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ABSTRACT
Due to their safety-critical nature, cyber-physical systems (CPS)
must tolerate faults and security attacks to remain fail-operational.
However, conventional techniques for improving safety, such as
testing and validation, do not meet this requirement, as shown by
many of the real-world system failures in recent years, often with
major economic and public-safety implications. We aim to improve
the safety of critical CPS through synthesis of runtime enforcers,
named safety guards, which are reactive components attached to the
original systems to protect them against catastrophic failures. That
is, even if the system occasionally malfunctions due to unknown
defects, transient errors, or malicious attacks, the guard always
reacts instantaneously to ensure that the combined system satisfies
a predefined set of safety properties, and the deviation from the
original system is kept at minimum. We illustrate the main ideas of
this approach with examples, discuss the advantages compared to
existing approaches, and point out some research challenges.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Software and its engineering → Formal
methods; Embedded software;
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Safety and security, reactive synthesis, runtime enforcement, soft-
ware synthesis, real-time schedulability
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1 INTRODUCTION
The industry is facing significant challenges in managing risks for
various cyber-physical systems (CPS). In the automotive industry,
for example, there is a large number of safety recalls in recent years
(Fig. 1) that cost billions of dollars and affected all major original
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Figure 1: Recalled vehicles in the U.S. [19, 20, 31, 39, 45].

equipment manufacturers (OEMs), with the recall rate generally
≥ 0.5 and sometimes ≥ 1.0 [25, 47]. In 2014 and 2015, for instance,
the number of recalled vehicles in the U.S. reached record highs,
affecting 51 million vehicles each year [39, 45]. A closer look at
the root causes of these safety recalls shows that the situation is
deteriorating and the trend will likely continue, for two reasons.
Verification feasibility: Automotive OEMs are hard pressed to
deliver products at a faster pacewith lower cost [4]. Vehicles are also
increasingly more complex in terms of both the embedded software
that routinely exceed 100 million lines of code and the supporting
hardware architecture that consists of 50-100 electronic control
units (ECUs) and dozens of in-vehicle communication buses [4].
Furthermore, since the supply chain values IP protection, parts are
often provided as blackboxes [46], even for autonomous driving
features that involve multiple parts across the entire vehicle [15].
The combined high system complexity, short time-to-market, and
lack of accessibility to vital source code make it unrealistic or even
impossible to formally verify the system.
Security: When vehicles are under malicious attacks, ensuring
safety becomes even harder. Unfortunately, vehicle accessibility is
rapidly increasing due to ubiquitous cellular connectivity, Internet
access, remote diagnostic/service entry points, and the soon-to-
be-available vehicle-to-vehicle and vehicle-to-infrastructure com-
munications. It opens doors for attacks [28] while few of today’s
systems are designed with security concerns in mind [11]. Thus,
one compromised ECU may subject the entire network of ECUs to
security risks. For example, in 2015, millions of cars from Chrysler
and Tesla were in danger as hackers demonstrated the possibility
of remotely controlling a running vehicle [25]. Therefore, security
vulnerabilities are becoming a major threat to vehicle safety [5, 18].

Related Work. Broadly speaking, existing methods for improving
the safety of critical CPS fall into four categories. Methods in the
first category seek to reduce the failure rate using fault-tolerance
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techniques such as N-modular redundancy [26], N-version pro-
gramming [1], re-execution [38], and error-correcting codes [17].
They are effective in dealing with faults induced by the environ-
ment but not design defects. Methods in the second category, such as
testing and verification [6, 16], focus on eliminating design defects
but suffer from scalability problems and thus cannot eliminate all
defects. Methods in the third category perform runtime monitoring
of critical requirements (i.e., properties) [7, 23]. However, they only
check but do not enforce these requirements. Methods in the fourth
category can enforce properties [12, 40], but they are fail-stop as
opposed to fail-operational, and thus are ill-suited for reactive sys-
tems such as CPS. For example, the safety kernel in [40] simply
halts the system in case of property violations, while the monitor
in [12] buffers output strings until they are proved safe and thus
causes significant delay in the response time.

In summary, none of the aforementioned methods can correct
safety violations instantaneously, i.e., in the same control step when
the violation occurs, while assuming no knowledge on the im-
plementation details of the system. Furthermore, none of these
methods addresses failures caused by security attacks, despite that
security risks in CPS are rapidly increasing in recent years [5, 13,
18, 22, 29, 41–43].

