dillig. Precise detection of side-channel vulnerabilities
using quantitative cartesian hoare logic. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 875-890, 2017.
Duc-Hiep Chu, Joxan Jaffar, and Rasool Maghareh. Precise cache timing anal-
ysis via symbolic execution. In IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 293-304, 2016.

David Cock, Qian Ge, Toby C. Murray, and Gernot Heiser. The last mile: An
empirical study of timing channels on seL4. In ACM SIGSAC Conference on
Computer and Communications Security, pages 570-581, 2014.

Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.
Practical mitigations for timing-based side-channel attacks on modern x86 pro-
cessors. In IEEE Symposium on Security and Privacy, pages 45-60, 2009.

[30

[31

@
5,

(33]

[34

[35

[36

[37

[38

[39

[40

[41

[42

[43

[44

S
&

o
&,

ISSTA’18, July 16-21, 2018, Amsterdam, Netherlands

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pages 238-252, 1977.

Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael
Franz. Thwarting cache side-channel attacks through dynamic software diversity.
In Annual Network and Distributed System Security Symposium, 2015.

Matthew Dellinger, Piyush Garyali, and Binoy Ravindran. Chronos linux: a best-
effort real-time multiprocessor linux kernel. In ACM/IEEE Design Automation
Conference, pages 474-479, 2011.

Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Leo Perrin, Johann Grobschadl,
and Alex Biryukov. Triathlon of lightweight block ciphers for the internet of
things. Cryptology ePrint Archive, Report 2015/209, 2015.

Goran Doychev, Dominik Feld, Boris Képf, Laurent Mauborgne, and Jan Reineke.
CacheAudit: A tool for the static analysis of cache side channels. In USENIX
Security, pages 431-446, 2013.

Goran Doychev, Boris Kopf, Laurent Mauborgne, and Jan Reineke. Cacheaudit:
A tool for the static analysis of cache side channels. ACM Trans. Inf. Syst. Secur.,
18(1):4:1-4:32, 2015.

Hassan Eldib and Chao Wang. Synthesis of masking countermeasures against
side channel attacks. In International Conference on Computer Aided Verification,
pages 114-130, 2014.

Hassan Eldib, Chao Wang, and Patrick Schaumont. SMT-based verification of
software countermeasures against side-channel attacks. In International Con-
ference on Tools and Algorithms for Construction and Analysis of Systems, pages
62-77, 2014.

Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. QMS: Eval-
uating the side-channel resistance of masked software from source code. In
ACM/IEEE Design Automation Conference, pages 209:1-6, 2014.

Hassan Eldib, Meng Wu, and Chao Wang. Synthesis of fault-attack countermea-
sures for cryptographic circuits. In International Conference on Computer Aided
Verification, pages 343-363, 2016.

Christian Ferdinand and Reinhard Wilhelm. On predicting data cache behavior
for real-time systems. In ACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Embedded Systems, pages 16-30, 1998.

Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior
prediction for real-time systems. Real-Time Systems, 17(2-3):131-181, 1999.
Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on
oblivious rams. Journal of the ACM, 43(3):431-473, 1996.

Philipp Grabher, Johann Grof3schadl, and Dan Page. Cryptographic side-channels
from low-power cache memory. In International Conference on Cryptography and
Coding, pages 170-184, 2007.

David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games-bringing
access-based cache attacks on aes to practice. In IEEE Symposium on Security and
Privacy, pages 490-505, 2011.

Shengjian Guo, Markus Kusano, and Chao Wang. Conc-iSE: Incremental symbolic
execution of concurrent software. In IEEE/ACM International Conference On
Automated Software Engineering, 2016.

Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta. As-
sertion guided symbolic execution of multithreaded programs. In ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 854-865, 2015.
Shengjian Guo, Meng Wu, and Chao Wang. Symbolic execution of programmable
logic controller code. In ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 326-336, 2017.

Shengjian Guo, Meng Wu, and Chao Wang. Adversarial symbolic execution for
detecting concurrency-related cache timing leaks. 2018.

Daniel Hedin and David Sands. Timing aware information flow security for a
javacard-like bytecode. Electr. Notes Theor. Comput. Sci., 141(1):163-182, 2005.
Wei-Ming Hu. Reducing timing channels with fuzzy time. In IEEE Symposium
on Security and Privacy, pages 8-20, 1991.

Zhen Hang Jiang, Yunsi Fei, and David R. Kaeli. A complete key recovery timing
attack on a GPU. In IEEE International Symposium on High Performance Computer
Architecture, pages 394-405, 2016.

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre attacks: Exploiting speculative execution. ArXiv e-prints, January 2018.
Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Annual International Cryptology Conference, pages 104-113.
Springer, 1996.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
International Cryptology Conference, pages 388-397, 1999.

Boris Képf and Markus Diirmuth. A provably secure and efficient countermeasure
against timing attacks. In IEEE Computer Security Foundations Symposium, pages
324-335, 2009.

Boris Kopf and Heiko Mantel. Transformational typing and unification for
automatically correcting insecure programs. Int. J. Inf. Sec., 6(2-3):107-131, 2007.
Boris Képf, Laurent Mauborgne, and Martin Ochoa. Automatic quantification of
cache side-channels. In International Conference on Computer Aided Verification,
pages 564-580, 2012.


https://github.com/randombit/botan/
https://www.cryptolux.org/index.php/FELICS
https://www.cryptolux.org/index.php/FELICS
https://gnupg.org/software/libgcrypt/index.html
https://www.gnupg.org/software/libgcrypt/index.html
https://bench.cr.yp.to/supercop.html
 http://llvm.org/

ISSTA’18, July 16-21, 2018, Amsterdam, Netherlands

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[69]

[70]
[71]

[72]

(73

Boris Kopf and Geoffrey Smith. Vulnerability bounds and leakage resilience of
blinded cryptography under timing attacks. In IEEE Computer Security Founda-
tions Symposium, pages 44-56, 2010.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown. ArXiv e-prints, January 2018.

Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine
Shi. Ghostrider: A hardware-software system for memory trace oblivious com-
putation. ACM SIGARCH Computer Architecture News, 43(1):87-101, 2015.
Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B Lee. Catalyst: Defeating last-level cache side channel attacks in cloud
computing. In IEEE International Symposium On High Performance Computer
Architecture, pages 406-418, 2016.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks -
Revealing the Secrets of Smart Cards. Springer, 2007.

Heiko Mantel and Artem Starostin. Transforming out timing leaks, more or less.
In European Symposium on Research in Computer Security, pages 447-467, 2015.
Jonathan K. Millen. Covert channel capacity. In IEEE Symposium on Security and
Privacy, pages 60-66, 1987.

David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The pro-
gram counter security model: Automatic detection and removal of control-flow
side channel attacks. In International Conference on Information Security and
Cryptology, pages 156—168. Springer, 2005.

Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler
assisted masking. In International Conference on Cryptographic Hardware and
Embedded Systems, pages 58-75, 2012.

Keaton Mowery, Sriram Keelveedhi, and Hovav Shacham. Are aes x86 cache
timing attacks still feasible? In ACM Workshop on Cloud computing security,
pages 19-24, 2012.

Yoshitaka Nagami, Daisuke Miyamoto, Hiroaki Hazeyama, and Youki
Kadobayashi. An independent evaluation of web timing attack and its coun-
termeasure. In International Conference on Availability, Reliability and Security,
pages 1319-1324, 2008.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: The case of AES. In Topics in Cryptology - CT-RSA 2006, The Cryptographers’
Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006, Pro-
ceedings, pages 1-20, 2006.

Dan Page. Partitioned cache architecture as a side-channel defence mechanism.
David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Efficient field-sensitive pointer
analysis for C. In ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For
Software Tools and Engineering, 2004.

Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, and
Tevfik Bultan. Synthesis of adaptive side-channel attacks. In IEEE Computer
Security Foundations Symposium, pages 328-342, 2017.

Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Probabilistic timing
covert channels: to close or not to close? Int. J. Inf. Sec., 10(2):83-106, 2011.

Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang

[74] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: closing digital side-channels

through obfuscated execution. In USENIX Security Symposium, pages 431-446,

2015.

Sebastian Schinzel. An efficient mitigation method for timing side channels on

the web. In International Workshop on Constructive Side-Channel Analysis and

Secure Design, 2011.

Bruce Schneier. Applied cryptography: protocols, algorithms, and source code in C.

John Wiley & Sons, 2007.

Claude E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27:379-423, 1948.

[78] Geoffrey Smith. On the foundations of quantitative information flow. In Inter-

national Conference on the Foundations of Software Science and Computational

Structures, pages 288-302, 2009.

Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-safety prop-

erties. In ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 57-69, 2016.

Raphael Spreitzer and Thomas Plos. On the applicability of time-driven cache

attacks on mobile devices. In International Conference on Network and System

Security, pages 656—-662. Springer, 2013.

[81] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious

RAM protocol. In ACM SIGSAC Conference on Computer & Communications

Security, pages 299-310, 2013.

Valentin Touzeau, Claire Maiza, David Monniaux, and Jan Reineke. Ascertaining

uncertainty for efficient exact cache analysis. In International Conference on

Computer Aided Verification, pages 22-40, 2017.

[83] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. Eliminating fine grained
timers in xen. In ACM workshop on Cloud computing security, pages 41-46, 2011.

[84] Chao Wang and Patrick Schaumont. Security by compilation: an automated
approach to comprehensive side-channel resistance. ACM SIGLOG News, 4(2):76—
89, 2017.

[85] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. CacheD:
Identifying cache-based timing channels in production software. In USENIX

Securit Sym‘g]usium, paﬁes 235-252. USENIX Association, 2017.
Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software

cache-based side channel attacks. In International Symposium on Computer
Architecture, pages 494-505, 2007.
[87] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution, low noise,
L3 cache side-channel attack. In USENIX Security Symposium, pages 719-732,
2014.
Danfeng Zhang, Aslan Askarov, and Andrew C Myers. Language-based control
and mitigation of timing channels. In ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pages 99-110, 2012.
[89] Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. SCInfer: Refinement-based
verification of software countermeasures against side-channel attacks. In Inter-
national Conference on Computer Aided Verification, 2018.

(75

[76

[77

[79

[80

[82

(86

(88



	Abstract
	1 Introduction
	2 Motivation
	2.1 Conditional Jumps Affected by Secret Data
	2.2 Table Lookups Affected by Secret Data
	2.3 Idiosyncratic Code Affected by Secret Data

	3 Threat Model
	4 Detecting Potential Leaks
	4.1 Static Sensitivity Analysis
	4.2 Leaky Conditional Statements
	4.3 Leaky Lookup-table Accesses

	5 Mitigating Conditional Statements
	5.1 Standardizing Conditional Statements
	5.2 Replacing Conditional Statements
	5.3 Optimizations

	6 Mitigating Lookup-Table Accesses
	6.1 Mitigation Granularity and Overhead
	6.2 Static Cache Analysis-based Reduction

	7 Experiments
	7.1 Results: Leak Detection
	7.2 Results: Leak Mitigation
	7.3 Results: GEM5 Simulation
	7.4 Threats to Validity

	8 Related Work
	9 Conclusions
	References