Our Approach.We propose to leverage recent advances in reactive
synthesis, such as Bloem et al. [3, 48], to improve CPS safety. Specif-
ically, we want to ensure that a predefined set of safety-critical
properties are always satisfied by the system even in the presence
of unknown failures or security attacks. Toward this end, we take
the safety properties as input and treat the original system as a
blackbox, and automatically synthesize a reactive component called
the safety guard. The guard behaves as a runtime enforcer: at runtime
it monitors the input-output behaviors of the (blackbox) system
and corrects any property violation instantaneously.

Consider the vehicle system in Fig. 2 (a), where various control
subsystems such as braking, steering, engine control, and suspen-
sion are implemented on a distributed network of ECUs. Assume
that the original system occasionally violates the safety specifica-
tion. Given the safety specification φ (but not the original system),
our method automatically generates the guard S shown in Fig. 2 (b)
as output. The guard is a component that regulates the input-output
behaviors of the system to avoid safety violations. At run time, it
takes the input I and output O of the original system as its input,
and produces the new output O ′ such that the combined system
always satisfies the safety specification. That is, φ(I ,O ′) holds even
if φ(I ,O) is violated occasionally by the original system.

Specifically, our contributions in this position paper are:

• We advocate the use of safety guards and related synthesis
algorithms [3, 48] to enforce the safety of critical CPS.

• We argue that, since the proposed approach requires no
knowledge on the implementation details of the system, it
is well suited for a wide variety of CPS applications.

• We demonstrate the feasibility of this approach using ex-
amples from related industries and point out its advantages
over existing approaches.

• Finally, we outline the research challenges, discuss their
potential solutions, and suggest some ways of integrating
the proposed technique into industrial design practice.

The remainder of the paper is organized as follows. We illustrate
the concept of safety guards with examples in Section 2 before
formally defining the guard synthesis problem in Section 3. We
demonstrate the feasibility and effectiveness of existing synthesis
algorithms in Section 4.We discuss the advantages and assumptions
of this approach in Section 5. Finally, we present some open research
problems and then conclude in Section 6.

2 THE CONCEPT OF SAFETY GUARD
Instead of matching known fault patterns or attack patterns and
then taking a predefined set of remedial measures, we choose to
enforce critical requirements (properties) by automatically synthe-
sizing a safety guard from a formal specification of these properties.

2.1 An Illustrative Example
We use the brake and engine control units in Fig. 2 to illustrate
how safety guards can be used to protect against an erroneous
behavior similar to the unintended acceleration in the 2009-2011
Toyota recalls [47]. The original system takes as input the positions
of brake pedal (bp) and accelerator pedal (ap) as well as the throttle
demand from cruise control (cc), and returns as output the control
commands for throttle (tc) and braking (bc). For simplicity, we
assume all signals are Boolean. Below are four example properties:

• Req 1: If the brake pedal is pressed (bp=1), the brake should
be applied (bc=1) and the throttle should be closed (tc=0).
That is, bp=1→ bc=1 ∧ tc=0;

• Req 2: bp=0 ∧ ap=1 → bc=0 ∧ tc=1;
• Req 3: bp=0 ∧ ap=0 ∧ cc=0 → bc=0 ∧ tc=0;
• Req 4: bp=0 ∧ ap=0 ∧ cc=1→ bc=0 ∧ tc=1.

Requirements 1–3 are safety-critical as any violation can lead
to fatal consequences. In particular, Req 1 satisfies the basic safety
needs for a brake override system to prevent unintended acceler-
ation, as suggested by the U.S. National Highway Traffic Safety
Administration (NHTSA) [33]. In contrast, Req 4 is not necessarily
safety-critical: when violated, it is unpleasant but can be regarded as
a mere non-function of the cruise control. In practice, there can be
many additional properties like Req 4, which are not safety-critical
and therefore do not need to be enforced by the guard.

First, consider enforcing Requirements 1–3, whose safety guard
is the combinational logic shown in Fig. 3 (b)–(c). Here, tc and bc
are output signals of the original system, whereas tc’ and bc’ are
new output signals of the guard. If there are no safety violations,
the guard satisfies that tc’ = tc and bc’ = bc. However, the system,
complicated by many other requirements like Req 4, may violate
the critical properties. For example, when the accelerator pedal is
trapped (ap = 1) and the driver presses the brake pedal (bp = 1), the
system may disrespect Req 1, as indicated by the first three rows of
the truth table in Fig. 3 (a). In such cases, the guard instantaneously
corrects the output to bc’ = 1 and tc’ = 0.

While the guard for Requirements 1–3 can be realized solely in
combinational logic, it is not always the case for more complex
requirements. For example, Req 1 alone may be replaced by the
following set of refined requirements:

• Req 1.1: If the brake pedal is pressed before the accelerator,
both should be applied (bc=1 ∧ tc=1) to avoid interfering
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Figure 2: (a) Original vehicle system; (b) New vehicle system protected by automatically synthesized safety guards.
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ap: accelerator pedal

cc: cruise control

bc: brake command
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bc': guarded brake command
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1 1 x 1 1 1 0
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1 1 x 1 0 1 0

1 0 x 1 0 1 0
.. .. .. .. .. .. ..

Figure 3: Safety guards for Reqs 1–3: (a) the truth table; (b)
guard for the engine control; (c) guard for brake control.

with the driver’s true intention in situations such as trailer
positioning or starting on a steep slope [33];

• Req 1.2: If the brake pedal is pressed together with or after
the accelerator, the brake should be applied but the throttle
should be closed (bc=1 ∧ tc=0);

• Req 1.3: If only the brake pedal is pressed (bp=1 ∧ ap=0),
the brake should be applied but the throttle should be
closed (bc=1 ∧ tc=0).

Requirements 1.1 and 1.2 involve temporal operators [9], result-
ing in safety guards generally represented as finite automata. Fig. 4
shows the automatically synthesized guard to enforce Req 1.2. Al-
though in practice the guards for brake control and engine control
may be implemented separately in a distributed network of ECUs,
here, we represent them in one automaton for ease of comprehen-
sion. In the automaton, s0, s1, s2 are safe states where the guard
does not change the output of the design (hence eq = 1); s2′ is a
state where the guard needs to correct the erroneous output.

s0 s1 s2

s2’

bp ∧ eq

¬bp ∧ eq

bp ∧ ¬ap ∧ eq

¬bp ∧ eq

bp ∧ ap ∧ eq

¬bp ∧ eq

bp ∧ ap ∧ bc ∧
¬tc ∧ bc’ ∧
¬tc’

bp ∧ ¬ap ∧ eq

bp∧ap∧(¬bc∨
tc)∧bc’∧¬tc’

bp∧ap∧(¬bc∨
tc)∧bc’∧¬tc’

bp ∧ ap ∧ bc ∧
¬tc ∧ bc’ ∧
¬tc’¬bp ∧ eq

bp ∧ ¬ap ∧ eq

Figure 4: Safety guard for enforcingReq 1.2, where the signal
“eq” is defined as ¬ (tc ⊕ tc’) ∧ ¬ (bc ⊕ bc’).

Table 1: Simulation trace for the guard in Fig. 4.

Step 0 1 2 3 4 5 6 7 8 9 10 11
State in guard (Fig. 4) S0 S1 S1 S2 S2 S1 S1 S2’ S2’ S0 S1 ...
Input (bp,ap) 10 00 01 11 11 00 01 11 11 10 00 ...
System Output (bc,tc) 10 00 01 10 10 00 01 11� 11� 10 00 ...
Guard Output (bc’,tc’) 10 00 01 10 10 00 01 10 10 10 00 ...

To understand how the guard corrects the erroneous output,
refer to the simulation trace in Table 1. When the system behavior
satisfies the specification (Steps 0–6), the guard’s output remains
the same as the design’s output. However, in Steps 7 and 8 where
the brake pedal is pressed after the accelerator, the throttle control
output is unexpectedly open (tc = 1), the guard reacts instanta-
neously and corrects it. Furthermore, the guard stops interfering as
soon as the design is back to normal—the guard’s output remains
the same as the design’s output starting from Step 9.

2.2 Preventing Costly Recalls
We argue that the use of safety guards in vehicle control subsystems
can help avoid safety recalls due to problems similar to the Toyota
unintended acceleration. Table 2 shows a partial list of similar
recalls in recent years, together with descriptions of the violated
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Table 2: Partial List of Recent Automotive Recalls and Violated Critical Properties (Extended from [7]).

Year OEM # Recalled Vehicles Violated Critical Property Source
2010 Toyota 7.5M See Section 2.1 [33, 47]
2011 Honda 2.5M Cruise control shall be turned off if brake pedal or cancel button is pressed [32]
2011 Jaguar 18K The engine speed threshold allowed for executing transmission shifts shall be sufficiently low [24]
2013 Honda 350K The Vehicle Safety Assist System shall not apply the brakes without driver’s input [34]
2014 Ford 595K The airbags must deploy within 10ms of sudden acceleration along any axis [35]
2015 Toyota 625K While moving, the hybrid system can only be shut down through the ignition switch [37]
2015 Ford 432K The engine shall shut off after the car key is removed [36]
2015 Chrysler 1.4M Only messages in scope of the target ECU should be processed [25]
2016 GM 4.3M The software controlling the airbags shall always deploy them during a crash [14]

safety properties. Our preliminary investigation shows that all
these critical properties can be specified in ways similar to our
example for the engine and braking system in Section 2.1. Hence,
with automatically synthesized safety guards, such recalls may be
prevented.

3 SYNTHESIS OF SAFETY GUARDS
In this section, we formally define the guard synthesis problem.
Recall that the guard must be reactive, i.e., capable of correcting
the violation in the same control step. Furthermore, it must be
constructed solely from the safety properties denoted φ, regardless
of the implementation details of the design D (the system may be
a blackbox). This ensures the simplicity of the guard as well as the
scalability of the guard synthesizer. However, to satisfy φ, the guard
must not generate the outputO ′ arbitrarily; it must guess the moves
of the design while correcting the erroneous outputO , to minimize
the deviation between O ′ and O .

This may be achieved by solving a two-player safety game as
shown in [3, 48], where one player represents the design D that
controls the values ofO and the other player represents the guardS
that controls the value of O ′. The goal of the guard is making sure
that (a) φ(I ,O ′) is always satisfied, and (b) the deviation from O to
O ′ is minimized, which means the guard must keep the difference
between O and O ′ as small as possible. Intuitively, S must start
interfering only when it has to, and stop interfering as soon as
φ(I ,O) is satisfied by D again.

Design and Guard. The design is a reactive system represented by
aMealymachineD = (Q,q0, ΣI , ΣO ,δ , λ), whereQ is a set of states,
q0 ∈ Q is the initial state, ΣI and ΣO are the input/output symbols,
δ : Q × ΣI → Q is the transition function, and λ : Q × ΣI → ΣO
is the output function. The guard is also a reactive system S =
(Q ′,q′0, Σ, ΣO ,δ

′, λ′), where Σ = ΣI ∪ ΣO is the set of new input
symbols. The compositionD×S is (Q̂, q̂0, ΣI , ΣO , δ̂ , λ̂), where Q̂ =
Q ×Q ′, q̂0 = (q0,q′0), δ̂ ((q,q

′),σI ) = (δ (q,σI ),δ ′(q′, (σI , λ(q,σI ))))
is the transition function, and λ̂((q,q′),σI ) = λ′(q′, (σI , λ(q,σI ))) is
the output function.

We assume that both δ and λ of the design D are unknown, and
our goal is to synthesize δ ′ and λ′ of the guard S directly from the
safety specification φ.

Specification. The specification φ is a set of safety properties that
can be represented by an automaton φ = (Q,q0, Σ,δ , F ), where
Σ = ΣI ∪ ΣO , δ : Q × Σ → Q , and F ⊆ Q is the set of safe states. A
trace σ = σ0σ1 . . . ∈ Σω satisfies φ if the induced state sequence

q = q0q1 . . ., where qi+1 = δ (qi ,σi ), visits the safe states only. The
language L(φ) is the set of all traces satisfying φ.
Synthesizing the Safety Guard. Let L(D) be the set of all traces
generated by D. We want to verify that L(D) ⊆ L(φ). However,
this can be difficult or impossible ifD is large and complex, despite
that φ is often small. Instead, we choose to synthesize the guard S
that ensures L(D × S) ⊆ L(φ) even if L(D) * L(φ).

4 FEASIBILITY EVALUATION
There are two existing methods that can be leveraged to synthesize
guards from safety specifications.

k-Stabilizing Safety Guard [3]. The guard synthesized by this
method can enforce safety properties and minimize the deviation
of the guard from the design, under the notation of k-stabilization.
That is, when a property violation by D becomes unavoidable, the
output of the guard S is allowed to deviate from D’s output for
at most k consecutive control steps. Only after these k steps, the
next violation is tolerated. If a second violation occurs within the
k-step recovery period, the guard enters a fail-safe mode, where it
still enforces φ but stops minimizing the deviation.

Handling Burst Error [48]. Burst error is a contiguous sequence
of errors, e.g., due to radiation interference or RAM failure. Un-
fortunately, the method in [3] cannot handle burst error: For any
k-stabilizing guard where k > 1, it may stop minimizing the devia-
tion under burst error. The method in [48] avoids this problem by
insisting that the guard never enters the fail-safe mode. That is, if
a second violation occurs within the k-step recovery period, the
guard will continue minimizing the difference between O ′ and O .
This makes it more suitable for automotive applications.

In the remainder of this section, we use the synthesis algorithm
in [48] to construct guards for the following safety specifications:

• Toyota powertrain control verification benchmark [21];
• Properties for vehicle engine and brake controls [33];
• Traffic light controller from the VIS model checker [10];
• Properties for an ARM AMBA bus arbiter [2].

Properties from the Toyota powertrain control verification bench-
mark are based on themodel of a fuel control system [21], specifying
the requirements in various operational modes. Originally, they
were represented in signal temporal logic (STL). We translated them
to linear temporal logic (LTL) by replacing the numerical predi-
cates with Boolean variables. For example, x + y > 3.53 is replaced
by P1 = 1 and z2 ≤ 0.06 by P2 = 1, where x ,y, z are real-valued
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Table 3: Evaluation results for Benchmarks.

Property φ Spec. |φ | Guard |S| Time (s)
Toyota powertrain [21] 23 38 0.3
Engine and brake ctrl [33] 5 7 0.1
Traffic light [10] 4 7 0.2
AMBA G1+2+3 [2] 12 22 0.1
AMBA G1+2+4 [2] 8 78 2.2
AMBA G1+3+4 [2] 15 640 97.6
AMBA G1+2+3+5 [2] 18 1405 61.8
AMBA G1+2+4+5 [2] 12 253 472.9
AMBA G5+6 [2] 16 63 0.2
AMBA G5+7 [2] 16 362 43.4

variables, and P1 and P2 are Boolean variables. Properties from the
engine and brake controls include Req 1.1–Req 3 in our illustrative
example. Properties from the traffic light control [10] are for the
safety of a crossroads traffic light. Properties from AMBA [2] are
combinations of various safety properties that must be satisfied by
the ARM bus arbiter.

Table 3 shows the evaluation results for these benchmarks, in-
cluding the name, specification size |φ | (in terms of the number
of states in φ), guard size |S| (in terms of the number of states
in S), and the synthesis time. All experiments are performed on
a computer with 3.1GHz CPU and 4GB RAM. The results show
that the guard synthesizer scales well for frequently encountered
properties in critical control subsystems: it took only a few minutes
for all benchmarks.

The examples and results presented so far demonstrate the ap-
plicability of safety guards to CPS, as well as the generality of the
synthesis algorithm. In the remainder of this paper, we focus on
discussing the benefits and limitations of the proposed approach.

5 ADVANTAGES AND ASSUMPTIONS
The advantages of using safety guards in the design and implemen-
tation of safety-critical CPS are as follows:

(1) The safety guard is correct-by-construction since it is auto-
matically synthesized from the specification of safety properties.

(2) The synthesis procedure is not tied to any particular system
or architecture and thus is more generally applicable than custom-
designed solutions.

(3) The synthesis procedure is scalable compared to existing
testing/verification techniques, since the guard has to regulate only
a small set of properties (whose violations cause catastrophe) as
opposed to the system’s functional specification.

(4) Due to the same reason as in (3), the safety guard is sig-
nificantly smaller than the design and thus can be hardened for
fault-tolerance and security protection at a lower cost.

(5) The use of safety guards may simplify the development. Sep-
arating safety enforcement from the design allows developers to
focus on crafting the most efficient design without worrying about
safety violations.

(6) Safety guards are well suited for autonomous and semi-
autonomous systems, which are heavily dependent on AI/ML tech-
niques that continuously evolve with new data and thus are hard
to analyze and verify.

(7) Safety guards are well suited for improving potentially buggy
legacy components, which may not be maintainable due to lack of
documentation or change of development teams.

(8) The use of safety guards may simplify safety certification.
Instead of certifying the design, we can certify the guard, which
is significantly smaller and changes less often, thus reducing the
certification cost.

Indeed, it can help solving two challenges in current certification
practice [50]. One is the lack of access to source code, which gen-
erates potential conflicts between OEMs and suppliers. The safety
guard addresses this issue as it does not require any knowledge
on the design. The other is the lack of compositional certification:
the system needs to be re-certified from scratch with any changes.
The safety guard addresses this issue as it will remain the same
(and hence no recertification is needed) as long as the input-output
relationship of the system does not change.

(9) With simplified certification, we hope to expedite the ad-
vancement of safety regulation in certain industries. For example,
right now, ISO 26262 is an automotive industry standard without
a regulator. Whereas in other safety-critical industries, the regula-
tor’s role is essential in enforcing safety standards and nurturing
a “safety-first” culture. Examples include the U.S. Food and Drug
Administration (FDA) for medical devices, Nuclear Regulatory Com-
mission (NRC) for nuclear power plants, and Federal Aviation Ad-
ministration (FAA) for aircrafts. By lowering the certification cost,
we hope to remove the cost concerns and allow the certification
authority to emerge quickly [50].

However, we are mindful that there is no panacea, and the pro-
posed approach is likely only part of the solution for ensuring CPS
safety. Furthermore, to obtain the full benefits of safety guards, we
need to make sure that (a) the guards are correctly implemented
in hardware or software, and (b) the input signals of the guards
are trustworthy. Nevertheless, both of these two assumptions are
easily satisfied by current industry practice.

Specifically, the first assumption can be satisfied in two steps. The
assumption of a correct implementation fits well with the current
trend of adopting rigorous model-based design process in industry.
The automatically synthesized safety guard is represented as a finite
automaton, which is similar to the ones modeled in Stateflow from
MathWorks: implementations can be automatically generated to
match these automata (hence avoiding implementation bugs). Then,
the implementation may be hardened to protect against soft errors
as well as security attacks. The second assumption can be satisfied by
the typical distributed control systems upon which the guards are
deployed [23]. In these systems, critical sources of input data may be
protected using various fault-tolerance and security-enhancement
mechanisms.

6 SUMMARY AND RESEARCH
OPPORTUNITIES

We have proposed the use of safety guards for protecting critical
CPS against unknown faults, and demonstrated their feasibility and
effectiveness. Still, there are many open problems.

First, in practice, there is a lack of formal specification for safety
properties, although we expect that the recently proposed safety
standard, ISO26262, will ease the concern over time. Furthermore,
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automated software tools and techniques for mining temporal logic
specifications [49] from legacy designs will help.

Second, the scalability of the guard synthesis algorithms shall be
improved. For example, it would be helpful if the safety guard can
be synthesized by exploiting compositionality. That is, instead of
synthesizing a monolithic guardS to protect against all safety viola-
tions, we synthesize a series of smaller safety guards S1,S2,S3, . . .,
whose composition is functionally equivalent to S.

Third, the guard synthesis algorithms need to be extended to
handle a more diverse set of properties as well as deviation metrics.
Furthermore, existing algorithms rely on solving two-player safety
games [3] where the guardS acts against the systemD. However, in
reality, S andD are mostly cooperating and occasionally opposing,
since errors in D (whether caused by reliability issues or security
attacks) are rare. Exploiting this unique characteristic may help
improving the synthesis algorithms.

Finally, there need to be efficient implementations of the guards.
In vehicle subsystems, for example, a single-task implementation
of the guard, as in code generators for Simlunk/Stateflow, may
be inefficient [30, 52]. Although a multi-task implementation is
possible, there are some challenges. One challenge is to balance
the accuracy and efficiency of the related schedulability analysis,
since exact analysis of the static priority scheduling (used in the
AUTOSAR/OSEKOS standard) is strongly NP-hard [44, 51]. Another
challenge is to scale up the implementation, since the safety guard
may have hundreds or even thousands of states and need to share
the ECU with many other periodic tasks [8, 27].
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